// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2022,2023 NXP
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/math.h>
#include <linux/media-bus-format.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-mipi-dphy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <drm/bridge/dw_mipi_dsi.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_modes.h>
/* DPHY PLL configuration registers */
#define DSI_REG 0x4c
#define CFGCLKFREQRANGE_MASK GENMASK(5, 0)
#define CFGCLKFREQRANGE(x) FIELD_PREP(CFGCLKFREQRANGE_MASK, (x))
#define CLKSEL_MASK GENMASK(7, 6)
#define CLKSEL_STOP FIELD_PREP(CLKSEL_MASK, 0)
#define CLKSEL_GEN FIELD_PREP(CLKSEL_MASK, 1)
#define CLKSEL_EXT FIELD_PREP(CLKSEL_MASK, 2)
#define HSFREQRANGE_MASK GENMASK(14, 8)
#define HSFREQRANGE(x) FIELD_PREP(HSFREQRANGE_MASK, (x))
#define UPDATE_PLL BIT(17)
#define SHADOW_CLR BIT(18)
#define CLK_EXT BIT(19)
#define DSI_WRITE_REG0 0x50
#define M_MASK GENMASK(9, 0)
#define M(x) FIELD_PREP(M_MASK, ((x) - 2))
#define N_MASK GENMASK(13, 10)
#define N(x) FIELD_PREP(N_MASK, ((x) - 1))
#define VCO_CTRL_MASK GENMASK(19, 14)
#define VCO_CTRL(x) FIELD_PREP(VCO_CTRL_MASK, (x))
#define PROP_CTRL_MASK GENMASK(25, 20)
#define PROP_CTRL(x) FIELD_PREP(PROP_CTRL_MASK, (x))
#define INT_CTRL_MASK GENMASK(31, 26)
#define INT_CTRL(x) FIELD_PREP(INT_CTRL_MASK, (x))
#define DSI_WRITE_REG1 0x54
#define GMP_CTRL_MASK GENMASK(1, 0)
#define GMP_CTRL(x) FIELD_PREP(GMP_CTRL_MASK, (x))
#define CPBIAS_CTRL_MASK GENMASK(8, 2)
#define CPBIAS_CTRL(x) FIELD_PREP(CPBIAS_CTRL_MASK, (x))
#define PLL_SHADOW_CTRL BIT(9)
/* display mux control register */
#define DISPLAY_MUX 0x60
#define MIPI_DSI_RGB666_MAP_CFG GENMASK(7, 6)
#define RGB666_CONFIG1 FIELD_PREP(MIPI_DSI_RGB666_MAP_CFG, 0)
#define RGB666_CONFIG2 FIELD_PREP(MIPI_DSI_RGB666_MAP_CFG, 1)
#define MIPI_DSI_RGB565_MAP_CFG GENMASK(5, 4)
#define RGB565_CONFIG1 FIELD_PREP(MIPI_DSI_RGB565_MAP_CFG, 0)
#define RGB565_CONFIG2 FIELD_PREP(MIPI_DSI_RGB565_MAP_CFG, 1)
#define RGB565_CONFIG3 FIELD_PREP(MIPI_DSI_RGB565_MAP_CFG, 2)
#define LCDIF_CROSS_LINE_PATTERN GENMASK(3, 0)
#define RGB888_TO_RGB888 FIELD_PREP(LCDIF_CROSS_LINE_PATTERN, 0)
#define RGB888_TO_RGB666 FIELD_PREP(LCDIF_CROSS_LINE_PATTERN, 6)
#define RGB565_TO_RGB565 FIELD_PREP(LCDIF_CROSS_LINE_PATTERN, 7)
#define MHZ(x) ((x) * 1000000UL)
#define REF_CLK_RATE_MAX MHZ(64)
#define REF_CLK_RATE_MIN MHZ(2)
#define FOUT_MAX MHZ(1250)
#define FOUT_MIN MHZ(40)
#define FVCO_DIV_FACTOR MHZ(80)
#define MBPS(x) ((x) * 1000000UL)
#define DATA_RATE_MAX_SPEED MBPS(2500)
#define DATA_RATE_MIN_SPEED MBPS(80)
#define M_MAX 625UL
#define M_MIN 64UL
#define N_MAX 16U
#define N_MIN 1U
struct imx93_dsi {
struct device *dev;
struct regmap *regmap;
struct clk *clk_pixel;
struct clk *clk_ref;
struct clk *clk_cfg;
struct dw_mipi_dsi *dmd;
struct dw_mipi_dsi_plat_data pdata;
union phy_configure_opts phy_cfg;
unsigned long ref_clk_rate;
u32 format;
};
struct dphy_pll_cfg {
u32 m; /* PLL Feedback Multiplication Ratio */
u32 n; /* PLL Input Frequency Division Ratio */
};
struct dphy_pll_vco_prop {
unsigned long max_fout;
u8 vco_cntl;
u8 prop_cntl;
};
struct dphy_pll_hsfreqrange {
unsigned long max_mbps;
u8 hsfreqrange;
};
/* DPHY Databook Table 3-13 Charge-pump Programmability */
static const struct dphy_pll_vco_prop vco_prop_map[] = {
{ 55, 0x3f, 0x0d },
{ 82, 0x37, 0x0d },
{ 110, 0x2f, 0x0d },
{ 165, 0x27, 0x0d },
{ 220, 0x1f, 0x0d },
{ 330, 0x17, 0x0d },
{ 440, 0x0f, 0x0d },
{ 660, 0x07, 0x0d },
{ 1149, 0x03, 0x0d },
{ 1152, 0x01, 0x0d },
{ 1250, 0x01, 0x0e },
};
/* DPHY Databook Table 5-7 Frequency Ranges and Defaults */
static const struct dphy_pll_hsfreqrange hsfreqrange_map[] = {
{ 89, 0x00 },
{ 99, 0x10 },
{ 109, 0x20 },
{ 119, 0x30 },
{ 129, 0x01 },
{ 139, 0x11 },
{ 149, 0x21 },
{ 159, 0x31 },
{ 169, 0x02 },
{ 179, 0x12 },
{ 189, 0x22 },
{ 204, 0x32 },
{ 219, 0x03 },
{ 234, 0x13 },
{ 249, 0x23 },
{ 274, 0x33 },
{ 299, 0x04 },
{ 324, 0x14 },
{ 349, 0x25 },
{ 399, 0x35 },
{ 449, 0x05 },
{ 499, 0x16 },
{ 549, 0x26 },
{ 599, 0x37 },
{ 649, 0x07 },
{ 699, 0x18 },
{ 749, 0x28 },
{ 799, 0x39 },
{ 849, 0x09 },
{ 899, 0x19 },
{ 949, 0x29 },
{ 999, 0x3a },
{ 1049, 0x0a },
{ 1099, 0x1a },
{ 1149, 0x2a },
{ 1199, 0x3b },
{ 1249, 0x0b },
{ 1299, 0x1b },
{ 1349, 0x2b },
{ 1399, 0x3c },
{ 1449, 0x0c },
{ 1499, 0x1c },
{ 1549, 0x2c },
{ 1599, 0x3d },
{ 1649, 0x0d },
{ 1699, 0x1d },
{ 1749, 0x2e },
{ 1799, 0x3e },
{ 1849, 0x0e },
{ 1899, 0x1e },
{ 1949, 0x2f },
{ 1999, 0x3f },
{ 2049, 0x0f },
{ 2099, 0x40 },
{ 2149, 0x41 },
{ 2199, 0x42 },
{ 2249, 0x43 },
{ 2299, 0x44 },
{ 2349, 0x45 },
{ 2399, 0x46 },
{ 2449, 0x47 },
{ 2499, 0x48 },
{ 2500, 0x49 },
};
static void dphy_pll_write(struct imx93_dsi *dsi, unsigned int reg, u32 value)
{
int ret;
ret = regmap_write(dsi->regmap, reg, value);
if (ret < 0)
dev_err(dsi->dev, "failed to write 0x%08x to pll reg 0x%x: %d\n",
value, reg, ret);
}
static inline unsigned long data_rate_to_fout(unsigned long data_rate)
{
/* Fout is half of data rate */
return data_rate / 2;
}
static int
dphy_pll_get_configure_from_opts(struct imx93_dsi *dsi,
struct phy_configure_opts_mipi_dphy *dphy_opts,
struct dphy_pll_cfg *cfg)
{
struct device *dev = dsi->dev;
unsigned long fin = dsi->ref_clk_rate;
unsigned long fout;
unsigned long best_fout = 0;
unsigned int fvco_div;
unsigned int min_n, max_n, n, best_n = UINT_MAX;
unsigned long m, best_m = 0;
unsigned long min_delta = ULONG_MAX;
unsigned long delta;
u64 tmp;
if (dphy_opts->hs_clk_rate < DATA_RATE_MIN_SPEED ||
dphy_opts->hs_clk_rate > DATA_RATE_MAX_SPEED) {
dev_dbg(dev, "invalid data rate per lane: %lu\n",
dphy_opts->hs_clk_rate);
return -EINVAL;
}
fout = data_rate_to_fout(dphy_opts->hs_clk_rate);
/* DPHY Databook 3.3.6.1 Output Frequency */
/* Fout = Fvco / Fvco_div = (Fin * M) / (Fvco_div * N) */
/* Fvco_div could be 1/2/4/8 according to Fout range. */
fvco_div = 8UL / min(DIV_ROUND_UP(fout, FVCO_DIV_FACTOR), 8UL);
/* limitation: 2MHz <= Fin / N <= 8MHz */
min_n = DIV_ROUND_UP_ULL((u64)fin, MHZ(8));
max_n = DIV_ROUND_DOWN_ULL((u64)fin, MHZ(2));
/* clamp possible N(s) */
min_n = clamp(min_n, N_MIN, N_MAX);
max_n = clamp(max_n, N_MIN, N_MAX);
dev_dbg(dev, "Fout = %lu, Fvco_div = %u, n_range = [%u, %u]\n",
fout, fvco_div, min_n, max_n);
for (n = min_n; n <= max_n; n++) {
/* M = (Fout * N * Fvco_div) / Fin */
m = DIV_ROUND_CLOSEST(fout * n * fvco_div, fin);
/* check M range */
if (m < M_MIN || m > M_MAX)
continue;
/* calculate temporary Fout */
tmp = m * fin;
do_div(tmp, n * fvco_div);
if (tmp < FOUT_MIN || tmp > FOUT_MAX)
continue;
delta = abs(fout - tmp);
if (delta < min_delta) {
best_n = n;
best_m = m;
min_delta = delta;
best_fout = tmp;
}
}
if (best_fout) {
cfg->m = best_m;
cfg->n = best_n;
dev_dbg(dev, "best Fout = %lu, m = %u, n = %u\n",
best_fout, cfg->m, cfg->n);
} else {
dev_dbg(dev, "failed to find best Fout\n");
return -EINVAL;
}
return 0;
}
static void dphy_pll_clear_shadow(struct imx93_dsi *dsi)
{
/* Reference DPHY Databook Figure 3-3 Initialization Timing Diagram. */
/* Select clock generation first. */
dphy_pll_write(dsi, DSI_REG, CLKSEL_GEN);
/* Clear shadow after clock selection is done a while. */
fsleep(1);
dphy_pll_write(dsi, DSI_REG, CLKSEL_GEN | SHADOW_CLR);
/* A minimum pulse of 5ns on shadow_clear signal. */
fsleep(1);
dphy_pll_write(dsi, DSI_REG, CLKSEL_GEN);
}
static unsigned long dphy_pll_get_cfgclkrange(struct imx93_dsi *dsi)
{
/*
* DPHY Databook Table 4-4 System Control Signals mentions an equation
* for cfgclkfreqrange[5:0].
*/
return (clk_get_rate(dsi->clk_cfg) / MHZ(1) - 17) * 4;
}
static u8
dphy_pll_get_hsfreqrange(struct phy_configure_opts_mipi_dphy *dphy_opts)
{
unsigned long mbps = dphy_opts->hs_clk_rate / MHZ(1);
int i;
for (i = 0; i < ARRAY_SIZE(hsfreqrange_map); i++)
if (mbps <= hsfreqrange_map[i].max_mbps)
return hsfreqrange_map[i].hsfreqrange;
return 0;
}
static u8 dphy_pll_get_vco(struct phy_configure_opts_mipi_dphy *dphy_opts)
{
unsigned long fout = data_rate_to_fout(dphy_opts->hs_clk_rate) / MHZ(1);
int i;
for (i = 0; i < ARRAY_SIZE(vco_prop_map); i++)
if (fout <= vco_prop_map[i].max_fout)
return vco_prop_map[i].vco_cntl;
return 0;
}
static u8 dphy_pll_get_prop(struct phy_configure_opts_mipi_dphy *dphy_opts)
{
unsigned long fout = data_rate_to_fout(dphy_opts->hs_clk_rate) / MHZ(1);
int i;
for (i = 0; i < ARRAY_SIZE(vco_prop_map); i++)
if (fout <= vco_prop_map[i].max_fout)
return vco_prop_map[i].prop_cntl;
return 0;
}
static int dphy_pll_update(struct imx93_dsi *dsi)
{
int ret;
ret = regmap_update_bits(dsi->regmap, DSI_REG, UPDATE_PLL, UPDATE_PLL);
if (ret < 0) {
dev_err(dsi->dev, "failed to set UPDATE_PLL: %d\n", ret);
return ret;
}
/*
* The updatepll signal should be asserted for a minimum of four clkin
* cycles, according to DPHY Databook Figure 3-3 Initialization Timing
* Diagram.
*/
fsleep(10);
ret = regmap_update_bits(dsi->regmap, DSI_REG, UPDATE_PLL, 0);
if (ret < 0) {
dev_err(dsi->dev, "failed to clear UPDATE_PLL: %d\n", ret);
return ret;
}
return 0;
}
static int dphy_pll_configure(struct imx93_dsi *dsi, union phy_configure_opts *opts)
{
struct dphy_pll_cfg cfg = { 0 };
u32 val;
int ret;
ret = dphy_pll_get_configure_from_opts(dsi, &opts->mipi_dphy, &cfg);
if (ret) {
dev_err(dsi->dev, "failed to get phy pll cfg %d\n", ret);
return ret;
}
dphy_pll_clear_shadow(dsi);
/* DSI_REG */
val = CLKSEL_GEN |
CFGCLKFREQRANGE(dphy_pll_get_cfgclkrange(dsi)) |
HSFREQRANGE(dphy_pll_get_hsfreqrange(&opts->mipi_dphy));
dphy_pll_write(dsi, DSI_REG, val);
/* DSI_WRITE_REG0 */
val = M(cfg.m) | N(cfg.n) | INT_CTRL(0) |
VCO_CTRL(dphy_pll_get_vco(&opts->mipi_dphy)) |
PROP_CTRL(dphy_pll_get_prop(&opts->mipi_dphy));
dphy_pll_write(dsi, DSI_WRITE_REG0, val);
/* DSI_WRITE_REG1 */
dphy_pll_write(dsi, DSI_WRITE_REG1, GMP_CTRL(1) | CPBIAS_CTRL(0x10));
ret = clk_prepare_enable(dsi->clk_ref);
if (ret < 0) {
dev_err(dsi->dev, "failed to enable ref clock: %d\n", ret);
return ret;
}
/*
* At least 10 refclk cycles are required before updatePLL assertion,
* according to DPHY Databook Figure 3-3 Initialization Timing Diagram.
*/
fsleep(10);
ret = dphy_pll_update(dsi);
if (ret < 0) {
clk_disable_unprepare(dsi->clk_ref);
return ret;
}
return 0;
}
static void dphy_pll_clear_reg(struct imx93_dsi *dsi)
{
dphy_pll_write(dsi, DSI_REG, 0);
dphy_pll_write(dsi, DSI_WRITE_REG0, 0);
dphy_pll_write(dsi, DSI_WRITE_REG1, 0);
}
static int dphy_pll_init(struct imx93_dsi *dsi)
{
int ret;
ret = clk_prepare_enable(dsi->clk_cfg);
if (ret < 0) {
dev_err(dsi->dev, "failed to enable config clock: %d\n", ret);
return ret;
}
dphy_pll_clear_reg(dsi);
return 0;
}
static void dphy_pll_uninit(struct imx93_dsi *dsi)
{
dphy_pll_clear_reg(dsi);
clk_disable_unprepare(dsi->clk_cfg);
}
static void dphy_pll_power_off(struct imx93_dsi *dsi)
{
dphy_pll_clear_reg(dsi);
clk_disable_unprepare(dsi->clk_ref);
}
static int imx93_dsi_get_phy_configure_opts(struct imx93_dsi *dsi,
const struct drm_display_mode *mode,
union phy_configure_opts *phy_cfg,
u32 lanes, u32 format)
{
struct device *dev = dsi->dev;
int bpp;
int ret;
bpp = mipi_dsi_pixel_format_to_bpp(format);
if (bpp < 0) {
dev_dbg(dev, "failed to get bpp for pixel format %d\n", format);
return -EINVAL;
}
ret = phy_mipi_dphy_get_default_config(mode->clock * MSEC_PER_SEC, bpp,
lanes, &phy_cfg->mipi_dphy);
if (ret < 0) {
dev_dbg(dev, "failed to get default phy cfg %d\n", ret);
return ret;
}
return 0;
}
static enum drm_mode_status
imx93_dsi_validate_mode(struct imx93_dsi *dsi, const struct drm_display_mode *mode)
{
struct drm_bridge *bridge = dw_mipi_dsi_get_bridge(dsi->dmd);
/* Get the last bridge */
while (drm_bridge_get_next_bridge(bridge))
bridge = drm_bridge_get_next_bridge(bridge);
if ((bridge->ops & DRM_BRIDGE_OP_DETECT) &&
(bridge->ops & DRM_BRIDGE_OP_EDID)) {
unsigned long pixel_clock_rate = mode->clock * 1000;
unsigned long rounded_rate;
/* Allow +/-0.5% pixel clock rate deviation */
rounded_rate = clk_round_rate(dsi->clk_pixel, pixel_clock_rate);
if (rounded_rate < pixel_clock_rate * 995 / 1000 ||
rounded_rate > pixel_clock_rate * 1005 / 1000) {
dev_dbg(dsi->dev, "failed to round clock for mode " DRM_MODE_FMT "\n",
DRM_MODE_ARG(mode));
return MODE_NOCLOCK;
}
}
return MODE_OK;
}
static enum drm_mode_status
imx93_dsi_validate_phy(struct imx93_dsi *dsi, const struct drm_display_mode *mode,
unsigned long mode_flags, u32 lanes, u32 format)
{
union phy_configure_opts phy_cfg;
struct dphy_pll_cfg cfg = { 0 };
struct device *dev = dsi->dev;
int ret;
ret = imx93_dsi_get_phy_configure_opts(dsi, mode, &phy_cfg, lanes,
format);
if (ret < 0) {
dev_dbg(dev, "failed to get phy cfg opts %d\n", ret);
return MODE_ERROR;
}
ret = dphy_pll_get_configure_from_opts(dsi, &phy_cfg.mipi_dphy, &cfg);
if (ret < 0) {
dev_dbg(dev, "failed to get phy pll cfg %d\n", ret);
return MODE_NOCLOCK;
}
return MODE_OK;
}
static enum drm_mode_status
imx93_dsi_mode_valid(void *priv_data, const struct drm_display_mode *mode,
unsigned long mode_flags, u32 lanes, u32 format)
{
struct imx93_dsi *dsi = priv_data;
struct device *dev = dsi->dev;
enum drm_mode_status ret;
ret = imx93_dsi_validate_mode(dsi, mode);
if (ret != MODE_OK) {
dev_dbg(dev, "failed to validate mode " DRM_MODE_FMT "\n",
DRM_MODE_ARG(mode));
return ret;
}
ret = imx93_dsi_validate_phy(dsi, mode, mode_flags, lanes, format);
if (ret != MODE_OK) {
dev_dbg(dev, "failed to validate phy for mode " DRM_MODE_FMT "\n",
DRM_MODE_ARG(mode));
return ret;
}
return MODE_OK;
}
static bool imx93_dsi_mode_fixup(void *priv_data,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct imx93_dsi *dsi = priv_data;
unsigned long pixel_clock_rate;
unsigned long rounded_rate;
pixel_clock_rate = mode->clock * 1000;
rounded_rate = clk_round_rate(dsi->clk_pixel, pixel_clock_rate);
memcpy(adjusted_mode, mode, sizeof(*mode));
adjusted_mode->clock = rounded_rate / 1000;
dev_dbg(dsi->dev, "adj clock %d for mode " DRM_MODE_FMT "\n",
adjusted_mode->clock, DRM_MODE_ARG(mode));
return true;
}
static u32 *imx93_dsi_get_input_bus_fmts(void *priv_data,
struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts, input_fmt;
*num_input_fmts = 0;
switch (output_fmt) {
case MEDIA_BUS_FMT_RGB888_1X24:
case MEDIA_BUS_FMT_RGB666_1X18:
case MEDIA_BUS_FMT_FIXED:
input_fmt = MEDIA_BUS_FMT_RGB888_1X24;
break;
case MEDIA_BUS_FMT_RGB565_1X16:
input_fmt = output_fmt;
break;
default:
return NULL;
}
input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
input_fmts[0] = input_fmt;
*num_input_fmts = 1;
return input_fmts;
}
static int imx93_dsi_phy_init(void *priv_data)
{
struct imx93_dsi *dsi = priv_data;
unsigned int fmt = 0;
int ret;
switch (dsi->format) {
case MIPI_DSI_FMT_RGB888:
fmt = RGB888_TO_RGB888;
break;
case MIPI_DSI_FMT_RGB666:
fmt = RGB888_TO_RGB666;
regmap_update_bits(dsi->regmap, DISPLAY_MUX,
MIPI_DSI_RGB666_MAP_CFG, RGB666_CONFIG2);
break;
case MIPI_DSI_FMT_RGB666_PACKED:
fmt = RGB888_TO_RGB666;
regmap_update_bits(dsi->regmap, DISPLAY_MUX,
MIPI_DSI_RGB666_MAP_CFG, RGB666_CONFIG1);
break;
case MIPI_DSI_FMT_RGB565:
fmt = RGB565_TO_RGB565;
regmap_update_bits(dsi->regmap, DISPLAY_MUX,
MIPI_DSI_RGB565_MAP_CFG, RGB565_CONFIG1);
break;
}
regmap_update_bits(dsi->regmap, DISPLAY_MUX, LCDIF_CROSS_LINE_PATTERN, fmt);
ret = dphy_pll_init(dsi);
if (ret < 0) {
dev_err(dsi->dev, "failed to init phy pll: %d\n", ret);
return ret;
}
ret = dphy_pll_configure(dsi, &dsi->phy_cfg);
if (ret < 0) {
dev_err(dsi->dev, "failed to configure phy pll: %d\n", ret);
dphy_pll_uninit(dsi);
return ret;
}
return 0;
}
static void imx93_dsi_phy_power_off(void *priv_data)
{
struct imx93_dsi *dsi = priv_data;
dphy_pll_power_off(dsi);
dphy_pll_uninit(dsi);
}
static int
imx93_dsi_get_lane_mbps(void *priv_data, const struct drm_display_mode *mode,
unsigned long mode_flags, u32 lanes, u32 format,
unsigned int *lane_mbps)
{
struct imx93_dsi *dsi = priv_data;
union phy_configure_opts phy_cfg;
struct device *dev = dsi->dev;
int ret;
ret = imx93_dsi_get_phy_configure_opts(dsi, mode, &phy_cfg, lanes,
format);
if (ret < 0) {
dev_dbg(dev, "failed to get phy cfg opts %d\n", ret);
return ret;
}
*lane_mbps = DIV_ROUND_UP(phy_cfg.mipi_dphy.hs_clk_rate, USEC_PER_SEC);
memcpy(&dsi->phy_cfg, &phy_cfg, sizeof(phy_cfg));
dev_dbg(dev, "get lane_mbps %u for mode " DRM_MODE_FMT "\n",
*lane_mbps, DRM_MODE_ARG(mode));
return 0;
}
/* High-Speed Transition Times */
struct hstt {
unsigned int maxfreq;
struct dw_mipi_dsi_dphy_timing timing;
};
#define HSTT(_maxfreq, _c_lp2hs, _c_hs2lp, _d_lp2hs, _d_hs2lp) \
{ \
.maxfreq = (_maxfreq), \
.timing = { \
.clk_lp2hs = (_c_lp2hs), \
.clk_hs2lp = (_c_hs2lp), \
.data_lp2hs = (_d_lp2hs), \
.data_hs2lp = (_d_hs2lp), \
} \
}
/* DPHY Databook Table A-4 High-Speed Transition Times */
static const struct hstt hstt_table[] = {
HSTT(80, 21, 17, 15, 10),
HSTT(90, 23, 17, 16, 10),
HSTT(100, 22, 17, 16, 10),
HSTT(110, 25, 18, 17, 11),
HSTT(120, 26, 20, 18, 11),
HSTT(130, 27, 19, 19, 11),
HSTT(140, 27, 19, 19, 11),
HSTT(150, 28, 20, 20, 12),
HSTT(160, 30, 21, 22, 13),
HSTT(170, 30, 21, 23, 13),
HSTT(180, 31, 21, 23, 13),
HSTT(190, 32, 22, 24, 13),
HSTT(205, 35, 22, 25, 13),
HSTT(220, 37, 26, 27, 15),
HSTT(235, 38, 28, 27, 16),
HSTT(250, 41, 29, 30, 17),
HSTT(275, 43, 29, 32, 18),
HSTT(300, 45, 32, 35, 19),
HSTT(325, 48, 33, 36, 18),
HSTT(350, 51, 35, 40, 20),
HSTT(400, 59, 37, 44, 21),
HSTT(450, 65, 40, 49, 23),
HSTT(500, 71, 41, 54, 24),
HSTT(550, 77, 44, 57, 26),
HSTT(600, 82, 46, 64, 27),
HSTT(650, 87, 48, 67, 28),
HSTT(700, 94, 52, 71, 29),
HSTT(750, 99, 52, 75, 31),
HSTT(800, 105, 55, 82, 32),
HSTT(850, 110, 58, 85, 32),
HSTT(900, 115, 58, 88, 35),
HSTT(950, 120, 62, 93, 36),
HSTT(1000, 128, 63, 99, 38),
HSTT(1050, 132, 65, 102, 38),
HSTT(1100, 138, 67, 106, 39),
HSTT(1150, 146, 69, 112, 42),
HSTT(1200, 151, 71, 117, 43),
HSTT(1250, 153, 74, 120, 45),
HSTT(1300, 160, 73, 124, 46),
HSTT(1350, 165, 76, 130, 47),
HSTT(1400, 172, 78, 134, 49),
HSTT(1450, 177, 80, 138, 49),
HSTT(1500, 183, 81, 143, 52),
HSTT(1550, 191, 84, 147, 52),
HSTT(1600, 194, 85, 152, 52),
HSTT(1650, 201, 86, 155, 53),
HSTT(1700, 208, 88, 161, 53),
HSTT(1750, 212, 89, 165, 53),
HSTT(1800, 220, 90, 171, 54),
HSTT(1850, 223, 92, 175, 54),
HSTT(1900, 231, 91, 180, 55),
HSTT(1950, 236, 95, 185, 56),
HSTT(2000, 243, 97, 190, 56),
HSTT(2050, 248, 99, 194, 58),
HSTT(2100, 252, 100, 199, 59),
HSTT(2150, 259, 102, 204, 61),
HSTT(2200, 266, 105, 210, 62),
HSTT(2250, 269, 109, 213, 63),
HSTT(2300, 272, 109, 217, 65),
HSTT(2350, 281, 112, 225, 66),
HSTT(2400, 283, 115, 226, 66),
HSTT(2450, 282, 115, 226, 67),
HSTT(2500, 281, 118, 227, 67),
};
static int imx93_dsi_phy_get_timing(void *priv_data, unsigned int lane_mbps,
struct dw_mipi_dsi_dphy_timing *timing)
{
struct imx93_dsi *dsi = priv_data;
struct device *dev = dsi->dev;
int i;
for (i = 0; i < ARRAY_SIZE(hstt_table); i++)
if (lane_mbps <= hstt_table[i].maxfreq)
break;
if (i == ARRAY_SIZE(hstt_table)) {
dev_err(dev, "failed to get phy timing for lane_mbps %u\n",
lane_mbps);
return -EINVAL;
}
*timing = hstt_table[i].timing;
dev_dbg(dev, "get phy timing for %u <= %u (lane_mbps)\n",
lane_mbps, hstt_table[i].maxfreq);
return 0;
}
static const struct dw_mipi_dsi_phy_ops imx93_dsi_phy_ops = {
.init = imx93_dsi_phy_init,
.power_off = imx93_dsi_phy_power_off,
.get_lane_mbps = imx93_dsi_get_lane_mbps,
.get_timing = imx93_dsi_phy_get_timing,
};
static int imx93_dsi_host_attach(void *priv_data, struct mipi_dsi_device *device)
{
struct imx93_dsi *dsi = priv_data;
dsi->format = device->format;
return 0;
}
static const struct dw_mipi_dsi_host_ops imx93_dsi_host_ops = {
.attach = imx93_dsi_host_attach,
};
static int imx93_dsi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct imx93_dsi *dsi;
int ret;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dsi->regmap = syscon_regmap_lookup_by_phandle(np, "fsl,media-blk-ctrl");
if (IS_ERR(dsi->regmap)) {
ret = PTR_ERR(dsi->regmap);
dev_err(dev, "failed to get block ctrl regmap: %d\n", ret);
return ret;
}
dsi->clk_pixel = devm_clk_get(dev, "pix");
if (IS_ERR(dsi->clk_pixel))
return dev_err_probe(dev, PTR_ERR(dsi->clk_pixel),
"failed to get pixel clock\n");
dsi->clk_cfg = devm_clk_get(dev, "phy_cfg");
if (IS_ERR(dsi->clk_cfg))
return dev_err_probe(dev, PTR_ERR(dsi->clk_cfg),
"failed to get phy cfg clock\n");
dsi->clk_ref = devm_clk_get(dev, "phy_ref");
if (IS_ERR(dsi->clk_ref))
return dev_err_probe(dev, PTR_ERR(dsi->clk_ref),
"failed to get phy ref clock\n");
dsi->ref_clk_rate = clk_get_rate(dsi->clk_ref);
if (dsi->ref_clk_rate < REF_CLK_RATE_MIN ||
dsi->ref_clk_rate > REF_CLK_RATE_MAX) {
dev_err(dev, "invalid phy ref clock rate %lu\n",
dsi->ref_clk_rate);
return -EINVAL;
}
dev_dbg(dev, "phy ref clock rate: %lu\n", dsi->ref_clk_rate);
dsi->dev = dev;
dsi->pdata.max_data_lanes = 4;
dsi->pdata.mode_valid = imx93_dsi_mode_valid;
dsi->pdata.mode_fixup = imx93_dsi_mode_fixup;
dsi->pdata.get_input_bus_fmts = imx93_dsi_get_input_bus_fmts;
dsi->pdata.phy_ops = &imx93_dsi_phy_ops;
dsi->pdata.host_ops = &imx93_dsi_host_ops;
dsi->pdata.priv_data = dsi;
platform_set_drvdata(pdev, dsi);
dsi->dmd = dw_mipi_dsi_probe(pdev, &dsi->pdata);
if (IS_ERR(dsi->dmd))
return dev_err_probe(dev, PTR_ERR(dsi->dmd),
"failed to probe dw_mipi_dsi\n");
return 0;
}
static void imx93_dsi_remove(struct platform_device *pdev)
{
struct imx93_dsi *dsi = platform_get_drvdata(pdev);
dw_mipi_dsi_remove(dsi->dmd);
}
static const struct of_device_id imx93_dsi_dt_ids[] = {
{ .compatible = "fsl,imx93-mipi-dsi", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx93_dsi_dt_ids);
static struct platform_driver imx93_dsi_driver = {
.probe = imx93_dsi_probe,
.remove_new = imx93_dsi_remove,
.driver = {
.of_match_table = imx93_dsi_dt_ids,
.name = "imx93_mipi_dsi",
},
};
module_platform_driver(imx93_dsi_driver);
MODULE_DESCRIPTION("Freescale i.MX93 MIPI DSI driver");
MODULE_AUTHOR("Liu Ying <[email protected]>");
MODULE_LICENSE("GPL");