// SPDX-License-Identifier: MIT
#include "nouveau_drv.h"
#include "nouveau_gem.h"
#include "nouveau_mem.h"
#include "nouveau_dma.h"
#include "nouveau_exec.h"
#include "nouveau_abi16.h"
#include "nouveau_chan.h"
#include "nouveau_sched.h"
#include "nouveau_uvmm.h"
/**
* DOC: Overview
*
* Nouveau's VM_BIND / EXEC UAPI consists of three ioctls: DRM_NOUVEAU_VM_INIT,
* DRM_NOUVEAU_VM_BIND and DRM_NOUVEAU_EXEC.
*
* In order to use the UAPI firstly a user client must initialize the VA space
* using the DRM_NOUVEAU_VM_INIT ioctl specifying which region of the VA space
* should be managed by the kernel and which by the UMD.
*
* The DRM_NOUVEAU_VM_BIND ioctl provides clients an interface to manage the
* userspace-managable portion of the VA space. It provides operations to map
* and unmap memory. Mappings may be flagged as sparse. Sparse mappings are not
* backed by a GEM object and the kernel will ignore GEM handles provided
* alongside a sparse mapping.
*
* Userspace may request memory backed mappings either within or outside of the
* bounds (but not crossing those bounds) of a previously mapped sparse
* mapping. Subsequently requested memory backed mappings within a sparse
* mapping will take precedence over the corresponding range of the sparse
* mapping. If such memory backed mappings are unmapped the kernel will make
* sure that the corresponding sparse mapping will take their place again.
* Requests to unmap a sparse mapping that still contains memory backed mappings
* will result in those memory backed mappings being unmapped first.
*
* Unmap requests are not bound to the range of existing mappings and can even
* overlap the bounds of sparse mappings. For such a request the kernel will
* make sure to unmap all memory backed mappings within the given range,
* splitting up memory backed mappings which are only partially contained
* within the given range. Unmap requests with the sparse flag set must match
* the range of a previously mapped sparse mapping exactly though.
*
* While the kernel generally permits arbitrary sequences and ranges of memory
* backed mappings being mapped and unmapped, either within a single or multiple
* VM_BIND ioctl calls, there are some restrictions for sparse mappings.
*
* The kernel does not permit to:
* - unmap non-existent sparse mappings
* - unmap a sparse mapping and map a new sparse mapping overlapping the range
* of the previously unmapped sparse mapping within the same VM_BIND ioctl
* - unmap a sparse mapping and map new memory backed mappings overlapping the
* range of the previously unmapped sparse mapping within the same VM_BIND
* ioctl
*
* When using the VM_BIND ioctl to request the kernel to map memory to a given
* virtual address in the GPU's VA space there is no guarantee that the actual
* mappings are created in the GPU's MMU. If the given memory is swapped out
* at the time the bind operation is executed the kernel will stash the mapping
* details into it's internal alloctor and create the actual MMU mappings once
* the memory is swapped back in. While this is transparent for userspace, it is
* guaranteed that all the backing memory is swapped back in and all the memory
* mappings, as requested by userspace previously, are actually mapped once the
* DRM_NOUVEAU_EXEC ioctl is called to submit an exec job.
*
* A VM_BIND job can be executed either synchronously or asynchronously. If
* exectued asynchronously, userspace may provide a list of syncobjs this job
* will wait for and/or a list of syncobj the kernel will signal once the
* VM_BIND job finished execution. If executed synchronously the ioctl will
* block until the bind job is finished. For synchronous jobs the kernel will
* not permit any syncobjs submitted to the kernel.
*
* To execute a push buffer the UAPI provides the DRM_NOUVEAU_EXEC ioctl. EXEC
* jobs are always executed asynchronously, and, equal to VM_BIND jobs, provide
* the option to synchronize them with syncobjs.
*
* Besides that, EXEC jobs can be scheduled for a specified channel to execute on.
*
* Since VM_BIND jobs update the GPU's VA space on job submit, EXEC jobs do have
* an up to date view of the VA space. However, the actual mappings might still
* be pending. Hence, EXEC jobs require to have the particular fences - of
* the corresponding VM_BIND jobs they depent on - attached to them.
*/
static int
nouveau_exec_job_submit(struct nouveau_job *job,
struct drm_gpuvm_exec *vme)
{
struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job);
struct nouveau_cli *cli = job->cli;
struct nouveau_uvmm *uvmm = nouveau_cli_uvmm(cli);
int ret;
/* Create a new fence, but do not emit yet. */
ret = nouveau_fence_create(&exec_job->fence, exec_job->chan);
if (ret)
return ret;
nouveau_uvmm_lock(uvmm);
ret = drm_gpuvm_exec_lock(vme);
if (ret) {
nouveau_uvmm_unlock(uvmm);
return ret;
}
nouveau_uvmm_unlock(uvmm);
ret = drm_gpuvm_exec_validate(vme);
if (ret) {
drm_gpuvm_exec_unlock(vme);
return ret;
}
return 0;
}
static void
nouveau_exec_job_armed_submit(struct nouveau_job *job,
struct drm_gpuvm_exec *vme)
{
drm_gpuvm_exec_resv_add_fence(vme, job->done_fence,
job->resv_usage, job->resv_usage);
drm_gpuvm_exec_unlock(vme);
}
static struct dma_fence *
nouveau_exec_job_run(struct nouveau_job *job)
{
struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job);
struct nouveau_channel *chan = exec_job->chan;
struct nouveau_fence *fence = exec_job->fence;
int i, ret;
ret = nouveau_dma_wait(chan, exec_job->push.count + 1, 16);
if (ret) {
NV_PRINTK(err, job->cli, "nv50cal_space: %d\n", ret);
return ERR_PTR(ret);
}
for (i = 0; i < exec_job->push.count; i++) {
struct drm_nouveau_exec_push *p = &exec_job->push.s[i];
bool no_prefetch = p->flags & DRM_NOUVEAU_EXEC_PUSH_NO_PREFETCH;
nv50_dma_push(chan, p->va, p->va_len, no_prefetch);
}
ret = nouveau_fence_emit(fence);
if (ret) {
nouveau_fence_unref(&exec_job->fence);
NV_PRINTK(err, job->cli, "error fencing pushbuf: %d\n", ret);
WIND_RING(chan);
return ERR_PTR(ret);
}
/* The fence was emitted successfully, set the job's fence pointer to
* NULL in order to avoid freeing it up when the job is cleaned up.
*/
exec_job->fence = NULL;
return &fence->base;
}
static void
nouveau_exec_job_free(struct nouveau_job *job)
{
struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job);
nouveau_job_done(job);
nouveau_job_free(job);
kfree(exec_job->fence);
kfree(exec_job->push.s);
kfree(exec_job);
}
static enum drm_gpu_sched_stat
nouveau_exec_job_timeout(struct nouveau_job *job)
{
struct nouveau_exec_job *exec_job = to_nouveau_exec_job(job);
struct nouveau_channel *chan = exec_job->chan;
if (unlikely(!atomic_read(&chan->killed)))
nouveau_channel_kill(chan);
NV_PRINTK(warn, job->cli, "job timeout, channel %d killed!\n",
chan->chid);
return DRM_GPU_SCHED_STAT_NOMINAL;
}
static const struct nouveau_job_ops nouveau_exec_job_ops = {
.submit = nouveau_exec_job_submit,
.armed_submit = nouveau_exec_job_armed_submit,
.run = nouveau_exec_job_run,
.free = nouveau_exec_job_free,
.timeout = nouveau_exec_job_timeout,
};
int
nouveau_exec_job_init(struct nouveau_exec_job **pjob,
struct nouveau_exec_job_args *__args)
{
struct nouveau_exec_job *job;
struct nouveau_job_args args = {};
int i, ret;
for (i = 0; i < __args->push.count; i++) {
struct drm_nouveau_exec_push *p = &__args->push.s[i];
if (unlikely(p->va_len > NV50_DMA_PUSH_MAX_LENGTH)) {
NV_PRINTK(err, nouveau_cli(__args->file_priv),
"pushbuf size exceeds limit: 0x%x max 0x%x\n",
p->va_len, NV50_DMA_PUSH_MAX_LENGTH);
return -EINVAL;
}
}
job = *pjob = kzalloc(sizeof(*job), GFP_KERNEL);
if (!job)
return -ENOMEM;
job->push.count = __args->push.count;
if (__args->push.count) {
job->push.s = kmemdup(__args->push.s,
sizeof(*__args->push.s) *
__args->push.count,
GFP_KERNEL);
if (!job->push.s) {
ret = -ENOMEM;
goto err_free_job;
}
}
args.file_priv = __args->file_priv;
job->chan = __args->chan;
args.sched = __args->sched;
/* Plus one to account for the HW fence. */
args.credits = job->push.count + 1;
args.in_sync.count = __args->in_sync.count;
args.in_sync.s = __args->in_sync.s;
args.out_sync.count = __args->out_sync.count;
args.out_sync.s = __args->out_sync.s;
args.ops = &nouveau_exec_job_ops;
args.resv_usage = DMA_RESV_USAGE_WRITE;
ret = nouveau_job_init(&job->base, &args);
if (ret)
goto err_free_pushs;
return 0;
err_free_pushs:
kfree(job->push.s);
err_free_job:
kfree(job);
*pjob = NULL;
return ret;
}
static int
nouveau_exec(struct nouveau_exec_job_args *args)
{
struct nouveau_exec_job *job;
int ret;
ret = nouveau_exec_job_init(&job, args);
if (ret)
return ret;
ret = nouveau_job_submit(&job->base);
if (ret)
goto err_job_fini;
return 0;
err_job_fini:
nouveau_job_fini(&job->base);
return ret;
}
static int
nouveau_exec_ucopy(struct nouveau_exec_job_args *args,
struct drm_nouveau_exec *req)
{
struct drm_nouveau_sync **s;
u32 inc = req->wait_count;
u64 ins = req->wait_ptr;
u32 outc = req->sig_count;
u64 outs = req->sig_ptr;
u32 pushc = req->push_count;
u64 pushs = req->push_ptr;
int ret;
if (pushc) {
args->push.count = pushc;
args->push.s = u_memcpya(pushs, pushc, sizeof(*args->push.s));
if (IS_ERR(args->push.s))
return PTR_ERR(args->push.s);
}
if (inc) {
s = &args->in_sync.s;
args->in_sync.count = inc;
*s = u_memcpya(ins, inc, sizeof(**s));
if (IS_ERR(*s)) {
ret = PTR_ERR(*s);
goto err_free_pushs;
}
}
if (outc) {
s = &args->out_sync.s;
args->out_sync.count = outc;
*s = u_memcpya(outs, outc, sizeof(**s));
if (IS_ERR(*s)) {
ret = PTR_ERR(*s);
goto err_free_ins;
}
}
return 0;
err_free_pushs:
u_free(args->push.s);
err_free_ins:
u_free(args->in_sync.s);
return ret;
}
static void
nouveau_exec_ufree(struct nouveau_exec_job_args *args)
{
u_free(args->push.s);
u_free(args->in_sync.s);
u_free(args->out_sync.s);
}
int
nouveau_exec_ioctl_exec(struct drm_device *dev,
void *data,
struct drm_file *file_priv)
{
struct nouveau_abi16 *abi16 = nouveau_abi16_get(file_priv);
struct nouveau_cli *cli = nouveau_cli(file_priv);
struct nouveau_abi16_chan *chan16;
struct nouveau_channel *chan = NULL;
struct nouveau_exec_job_args args = {};
struct drm_nouveau_exec *req = data;
int push_max, ret = 0;
if (unlikely(!abi16))
return -ENOMEM;
/* abi16 locks already */
if (unlikely(!nouveau_cli_uvmm(cli)))
return nouveau_abi16_put(abi16, -ENOSYS);
list_for_each_entry(chan16, &abi16->channels, head) {
if (chan16->chan->chid == req->channel) {
chan = chan16->chan;
break;
}
}
if (!chan)
return nouveau_abi16_put(abi16, -ENOENT);
if (unlikely(atomic_read(&chan->killed)))
return nouveau_abi16_put(abi16, -ENODEV);
if (!chan->dma.ib_max)
return nouveau_abi16_put(abi16, -ENOSYS);
push_max = nouveau_exec_push_max_from_ib_max(chan->dma.ib_max);
if (unlikely(req->push_count > push_max)) {
NV_PRINTK(err, cli, "pushbuf push count exceeds limit: %d max %d\n",
req->push_count, push_max);
return nouveau_abi16_put(abi16, -EINVAL);
}
ret = nouveau_exec_ucopy(&args, req);
if (ret)
goto out;
args.sched = chan16->sched;
args.file_priv = file_priv;
args.chan = chan;
ret = nouveau_exec(&args);
if (ret)
goto out_free_args;
out_free_args:
nouveau_exec_ufree(&args);
out:
return nouveau_abi16_put(abi16, ret);
}