// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/cpumask.h>
#include <linux/firmware/qcom/qcom_scm.h>
#include <linux/pm_opp.h>
#include <linux/nvmem-consumer.h>
#include <linux/slab.h>
#include "msm_gem.h"
#include "msm_mmu.h"
#include "a5xx_gpu.h"
extern bool hang_debug;
static void a5xx_dump(struct msm_gpu *gpu);
#define GPU_PAS_ID 13
static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
if (a5xx_gpu->has_whereami) {
OUT_PKT7(ring, CP_WHERE_AM_I, 2);
OUT_RING(ring, lower_32_bits(shadowptr(a5xx_gpu, ring)));
OUT_RING(ring, upper_32_bits(shadowptr(a5xx_gpu, ring)));
}
}
void a5xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring,
bool sync)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
uint32_t wptr;
unsigned long flags;
/*
* Most flush operations need to issue a WHERE_AM_I opcode to sync up
* the rptr shadow
*/
if (sync)
update_shadow_rptr(gpu, ring);
spin_lock_irqsave(&ring->preempt_lock, flags);
/* Copy the shadow to the actual register */
ring->cur = ring->next;
/* Make sure to wrap wptr if we need to */
wptr = get_wptr(ring);
spin_unlock_irqrestore(&ring->preempt_lock, flags);
/* Make sure everything is posted before making a decision */
mb();
/* Update HW if this is the current ring and we are not in preempt */
if (a5xx_gpu->cur_ring == ring && !a5xx_in_preempt(a5xx_gpu))
gpu_write(gpu, REG_A5XX_CP_RB_WPTR, wptr);
}
static void a5xx_submit_in_rb(struct msm_gpu *gpu, struct msm_gem_submit *submit)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = submit->ring;
struct drm_gem_object *obj;
uint32_t *ptr, dwords;
unsigned int i;
for (i = 0; i < submit->nr_cmds; i++) {
switch (submit->cmd[i].type) {
case MSM_SUBMIT_CMD_IB_TARGET_BUF:
break;
case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
break;
fallthrough;
case MSM_SUBMIT_CMD_BUF:
/* copy commands into RB: */
obj = submit->bos[submit->cmd[i].idx].obj;
dwords = submit->cmd[i].size;
ptr = msm_gem_get_vaddr(obj);
/* _get_vaddr() shouldn't fail at this point,
* since we've already mapped it once in
* submit_reloc()
*/
if (WARN_ON(IS_ERR_OR_NULL(ptr)))
return;
for (i = 0; i < dwords; i++) {
/* normally the OUT_PKTn() would wait
* for space for the packet. But since
* we just OUT_RING() the whole thing,
* need to call adreno_wait_ring()
* ourself:
*/
adreno_wait_ring(ring, 1);
OUT_RING(ring, ptr[i]);
}
msm_gem_put_vaddr(obj);
break;
}
}
a5xx_gpu->last_seqno[ring->id] = submit->seqno;
a5xx_flush(gpu, ring, true);
a5xx_preempt_trigger(gpu);
/* we might not necessarily have a cmd from userspace to
* trigger an event to know that submit has completed, so
* do this manually:
*/
a5xx_idle(gpu, ring);
ring->memptrs->fence = submit->seqno;
msm_gpu_retire(gpu);
}
static void a5xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = submit->ring;
unsigned int i, ibs = 0;
if (IS_ENABLED(CONFIG_DRM_MSM_GPU_SUDO) && submit->in_rb) {
gpu->cur_ctx_seqno = 0;
a5xx_submit_in_rb(gpu, submit);
return;
}
OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
OUT_RING(ring, 0x02);
/* Turn off protected mode to write to special registers */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 0);
/* Set the save preemption record for the ring/command */
OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
/* Turn back on protected mode */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 1);
/*
* Disable local preemption by default because it requires
* user-space to be aware of it and provide additional handling
* to restore rendering state or do various flushes on switch.
*/
OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1);
OUT_RING(ring, 0x0);
/* Allow CP_CONTEXT_SWITCH_YIELD packets in the IB2 */
OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
OUT_RING(ring, 0x02);
/* Submit the commands */
for (i = 0; i < submit->nr_cmds; i++) {
switch (submit->cmd[i].type) {
case MSM_SUBMIT_CMD_IB_TARGET_BUF:
break;
case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
break;
fallthrough;
case MSM_SUBMIT_CMD_BUF:
OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
OUT_RING(ring, submit->cmd[i].size);
ibs++;
break;
}
/*
* Periodically update shadow-wptr if needed, so that we
* can see partial progress of submits with large # of
* cmds.. otherwise we could needlessly stall waiting for
* ringbuffer state, simply due to looking at a shadow
* rptr value that has not been updated
*/
if ((ibs % 32) == 0)
update_shadow_rptr(gpu, ring);
}
/*
* Write the render mode to NULL (0) to indicate to the CP that the IBs
* are done rendering - otherwise a lucky preemption would start
* replaying from the last checkpoint
*/
OUT_PKT7(ring, CP_SET_RENDER_MODE, 5);
OUT_RING(ring, 0);
OUT_RING(ring, 0);
OUT_RING(ring, 0);
OUT_RING(ring, 0);
OUT_RING(ring, 0);
/* Turn off IB level preemptions */
OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
OUT_RING(ring, 0x01);
/* Write the fence to the scratch register */
OUT_PKT4(ring, REG_A5XX_CP_SCRATCH_REG(2), 1);
OUT_RING(ring, submit->seqno);
a5xx_gpu->last_seqno[ring->id] = submit->seqno;
/*
* Execute a CACHE_FLUSH_TS event. This will ensure that the
* timestamp is written to the memory and then triggers the interrupt
*/
OUT_PKT7(ring, CP_EVENT_WRITE, 4);
OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
CP_EVENT_WRITE_0_IRQ);
OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
OUT_RING(ring, submit->seqno);
/* Yield the floor on command completion */
OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
/*
* If dword[2:1] are non zero, they specify an address for the CP to
* write the value of dword[3] to on preemption complete. Write 0 to
* skip the write
*/
OUT_RING(ring, 0x00);
OUT_RING(ring, 0x00);
/* Data value - not used if the address above is 0 */
OUT_RING(ring, 0x01);
/* Set bit 0 to trigger an interrupt on preempt complete */
OUT_RING(ring, 0x01);
/* A WHERE_AM_I packet is not needed after a YIELD */
a5xx_flush(gpu, ring, false);
/* Check to see if we need to start preemption */
a5xx_preempt_trigger(gpu);
}
static const struct adreno_five_hwcg_regs {
u32 offset;
u32 value;
} a5xx_hwcg[] = {
{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
{REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222},
{REG_A5XX_RBBM_CLOCK_CNTL_SP2, 0x02222222},
{REG_A5XX_RBBM_CLOCK_CNTL_SP3, 0x02222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
{REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220},
{REG_A5XX_RBBM_CLOCK_CNTL2_SP2, 0x02222220},
{REG_A5XX_RBBM_CLOCK_CNTL2_SP3, 0x02222220},
{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
{REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF},
{REG_A5XX_RBBM_CLOCK_HYST_SP2, 0x0000F3CF},
{REG_A5XX_RBBM_CLOCK_HYST_SP3, 0x0000F3CF},
{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
{REG_A5XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
{REG_A5XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_TP2, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_TP3, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
{REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222},
{REG_A5XX_RBBM_CLOCK_CNTL3_TP2, 0x00002222},
{REG_A5XX_RBBM_CLOCK_CNTL3_TP3, 0x00002222},
{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
{REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777},
{REG_A5XX_RBBM_CLOCK_HYST3_TP2, 0x00007777},
{REG_A5XX_RBBM_CLOCK_HYST3_TP3, 0x00007777},
{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
{REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111},
{REG_A5XX_RBBM_CLOCK_DELAY3_TP2, 0x00001111},
{REG_A5XX_RBBM_CLOCK_DELAY3_TP3, 0x00001111},
{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444},
{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RB2, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RB3, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
{REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220},
{REG_A5XX_RBBM_CLOCK_CNTL_CCU2, 0x00022220},
{REG_A5XX_RBBM_CLOCK_CNTL_CCU3, 0x00022220},
{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404},
{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU2, 0x04040404},
{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU3, 0x04040404},
{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002},
{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_2, 0x00000002},
{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_3, 0x00000002},
{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}
}, a50x_hwcg[] = {
{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00FFFFF4},
{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
}, a512_hwcg[] = {
{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
{REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
{REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220},
{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
{REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF},
{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
{REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222},
{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
{REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777},
{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
{REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111},
{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444},
{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222},
{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
{REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220},
{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404},
{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002},
{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
};
void a5xx_set_hwcg(struct msm_gpu *gpu, bool state)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
const struct adreno_five_hwcg_regs *regs;
unsigned int i, sz;
if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) ||
adreno_is_a508(adreno_gpu)) {
regs = a50x_hwcg;
sz = ARRAY_SIZE(a50x_hwcg);
} else if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu)) {
regs = a512_hwcg;
sz = ARRAY_SIZE(a512_hwcg);
} else {
regs = a5xx_hwcg;
sz = ARRAY_SIZE(a5xx_hwcg);
}
for (i = 0; i < sz; i++)
gpu_write(gpu, regs[i].offset,
state ? regs[i].value : 0);
if (adreno_is_a540(adreno_gpu)) {
gpu_write(gpu, REG_A5XX_RBBM_CLOCK_DELAY_GPMU, state ? 0x00000770 : 0);
gpu_write(gpu, REG_A5XX_RBBM_CLOCK_HYST_GPMU, state ? 0x00000004 : 0);
}
gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, state ? 0xAAA8AA00 : 0);
gpu_write(gpu, REG_A5XX_RBBM_ISDB_CNT, state ? 0x182 : 0x180);
}
static int a5xx_me_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct msm_ringbuffer *ring = gpu->rb[0];
OUT_PKT7(ring, CP_ME_INIT, 8);
OUT_RING(ring, 0x0000002F);
/* Enable multiple hardware contexts */
OUT_RING(ring, 0x00000003);
/* Enable error detection */
OUT_RING(ring, 0x20000000);
/* Don't enable header dump */
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
/* Specify workarounds for various microcode issues */
if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) ||
adreno_is_a530(adreno_gpu)) {
/* Workaround for token end syncs
* Force a WFI after every direct-render 3D mode draw and every
* 2D mode 3 draw
*/
OUT_RING(ring, 0x0000000B);
} else if (adreno_is_a510(adreno_gpu)) {
/* Workaround for token and syncs */
OUT_RING(ring, 0x00000001);
} else {
/* No workarounds enabled */
OUT_RING(ring, 0x00000000);
}
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
a5xx_flush(gpu, ring, true);
return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
}
static int a5xx_preempt_start(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = gpu->rb[0];
if (gpu->nr_rings == 1)
return 0;
/* Turn off protected mode to write to special registers */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 0);
/* Set the save preemption record for the ring/command */
OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[ring->id]));
OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[ring->id]));
/* Turn back on protected mode */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 1);
OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
OUT_RING(ring, 0x00);
OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1);
OUT_RING(ring, 0x01);
OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
OUT_RING(ring, 0x01);
/* Yield the floor on command completion */
OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
OUT_RING(ring, 0x00);
OUT_RING(ring, 0x00);
OUT_RING(ring, 0x01);
OUT_RING(ring, 0x01);
/* The WHERE_AMI_I packet is not needed after a YIELD is issued */
a5xx_flush(gpu, ring, false);
return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
}
static void a5xx_ucode_check_version(struct a5xx_gpu *a5xx_gpu,
struct drm_gem_object *obj)
{
u32 *buf = msm_gem_get_vaddr(obj);
if (IS_ERR(buf))
return;
/*
* If the lowest nibble is 0xa that is an indication that this microcode
* has been patched. The actual version is in dword [3] but we only care
* about the patchlevel which is the lowest nibble of dword [3]
*/
if (((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1)
a5xx_gpu->has_whereami = true;
msm_gem_put_vaddr(obj);
}
static int a5xx_ucode_load(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
int ret;
if (!a5xx_gpu->pm4_bo) {
a5xx_gpu->pm4_bo = adreno_fw_create_bo(gpu,
adreno_gpu->fw[ADRENO_FW_PM4], &a5xx_gpu->pm4_iova);
if (IS_ERR(a5xx_gpu->pm4_bo)) {
ret = PTR_ERR(a5xx_gpu->pm4_bo);
a5xx_gpu->pm4_bo = NULL;
DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PM4: %d\n",
ret);
return ret;
}
msm_gem_object_set_name(a5xx_gpu->pm4_bo, "pm4fw");
}
if (!a5xx_gpu->pfp_bo) {
a5xx_gpu->pfp_bo = adreno_fw_create_bo(gpu,
adreno_gpu->fw[ADRENO_FW_PFP], &a5xx_gpu->pfp_iova);
if (IS_ERR(a5xx_gpu->pfp_bo)) {
ret = PTR_ERR(a5xx_gpu->pfp_bo);
a5xx_gpu->pfp_bo = NULL;
DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PFP: %d\n",
ret);
return ret;
}
msm_gem_object_set_name(a5xx_gpu->pfp_bo, "pfpfw");
a5xx_ucode_check_version(a5xx_gpu, a5xx_gpu->pfp_bo);
}
if (a5xx_gpu->has_whereami) {
if (!a5xx_gpu->shadow_bo) {
a5xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
sizeof(u32) * gpu->nr_rings,
MSM_BO_WC | MSM_BO_MAP_PRIV,
gpu->aspace, &a5xx_gpu->shadow_bo,
&a5xx_gpu->shadow_iova);
if (IS_ERR(a5xx_gpu->shadow))
return PTR_ERR(a5xx_gpu->shadow);
msm_gem_object_set_name(a5xx_gpu->shadow_bo, "shadow");
}
} else if (gpu->nr_rings > 1) {
/* Disable preemption if WHERE_AM_I isn't available */
a5xx_preempt_fini(gpu);
gpu->nr_rings = 1;
}
return 0;
}
#define SCM_GPU_ZAP_SHADER_RESUME 0
static int a5xx_zap_shader_resume(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int ret;
/*
* Adreno 506 have CPZ Retention feature and doesn't require
* to resume zap shader
*/
if (adreno_is_a506(adreno_gpu))
return 0;
ret = qcom_scm_set_remote_state(SCM_GPU_ZAP_SHADER_RESUME, GPU_PAS_ID);
if (ret)
DRM_ERROR("%s: zap-shader resume failed: %d\n",
gpu->name, ret);
return ret;
}
static int a5xx_zap_shader_init(struct msm_gpu *gpu)
{
static bool loaded;
int ret;
/*
* If the zap shader is already loaded into memory we just need to kick
* the remote processor to reinitialize it
*/
if (loaded)
return a5xx_zap_shader_resume(gpu);
ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
loaded = !ret;
return ret;
}
#define A5XX_INT_MASK (A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW | \
A5XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT | \
A5XX_RBBM_INT_0_MASK_CP_SW | \
A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
static int a5xx_hw_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
u32 hbb;
int ret;
gpu_write(gpu, REG_A5XX_VBIF_ROUND_ROBIN_QOS_ARB, 0x00000003);
if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) ||
adreno_is_a540(adreno_gpu))
gpu_write(gpu, REG_A5XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
/* Make all blocks contribute to the GPU BUSY perf counter */
gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xFFFFFFFF);
/* Enable RBBM error reporting bits */
gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL0, 0x00000001);
if (adreno_gpu->info->quirks & ADRENO_QUIRK_FAULT_DETECT_MASK) {
/*
* Mask out the activity signals from RB1-3 to avoid false
* positives
*/
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL11,
0xF0000000);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL12,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL13,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL14,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL15,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL16,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL17,
0xFFFFFFFF);
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL18,
0xFFFFFFFF);
}
/* Enable fault detection */
gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_INT_CNTL,
(1 << 30) | 0xFFFF);
/* Turn on performance counters */
gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_CNTL, 0x01);
/* Select CP0 to always count cycles */
gpu_write(gpu, REG_A5XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT);
/* Select RBBM0 to countable 6 to get the busy status for devfreq */
gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_SEL_0, 6);
/* Increase VFD cache access so LRZ and other data gets evicted less */
gpu_write(gpu, REG_A5XX_UCHE_CACHE_WAYS, 0x02);
/* Disable L2 bypass in the UCHE */
gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_LO, 0xFFFF0000);
gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_HI, 0x0001FFFF);
gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_LO, 0xFFFF0000);
gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_HI, 0x0001FFFF);
/* Set the GMEM VA range (0 to gpu->gmem) */
gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_LO, 0x00100000);
gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_HI, 0x00000000);
gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_LO,
0x00100000 + adreno_gpu->info->gmem - 1);
gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_HI, 0x00000000);
if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) ||
adreno_is_a508(adreno_gpu) || adreno_is_a510(adreno_gpu)) {
gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x20);
if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) ||
adreno_is_a508(adreno_gpu))
gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400);
else
gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x20);
gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x40000030);
gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x20100D0A);
} else {
gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x40);
if (adreno_is_a530(adreno_gpu))
gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x40);
else
gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400);
gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x80000060);
gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x40201B16);
}
if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) ||
adreno_is_a508(adreno_gpu))
gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
(0x100 << 11 | 0x100 << 22));
else if (adreno_is_a509(adreno_gpu) || adreno_is_a510(adreno_gpu) ||
adreno_is_a512(adreno_gpu))
gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
(0x200 << 11 | 0x200 << 22));
else
gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
(0x400 << 11 | 0x300 << 22));
if (adreno_gpu->info->quirks & ADRENO_QUIRK_TWO_PASS_USE_WFI)
gpu_rmw(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 0, (1 << 8));
/*
* Disable the RB sampler datapath DP2 clock gating optimization
* for 1-SP GPUs, as it is enabled by default.
*/
if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) ||
adreno_is_a508(adreno_gpu) || adreno_is_a509(adreno_gpu) ||
adreno_is_a512(adreno_gpu))
gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, 0, (1 << 9));
/* Disable UCHE global filter as SP can invalidate/flush independently */
gpu_write(gpu, REG_A5XX_UCHE_MODE_CNTL, BIT(29));
/* Enable USE_RETENTION_FLOPS */
gpu_write(gpu, REG_A5XX_CP_CHICKEN_DBG, 0x02000000);
/* Enable ME/PFP split notification */
gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL1, 0xA6FFFFFF);
/*
* In A5x, CCU can send context_done event of a particular context to
* UCHE which ultimately reaches CP even when there is valid
* transaction of that context inside CCU. This can let CP to program
* config registers, which will make the "valid transaction" inside
* CCU to be interpreted differently. This can cause gpu fault. This
* bug is fixed in latest A510 revision. To enable this bug fix -
* bit[11] of RB_DBG_ECO_CNTL need to be set to 0, default is 1
* (disable). For older A510 version this bit is unused.
*/
if (adreno_is_a510(adreno_gpu))
gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, (1 << 11), 0);
/* Enable HWCG */
a5xx_set_hwcg(gpu, true);
gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL2, 0x0000003F);
BUG_ON(adreno_gpu->ubwc_config.highest_bank_bit < 13);
hbb = adreno_gpu->ubwc_config.highest_bank_bit - 13;
gpu_write(gpu, REG_A5XX_TPL1_MODE_CNTL, hbb << 7);
gpu_write(gpu, REG_A5XX_RB_MODE_CNTL, hbb << 1);
if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) ||
adreno_is_a540(adreno_gpu))
gpu_write(gpu, REG_A5XX_UCHE_DBG_ECO_CNTL_2, hbb);
/* Disable All flat shading optimization (ALLFLATOPTDIS) */
gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, (1 << 10));
/* Protect registers from the CP */
gpu_write(gpu, REG_A5XX_CP_PROTECT_CNTL, 0x00000007);
/* RBBM */
gpu_write(gpu, REG_A5XX_CP_PROTECT(0), ADRENO_PROTECT_RW(0x04, 4));
gpu_write(gpu, REG_A5XX_CP_PROTECT(1), ADRENO_PROTECT_RW(0x08, 8));
gpu_write(gpu, REG_A5XX_CP_PROTECT(2), ADRENO_PROTECT_RW(0x10, 16));
gpu_write(gpu, REG_A5XX_CP_PROTECT(3), ADRENO_PROTECT_RW(0x20, 32));
gpu_write(gpu, REG_A5XX_CP_PROTECT(4), ADRENO_PROTECT_RW(0x40, 64));
gpu_write(gpu, REG_A5XX_CP_PROTECT(5), ADRENO_PROTECT_RW(0x80, 64));
/* Content protect */
gpu_write(gpu, REG_A5XX_CP_PROTECT(6),
ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
16));
gpu_write(gpu, REG_A5XX_CP_PROTECT(7),
ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TRUST_CNTL, 2));
/* CP */
gpu_write(gpu, REG_A5XX_CP_PROTECT(8), ADRENO_PROTECT_RW(0x800, 64));
gpu_write(gpu, REG_A5XX_CP_PROTECT(9), ADRENO_PROTECT_RW(0x840, 8));
gpu_write(gpu, REG_A5XX_CP_PROTECT(10), ADRENO_PROTECT_RW(0x880, 32));
gpu_write(gpu, REG_A5XX_CP_PROTECT(11), ADRENO_PROTECT_RW(0xAA0, 1));
/* RB */
gpu_write(gpu, REG_A5XX_CP_PROTECT(12), ADRENO_PROTECT_RW(0xCC0, 1));
gpu_write(gpu, REG_A5XX_CP_PROTECT(13), ADRENO_PROTECT_RW(0xCF0, 2));
/* VPC */
gpu_write(gpu, REG_A5XX_CP_PROTECT(14), ADRENO_PROTECT_RW(0xE68, 8));
gpu_write(gpu, REG_A5XX_CP_PROTECT(15), ADRENO_PROTECT_RW(0xE70, 16));
/* UCHE */
gpu_write(gpu, REG_A5XX_CP_PROTECT(16), ADRENO_PROTECT_RW(0xE80, 16));
/* SMMU */
gpu_write(gpu, REG_A5XX_CP_PROTECT(17),
ADRENO_PROTECT_RW(0x10000, 0x8000));
gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_CNTL, 0);
/*
* Disable the trusted memory range - we don't actually supported secure
* memory rendering at this point in time and we don't want to block off
* part of the virtual memory space.
*/
gpu_write64(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 0x00000000);
gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
/* Put the GPU into 64 bit by default */
gpu_write(gpu, REG_A5XX_CP_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A5XX_VSC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A5XX_GRAS_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A5XX_RB_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A5XX_PC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A5XX_HLSQ_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A5XX_VFD_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A5XX_VPC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A5XX_UCHE_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A5XX_SP_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A5XX_TPL1_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
/*
* VPC corner case with local memory load kill leads to corrupt
* internal state. Normal Disable does not work for all a5x chips.
* So do the following setting to disable it.
*/
if (adreno_gpu->info->quirks & ADRENO_QUIRK_LMLOADKILL_DISABLE) {
gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, BIT(23));
gpu_rmw(gpu, REG_A5XX_HLSQ_DBG_ECO_CNTL, BIT(18), 0);
}
ret = adreno_hw_init(gpu);
if (ret)
return ret;
if (adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))
a5xx_gpmu_ucode_init(gpu);
gpu_write64(gpu, REG_A5XX_CP_ME_INSTR_BASE_LO, a5xx_gpu->pm4_iova);
gpu_write64(gpu, REG_A5XX_CP_PFP_INSTR_BASE_LO, a5xx_gpu->pfp_iova);
/* Set the ringbuffer address */
gpu_write64(gpu, REG_A5XX_CP_RB_BASE, gpu->rb[0]->iova);
/*
* If the microcode supports the WHERE_AM_I opcode then we can use that
* in lieu of the RPTR shadow and enable preemption. Otherwise, we
* can't safely use the RPTR shadow or preemption. In either case, the
* RPTR shadow should be disabled in hardware.
*/
gpu_write(gpu, REG_A5XX_CP_RB_CNTL,
MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
/* Configure the RPTR shadow if needed: */
if (a5xx_gpu->shadow_bo) {
gpu_write64(gpu, REG_A5XX_CP_RB_RPTR_ADDR,
shadowptr(a5xx_gpu, gpu->rb[0]));
}
a5xx_preempt_hw_init(gpu);
/* Disable the interrupts through the initial bringup stage */
gpu_write(gpu, REG_A5XX_RBBM_INT_0_MASK, A5XX_INT_MASK);
/* Clear ME_HALT to start the micro engine */
gpu_write(gpu, REG_A5XX_CP_PFP_ME_CNTL, 0);
ret = a5xx_me_init(gpu);
if (ret)
return ret;
ret = a5xx_power_init(gpu);
if (ret)
return ret;
/*
* Send a pipeline event stat to get misbehaving counters to start
* ticking correctly
*/
if (adreno_is_a530(adreno_gpu)) {
OUT_PKT7(gpu->rb[0], CP_EVENT_WRITE, 1);
OUT_RING(gpu->rb[0], CP_EVENT_WRITE_0_EVENT(STAT_EVENT));
a5xx_flush(gpu, gpu->rb[0], true);
if (!a5xx_idle(gpu, gpu->rb[0]))
return -EINVAL;
}
/*
* If the chip that we are using does support loading one, then
* try to load a zap shader into the secure world. If successful
* we can use the CP to switch out of secure mode. If not then we
* have no resource but to try to switch ourselves out manually. If we
* guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
* be blocked and a permissions violation will soon follow.
*/
ret = a5xx_zap_shader_init(gpu);
if (!ret) {
OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
OUT_RING(gpu->rb[0], 0x00000000);
a5xx_flush(gpu, gpu->rb[0], true);
if (!a5xx_idle(gpu, gpu->rb[0]))
return -EINVAL;
} else if (ret == -ENODEV) {
/*
* This device does not use zap shader (but print a warning
* just in case someone got their dt wrong.. hopefully they
* have a debug UART to realize the error of their ways...
* if you mess this up you are about to crash horribly)
*/
dev_warn_once(gpu->dev->dev,
"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
gpu_write(gpu, REG_A5XX_RBBM_SECVID_TRUST_CNTL, 0x0);
} else {
return ret;
}
/* Last step - yield the ringbuffer */
a5xx_preempt_start(gpu);
return 0;
}
static void a5xx_recover(struct msm_gpu *gpu)
{
int i;
adreno_dump_info(gpu);
for (i = 0; i < 8; i++) {
printk("CP_SCRATCH_REG%d: %u\n", i,
gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(i)));
}
if (hang_debug)
a5xx_dump(gpu);
gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 1);
gpu_read(gpu, REG_A5XX_RBBM_SW_RESET_CMD);
gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 0);
adreno_recover(gpu);
}
static void a5xx_destroy(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
DBG("%s", gpu->name);
a5xx_preempt_fini(gpu);
if (a5xx_gpu->pm4_bo) {
msm_gem_unpin_iova(a5xx_gpu->pm4_bo, gpu->aspace);
drm_gem_object_put(a5xx_gpu->pm4_bo);
}
if (a5xx_gpu->pfp_bo) {
msm_gem_unpin_iova(a5xx_gpu->pfp_bo, gpu->aspace);
drm_gem_object_put(a5xx_gpu->pfp_bo);
}
if (a5xx_gpu->gpmu_bo) {
msm_gem_unpin_iova(a5xx_gpu->gpmu_bo, gpu->aspace);
drm_gem_object_put(a5xx_gpu->gpmu_bo);
}
if (a5xx_gpu->shadow_bo) {
msm_gem_unpin_iova(a5xx_gpu->shadow_bo, gpu->aspace);
drm_gem_object_put(a5xx_gpu->shadow_bo);
}
adreno_gpu_cleanup(adreno_gpu);
kfree(a5xx_gpu);
}
static inline bool _a5xx_check_idle(struct msm_gpu *gpu)
{
if (gpu_read(gpu, REG_A5XX_RBBM_STATUS) & ~A5XX_RBBM_STATUS_HI_BUSY)
return false;
/*
* Nearly every abnormality ends up pausing the GPU and triggering a
* fault so we can safely just watch for this one interrupt to fire
*/
return !(gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS) &
A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT);
}
bool a5xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
if (ring != a5xx_gpu->cur_ring) {
WARN(1, "Tried to idle a non-current ringbuffer\n");
return false;
}
/* wait for CP to drain ringbuffer: */
if (!adreno_idle(gpu, ring))
return false;
if (spin_until(_a5xx_check_idle(gpu))) {
DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
gpu->name, __builtin_return_address(0),
gpu_read(gpu, REG_A5XX_RBBM_STATUS),
gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS),
gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
gpu_read(gpu, REG_A5XX_CP_RB_WPTR));
return false;
}
return true;
}
static int a5xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
{
struct msm_gpu *gpu = arg;
struct adreno_smmu_fault_info *info = data;
char block[12] = "unknown";
u32 scratch[] = {
gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(4)),
gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(5)),
gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(6)),
gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(7)),
};
if (info)
snprintf(block, sizeof(block), "%x", info->fsynr1);
return adreno_fault_handler(gpu, iova, flags, info, block, scratch);
}
static void a5xx_cp_err_irq(struct msm_gpu *gpu)
{
u32 status = gpu_read(gpu, REG_A5XX_CP_INTERRUPT_STATUS);
if (status & A5XX_CP_INT_CP_OPCODE_ERROR) {
u32 val;
gpu_write(gpu, REG_A5XX_CP_PFP_STAT_ADDR, 0);
/*
* REG_A5XX_CP_PFP_STAT_DATA is indexed, and we want index 1 so
* read it twice
*/
gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
val = gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
dev_err_ratelimited(gpu->dev->dev, "CP | opcode error | possible opcode=0x%8.8X\n",
val);
}
if (status & A5XX_CP_INT_CP_HW_FAULT_ERROR)
dev_err_ratelimited(gpu->dev->dev, "CP | HW fault | status=0x%8.8X\n",
gpu_read(gpu, REG_A5XX_CP_HW_FAULT));
if (status & A5XX_CP_INT_CP_DMA_ERROR)
dev_err_ratelimited(gpu->dev->dev, "CP | DMA error\n");
if (status & A5XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
u32 val = gpu_read(gpu, REG_A5XX_CP_PROTECT_STATUS);
dev_err_ratelimited(gpu->dev->dev,
"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
val & (1 << 24) ? "WRITE" : "READ",
(val & 0xFFFFF) >> 2, val);
}
if (status & A5XX_CP_INT_CP_AHB_ERROR) {
u32 status = gpu_read(gpu, REG_A5XX_CP_AHB_FAULT);
const char *access[16] = { "reserved", "reserved",
"timestamp lo", "timestamp hi", "pfp read", "pfp write",
"", "", "me read", "me write", "", "", "crashdump read",
"crashdump write" };
dev_err_ratelimited(gpu->dev->dev,
"CP | AHB error | addr=%X access=%s error=%d | status=0x%8.8X\n",
status & 0xFFFFF, access[(status >> 24) & 0xF],
(status & (1 << 31)), status);
}
}
static void a5xx_rbbm_err_irq(struct msm_gpu *gpu, u32 status)
{
if (status & A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR) {
u32 val = gpu_read(gpu, REG_A5XX_RBBM_AHB_ERROR_STATUS);
dev_err_ratelimited(gpu->dev->dev,
"RBBM | AHB bus error | %s | addr=0x%X | ports=0x%X:0x%X\n",
val & (1 << 28) ? "WRITE" : "READ",
(val & 0xFFFFF) >> 2, (val >> 20) & 0x3,
(val >> 24) & 0xF);
/* Clear the error */
gpu_write(gpu, REG_A5XX_RBBM_AHB_CMD, (1 << 4));
/* Clear the interrupt */
gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
}
if (status & A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT)
dev_err_ratelimited(gpu->dev->dev, "RBBM | AHB transfer timeout\n");
if (status & A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT)
dev_err_ratelimited(gpu->dev->dev, "RBBM | ME master split | status=0x%X\n",
gpu_read(gpu, REG_A5XX_RBBM_AHB_ME_SPLIT_STATUS));
if (status & A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT)
dev_err_ratelimited(gpu->dev->dev, "RBBM | PFP master split | status=0x%X\n",
gpu_read(gpu, REG_A5XX_RBBM_AHB_PFP_SPLIT_STATUS));
if (status & A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT)
dev_err_ratelimited(gpu->dev->dev, "RBBM | ETS master split | status=0x%X\n",
gpu_read(gpu, REG_A5XX_RBBM_AHB_ETS_SPLIT_STATUS));
if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB ASYNC overflow\n");
if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB bus overflow\n");
}
static void a5xx_uche_err_irq(struct msm_gpu *gpu)
{
uint64_t addr = (uint64_t) gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_HI);
addr |= gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_LO);
dev_err_ratelimited(gpu->dev->dev, "UCHE | Out of bounds access | addr=0x%llX\n",
addr);
}
static void a5xx_gpmu_err_irq(struct msm_gpu *gpu)
{
dev_err_ratelimited(gpu->dev->dev, "GPMU | voltage droop\n");
}
static void a5xx_fault_detect_irq(struct msm_gpu *gpu)
{
struct drm_device *dev = gpu->dev;
struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
/*
* If stalled on SMMU fault, we could trip the GPU's hang detection,
* but the fault handler will trigger the devcore dump, and we want
* to otherwise resume normally rather than killing the submit, so
* just bail.
*/
if (gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24))
return;
DRM_DEV_ERROR(dev->dev, "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0,
gpu_read(gpu, REG_A5XX_RBBM_STATUS),
gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
gpu_read(gpu, REG_A5XX_CP_RB_WPTR),
gpu_read64(gpu, REG_A5XX_CP_IB1_BASE),
gpu_read(gpu, REG_A5XX_CP_IB1_BUFSZ),
gpu_read64(gpu, REG_A5XX_CP_IB2_BASE),
gpu_read(gpu, REG_A5XX_CP_IB2_BUFSZ));
/* Turn off the hangcheck timer to keep it from bothering us */
del_timer(&gpu->hangcheck_timer);
kthread_queue_work(gpu->worker, &gpu->recover_work);
}
#define RBBM_ERROR_MASK \
(A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
static irqreturn_t a5xx_irq(struct msm_gpu *gpu)
{
struct msm_drm_private *priv = gpu->dev->dev_private;
u32 status = gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS);
/*
* Clear all the interrupts except RBBM_AHB_ERROR - if we clear it
* before the source is cleared the interrupt will storm.
*/
gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
status & ~A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
if (priv->disable_err_irq) {
status &= A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS |
A5XX_RBBM_INT_0_MASK_CP_SW;
}
/* Pass status to a5xx_rbbm_err_irq because we've already cleared it */
if (status & RBBM_ERROR_MASK)
a5xx_rbbm_err_irq(gpu, status);
if (status & A5XX_RBBM_INT_0_MASK_CP_HW_ERROR)
a5xx_cp_err_irq(gpu);
if (status & A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT)
a5xx_fault_detect_irq(gpu);
if (status & A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
a5xx_uche_err_irq(gpu);
if (status & A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
a5xx_gpmu_err_irq(gpu);
if (status & A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) {
a5xx_preempt_trigger(gpu);
msm_gpu_retire(gpu);
}
if (status & A5XX_RBBM_INT_0_MASK_CP_SW)
a5xx_preempt_irq(gpu);
return IRQ_HANDLED;
}
static const u32 a5xx_registers[] = {
0x0000, 0x0002, 0x0004, 0x0020, 0x0022, 0x0026, 0x0029, 0x002B,
0x002E, 0x0035, 0x0038, 0x0042, 0x0044, 0x0044, 0x0047, 0x0095,
0x0097, 0x00BB, 0x03A0, 0x0464, 0x0469, 0x046F, 0x04D2, 0x04D3,
0x04E0, 0x0533, 0x0540, 0x0555, 0x0800, 0x081A, 0x081F, 0x0841,
0x0860, 0x0860, 0x0880, 0x08A0, 0x0B00, 0x0B12, 0x0B15, 0x0B28,
0x0B78, 0x0B7F, 0x0BB0, 0x0BBD, 0x0BC0, 0x0BC6, 0x0BD0, 0x0C53,
0x0C60, 0x0C61, 0x0C80, 0x0C82, 0x0C84, 0x0C85, 0x0C90, 0x0C98,
0x0CA0, 0x0CA0, 0x0CB0, 0x0CB2, 0x2180, 0x2185, 0x2580, 0x2585,
0x0CC1, 0x0CC1, 0x0CC4, 0x0CC7, 0x0CCC, 0x0CCC, 0x0CD0, 0x0CD8,
0x0CE0, 0x0CE5, 0x0CE8, 0x0CE8, 0x0CEC, 0x0CF1, 0x0CFB, 0x0D0E,
0x2100, 0x211E, 0x2140, 0x2145, 0x2500, 0x251E, 0x2540, 0x2545,
0x0D10, 0x0D17, 0x0D20, 0x0D23, 0x0D30, 0x0D30, 0x20C0, 0x20C0,
0x24C0, 0x24C0, 0x0E40, 0x0E43, 0x0E4A, 0x0E4A, 0x0E50, 0x0E57,
0x0E60, 0x0E7C, 0x0E80, 0x0E8E, 0x0E90, 0x0E96, 0x0EA0, 0x0EA8,
0x0EB0, 0x0EB2, 0xE140, 0xE147, 0xE150, 0xE187, 0xE1A0, 0xE1A9,
0xE1B0, 0xE1B6, 0xE1C0, 0xE1C7, 0xE1D0, 0xE1D1, 0xE200, 0xE201,
0xE210, 0xE21C, 0xE240, 0xE268, 0xE000, 0xE006, 0xE010, 0xE09A,
0xE0A0, 0xE0A4, 0xE0AA, 0xE0EB, 0xE100, 0xE105, 0xE380, 0xE38F,
0xE3B0, 0xE3B0, 0xE400, 0xE405, 0xE408, 0xE4E9, 0xE4F0, 0xE4F0,
0xE280, 0xE280, 0xE282, 0xE2A3, 0xE2A5, 0xE2C2, 0xE940, 0xE947,
0xE950, 0xE987, 0xE9A0, 0xE9A9, 0xE9B0, 0xE9B6, 0xE9C0, 0xE9C7,
0xE9D0, 0xE9D1, 0xEA00, 0xEA01, 0xEA10, 0xEA1C, 0xEA40, 0xEA68,
0xE800, 0xE806, 0xE810, 0xE89A, 0xE8A0, 0xE8A4, 0xE8AA, 0xE8EB,
0xE900, 0xE905, 0xEB80, 0xEB8F, 0xEBB0, 0xEBB0, 0xEC00, 0xEC05,
0xEC08, 0xECE9, 0xECF0, 0xECF0, 0xEA80, 0xEA80, 0xEA82, 0xEAA3,
0xEAA5, 0xEAC2, 0xA800, 0xA800, 0xA820, 0xA828, 0xA840, 0xA87D,
0XA880, 0xA88D, 0xA890, 0xA8A3, 0xA8D0, 0xA8D8, 0xA8E0, 0xA8F5,
0xAC60, 0xAC60, ~0,
};
static void a5xx_dump(struct msm_gpu *gpu)
{
DRM_DEV_INFO(gpu->dev->dev, "status: %08x\n",
gpu_read(gpu, REG_A5XX_RBBM_STATUS));
adreno_dump(gpu);
}
static int a5xx_pm_resume(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int ret;
/* Turn on the core power */
ret = msm_gpu_pm_resume(gpu);
if (ret)
return ret;
/* Adreno 505, 506, 508, 509, 510, 512 needs manual RBBM sus/res control */
if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))) {
/* Halt the sp_input_clk at HM level */
gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0x00000055);
a5xx_set_hwcg(gpu, true);
/* Turn on sp_input_clk at HM level */
gpu_rmw(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0xff, 0);
return 0;
}
/* Turn the RBCCU domain first to limit the chances of voltage droop */
gpu_write(gpu, REG_A5XX_GPMU_RBCCU_POWER_CNTL, 0x778000);
/* Wait 3 usecs before polling */
udelay(3);
ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS,
(1 << 20), (1 << 20));
if (ret) {
DRM_ERROR("%s: timeout waiting for RBCCU GDSC enable: %X\n",
gpu->name,
gpu_read(gpu, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS));
return ret;
}
/* Turn on the SP domain */
gpu_write(gpu, REG_A5XX_GPMU_SP_POWER_CNTL, 0x778000);
ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_SP_PWR_CLK_STATUS,
(1 << 20), (1 << 20));
if (ret)
DRM_ERROR("%s: timeout waiting for SP GDSC enable\n",
gpu->name);
return ret;
}
static int a5xx_pm_suspend(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
u32 mask = 0xf;
int i, ret;
/* A505, A506, A508, A510 have 3 XIN ports in VBIF */
if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) ||
adreno_is_a508(adreno_gpu) || adreno_is_a510(adreno_gpu))
mask = 0x7;
/* Clear the VBIF pipe before shutting down */
gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, mask);
spin_until((gpu_read(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL1) &
mask) == mask);
gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, 0);
/*
* Reset the VBIF before power collapse to avoid issue with FIFO
* entries on Adreno A510 and A530 (the others will tend to lock up)
*/
if (adreno_is_a510(adreno_gpu) || adreno_is_a530(adreno_gpu)) {
gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x003C0000);
gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x00000000);
}
ret = msm_gpu_pm_suspend(gpu);
if (ret)
return ret;
if (a5xx_gpu->has_whereami)
for (i = 0; i < gpu->nr_rings; i++)
a5xx_gpu->shadow[i] = 0;
return 0;
}
static int a5xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
{
*value = gpu_read64(gpu, REG_A5XX_RBBM_ALWAYSON_COUNTER_LO);
return 0;
}
struct a5xx_crashdumper {
void *ptr;
struct drm_gem_object *bo;
u64 iova;
};
struct a5xx_gpu_state {
struct msm_gpu_state base;
u32 *hlsqregs;
};
static int a5xx_crashdumper_init(struct msm_gpu *gpu,
struct a5xx_crashdumper *dumper)
{
dumper->ptr = msm_gem_kernel_new(gpu->dev,
SZ_1M, MSM_BO_WC, gpu->aspace,
&dumper->bo, &dumper->iova);
if (!IS_ERR(dumper->ptr))
msm_gem_object_set_name(dumper->bo, "crashdump");
return PTR_ERR_OR_ZERO(dumper->ptr);
}
static int a5xx_crashdumper_run(struct msm_gpu *gpu,
struct a5xx_crashdumper *dumper)
{
u32 val;
if (IS_ERR_OR_NULL(dumper->ptr))
return -EINVAL;
gpu_write64(gpu, REG_A5XX_CP_CRASH_SCRIPT_BASE_LO, dumper->iova);
gpu_write(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, 1);
return gpu_poll_timeout(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, val,
val & 0x04, 100, 10000);
}
/*
* These are a list of the registers that need to be read through the HLSQ
* aperture through the crashdumper. These are not nominally accessible from
* the CPU on a secure platform.
*/
static const struct {
u32 type;
u32 regoffset;
u32 count;
} a5xx_hlsq_aperture_regs[] = {
{ 0x35, 0xe00, 0x32 }, /* HSLQ non-context */
{ 0x31, 0x2080, 0x1 }, /* HLSQ 2D context 0 */
{ 0x33, 0x2480, 0x1 }, /* HLSQ 2D context 1 */
{ 0x32, 0xe780, 0x62 }, /* HLSQ 3D context 0 */
{ 0x34, 0xef80, 0x62 }, /* HLSQ 3D context 1 */
{ 0x3f, 0x0ec0, 0x40 }, /* SP non-context */
{ 0x3d, 0x2040, 0x1 }, /* SP 2D context 0 */
{ 0x3b, 0x2440, 0x1 }, /* SP 2D context 1 */
{ 0x3e, 0xe580, 0x170 }, /* SP 3D context 0 */
{ 0x3c, 0xed80, 0x170 }, /* SP 3D context 1 */
{ 0x3a, 0x0f00, 0x1c }, /* TP non-context */
{ 0x38, 0x2000, 0xa }, /* TP 2D context 0 */
{ 0x36, 0x2400, 0xa }, /* TP 2D context 1 */
{ 0x39, 0xe700, 0x80 }, /* TP 3D context 0 */
{ 0x37, 0xef00, 0x80 }, /* TP 3D context 1 */
};
static void a5xx_gpu_state_get_hlsq_regs(struct msm_gpu *gpu,
struct a5xx_gpu_state *a5xx_state)
{
struct a5xx_crashdumper dumper = { 0 };
u32 offset, count = 0;
u64 *ptr;
int i;
if (a5xx_crashdumper_init(gpu, &dumper))
return;
/* The script will be written at offset 0 */
ptr = dumper.ptr;
/* Start writing the data at offset 256k */
offset = dumper.iova + (256 * SZ_1K);
/* Count how many additional registers to get from the HLSQ aperture */
for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++)
count += a5xx_hlsq_aperture_regs[i].count;
a5xx_state->hlsqregs = kcalloc(count, sizeof(u32), GFP_KERNEL);
if (!a5xx_state->hlsqregs)
return;
/* Build the crashdump script */
for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) {
u32 type = a5xx_hlsq_aperture_regs[i].type;
u32 c = a5xx_hlsq_aperture_regs[i].count;
/* Write the register to select the desired bank */
*ptr++ = ((u64) type << 8);
*ptr++ = (((u64) REG_A5XX_HLSQ_DBG_READ_SEL) << 44) |
(1 << 21) | 1;
*ptr++ = offset;
*ptr++ = (((u64) REG_A5XX_HLSQ_DBG_AHB_READ_APERTURE) << 44)
| c;
offset += c * sizeof(u32);
}
/* Write two zeros to close off the script */
*ptr++ = 0;
*ptr++ = 0;
if (a5xx_crashdumper_run(gpu, &dumper)) {
kfree(a5xx_state->hlsqregs);
msm_gem_kernel_put(dumper.bo, gpu->aspace);
return;
}
/* Copy the data from the crashdumper to the state */
memcpy(a5xx_state->hlsqregs, dumper.ptr + (256 * SZ_1K),
count * sizeof(u32));
msm_gem_kernel_put(dumper.bo, gpu->aspace);
}
static struct msm_gpu_state *a5xx_gpu_state_get(struct msm_gpu *gpu)
{
struct a5xx_gpu_state *a5xx_state = kzalloc(sizeof(*a5xx_state),
GFP_KERNEL);
bool stalled = !!(gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24));
if (!a5xx_state)
return ERR_PTR(-ENOMEM);
/* Temporarily disable hardware clock gating before reading the hw */
a5xx_set_hwcg(gpu, false);
/* First get the generic state from the adreno core */
adreno_gpu_state_get(gpu, &(a5xx_state->base));
a5xx_state->base.rbbm_status = gpu_read(gpu, REG_A5XX_RBBM_STATUS);
/*
* Get the HLSQ regs with the help of the crashdumper, but only if
* we are not stalled in an iommu fault (in which case the crashdumper
* would not have access to memory)
*/
if (!stalled)
a5xx_gpu_state_get_hlsq_regs(gpu, a5xx_state);
a5xx_set_hwcg(gpu, true);
return &a5xx_state->base;
}
static void a5xx_gpu_state_destroy(struct kref *kref)
{
struct msm_gpu_state *state = container_of(kref,
struct msm_gpu_state, ref);
struct a5xx_gpu_state *a5xx_state = container_of(state,
struct a5xx_gpu_state, base);
kfree(a5xx_state->hlsqregs);
adreno_gpu_state_destroy(state);
kfree(a5xx_state);
}
static int a5xx_gpu_state_put(struct msm_gpu_state *state)
{
if (IS_ERR_OR_NULL(state))
return 1;
return kref_put(&state->ref, a5xx_gpu_state_destroy);
}
#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
static void a5xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state,
struct drm_printer *p)
{
int i, j;
u32 pos = 0;
struct a5xx_gpu_state *a5xx_state = container_of(state,
struct a5xx_gpu_state, base);
if (IS_ERR_OR_NULL(state))
return;
adreno_show(gpu, state, p);
/* Dump the additional a5xx HLSQ registers */
if (!a5xx_state->hlsqregs)
return;
drm_printf(p, "registers-hlsq:\n");
for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) {
u32 o = a5xx_hlsq_aperture_regs[i].regoffset;
u32 c = a5xx_hlsq_aperture_regs[i].count;
for (j = 0; j < c; j++, pos++, o++) {
/*
* To keep the crashdump simple we pull the entire range
* for each register type but not all of the registers
* in the range are valid. Fortunately invalid registers
* stick out like a sore thumb with a value of
* 0xdeadbeef
*/
if (a5xx_state->hlsqregs[pos] == 0xdeadbeef)
continue;
drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n",
o << 2, a5xx_state->hlsqregs[pos]);
}
}
}
#endif
static struct msm_ringbuffer *a5xx_active_ring(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
return a5xx_gpu->cur_ring;
}
static u64 a5xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate)
{
u64 busy_cycles;
busy_cycles = gpu_read64(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_0_LO);
*out_sample_rate = clk_get_rate(gpu->core_clk);
return busy_cycles;
}
static uint32_t a5xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
if (a5xx_gpu->has_whereami)
return a5xx_gpu->shadow[ring->id];
return ring->memptrs->rptr = gpu_read(gpu, REG_A5XX_CP_RB_RPTR);
}
static const struct adreno_gpu_funcs funcs = {
.base = {
.get_param = adreno_get_param,
.set_param = adreno_set_param,
.hw_init = a5xx_hw_init,
.ucode_load = a5xx_ucode_load,
.pm_suspend = a5xx_pm_suspend,
.pm_resume = a5xx_pm_resume,
.recover = a5xx_recover,
.submit = a5xx_submit,
.active_ring = a5xx_active_ring,
.irq = a5xx_irq,
.destroy = a5xx_destroy,
#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
.show = a5xx_show,
#endif
#if defined(CONFIG_DEBUG_FS)
.debugfs_init = a5xx_debugfs_init,
#endif
.gpu_busy = a5xx_gpu_busy,
.gpu_state_get = a5xx_gpu_state_get,
.gpu_state_put = a5xx_gpu_state_put,
.create_address_space = adreno_create_address_space,
.get_rptr = a5xx_get_rptr,
},
.get_timestamp = a5xx_get_timestamp,
};
static void check_speed_bin(struct device *dev)
{
struct nvmem_cell *cell;
u32 val;
/*
* If the OPP table specifies a opp-supported-hw property then we have
* to set something with dev_pm_opp_set_supported_hw() or the table
* doesn't get populated so pick an arbitrary value that should
* ensure the default frequencies are selected but not conflict with any
* actual bins
*/
val = 0x80;
cell = nvmem_cell_get(dev, "speed_bin");
if (!IS_ERR(cell)) {
void *buf = nvmem_cell_read(cell, NULL);
if (!IS_ERR(buf)) {
u8 bin = *((u8 *) buf);
val = (1 << bin);
kfree(buf);
}
nvmem_cell_put(cell);
}
devm_pm_opp_set_supported_hw(dev, &val, 1);
}
struct msm_gpu *a5xx_gpu_init(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct platform_device *pdev = priv->gpu_pdev;
struct adreno_platform_config *config = pdev->dev.platform_data;
struct a5xx_gpu *a5xx_gpu = NULL;
struct adreno_gpu *adreno_gpu;
struct msm_gpu *gpu;
unsigned int nr_rings;
int ret;
if (!pdev) {
DRM_DEV_ERROR(dev->dev, "No A5XX device is defined\n");
return ERR_PTR(-ENXIO);
}
a5xx_gpu = kzalloc(sizeof(*a5xx_gpu), GFP_KERNEL);
if (!a5xx_gpu)
return ERR_PTR(-ENOMEM);
adreno_gpu = &a5xx_gpu->base;
gpu = &adreno_gpu->base;
adreno_gpu->registers = a5xx_registers;
a5xx_gpu->lm_leakage = 0x4E001A;
check_speed_bin(&pdev->dev);
nr_rings = 4;
if (config->info->revn == 510)
nr_rings = 1;
ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, nr_rings);
if (ret) {
a5xx_destroy(&(a5xx_gpu->base.base));
return ERR_PTR(ret);
}
if (gpu->aspace)
msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, a5xx_fault_handler);
/* Set up the preemption specific bits and pieces for each ringbuffer */
a5xx_preempt_init(gpu);
/* Set the highest bank bit */
if (adreno_is_a540(adreno_gpu) || adreno_is_a530(adreno_gpu))
adreno_gpu->ubwc_config.highest_bank_bit = 15;
else
adreno_gpu->ubwc_config.highest_bank_bit = 14;
/* a5xx only supports UBWC 1.0, these are not configurable */
adreno_gpu->ubwc_config.macrotile_mode = 0;
adreno_gpu->ubwc_config.ubwc_swizzle = 0x7;
return gpu;
}