// SPDX-License-Identifier: GPL-2.0
/*
* drivers/base/core.c - core driver model code (device registration, etc)
*
* Copyright (c) 2002-3 Patrick Mochel
* Copyright (c) 2002-3 Open Source Development Labs
* Copyright (c) 2006 Greg Kroah-Hartman <[email protected]>
* Copyright (c) 2006 Novell, Inc.
*/
#include <linux/acpi.h>
#include <linux/blkdev.h>
#include <linux/cleanup.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/dma-map-ops.h> /* for dma_default_coherent */
#include <linux/err.h>
#include <linux/fwnode.h>
#include <linux/init.h>
#include <linux/kdev_t.h>
#include <linux/kstrtox.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/rcupdate.h>
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/string_helpers.h>
#include <linux/swiotlb.h>
#include <linux/sysfs.h>
#include "base.h"
#include "physical_location.h"
#include "power/power.h"
/* Device links support. */
static LIST_HEAD(deferred_sync);
static unsigned int defer_sync_state_count = 1;
static DEFINE_MUTEX(fwnode_link_lock);
static bool fw_devlink_is_permissive(void);
static void __fw_devlink_link_to_consumers(struct device *dev);
static bool fw_devlink_drv_reg_done;
static bool fw_devlink_best_effort;
static struct workqueue_struct *device_link_wq;
/**
* __fwnode_link_add - Create a link between two fwnode_handles.
* @con: Consumer end of the link.
* @sup: Supplier end of the link.
* @flags: Link flags.
*
* Create a fwnode link between fwnode handles @con and @sup. The fwnode link
* represents the detail that the firmware lists @sup fwnode as supplying a
* resource to @con.
*
* The driver core will use the fwnode link to create a device link between the
* two device objects corresponding to @con and @sup when they are created. The
* driver core will automatically delete the fwnode link between @con and @sup
* after doing that.
*
* Attempts to create duplicate links between the same pair of fwnode handles
* are ignored and there is no reference counting.
*/
static int __fwnode_link_add(struct fwnode_handle *con,
struct fwnode_handle *sup, u8 flags)
{
struct fwnode_link *link;
list_for_each_entry(link, &sup->consumers, s_hook)
if (link->consumer == con) {
link->flags |= flags;
return 0;
}
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link)
return -ENOMEM;
link->supplier = sup;
INIT_LIST_HEAD(&link->s_hook);
link->consumer = con;
INIT_LIST_HEAD(&link->c_hook);
link->flags = flags;
list_add(&link->s_hook, &sup->consumers);
list_add(&link->c_hook, &con->suppliers);
pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
con, sup);
return 0;
}
int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
u8 flags)
{
guard(mutex)(&fwnode_link_lock);
return __fwnode_link_add(con, sup, flags);
}
/**
* __fwnode_link_del - Delete a link between two fwnode_handles.
* @link: the fwnode_link to be deleted
*
* The fwnode_link_lock needs to be held when this function is called.
*/
static void __fwnode_link_del(struct fwnode_link *link)
{
pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
link->consumer, link->supplier);
list_del(&link->s_hook);
list_del(&link->c_hook);
kfree(link);
}
/**
* __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
* @link: the fwnode_link to be marked
*
* The fwnode_link_lock needs to be held when this function is called.
*/
static void __fwnode_link_cycle(struct fwnode_link *link)
{
pr_debug("%pfwf: cycle: depends on %pfwf\n",
link->consumer, link->supplier);
link->flags |= FWLINK_FLAG_CYCLE;
}
/**
* fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
* @fwnode: fwnode whose supplier links need to be deleted
*
* Deletes all supplier links connecting directly to @fwnode.
*/
static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
{
struct fwnode_link *link, *tmp;
guard(mutex)(&fwnode_link_lock);
list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
__fwnode_link_del(link);
}
/**
* fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
* @fwnode: fwnode whose consumer links need to be deleted
*
* Deletes all consumer links connecting directly to @fwnode.
*/
static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
{
struct fwnode_link *link, *tmp;
guard(mutex)(&fwnode_link_lock);
list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
__fwnode_link_del(link);
}
/**
* fwnode_links_purge - Delete all links connected to a fwnode_handle.
* @fwnode: fwnode whose links needs to be deleted
*
* Deletes all links connecting directly to a fwnode.
*/
void fwnode_links_purge(struct fwnode_handle *fwnode)
{
fwnode_links_purge_suppliers(fwnode);
fwnode_links_purge_consumers(fwnode);
}
void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
{
struct fwnode_handle *child;
/* Don't purge consumer links of an added child */
if (fwnode->dev)
return;
fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
fwnode_links_purge_consumers(fwnode);
fwnode_for_each_available_child_node(fwnode, child)
fw_devlink_purge_absent_suppliers(child);
}
EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
/**
* __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
* @from: move consumers away from this fwnode
* @to: move consumers to this fwnode
*
* Move all consumer links from @from fwnode to @to fwnode.
*/
static void __fwnode_links_move_consumers(struct fwnode_handle *from,
struct fwnode_handle *to)
{
struct fwnode_link *link, *tmp;
list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
__fwnode_link_add(link->consumer, to, link->flags);
__fwnode_link_del(link);
}
}
/**
* __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
* @fwnode: fwnode from which to pick up dangling consumers
* @new_sup: fwnode of new supplier
*
* If the @fwnode has a corresponding struct device and the device supports
* probing (that is, added to a bus), then we want to let fw_devlink create
* MANAGED device links to this device, so leave @fwnode and its descendant's
* fwnode links alone.
*
* Otherwise, move its consumers to the new supplier @new_sup.
*/
static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
struct fwnode_handle *new_sup)
{
struct fwnode_handle *child;
if (fwnode->dev && fwnode->dev->bus)
return;
fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
__fwnode_links_move_consumers(fwnode, new_sup);
fwnode_for_each_available_child_node(fwnode, child)
__fw_devlink_pickup_dangling_consumers(child, new_sup);
}
static DEFINE_MUTEX(device_links_lock);
DEFINE_STATIC_SRCU(device_links_srcu);
static inline void device_links_write_lock(void)
{
mutex_lock(&device_links_lock);
}
static inline void device_links_write_unlock(void)
{
mutex_unlock(&device_links_lock);
}
int device_links_read_lock(void) __acquires(&device_links_srcu)
{
return srcu_read_lock(&device_links_srcu);
}
void device_links_read_unlock(int idx) __releases(&device_links_srcu)
{
srcu_read_unlock(&device_links_srcu, idx);
}
int device_links_read_lock_held(void)
{
return srcu_read_lock_held(&device_links_srcu);
}
static void device_link_synchronize_removal(void)
{
synchronize_srcu(&device_links_srcu);
}
static void device_link_remove_from_lists(struct device_link *link)
{
list_del_rcu(&link->s_node);
list_del_rcu(&link->c_node);
}
static bool device_is_ancestor(struct device *dev, struct device *target)
{
while (target->parent) {
target = target->parent;
if (dev == target)
return true;
}
return false;
}
#define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
DL_FLAG_CYCLE | \
DL_FLAG_MANAGED)
static inline bool device_link_flag_is_sync_state_only(u32 flags)
{
return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
}
/**
* device_is_dependent - Check if one device depends on another one
* @dev: Device to check dependencies for.
* @target: Device to check against.
*
* Check if @target depends on @dev or any device dependent on it (its child or
* its consumer etc). Return 1 if that is the case or 0 otherwise.
*/
static int device_is_dependent(struct device *dev, void *target)
{
struct device_link *link;
int ret;
/*
* The "ancestors" check is needed to catch the case when the target
* device has not been completely initialized yet and it is still
* missing from the list of children of its parent device.
*/
if (dev == target || device_is_ancestor(dev, target))
return 1;
ret = device_for_each_child(dev, target, device_is_dependent);
if (ret)
return ret;
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (device_link_flag_is_sync_state_only(link->flags))
continue;
if (link->consumer == target)
return 1;
ret = device_is_dependent(link->consumer, target);
if (ret)
break;
}
return ret;
}
static void device_link_init_status(struct device_link *link,
struct device *consumer,
struct device *supplier)
{
switch (supplier->links.status) {
case DL_DEV_PROBING:
switch (consumer->links.status) {
case DL_DEV_PROBING:
/*
* A consumer driver can create a link to a supplier
* that has not completed its probing yet as long as it
* knows that the supplier is already functional (for
* example, it has just acquired some resources from the
* supplier).
*/
link->status = DL_STATE_CONSUMER_PROBE;
break;
default:
link->status = DL_STATE_DORMANT;
break;
}
break;
case DL_DEV_DRIVER_BOUND:
switch (consumer->links.status) {
case DL_DEV_PROBING:
link->status = DL_STATE_CONSUMER_PROBE;
break;
case DL_DEV_DRIVER_BOUND:
link->status = DL_STATE_ACTIVE;
break;
default:
link->status = DL_STATE_AVAILABLE;
break;
}
break;
case DL_DEV_UNBINDING:
link->status = DL_STATE_SUPPLIER_UNBIND;
break;
default:
link->status = DL_STATE_DORMANT;
break;
}
}
static int device_reorder_to_tail(struct device *dev, void *not_used)
{
struct device_link *link;
/*
* Devices that have not been registered yet will be put to the ends
* of the lists during the registration, so skip them here.
*/
if (device_is_registered(dev))
devices_kset_move_last(dev);
if (device_pm_initialized(dev))
device_pm_move_last(dev);
device_for_each_child(dev, NULL, device_reorder_to_tail);
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (device_link_flag_is_sync_state_only(link->flags))
continue;
device_reorder_to_tail(link->consumer, NULL);
}
return 0;
}
/**
* device_pm_move_to_tail - Move set of devices to the end of device lists
* @dev: Device to move
*
* This is a device_reorder_to_tail() wrapper taking the requisite locks.
*
* It moves the @dev along with all of its children and all of its consumers
* to the ends of the device_kset and dpm_list, recursively.
*/
void device_pm_move_to_tail(struct device *dev)
{
int idx;
idx = device_links_read_lock();
device_pm_lock();
device_reorder_to_tail(dev, NULL);
device_pm_unlock();
device_links_read_unlock(idx);
}
#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
static ssize_t status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const char *output;
switch (to_devlink(dev)->status) {
case DL_STATE_NONE:
output = "not tracked";
break;
case DL_STATE_DORMANT:
output = "dormant";
break;
case DL_STATE_AVAILABLE:
output = "available";
break;
case DL_STATE_CONSUMER_PROBE:
output = "consumer probing";
break;
case DL_STATE_ACTIVE:
output = "active";
break;
case DL_STATE_SUPPLIER_UNBIND:
output = "supplier unbinding";
break;
default:
output = "unknown";
break;
}
return sysfs_emit(buf, "%s\n", output);
}
static DEVICE_ATTR_RO(status);
static ssize_t auto_remove_on_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct device_link *link = to_devlink(dev);
const char *output;
if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
output = "supplier unbind";
else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
output = "consumer unbind";
else
output = "never";
return sysfs_emit(buf, "%s\n", output);
}
static DEVICE_ATTR_RO(auto_remove_on);
static ssize_t runtime_pm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct device_link *link = to_devlink(dev);
return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
}
static DEVICE_ATTR_RO(runtime_pm);
static ssize_t sync_state_only_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct device_link *link = to_devlink(dev);
return sysfs_emit(buf, "%d\n",
!!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
}
static DEVICE_ATTR_RO(sync_state_only);
static struct attribute *devlink_attrs[] = {
&dev_attr_status.attr,
&dev_attr_auto_remove_on.attr,
&dev_attr_runtime_pm.attr,
&dev_attr_sync_state_only.attr,
NULL,
};
ATTRIBUTE_GROUPS(devlink);
static void device_link_release_fn(struct work_struct *work)
{
struct device_link *link = container_of(work, struct device_link, rm_work);
/* Ensure that all references to the link object have been dropped. */
device_link_synchronize_removal();
pm_runtime_release_supplier(link);
/*
* If supplier_preactivated is set, the link has been dropped between
* the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
* in __driver_probe_device(). In that case, drop the supplier's
* PM-runtime usage counter to remove the reference taken by
* pm_runtime_get_suppliers().
*/
if (link->supplier_preactivated)
pm_runtime_put_noidle(link->supplier);
pm_request_idle(link->supplier);
put_device(link->consumer);
put_device(link->supplier);
kfree(link);
}
static void devlink_dev_release(struct device *dev)
{
struct device_link *link = to_devlink(dev);
INIT_WORK(&link->rm_work, device_link_release_fn);
/*
* It may take a while to complete this work because of the SRCU
* synchronization in device_link_release_fn() and if the consumer or
* supplier devices get deleted when it runs, so put it into the
* dedicated workqueue.
*/
queue_work(device_link_wq, &link->rm_work);
}
/**
* device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
*/
void device_link_wait_removal(void)
{
/*
* devlink removal jobs are queued in the dedicated work queue.
* To be sure that all removal jobs are terminated, ensure that any
* scheduled work has run to completion.
*/
flush_workqueue(device_link_wq);
}
EXPORT_SYMBOL_GPL(device_link_wait_removal);
static struct class devlink_class = {
.name = "devlink",
.dev_groups = devlink_groups,
.dev_release = devlink_dev_release,
};
static int devlink_add_symlinks(struct device *dev)
{
char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
int ret;
struct device_link *link = to_devlink(dev);
struct device *sup = link->supplier;
struct device *con = link->consumer;
ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
if (ret)
goto out;
ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
if (ret)
goto err_con;
buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
if (!buf_con) {
ret = -ENOMEM;
goto err_con_dev;
}
ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
if (ret)
goto err_con_dev;
buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
if (!buf_sup) {
ret = -ENOMEM;
goto err_sup_dev;
}
ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
if (ret)
goto err_sup_dev;
goto out;
err_sup_dev:
sysfs_remove_link(&sup->kobj, buf_con);
err_con_dev:
sysfs_remove_link(&link->link_dev.kobj, "consumer");
err_con:
sysfs_remove_link(&link->link_dev.kobj, "supplier");
out:
return ret;
}
static void devlink_remove_symlinks(struct device *dev)
{
char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
struct device_link *link = to_devlink(dev);
struct device *sup = link->supplier;
struct device *con = link->consumer;
sysfs_remove_link(&link->link_dev.kobj, "consumer");
sysfs_remove_link(&link->link_dev.kobj, "supplier");
if (device_is_registered(con)) {
buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
if (!buf_sup)
goto out;
sysfs_remove_link(&con->kobj, buf_sup);
}
buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
if (!buf_con)
goto out;
sysfs_remove_link(&sup->kobj, buf_con);
return;
out:
WARN(1, "Unable to properly free device link symlinks!\n");
}
static struct class_interface devlink_class_intf = {
.class = &devlink_class,
.add_dev = devlink_add_symlinks,
.remove_dev = devlink_remove_symlinks,
};
static int __init devlink_class_init(void)
{
int ret;
ret = class_register(&devlink_class);
if (ret)
return ret;
ret = class_interface_register(&devlink_class_intf);
if (ret)
class_unregister(&devlink_class);
return ret;
}
postcore_initcall(devlink_class_init);
#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
DL_FLAG_AUTOREMOVE_SUPPLIER | \
DL_FLAG_AUTOPROBE_CONSUMER | \
DL_FLAG_SYNC_STATE_ONLY | \
DL_FLAG_INFERRED | \
DL_FLAG_CYCLE)
#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
/**
* device_link_add - Create a link between two devices.
* @consumer: Consumer end of the link.
* @supplier: Supplier end of the link.
* @flags: Link flags.
*
* Return: On success, a device_link struct will be returned.
* On error or invalid flag settings, NULL will be returned.
*
* The caller is responsible for the proper synchronization of the link creation
* with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
* runtime PM framework to take the link into account. Second, if the
* DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
* be forced into the active meta state and reference-counted upon the creation
* of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
* ignored.
*
* If DL_FLAG_STATELESS is set in @flags, the caller of this function is
* expected to release the link returned by it directly with the help of either
* device_link_del() or device_link_remove().
*
* If that flag is not set, however, the caller of this function is handing the
* management of the link over to the driver core entirely and its return value
* can only be used to check whether or not the link is present. In that case,
* the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
* flags can be used to indicate to the driver core when the link can be safely
* deleted. Namely, setting one of them in @flags indicates to the driver core
* that the link is not going to be used (by the given caller of this function)
* after unbinding the consumer or supplier driver, respectively, from its
* device, so the link can be deleted at that point. If none of them is set,
* the link will be maintained until one of the devices pointed to by it (either
* the consumer or the supplier) is unregistered.
*
* Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
* DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
* managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
* be used to request the driver core to automatically probe for a consumer
* driver after successfully binding a driver to the supplier device.
*
* The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
* DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
* the same time is invalid and will cause NULL to be returned upfront.
* However, if a device link between the given @consumer and @supplier pair
* exists already when this function is called for them, the existing link will
* be returned regardless of its current type and status (the link's flags may
* be modified then). The caller of this function is then expected to treat
* the link as though it has just been created, so (in particular) if
* DL_FLAG_STATELESS was passed in @flags, the link needs to be released
* explicitly when not needed any more (as stated above).
*
* A side effect of the link creation is re-ordering of dpm_list and the
* devices_kset list by moving the consumer device and all devices depending
* on it to the ends of these lists (that does not happen to devices that have
* not been registered when this function is called).
*
* The supplier device is required to be registered when this function is called
* and NULL will be returned if that is not the case. The consumer device need
* not be registered, however.
*/
struct device_link *device_link_add(struct device *consumer,
struct device *supplier, u32 flags)
{
struct device_link *link;
if (!consumer || !supplier || consumer == supplier ||
flags & ~DL_ADD_VALID_FLAGS ||
(flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
(flags & DL_FLAG_AUTOPROBE_CONSUMER &&
flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
DL_FLAG_AUTOREMOVE_SUPPLIER)))
return NULL;
if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
if (pm_runtime_get_sync(supplier) < 0) {
pm_runtime_put_noidle(supplier);
return NULL;
}
}
if (!(flags & DL_FLAG_STATELESS))
flags |= DL_FLAG_MANAGED;
if (flags & DL_FLAG_SYNC_STATE_ONLY &&
!device_link_flag_is_sync_state_only(flags))
return NULL;
device_links_write_lock();
device_pm_lock();
/*
* If the supplier has not been fully registered yet or there is a
* reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
* the supplier already in the graph, return NULL. If the link is a
* SYNC_STATE_ONLY link, we don't check for reverse dependencies
* because it only affects sync_state() callbacks.
*/
if (!device_pm_initialized(supplier)
|| (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
device_is_dependent(consumer, supplier))) {
link = NULL;
goto out;
}
/*
* SYNC_STATE_ONLY links are useless once a consumer device has probed.
* So, only create it if the consumer hasn't probed yet.
*/
if (flags & DL_FLAG_SYNC_STATE_ONLY &&
consumer->links.status != DL_DEV_NO_DRIVER &&
consumer->links.status != DL_DEV_PROBING) {
link = NULL;
goto out;
}
/*
* DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
* longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
* together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
*/
if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
list_for_each_entry(link, &supplier->links.consumers, s_node) {
if (link->consumer != consumer)
continue;
if (link->flags & DL_FLAG_INFERRED &&
!(flags & DL_FLAG_INFERRED))
link->flags &= ~DL_FLAG_INFERRED;
if (flags & DL_FLAG_PM_RUNTIME) {
if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
pm_runtime_new_link(consumer);
link->flags |= DL_FLAG_PM_RUNTIME;
}
if (flags & DL_FLAG_RPM_ACTIVE)
refcount_inc(&link->rpm_active);
}
if (flags & DL_FLAG_STATELESS) {
kref_get(&link->kref);
if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
!(link->flags & DL_FLAG_STATELESS)) {
link->flags |= DL_FLAG_STATELESS;
goto reorder;
} else {
link->flags |= DL_FLAG_STATELESS;
goto out;
}
}
/*
* If the life time of the link following from the new flags is
* longer than indicated by the flags of the existing link,
* update the existing link to stay around longer.
*/
if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
}
} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
DL_FLAG_AUTOREMOVE_SUPPLIER);
}
if (!(link->flags & DL_FLAG_MANAGED)) {
kref_get(&link->kref);
link->flags |= DL_FLAG_MANAGED;
device_link_init_status(link, consumer, supplier);
}
if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
!(flags & DL_FLAG_SYNC_STATE_ONLY)) {
link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
goto reorder;
}
goto out;
}
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link)
goto out;
refcount_set(&link->rpm_active, 1);
get_device(supplier);
link->supplier = supplier;
INIT_LIST_HEAD(&link->s_node);
get_device(consumer);
link->consumer = consumer;
INIT_LIST_HEAD(&link->c_node);
link->flags = flags;
kref_init(&link->kref);
link->link_dev.class = &devlink_class;
device_set_pm_not_required(&link->link_dev);
dev_set_name(&link->link_dev, "%s:%s--%s:%s",
dev_bus_name(supplier), dev_name(supplier),
dev_bus_name(consumer), dev_name(consumer));
if (device_register(&link->link_dev)) {
put_device(&link->link_dev);
link = NULL;
goto out;
}
if (flags & DL_FLAG_PM_RUNTIME) {
if (flags & DL_FLAG_RPM_ACTIVE)
refcount_inc(&link->rpm_active);
pm_runtime_new_link(consumer);
}
/* Determine the initial link state. */
if (flags & DL_FLAG_STATELESS)
link->status = DL_STATE_NONE;
else
device_link_init_status(link, consumer, supplier);
/*
* Some callers expect the link creation during consumer driver probe to
* resume the supplier even without DL_FLAG_RPM_ACTIVE.
*/
if (link->status == DL_STATE_CONSUMER_PROBE &&
flags & DL_FLAG_PM_RUNTIME)
pm_runtime_resume(supplier);
list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
if (flags & DL_FLAG_SYNC_STATE_ONLY) {
dev_dbg(consumer,
"Linked as a sync state only consumer to %s\n",
dev_name(supplier));
goto out;
}
reorder:
/*
* Move the consumer and all of the devices depending on it to the end
* of dpm_list and the devices_kset list.
*
* It is necessary to hold dpm_list locked throughout all that or else
* we may end up suspending with a wrong ordering of it.
*/
device_reorder_to_tail(consumer, NULL);
dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
out:
device_pm_unlock();
device_links_write_unlock();
if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
pm_runtime_put(supplier);
return link;
}
EXPORT_SYMBOL_GPL(device_link_add);
static void __device_link_del(struct kref *kref)
{
struct device_link *link = container_of(kref, struct device_link, kref);
dev_dbg(link->consumer, "Dropping the link to %s\n",
dev_name(link->supplier));
pm_runtime_drop_link(link);
device_link_remove_from_lists(link);
device_unregister(&link->link_dev);
}
static void device_link_put_kref(struct device_link *link)
{
if (link->flags & DL_FLAG_STATELESS)
kref_put(&link->kref, __device_link_del);
else if (!device_is_registered(link->consumer))
__device_link_del(&link->kref);
else
WARN(1, "Unable to drop a managed device link reference\n");
}
/**
* device_link_del - Delete a stateless link between two devices.
* @link: Device link to delete.
*
* The caller must ensure proper synchronization of this function with runtime
* PM. If the link was added multiple times, it needs to be deleted as often.
* Care is required for hotplugged devices: Their links are purged on removal
* and calling device_link_del() is then no longer allowed.
*/
void device_link_del(struct device_link *link)
{
device_links_write_lock();
device_link_put_kref(link);
device_links_write_unlock();
}
EXPORT_SYMBOL_GPL(device_link_del);
/**
* device_link_remove - Delete a stateless link between two devices.
* @consumer: Consumer end of the link.
* @supplier: Supplier end of the link.
*
* The caller must ensure proper synchronization of this function with runtime
* PM.
*/
void device_link_remove(void *consumer, struct device *supplier)
{
struct device_link *link;
if (WARN_ON(consumer == supplier))
return;
device_links_write_lock();
list_for_each_entry(link, &supplier->links.consumers, s_node) {
if (link->consumer == consumer) {
device_link_put_kref(link);
break;
}
}
device_links_write_unlock();
}
EXPORT_SYMBOL_GPL(device_link_remove);
static void device_links_missing_supplier(struct device *dev)
{
struct device_link *link;
list_for_each_entry(link, &dev->links.suppliers, c_node) {
if (link->status != DL_STATE_CONSUMER_PROBE)
continue;
if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
} else {
WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
WRITE_ONCE(link->status, DL_STATE_DORMANT);
}
}
}
static bool dev_is_best_effort(struct device *dev)
{
return (fw_devlink_best_effort && dev->can_match) ||
(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
}
static struct fwnode_handle *fwnode_links_check_suppliers(
struct fwnode_handle *fwnode)
{
struct fwnode_link *link;
if (!fwnode || fw_devlink_is_permissive())
return NULL;
list_for_each_entry(link, &fwnode->suppliers, c_hook)
if (!(link->flags &
(FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
return link->supplier;
return NULL;
}
/**
* device_links_check_suppliers - Check presence of supplier drivers.
* @dev: Consumer device.
*
* Check links from this device to any suppliers. Walk the list of the device's
* links to suppliers and see if all of them are available. If not, simply
* return -EPROBE_DEFER.
*
* We need to guarantee that the supplier will not go away after the check has
* been positive here. It only can go away in __device_release_driver() and
* that function checks the device's links to consumers. This means we need to
* mark the link as "consumer probe in progress" to make the supplier removal
* wait for us to complete (or bad things may happen).
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
int device_links_check_suppliers(struct device *dev)
{
struct device_link *link;
int ret = 0, fwnode_ret = 0;
struct fwnode_handle *sup_fw;
/*
* Device waiting for supplier to become available is not allowed to
* probe.
*/
scoped_guard(mutex, &fwnode_link_lock) {
sup_fw = fwnode_links_check_suppliers(dev->fwnode);
if (sup_fw) {
if (dev_is_best_effort(dev))
fwnode_ret = -EAGAIN;
else
return dev_err_probe(dev, -EPROBE_DEFER,
"wait for supplier %pfwf\n", sup_fw);
}
}
device_links_write_lock();
list_for_each_entry(link, &dev->links.suppliers, c_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
if (link->status != DL_STATE_AVAILABLE &&
!(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
if (dev_is_best_effort(dev) &&
link->flags & DL_FLAG_INFERRED &&
!link->supplier->can_match) {
ret = -EAGAIN;
continue;
}
device_links_missing_supplier(dev);
ret = dev_err_probe(dev, -EPROBE_DEFER,
"supplier %s not ready\n", dev_name(link->supplier));
break;
}
WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
}
dev->links.status = DL_DEV_PROBING;
device_links_write_unlock();
return ret ? ret : fwnode_ret;
}
/**
* __device_links_queue_sync_state - Queue a device for sync_state() callback
* @dev: Device to call sync_state() on
* @list: List head to queue the @dev on
*
* Queues a device for a sync_state() callback when the device links write lock
* isn't held. This allows the sync_state() execution flow to use device links
* APIs. The caller must ensure this function is called with
* device_links_write_lock() held.
*
* This function does a get_device() to make sure the device is not freed while
* on this list.
*
* So the caller must also ensure that device_links_flush_sync_list() is called
* as soon as the caller releases device_links_write_lock(). This is necessary
* to make sure the sync_state() is called in a timely fashion and the
* put_device() is called on this device.
*/
static void __device_links_queue_sync_state(struct device *dev,
struct list_head *list)
{
struct device_link *link;
if (!dev_has_sync_state(dev))
return;
if (dev->state_synced)
return;
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
if (link->status != DL_STATE_ACTIVE)
return;
}
/*
* Set the flag here to avoid adding the same device to a list more
* than once. This can happen if new consumers get added to the device
* and probed before the list is flushed.
*/
dev->state_synced = true;
if (WARN_ON(!list_empty(&dev->links.defer_sync)))
return;
get_device(dev);
list_add_tail(&dev->links.defer_sync, list);
}
/**
* device_links_flush_sync_list - Call sync_state() on a list of devices
* @list: List of devices to call sync_state() on
* @dont_lock_dev: Device for which lock is already held by the caller
*
* Calls sync_state() on all the devices that have been queued for it. This
* function is used in conjunction with __device_links_queue_sync_state(). The
* @dont_lock_dev parameter is useful when this function is called from a
* context where a device lock is already held.
*/
static void device_links_flush_sync_list(struct list_head *list,
struct device *dont_lock_dev)
{
struct device *dev, *tmp;
list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
list_del_init(&dev->links.defer_sync);
if (dev != dont_lock_dev)
device_lock(dev);
dev_sync_state(dev);
if (dev != dont_lock_dev)
device_unlock(dev);
put_device(dev);
}
}
void device_links_supplier_sync_state_pause(void)
{
device_links_write_lock();
defer_sync_state_count++;
device_links_write_unlock();
}
void device_links_supplier_sync_state_resume(void)
{
struct device *dev, *tmp;
LIST_HEAD(sync_list);
device_links_write_lock();
if (!defer_sync_state_count) {
WARN(true, "Unmatched sync_state pause/resume!");
goto out;
}
defer_sync_state_count--;
if (defer_sync_state_count)
goto out;
list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
/*
* Delete from deferred_sync list before queuing it to
* sync_list because defer_sync is used for both lists.
*/
list_del_init(&dev->links.defer_sync);
__device_links_queue_sync_state(dev, &sync_list);
}
out:
device_links_write_unlock();
device_links_flush_sync_list(&sync_list, NULL);
}
static int sync_state_resume_initcall(void)
{
device_links_supplier_sync_state_resume();
return 0;
}
late_initcall(sync_state_resume_initcall);
static void __device_links_supplier_defer_sync(struct device *sup)
{
if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
list_add_tail(&sup->links.defer_sync, &deferred_sync);
}
static void device_link_drop_managed(struct device_link *link)
{
link->flags &= ~DL_FLAG_MANAGED;
WRITE_ONCE(link->status, DL_STATE_NONE);
kref_put(&link->kref, __device_link_del);
}
static ssize_t waiting_for_supplier_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
bool val;
device_lock(dev);
scoped_guard(mutex, &fwnode_link_lock)
val = !!fwnode_links_check_suppliers(dev->fwnode);
device_unlock(dev);
return sysfs_emit(buf, "%u\n", val);
}
static DEVICE_ATTR_RO(waiting_for_supplier);
/**
* device_links_force_bind - Prepares device to be force bound
* @dev: Consumer device.
*
* device_bind_driver() force binds a device to a driver without calling any
* driver probe functions. So the consumer really isn't going to wait for any
* supplier before it's bound to the driver. We still want the device link
* states to be sensible when this happens.
*
* In preparation for device_bind_driver(), this function goes through each
* supplier device links and checks if the supplier is bound. If it is, then
* the device link status is set to CONSUMER_PROBE. Otherwise, the device link
* is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
*/
void device_links_force_bind(struct device *dev)
{
struct device_link *link, *ln;
device_links_write_lock();
list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
if (link->status != DL_STATE_AVAILABLE) {
device_link_drop_managed(link);
continue;
}
WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
}
dev->links.status = DL_DEV_PROBING;
device_links_write_unlock();
}
/**
* device_links_driver_bound - Update device links after probing its driver.
* @dev: Device to update the links for.
*
* The probe has been successful, so update links from this device to any
* consumers by changing their status to "available".
*
* Also change the status of @dev's links to suppliers to "active".
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
void device_links_driver_bound(struct device *dev)
{
struct device_link *link, *ln;
LIST_HEAD(sync_list);
/*
* If a device binds successfully, it's expected to have created all
* the device links it needs to or make new device links as it needs
* them. So, fw_devlink no longer needs to create device links to any
* of the device's suppliers.
*
* Also, if a child firmware node of this bound device is not added as a
* device by now, assume it is never going to be added. Make this bound
* device the fallback supplier to the dangling consumers of the child
* firmware node because this bound device is probably implementing the
* child firmware node functionality and we don't want the dangling
* consumers to defer probe indefinitely waiting for a device for the
* child firmware node.
*/
if (dev->fwnode && dev->fwnode->dev == dev) {
struct fwnode_handle *child;
fwnode_links_purge_suppliers(dev->fwnode);
guard(mutex)(&fwnode_link_lock);
fwnode_for_each_available_child_node(dev->fwnode, child)
__fw_devlink_pickup_dangling_consumers(child,
dev->fwnode);
__fw_devlink_link_to_consumers(dev);
}
device_remove_file(dev, &dev_attr_waiting_for_supplier);
device_links_write_lock();
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
/*
* Links created during consumer probe may be in the "consumer
* probe" state to start with if the supplier is still probing
* when they are created and they may become "active" if the
* consumer probe returns first. Skip them here.
*/
if (link->status == DL_STATE_CONSUMER_PROBE ||
link->status == DL_STATE_ACTIVE)
continue;
WARN_ON(link->status != DL_STATE_DORMANT);
WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
driver_deferred_probe_add(link->consumer);
}
if (defer_sync_state_count)
__device_links_supplier_defer_sync(dev);
else
__device_links_queue_sync_state(dev, &sync_list);
list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
struct device *supplier;
if (!(link->flags & DL_FLAG_MANAGED))
continue;
supplier = link->supplier;
if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
/*
* When DL_FLAG_SYNC_STATE_ONLY is set, it means no
* other DL_MANAGED_LINK_FLAGS have been set. So, it's
* save to drop the managed link completely.
*/
device_link_drop_managed(link);
} else if (dev_is_best_effort(dev) &&
link->flags & DL_FLAG_INFERRED &&
link->status != DL_STATE_CONSUMER_PROBE &&
!link->supplier->can_match) {
/*
* When dev_is_best_effort() is true, we ignore device
* links to suppliers that don't have a driver. If the
* consumer device still managed to probe, there's no
* point in maintaining a device link in a weird state
* (consumer probed before supplier). So delete it.
*/
device_link_drop_managed(link);
} else {
WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
WRITE_ONCE(link->status, DL_STATE_ACTIVE);
}
/*
* This needs to be done even for the deleted
* DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
* device link that was preventing the supplier from getting a
* sync_state() call.
*/
if (defer_sync_state_count)
__device_links_supplier_defer_sync(supplier);
else
__device_links_queue_sync_state(supplier, &sync_list);
}
dev->links.status = DL_DEV_DRIVER_BOUND;
device_links_write_unlock();
device_links_flush_sync_list(&sync_list, dev);
}
/**
* __device_links_no_driver - Update links of a device without a driver.
* @dev: Device without a drvier.
*
* Delete all non-persistent links from this device to any suppliers.
*
* Persistent links stay around, but their status is changed to "available",
* unless they already are in the "supplier unbind in progress" state in which
* case they need not be updated.
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
static void __device_links_no_driver(struct device *dev)
{
struct device_link *link, *ln;
list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
device_link_drop_managed(link);
continue;
}
if (link->status != DL_STATE_CONSUMER_PROBE &&
link->status != DL_STATE_ACTIVE)
continue;
if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
} else {
WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
WRITE_ONCE(link->status, DL_STATE_DORMANT);
}
}
dev->links.status = DL_DEV_NO_DRIVER;
}
/**
* device_links_no_driver - Update links after failing driver probe.
* @dev: Device whose driver has just failed to probe.
*
* Clean up leftover links to consumers for @dev and invoke
* %__device_links_no_driver() to update links to suppliers for it as
* appropriate.
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
void device_links_no_driver(struct device *dev)
{
struct device_link *link;
device_links_write_lock();
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
/*
* The probe has failed, so if the status of the link is
* "consumer probe" or "active", it must have been added by
* a probing consumer while this device was still probing.
* Change its state to "dormant", as it represents a valid
* relationship, but it is not functionally meaningful.
*/
if (link->status == DL_STATE_CONSUMER_PROBE ||
link->status == DL_STATE_ACTIVE)
WRITE_ONCE(link->status, DL_STATE_DORMANT);
}
__device_links_no_driver(dev);
device_links_write_unlock();
}
/**
* device_links_driver_cleanup - Update links after driver removal.
* @dev: Device whose driver has just gone away.
*
* Update links to consumers for @dev by changing their status to "dormant" and
* invoke %__device_links_no_driver() to update links to suppliers for it as
* appropriate.
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
void device_links_driver_cleanup(struct device *dev)
{
struct device_link *link, *ln;
device_links_write_lock();
list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
/*
* autoremove the links between this @dev and its consumer
* devices that are not active, i.e. where the link state
* has moved to DL_STATE_SUPPLIER_UNBIND.
*/
if (link->status == DL_STATE_SUPPLIER_UNBIND &&
link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
device_link_drop_managed(link);
WRITE_ONCE(link->status, DL_STATE_DORMANT);
}
list_del_init(&dev->links.defer_sync);
__device_links_no_driver(dev);
device_links_write_unlock();
}
/**
* device_links_busy - Check if there are any busy links to consumers.
* @dev: Device to check.
*
* Check each consumer of the device and return 'true' if its link's status
* is one of "consumer probe" or "active" (meaning that the given consumer is
* probing right now or its driver is present). Otherwise, change the link
* state to "supplier unbind" to prevent the consumer from being probed
* successfully going forward.
*
* Return 'false' if there are no probing or active consumers.
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
bool device_links_busy(struct device *dev)
{
struct device_link *link;
bool ret = false;
device_links_write_lock();
list_for_each_entry(link, &dev->links.consumers, s_node) {
if (!(link->flags & DL_FLAG_MANAGED))
continue;
if (link->status == DL_STATE_CONSUMER_PROBE
|| link->status == DL_STATE_ACTIVE) {
ret = true;
break;
}
WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
}
dev->links.status = DL_DEV_UNBINDING;
device_links_write_unlock();
return ret;
}
/**
* device_links_unbind_consumers - Force unbind consumers of the given device.
* @dev: Device to unbind the consumers of.
*
* Walk the list of links to consumers for @dev and if any of them is in the
* "consumer probe" state, wait for all device probes in progress to complete
* and start over.
*
* If that's not the case, change the status of the link to "supplier unbind"
* and check if the link was in the "active" state. If so, force the consumer
* driver to unbind and start over (the consumer will not re-probe as we have
* changed the state of the link already).
*
* Links without the DL_FLAG_MANAGED flag set are ignored.
*/
void device_links_unbind_consumers(struct device *dev)
{
struct device_link *link;
start:
device_links_write_lock();
list_for_each_entry(link, &dev->links.consumers, s_node) {
enum device_link_state status;
if (!(link->flags & DL_FLAG_MANAGED) ||
link->flags & DL_FLAG_SYNC_STATE_ONLY)
continue;
status = link->status;
if (status == DL_STATE_CONSUMER_PROBE) {
device_links_write_unlock();
wait_for_device_probe();
goto start;
}
WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
if (status == DL_STATE_ACTIVE) {
struct device *consumer = link->consumer;
get_device(consumer);
device_links_write_unlock();
device_release_driver_internal(consumer, NULL,
consumer->parent);
put_device(consumer);
goto start;
}
}
device_links_write_unlock();
}
/**
* device_links_purge - Delete existing links to other devices.
* @dev: Target device.
*/
static void device_links_purge(struct device *dev)
{
struct device_link *link, *ln;
if (dev->class == &devlink_class)
return;
/*
* Delete all of the remaining links from this device to any other
* devices (either consumers or suppliers).
*/
device_links_write_lock();
list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
WARN_ON(link->status == DL_STATE_ACTIVE);
__device_link_del(&link->kref);
}
list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
WARN_ON(link->status != DL_STATE_DORMANT &&
link->status != DL_STATE_NONE);
__device_link_del(&link->kref);
}
device_links_write_unlock();
}
#define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
DL_FLAG_SYNC_STATE_ONLY)
#define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
DL_FLAG_AUTOPROBE_CONSUMER)
#define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
DL_FLAG_PM_RUNTIME)
static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
static int __init fw_devlink_setup(char *arg)
{
if (!arg)
return -EINVAL;
if (strcmp(arg, "off") == 0) {
fw_devlink_flags = 0;
} else if (strcmp(arg, "permissive") == 0) {
fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
} else if (strcmp(arg, "on") == 0) {
fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
} else if (strcmp(arg, "rpm") == 0) {
fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
}
return 0;
}
early_param("fw_devlink", fw_devlink_setup);
static bool fw_devlink_strict;
static int __init fw_devlink_strict_setup(char *arg)
{
return kstrtobool(arg, &fw_devlink_strict);
}
early_param("fw_devlink.strict", fw_devlink_strict_setup);
#define FW_DEVLINK_SYNC_STATE_STRICT 0
#define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
#ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
static int fw_devlink_sync_state;
#else
static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
#endif
static int __init fw_devlink_sync_state_setup(char *arg)
{
if (!arg)
return -EINVAL;
if (strcmp(arg, "strict") == 0) {
fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
return 0;
} else if (strcmp(arg, "timeout") == 0) {
fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
return 0;
}
return -EINVAL;
}
early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
{
if (fwlink_flags & FWLINK_FLAG_CYCLE)
return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
return fw_devlink_flags;
}
static bool fw_devlink_is_permissive(void)
{
return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
}
bool fw_devlink_is_strict(void)
{
return fw_devlink_strict && !fw_devlink_is_permissive();
}
static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
{
if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
return;
fwnode_call_int_op(fwnode, add_links);
fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
}
static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
{
struct fwnode_handle *child = NULL;
fw_devlink_parse_fwnode(fwnode);
while ((child = fwnode_get_next_available_child_node(fwnode, child)))
fw_devlink_parse_fwtree(child);
}
static void fw_devlink_relax_link(struct device_link *link)
{
if (!(link->flags & DL_FLAG_INFERRED))
return;
if (device_link_flag_is_sync_state_only(link->flags))
return;
pm_runtime_drop_link(link);
link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
dev_dbg(link->consumer, "Relaxing link with %s\n",
dev_name(link->supplier));
}
static int fw_devlink_no_driver(struct device *dev, void *data)
{
struct device_link *link = to_devlink(dev);
if (!link->supplier->can_match)
fw_devlink_relax_link(link);
return 0;
}
void fw_devlink_drivers_done(void)
{
fw_devlink_drv_reg_done = true;
device_links_write_lock();
class_for_each_device(&devlink_class, NULL, NULL,
fw_devlink_no_driver);
device_links_write_unlock();
}
static int fw_devlink_dev_sync_state(struct device *dev, void *data)
{
struct device_link *link = to_devlink(dev);
struct device *sup = link->supplier;
if (!(link->flags & DL_FLAG_MANAGED) ||
link->status == DL_STATE_ACTIVE || sup->state_synced ||
!dev_has_sync_state(sup))
return 0;
if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
dev_warn(sup, "sync_state() pending due to %s\n",
dev_name(link->consumer));
return 0;
}
if (!list_empty(&sup->links.defer_sync))
return 0;
dev_warn(sup, "Timed out. Forcing sync_state()\n");
sup->state_synced = true;
get_device(sup);
list_add_tail(&sup->links.defer_sync, data);
return 0;
}
void fw_devlink_probing_done(void)
{
LIST_HEAD(sync_list);
device_links_write_lock();
class_for_each_device(&devlink_class, NULL, &sync_list,
fw_devlink_dev_sync_state);
device_links_write_unlock();
device_links_flush_sync_list(&sync_list, NULL);
}
/**
* wait_for_init_devices_probe - Try to probe any device needed for init
*
* Some devices might need to be probed and bound successfully before the kernel
* boot sequence can finish and move on to init/userspace. For example, a
* network interface might need to be bound to be able to mount a NFS rootfs.
*
* With fw_devlink=on by default, some of these devices might be blocked from
* probing because they are waiting on a optional supplier that doesn't have a
* driver. While fw_devlink will eventually identify such devices and unblock
* the probing automatically, it might be too late by the time it unblocks the
* probing of devices. For example, the IP4 autoconfig might timeout before
* fw_devlink unblocks probing of the network interface.
*
* This function is available to temporarily try and probe all devices that have
* a driver even if some of their suppliers haven't been added or don't have
* drivers.
*
* The drivers can then decide which of the suppliers are optional vs mandatory
* and probe the device if possible. By the time this function returns, all such
* "best effort" probes are guaranteed to be completed. If a device successfully
* probes in this mode, we delete all fw_devlink discovered dependencies of that
* device where the supplier hasn't yet probed successfully because they have to
* be optional dependencies.
*
* Any devices that didn't successfully probe go back to being treated as if
* this function was never called.
*
* This also means that some devices that aren't needed for init and could have
* waited for their optional supplier to probe (when the supplier's module is
* loaded later on) would end up probing prematurely with limited functionality.
* So call this function only when boot would fail without it.
*/
void __init wait_for_init_devices_probe(void)
{
if (!fw_devlink_flags || fw_devlink_is_permissive())
return;
/*
* Wait for all ongoing probes to finish so that the "best effort" is
* only applied to devices that can't probe otherwise.
*/
wait_for_device_probe();
pr_info("Trying to probe devices needed for running init ...\n");
fw_devlink_best_effort = true;
driver_deferred_probe_trigger();
/*
* Wait for all "best effort" probes to finish before going back to
* normal enforcement.
*/
wait_for_device_probe();
fw_devlink_best_effort = false;
}
static void fw_devlink_unblock_consumers(struct device *dev)
{
struct device_link *link;
if (!fw_devlink_flags || fw_devlink_is_permissive())
return;
device_links_write_lock();
list_for_each_entry(link, &dev->links.consumers, s_node)
fw_devlink_relax_link(link);
device_links_write_unlock();
}
#define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev)
static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
{
struct device *dev;
bool ret;
if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
return false;
dev = get_dev_from_fwnode(fwnode);
ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
put_device(dev);
return ret;
}
static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
{
struct fwnode_handle *parent;
fwnode_for_each_parent_node(fwnode, parent) {
if (fwnode_init_without_drv(parent)) {
fwnode_handle_put(parent);
return true;
}
}
return false;
}
/**
* fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
* @ancestor: Firmware which is tested for being an ancestor
* @child: Firmware which is tested for being the child
*
* A node is considered an ancestor of itself too.
*
* Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
*/
static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
const struct fwnode_handle *child)
{
struct fwnode_handle *parent;
if (IS_ERR_OR_NULL(ancestor))
return false;
if (child == ancestor)
return true;
fwnode_for_each_parent_node(child, parent) {
if (parent == ancestor) {
fwnode_handle_put(parent);
return true;
}
}
return false;
}
/**
* fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
* @fwnode: firmware node
*
* Given a firmware node (@fwnode), this function finds its closest ancestor
* firmware node that has a corresponding struct device and returns that struct
* device.
*
* The caller is responsible for calling put_device() on the returned device
* pointer.
*
* Return: a pointer to the device of the @fwnode's closest ancestor.
*/
static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
{
struct fwnode_handle *parent;
struct device *dev;
fwnode_for_each_parent_node(fwnode, parent) {
dev = get_dev_from_fwnode(parent);
if (dev) {
fwnode_handle_put(parent);
return dev;
}
}
return NULL;
}
/**
* __fw_devlink_relax_cycles - Relax and mark dependency cycles.
* @con: Potential consumer device.
* @sup_handle: Potential supplier's fwnode.
*
* Needs to be called with fwnode_lock and device link lock held.
*
* Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
* depend on @con. This function can detect multiple cyles between @sup_handle
* and @con. When such dependency cycles are found, convert all device links
* created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
* all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
* converted into a device link in the future, they are created as
* SYNC_STATE_ONLY device links. This is the equivalent of doing
* fw_devlink=permissive just between the devices in the cycle. We need to do
* this because, at this point, fw_devlink can't tell which of these
* dependencies is not a real dependency.
*
* Return true if one or more cycles were found. Otherwise, return false.
*/
static bool __fw_devlink_relax_cycles(struct device *con,
struct fwnode_handle *sup_handle)
{
struct device *sup_dev = NULL, *par_dev = NULL;
struct fwnode_link *link;
struct device_link *dev_link;
bool ret = false;
if (!sup_handle)
return false;
/*
* We aren't trying to find all cycles. Just a cycle between con and
* sup_handle.
*/
if (sup_handle->flags & FWNODE_FLAG_VISITED)
return false;
sup_handle->flags |= FWNODE_FLAG_VISITED;
sup_dev = get_dev_from_fwnode(sup_handle);
/* Termination condition. */
if (sup_dev == con) {
pr_debug("----- cycle: start -----\n");
ret = true;
goto out;
}
/*
* If sup_dev is bound to a driver and @con hasn't started binding to a
* driver, sup_dev can't be a consumer of @con. So, no need to check
* further.
*/
if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
con->links.status == DL_DEV_NO_DRIVER) {
ret = false;
goto out;
}
list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
if (link->flags & FWLINK_FLAG_IGNORE)
continue;
if (__fw_devlink_relax_cycles(con, link->supplier)) {
__fwnode_link_cycle(link);
ret = true;
}
}
/*
* Give priority to device parent over fwnode parent to account for any
* quirks in how fwnodes are converted to devices.
*/
if (sup_dev)
par_dev = get_device(sup_dev->parent);
else
par_dev = fwnode_get_next_parent_dev(sup_handle);
if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
par_dev->fwnode);
ret = true;
}
if (!sup_dev)
goto out;
list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
/*
* Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
* such due to a cycle.
*/
if (device_link_flag_is_sync_state_only(dev_link->flags) &&
!(dev_link->flags & DL_FLAG_CYCLE))
continue;
if (__fw_devlink_relax_cycles(con,
dev_link->supplier->fwnode)) {
pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
dev_link->supplier->fwnode);
fw_devlink_relax_link(dev_link);
dev_link->flags |= DL_FLAG_CYCLE;
ret = true;
}
}
out:
sup_handle->flags &= ~FWNODE_FLAG_VISITED;
put_device(sup_dev);
put_device(par_dev);
return ret;
}
/**
* fw_devlink_create_devlink - Create a device link from a consumer to fwnode
* @con: consumer device for the device link
* @sup_handle: fwnode handle of supplier
* @link: fwnode link that's being converted to a device link
*
* This function will try to create a device link between the consumer device
* @con and the supplier device represented by @sup_handle.
*
* The supplier has to be provided as a fwnode because incorrect cycles in
* fwnode links can sometimes cause the supplier device to never be created.
* This function detects such cases and returns an error if it cannot create a
* device link from the consumer to a missing supplier.
*
* Returns,
* 0 on successfully creating a device link
* -EINVAL if the device link cannot be created as expected
* -EAGAIN if the device link cannot be created right now, but it may be
* possible to do that in the future
*/
static int fw_devlink_create_devlink(struct device *con,
struct fwnode_handle *sup_handle,
struct fwnode_link *link)
{
struct device *sup_dev;
int ret = 0;
u32 flags;
if (link->flags & FWLINK_FLAG_IGNORE)
return 0;
if (con->fwnode == link->consumer)
flags = fw_devlink_get_flags(link->flags);
else
flags = FW_DEVLINK_FLAGS_PERMISSIVE;
/*
* In some cases, a device P might also be a supplier to its child node
* C. However, this would defer the probe of C until the probe of P
* completes successfully. This is perfectly fine in the device driver
* model. device_add() doesn't guarantee probe completion of the device
* by the time it returns.
*
* However, there are a few drivers that assume C will finish probing
* as soon as it's added and before P finishes probing. So, we provide
* a flag to let fw_devlink know not to delay the probe of C until the
* probe of P completes successfully.
*
* When such a flag is set, we can't create device links where P is the
* supplier of C as that would delay the probe of C.
*/
if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
fwnode_is_ancestor_of(sup_handle, con->fwnode))
return -EINVAL;
/*
* SYNC_STATE_ONLY device links don't block probing and supports cycles.
* So, one might expect that cycle detection isn't necessary for them.
* However, if the device link was marked as SYNC_STATE_ONLY because
* it's part of a cycle, then we still need to do cycle detection. This
* is because the consumer and supplier might be part of multiple cycles
* and we need to detect all those cycles.
*/
if (!device_link_flag_is_sync_state_only(flags) ||
flags & DL_FLAG_CYCLE) {
device_links_write_lock();
if (__fw_devlink_relax_cycles(con, sup_handle)) {
__fwnode_link_cycle(link);
flags = fw_devlink_get_flags(link->flags);
pr_debug("----- cycle: end -----\n");
dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
sup_handle);
}
device_links_write_unlock();
}
if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
sup_dev = fwnode_get_next_parent_dev(sup_handle);
else
sup_dev = get_dev_from_fwnode(sup_handle);
if (sup_dev) {
/*
* If it's one of those drivers that don't actually bind to
* their device using driver core, then don't wait on this
* supplier device indefinitely.
*/
if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
dev_dbg(con,
"Not linking %pfwf - dev might never probe\n",
sup_handle);
ret = -EINVAL;
goto out;
}
if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
dev_err(con, "Failed to create device link (0x%x) with %s\n",
flags, dev_name(sup_dev));
ret = -EINVAL;
}
goto out;
}
/*
* Supplier or supplier's ancestor already initialized without a struct
* device or being probed by a driver.
*/
if (fwnode_init_without_drv(sup_handle) ||
fwnode_ancestor_init_without_drv(sup_handle)) {
dev_dbg(con, "Not linking %pfwf - might never become dev\n",
sup_handle);
return -EINVAL;
}
ret = -EAGAIN;
out:
put_device(sup_dev);
return ret;
}
/**
* __fw_devlink_link_to_consumers - Create device links to consumers of a device
* @dev: Device that needs to be linked to its consumers
*
* This function looks at all the consumer fwnodes of @dev and creates device
* links between the consumer device and @dev (supplier).
*
* If the consumer device has not been added yet, then this function creates a
* SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
* of the consumer fwnode. This is necessary to make sure @dev doesn't get a
* sync_state() callback before the real consumer device gets to be added and
* then probed.
*
* Once device links are created from the real consumer to @dev (supplier), the
* fwnode links are deleted.
*/
static void __fw_devlink_link_to_consumers(struct device *dev)
{
struct fwnode_handle *fwnode = dev->fwnode;
struct fwnode_link *link, *tmp;
list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
struct device *con_dev;
bool own_link = true;
int ret;
con_dev = get_dev_from_fwnode(link->consumer);
/*
* If consumer device is not available yet, make a "proxy"
* SYNC_STATE_ONLY link from the consumer's parent device to
* the supplier device. This is necessary to make sure the
* supplier doesn't get a sync_state() callback before the real
* consumer can create a device link to the supplier.
*
* This proxy link step is needed to handle the case where the
* consumer's parent device is added before the supplier.
*/
if (!con_dev) {
con_dev = fwnode_get_next_parent_dev(link->consumer);
/*
* However, if the consumer's parent device is also the
* parent of the supplier, don't create a
* consumer-supplier link from the parent to its child
* device. Such a dependency is impossible.
*/
if (con_dev &&
fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
put_device(con_dev);
con_dev = NULL;
} else {
own_link = false;
}
}
if (!con_dev)
continue;
ret = fw_devlink_create_devlink(con_dev, fwnode, link);
put_device(con_dev);
if (!own_link || ret == -EAGAIN)
continue;
__fwnode_link_del(link);
}
}
/**
* __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
* @dev: The consumer device that needs to be linked to its suppliers
* @fwnode: Root of the fwnode tree that is used to create device links
*
* This function looks at all the supplier fwnodes of fwnode tree rooted at
* @fwnode and creates device links between @dev (consumer) and all the
* supplier devices of the entire fwnode tree at @fwnode.
*
* The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
* and the real suppliers of @dev. Once these device links are created, the
* fwnode links are deleted.
*
* In addition, it also looks at all the suppliers of the entire fwnode tree
* because some of the child devices of @dev that have not been added yet
* (because @dev hasn't probed) might already have their suppliers added to
* driver core. So, this function creates SYNC_STATE_ONLY device links between
* @dev (consumer) and these suppliers to make sure they don't execute their
* sync_state() callbacks before these child devices have a chance to create
* their device links. The fwnode links that correspond to the child devices
* aren't delete because they are needed later to create the device links
* between the real consumer and supplier devices.
*/
static void __fw_devlink_link_to_suppliers(struct device *dev,
struct fwnode_handle *fwnode)
{
bool own_link = (dev->fwnode == fwnode);
struct fwnode_link *link, *tmp;
struct fwnode_handle *child = NULL;
list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
int ret;
struct fwnode_handle *sup = link->supplier;
ret = fw_devlink_create_devlink(dev, sup, link);
if (!own_link || ret == -EAGAIN)
continue;
__fwnode_link_del(link);
}
/*
* Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
* all the descendants. This proxy link step is needed to handle the
* case where the supplier is added before the consumer's parent device
* (@dev).
*/
while ((child = fwnode_get_next_available_child_node(fwnode, child)))
__fw_devlink_link_to_suppliers(dev, child);
}
static void fw_devlink_link_device(struct device *dev)
{
struct fwnode_handle *fwnode = dev->fwnode;
if (!fw_devlink_flags)
return;
fw_devlink_parse_fwtree(fwnode);
guard(mutex)(&fwnode_link_lock);
__fw_devlink_link_to_consumers(dev);
__fw_devlink_link_to_suppliers(dev, fwnode);
}
/* Device links support end. */
static struct kobject *dev_kobj;
/* /sys/dev/char */
static struct kobject *sysfs_dev_char_kobj;
/* /sys/dev/block */
static struct kobject *sysfs_dev_block_kobj;
static DEFINE_MUTEX(device_hotplug_lock);
void lock_device_hotplug(void)
{
mutex_lock(&device_hotplug_lock);
}
void unlock_device_hotplug(void)
{
mutex_unlock(&device_hotplug_lock);
}
int lock_device_hotplug_sysfs(void)
{
if (mutex_trylock(&device_hotplug_lock))
return 0;
/* Avoid busy looping (5 ms of sleep should do). */
msleep(5);
return restart_syscall();
}
#ifdef CONFIG_BLOCK
static inline int device_is_not_partition(struct device *dev)
{
return !(dev->type == &part_type);
}
#else
static inline int device_is_not_partition(struct device *dev)
{
return 1;
}
#endif
static void device_platform_notify(struct device *dev)
{
acpi_device_notify(dev);
software_node_notify(dev);
}
static void device_platform_notify_remove(struct device *dev)
{
software_node_notify_remove(dev);
acpi_device_notify_remove(dev);
}
/**
* dev_driver_string - Return a device's driver name, if at all possible
* @dev: struct device to get the name of
*
* Will return the device's driver's name if it is bound to a device. If
* the device is not bound to a driver, it will return the name of the bus
* it is attached to. If it is not attached to a bus either, an empty
* string will be returned.
*/
const char *dev_driver_string(const struct device *dev)
{
struct device_driver *drv;
/* dev->driver can change to NULL underneath us because of unbinding,
* so be careful about accessing it. dev->bus and dev->class should
* never change once they are set, so they don't need special care.
*/
drv = READ_ONCE(dev->driver);
return drv ? drv->name : dev_bus_name(dev);
}
EXPORT_SYMBOL(dev_driver_string);
#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct device_attribute *dev_attr = to_dev_attr(attr);
struct device *dev = kobj_to_dev(kobj);
ssize_t ret = -EIO;
if (dev_attr->show)
ret = dev_attr->show(dev, dev_attr, buf);
if (ret >= (ssize_t)PAGE_SIZE) {
printk("dev_attr_show: %pS returned bad count\n",
dev_attr->show);
}
return ret;
}
static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct device_attribute *dev_attr = to_dev_attr(attr);
struct device *dev = kobj_to_dev(kobj);
ssize_t ret = -EIO;
if (dev_attr->store)
ret = dev_attr->store(dev, dev_attr, buf, count);
return ret;
}
static const struct sysfs_ops dev_sysfs_ops = {
.show = dev_attr_show,
.store = dev_attr_store,
};
#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
ssize_t device_store_ulong(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
int ret;
unsigned long new;
ret = kstrtoul(buf, 0, &new);
if (ret)
return ret;
*(unsigned long *)(ea->var) = new;
/* Always return full write size even if we didn't consume all */
return size;
}
EXPORT_SYMBOL_GPL(device_store_ulong);
ssize_t device_show_ulong(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
}
EXPORT_SYMBOL_GPL(device_show_ulong);
ssize_t device_store_int(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
int ret;
long new;
ret = kstrtol(buf, 0, &new);
if (ret)
return ret;
if (new > INT_MAX || new < INT_MIN)
return -EINVAL;
*(int *)(ea->var) = new;
/* Always return full write size even if we didn't consume all */
return size;
}
EXPORT_SYMBOL_GPL(device_store_int);
ssize_t device_show_int(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
}
EXPORT_SYMBOL_GPL(device_show_int);
ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
if (kstrtobool(buf, ea->var) < 0)
return -EINVAL;
return size;
}
EXPORT_SYMBOL_GPL(device_store_bool);
ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
}
EXPORT_SYMBOL_GPL(device_show_bool);
ssize_t device_show_string(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
return sysfs_emit(buf, "%s\n", (char *)ea->var);
}
EXPORT_SYMBOL_GPL(device_show_string);
/**
* device_release - free device structure.
* @kobj: device's kobject.
*
* This is called once the reference count for the object
* reaches 0. We forward the call to the device's release
* method, which should handle actually freeing the structure.
*/
static void device_release(struct kobject *kobj)
{
struct device *dev = kobj_to_dev(kobj);
struct device_private *p = dev->p;
/*
* Some platform devices are driven without driver attached
* and managed resources may have been acquired. Make sure
* all resources are released.
*
* Drivers still can add resources into device after device
* is deleted but alive, so release devres here to avoid
* possible memory leak.
*/
devres_release_all(dev);
kfree(dev->dma_range_map);
if (dev->release)
dev->release(dev);
else if (dev->type && dev->type->release)
dev->type->release(dev);
else if (dev->class && dev->class->dev_release)
dev->class->dev_release(dev);
else
WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
dev_name(dev));
kfree(p);
}
static const void *device_namespace(const struct kobject *kobj)
{
const struct device *dev = kobj_to_dev(kobj);
const void *ns = NULL;
if (dev->class && dev->class->namespace)
ns = dev->class->namespace(dev);
return ns;
}
static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
{
const struct device *dev = kobj_to_dev(kobj);
if (dev->class && dev->class->get_ownership)
dev->class->get_ownership(dev, uid, gid);
}
static const struct kobj_type device_ktype = {
.release = device_release,
.sysfs_ops = &dev_sysfs_ops,
.namespace = device_namespace,
.get_ownership = device_get_ownership,
};
static int dev_uevent_filter(const struct kobject *kobj)
{
const struct kobj_type *ktype = get_ktype(kobj);
if (ktype == &device_ktype) {
const struct device *dev = kobj_to_dev(kobj);
if (dev->bus)
return 1;
if (dev->class)
return 1;
}
return 0;
}
static const char *dev_uevent_name(const struct kobject *kobj)
{
const struct device *dev = kobj_to_dev(kobj);
if (dev->bus)
return dev->bus->name;
if (dev->class)
return dev->class->name;
return NULL;
}
static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
{
const struct device *dev = kobj_to_dev(kobj);
struct device_driver *driver;
int retval = 0;
/* add device node properties if present */
if (MAJOR(dev->devt)) {
const char *tmp;
const char *name;
umode_t mode = 0;
kuid_t uid = GLOBAL_ROOT_UID;
kgid_t gid = GLOBAL_ROOT_GID;
add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
if (name) {
add_uevent_var(env, "DEVNAME=%s", name);
if (mode)
add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
if (!uid_eq(uid, GLOBAL_ROOT_UID))
add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
if (!gid_eq(gid, GLOBAL_ROOT_GID))
add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
kfree(tmp);
}
}
if (dev->type && dev->type->name)
add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
/* Synchronize with module_remove_driver() */
rcu_read_lock();
driver = READ_ONCE(dev->driver);
if (driver)
add_uevent_var(env, "DRIVER=%s", driver->name);
rcu_read_unlock();
/* Add common DT information about the device */
of_device_uevent(dev, env);
/* have the bus specific function add its stuff */
if (dev->bus && dev->bus->uevent) {
retval = dev->bus->uevent(dev, env);
if (retval)
pr_debug("device: '%s': %s: bus uevent() returned %d\n",
dev_name(dev), __func__, retval);
}
/* have the class specific function add its stuff */
if (dev->class && dev->class->dev_uevent) {
retval = dev->class->dev_uevent(dev, env);
if (retval)
pr_debug("device: '%s': %s: class uevent() "
"returned %d\n", dev_name(dev),
__func__, retval);
}
/* have the device type specific function add its stuff */
if (dev->type && dev->type->uevent) {
retval = dev->type->uevent(dev, env);
if (retval)
pr_debug("device: '%s': %s: dev_type uevent() "
"returned %d\n", dev_name(dev),
__func__, retval);
}
return retval;
}
static const struct kset_uevent_ops device_uevent_ops = {
.filter = dev_uevent_filter,
.name = dev_uevent_name,
.uevent = dev_uevent,
};
static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kobject *top_kobj;
struct kset *kset;
struct kobj_uevent_env *env = NULL;
int i;
int len = 0;
int retval;
/* search the kset, the device belongs to */
top_kobj = &dev->kobj;
while (!top_kobj->kset && top_kobj->parent)
top_kobj = top_kobj->parent;
if (!top_kobj->kset)
goto out;
kset = top_kobj->kset;
if (!kset->uevent_ops || !kset->uevent_ops->uevent)
goto out;
/* respect filter */
if (kset->uevent_ops && kset->uevent_ops->filter)
if (!kset->uevent_ops->filter(&dev->kobj))
goto out;
env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
if (!env)
return -ENOMEM;
/* let the kset specific function add its keys */
retval = kset->uevent_ops->uevent(&dev->kobj, env);
if (retval)
goto out;
/* copy keys to file */
for (i = 0; i < env->envp_idx; i++)
len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
out:
kfree(env);
return len;
}
static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int rc;
rc = kobject_synth_uevent(&dev->kobj, buf, count);
if (rc) {
dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
return rc;
}
return count;
}
static DEVICE_ATTR_RW(uevent);
static ssize_t online_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
bool val;
device_lock(dev);
val = !dev->offline;
device_unlock(dev);
return sysfs_emit(buf, "%u\n", val);
}
static ssize_t online_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
bool val;
int ret;
ret = kstrtobool(buf, &val);
if (ret < 0)
return ret;
ret = lock_device_hotplug_sysfs();
if (ret)
return ret;
ret = val ? device_online(dev) : device_offline(dev);
unlock_device_hotplug();
return ret < 0 ? ret : count;
}
static DEVICE_ATTR_RW(online);
static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
const char *loc;
switch (dev->removable) {
case DEVICE_REMOVABLE:
loc = "removable";
break;
case DEVICE_FIXED:
loc = "fixed";
break;
default:
loc = "unknown";
}
return sysfs_emit(buf, "%s\n", loc);
}
static DEVICE_ATTR_RO(removable);
int device_add_groups(struct device *dev, const struct attribute_group **groups)
{
return sysfs_create_groups(&dev->kobj, groups);
}
EXPORT_SYMBOL_GPL(device_add_groups);
void device_remove_groups(struct device *dev,
const struct attribute_group **groups)
{
sysfs_remove_groups(&dev->kobj, groups);
}
EXPORT_SYMBOL_GPL(device_remove_groups);
union device_attr_group_devres {
const struct attribute_group *group;
const struct attribute_group **groups;
};
static void devm_attr_group_remove(struct device *dev, void *res)
{
union device_attr_group_devres *devres = res;
const struct attribute_group *group = devres->group;
dev_dbg(dev, "%s: removing group %p\n", __func__, group);
sysfs_remove_group(&dev->kobj, group);
}
/**
* devm_device_add_group - given a device, create a managed attribute group
* @dev: The device to create the group for
* @grp: The attribute group to create
*
* This function creates a group for the first time. It will explicitly
* warn and error if any of the attribute files being created already exist.
*
* Returns 0 on success or error code on failure.
*/
int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
{
union device_attr_group_devres *devres;
int error;
devres = devres_alloc(devm_attr_group_remove,
sizeof(*devres), GFP_KERNEL);
if (!devres)
return -ENOMEM;
error = sysfs_create_group(&dev->kobj, grp);
if (error) {
devres_free(devres);
return error;
}
devres->group = grp;
devres_add(dev, devres);
return 0;
}
EXPORT_SYMBOL_GPL(devm_device_add_group);
static int device_add_attrs(struct device *dev)
{
const struct class *class = dev->class;
const struct device_type *type = dev->type;
int error;
if (class) {
error = device_add_groups(dev, class->dev_groups);
if (error)
return error;
}
if (type) {
error = device_add_groups(dev, type->groups);
if (error)
goto err_remove_class_groups;
}
error = device_add_groups(dev, dev->groups);
if (error)
goto err_remove_type_groups;
if (device_supports_offline(dev) && !dev->offline_disabled) {
error = device_create_file(dev, &dev_attr_online);
if (error)
goto err_remove_dev_groups;
}
if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
error = device_create_file(dev, &dev_attr_waiting_for_supplier);
if (error)
goto err_remove_dev_online;
}
if (dev_removable_is_valid(dev)) {
error = device_create_file(dev, &dev_attr_removable);
if (error)
goto err_remove_dev_waiting_for_supplier;
}
if (dev_add_physical_location(dev)) {
error = device_add_group(dev,
&dev_attr_physical_location_group);
if (error)
goto err_remove_dev_removable;
}
return 0;
err_remove_dev_removable:
device_remove_file(dev, &dev_attr_removable);
err_remove_dev_waiting_for_supplier:
device_remove_file(dev, &dev_attr_waiting_for_supplier);
err_remove_dev_online:
device_remove_file(dev, &dev_attr_online);
err_remove_dev_groups:
device_remove_groups(dev, dev->groups);
err_remove_type_groups:
if (type)
device_remove_groups(dev, type->groups);
err_remove_class_groups:
if (class)
device_remove_groups(dev, class->dev_groups);
return error;
}
static void device_remove_attrs(struct device *dev)
{
const struct class *class = dev->class;
const struct device_type *type = dev->type;
if (dev->physical_location) {
device_remove_group(dev, &dev_attr_physical_location_group);
kfree(dev->physical_location);
}
device_remove_file(dev, &dev_attr_removable);
device_remove_file(dev, &dev_attr_waiting_for_supplier);
device_remove_file(dev, &dev_attr_online);
device_remove_groups(dev, dev->groups);
if (type)
device_remove_groups(dev, type->groups);
if (class)
device_remove_groups(dev, class->dev_groups);
}
static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return print_dev_t(buf, dev->devt);
}
static DEVICE_ATTR_RO(dev);
/* /sys/devices/ */
struct kset *devices_kset;
/**
* devices_kset_move_before - Move device in the devices_kset's list.
* @deva: Device to move.
* @devb: Device @deva should come before.
*/
static void devices_kset_move_before(struct device *deva, struct device *devb)
{
if (!devices_kset)
return;
pr_debug("devices_kset: Moving %s before %s\n",
dev_name(deva), dev_name(devb));
spin_lock(&devices_kset->list_lock);
list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
spin_unlock(&devices_kset->list_lock);
}
/**
* devices_kset_move_after - Move device in the devices_kset's list.
* @deva: Device to move
* @devb: Device @deva should come after.
*/
static void devices_kset_move_after(struct device *deva, struct device *devb)
{
if (!devices_kset)
return;
pr_debug("devices_kset: Moving %s after %s\n",
dev_name(deva), dev_name(devb));
spin_lock(&devices_kset->list_lock);
list_move(&deva->kobj.entry, &devb->kobj.entry);
spin_unlock(&devices_kset->list_lock);
}
/**
* devices_kset_move_last - move the device to the end of devices_kset's list.
* @dev: device to move
*/
void devices_kset_move_last(struct device *dev)
{
if (!devices_kset)
return;
pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
spin_lock(&devices_kset->list_lock);
list_move_tail(&dev->kobj.entry, &devices_kset->list);
spin_unlock(&devices_kset->list_lock);
}
/**
* device_create_file - create sysfs attribute file for device.
* @dev: device.
* @attr: device attribute descriptor.
*/
int device_create_file(struct device *dev,
const struct device_attribute *attr)
{
int error = 0;
if (dev) {
WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
"Attribute %s: write permission without 'store'\n",
attr->attr.name);
WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
"Attribute %s: read permission without 'show'\n",
attr->attr.name);
error = sysfs_create_file(&dev->kobj, &attr->attr);
}
return error;
}
EXPORT_SYMBOL_GPL(device_create_file);
/**
* device_remove_file - remove sysfs attribute file.
* @dev: device.
* @attr: device attribute descriptor.
*/
void device_remove_file(struct device *dev,
const struct device_attribute *attr)
{
if (dev)
sysfs_remove_file(&dev->kobj, &attr->attr);
}
EXPORT_SYMBOL_GPL(device_remove_file);
/**
* device_remove_file_self - remove sysfs attribute file from its own method.
* @dev: device.
* @attr: device attribute descriptor.
*
* See kernfs_remove_self() for details.
*/
bool device_remove_file_self(struct device *dev,
const struct device_attribute *attr)
{
if (dev)
return sysfs_remove_file_self(&dev->kobj, &attr->attr);
else
return false;
}
EXPORT_SYMBOL_GPL(device_remove_file_self);
/**
* device_create_bin_file - create sysfs binary attribute file for device.
* @dev: device.
* @attr: device binary attribute descriptor.
*/
int device_create_bin_file(struct device *dev,
const struct bin_attribute *attr)
{
int error = -EINVAL;
if (dev)
error = sysfs_create_bin_file(&dev->kobj, attr);
return error;
}
EXPORT_SYMBOL_GPL(device_create_bin_file);
/**
* device_remove_bin_file - remove sysfs binary attribute file
* @dev: device.
* @attr: device binary attribute descriptor.
*/
void device_remove_bin_file(struct device *dev,
const struct bin_attribute *attr)
{
if (dev)
sysfs_remove_bin_file(&dev->kobj, attr);
}
EXPORT_SYMBOL_GPL(device_remove_bin_file);
static void klist_children_get(struct klist_node *n)
{
struct device_private *p = to_device_private_parent(n);
struct device *dev = p->device;
get_device(dev);
}
static void klist_children_put(struct klist_node *n)
{
struct device_private *p = to_device_private_parent(n);
struct device *dev = p->device;
put_device(dev);
}
/**
* device_initialize - init device structure.
* @dev: device.
*
* This prepares the device for use by other layers by initializing
* its fields.
* It is the first half of device_register(), if called by
* that function, though it can also be called separately, so one
* may use @dev's fields. In particular, get_device()/put_device()
* may be used for reference counting of @dev after calling this
* function.
*
* All fields in @dev must be initialized by the caller to 0, except
* for those explicitly set to some other value. The simplest
* approach is to use kzalloc() to allocate the structure containing
* @dev.
*
* NOTE: Use put_device() to give up your reference instead of freeing
* @dev directly once you have called this function.
*/
void device_initialize(struct device *dev)
{
dev->kobj.kset = devices_kset;
kobject_init(&dev->kobj, &device_ktype);
INIT_LIST_HEAD(&dev->dma_pools);
mutex_init(&dev->mutex);
lockdep_set_novalidate_class(&dev->mutex);
spin_lock_init(&dev->devres_lock);
INIT_LIST_HEAD(&dev->devres_head);
device_pm_init(dev);
set_dev_node(dev, NUMA_NO_NODE);
INIT_LIST_HEAD(&dev->links.consumers);
INIT_LIST_HEAD(&dev->links.suppliers);
INIT_LIST_HEAD(&dev->links.defer_sync);
dev->links.status = DL_DEV_NO_DRIVER;
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
dev->dma_coherent = dma_default_coherent;
#endif
swiotlb_dev_init(dev);
}
EXPORT_SYMBOL_GPL(device_initialize);
struct kobject *virtual_device_parent(void)
{
static struct kobject *virtual_dir = NULL;
if (!virtual_dir)
virtual_dir = kobject_create_and_add("virtual",
&devices_kset->kobj);
return virtual_dir;
}
struct class_dir {
struct kobject kobj;
const struct class *class;
};
#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
static void class_dir_release(struct kobject *kobj)
{
struct class_dir *dir = to_class_dir(kobj);
kfree(dir);
}
static const
struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
{
const struct class_dir *dir = to_class_dir(kobj);
return dir->class->ns_type;
}
static const struct kobj_type class_dir_ktype = {
.release = class_dir_release,
.sysfs_ops = &kobj_sysfs_ops,
.child_ns_type = class_dir_child_ns_type
};
static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
struct kobject *parent_kobj)
{
struct class_dir *dir;
int retval;
dir = kzalloc(sizeof(*dir), GFP_KERNEL);
if (!dir)
return ERR_PTR(-ENOMEM);
dir->class = sp->class;
kobject_init(&dir->kobj, &class_dir_ktype);
dir->kobj.kset = &sp->glue_dirs;
retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
if (retval < 0) {
kobject_put(&dir->kobj);
return ERR_PTR(retval);
}
return &dir->kobj;
}
static DEFINE_MUTEX(gdp_mutex);
static struct kobject *get_device_parent(struct device *dev,
struct device *parent)
{
struct subsys_private *sp = class_to_subsys(dev->class);
struct kobject *kobj = NULL;
if (sp) {
struct kobject *parent_kobj;
struct kobject *k;
/*
* If we have no parent, we live in "virtual".
* Class-devices with a non class-device as parent, live
* in a "glue" directory to prevent namespace collisions.
*/
if (parent == NULL)
parent_kobj = virtual_device_parent();
else if (parent->class && !dev->class->ns_type) {
subsys_put(sp);
return &parent->kobj;
} else {
parent_kobj = &parent->kobj;
}
mutex_lock(&gdp_mutex);
/* find our class-directory at the parent and reference it */
spin_lock(&sp->glue_dirs.list_lock);
list_for_each_entry(k, &sp->glue_dirs.list, entry)
if (k->parent == parent_kobj) {
kobj = kobject_get(k);
break;
}
spin_unlock(&sp->glue_dirs.list_lock);
if (kobj) {
mutex_unlock(&gdp_mutex);
subsys_put(sp);
return kobj;
}
/* or create a new class-directory at the parent device */
k = class_dir_create_and_add(sp, parent_kobj);
/* do not emit an uevent for this simple "glue" directory */
mutex_unlock(&gdp_mutex);
subsys_put(sp);
return k;
}
/* subsystems can specify a default root directory for their devices */
if (!parent && dev->bus) {
struct device *dev_root = bus_get_dev_root(dev->bus);
if (dev_root) {
kobj = &dev_root->kobj;
put_device(dev_root);
return kobj;
}
}
if (parent)
return &parent->kobj;
return NULL;
}
static inline bool live_in_glue_dir(struct kobject *kobj,
struct device *dev)
{
struct subsys_private *sp;
bool retval;
if (!kobj || !dev->class)
return false;
sp = class_to_subsys(dev->class);
if (!sp)
return false;
if (kobj->kset == &sp->glue_dirs)
retval = true;
else
retval = false;
subsys_put(sp);
return retval;
}
static inline struct kobject *get_glue_dir(struct device *dev)
{
return dev->kobj.parent;
}
/**
* kobject_has_children - Returns whether a kobject has children.
* @kobj: the object to test
*
* This will return whether a kobject has other kobjects as children.
*
* It does NOT account for the presence of attribute files, only sub
* directories. It also assumes there is no concurrent addition or
* removal of such children, and thus relies on external locking.
*/
static inline bool kobject_has_children(struct kobject *kobj)
{
WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
return kobj->sd && kobj->sd->dir.subdirs;
}
/*
* make sure cleaning up dir as the last step, we need to make
* sure .release handler of kobject is run with holding the
* global lock
*/
static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
{
unsigned int ref;
/* see if we live in a "glue" directory */
if (!live_in_glue_dir(glue_dir, dev))
return;
mutex_lock(&gdp_mutex);
/**
* There is a race condition between removing glue directory
* and adding a new device under the glue directory.
*
* CPU1: CPU2:
*
* device_add()
* get_device_parent()
* class_dir_create_and_add()
* kobject_add_internal()
* create_dir() // create glue_dir
*
* device_add()
* get_device_parent()
* kobject_get() // get glue_dir
*
* device_del()
* cleanup_glue_dir()
* kobject_del(glue_dir)
*
* kobject_add()
* kobject_add_internal()
* create_dir() // in glue_dir
* sysfs_create_dir_ns()
* kernfs_create_dir_ns(sd)
*
* sysfs_remove_dir() // glue_dir->sd=NULL
* sysfs_put() // free glue_dir->sd
*
* // sd is freed
* kernfs_new_node(sd)
* kernfs_get(glue_dir)
* kernfs_add_one()
* kernfs_put()
*
* Before CPU1 remove last child device under glue dir, if CPU2 add
* a new device under glue dir, the glue_dir kobject reference count
* will be increase to 2 in kobject_get(k). And CPU2 has been called
* kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
* and sysfs_put(). This result in glue_dir->sd is freed.
*
* Then the CPU2 will see a stale "empty" but still potentially used
* glue dir around in kernfs_new_node().
*
* In order to avoid this happening, we also should make sure that
* kernfs_node for glue_dir is released in CPU1 only when refcount
* for glue_dir kobj is 1.
*/
ref = kref_read(&glue_dir->kref);
if (!kobject_has_children(glue_dir) && !--ref)
kobject_del(glue_dir);
kobject_put(glue_dir);
mutex_unlock(&gdp_mutex);
}
static int device_add_class_symlinks(struct device *dev)
{
struct device_node *of_node = dev_of_node(dev);
struct subsys_private *sp;
int error;
if (of_node) {
error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
if (error)
dev_warn(dev, "Error %d creating of_node link\n",error);
/* An error here doesn't warrant bringing down the device */
}
sp = class_to_subsys(dev->class);
if (!sp)
return 0;
error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
if (error)
goto out_devnode;
if (dev->parent && device_is_not_partition(dev)) {
error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
"device");
if (error)
goto out_subsys;
}
/* link in the class directory pointing to the device */
error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
if (error)
goto out_device;
goto exit;
out_device:
sysfs_remove_link(&dev->kobj, "device");
out_subsys:
sysfs_remove_link(&dev->kobj, "subsystem");
out_devnode:
sysfs_remove_link(&dev->kobj, "of_node");
exit:
subsys_put(sp);
return error;
}
static void device_remove_class_symlinks(struct device *dev)
{
struct subsys_private *sp = class_to_subsys(dev->class);
if (dev_of_node(dev))
sysfs_remove_link(&dev->kobj, "of_node");
if (!sp)
return;
if (dev->parent && device_is_not_partition(dev))
sysfs_remove_link(&dev->kobj, "device");
sysfs_remove_link(&dev->kobj, "subsystem");
sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
subsys_put(sp);
}
/**
* dev_set_name - set a device name
* @dev: device
* @fmt: format string for the device's name
*/
int dev_set_name(struct device *dev, const char *fmt, ...)
{
va_list vargs;
int err;
va_start(vargs, fmt);
err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
va_end(vargs);
return err;
}
EXPORT_SYMBOL_GPL(dev_set_name);
/* select a /sys/dev/ directory for the device */
static struct kobject *device_to_dev_kobj(struct device *dev)
{
if (is_blockdev(dev))
return sysfs_dev_block_kobj;
else
return sysfs_dev_char_kobj;
}
static int device_create_sys_dev_entry(struct device *dev)
{
struct kobject *kobj = device_to_dev_kobj(dev);
int error = 0;
char devt_str[15];
if (kobj) {
format_dev_t(devt_str, dev->devt);
error = sysfs_create_link(kobj, &dev->kobj, devt_str);
}
return error;
}
static void device_remove_sys_dev_entry(struct device *dev)
{
struct kobject *kobj = device_to_dev_kobj(dev);
char devt_str[15];
if (kobj) {
format_dev_t(devt_str, dev->devt);
sysfs_remove_link(kobj, devt_str);
}
}
static int device_private_init(struct device *dev)
{
dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
if (!dev->p)
return -ENOMEM;
dev->p->device = dev;
klist_init(&dev->p->klist_children, klist_children_get,
klist_children_put);
INIT_LIST_HEAD(&dev->p->deferred_probe);
return 0;
}
/**
* device_add - add device to device hierarchy.
* @dev: device.
*
* This is part 2 of device_register(), though may be called
* separately _iff_ device_initialize() has been called separately.
*
* This adds @dev to the kobject hierarchy via kobject_add(), adds it
* to the global and sibling lists for the device, then
* adds it to the other relevant subsystems of the driver model.
*
* Do not call this routine or device_register() more than once for
* any device structure. The driver model core is not designed to work
* with devices that get unregistered and then spring back to life.
* (Among other things, it's very hard to guarantee that all references
* to the previous incarnation of @dev have been dropped.) Allocate
* and register a fresh new struct device instead.
*
* NOTE: _Never_ directly free @dev after calling this function, even
* if it returned an error! Always use put_device() to give up your
* reference instead.
*
* Rule of thumb is: if device_add() succeeds, you should call
* device_del() when you want to get rid of it. If device_add() has
* *not* succeeded, use *only* put_device() to drop the reference
* count.
*/
int device_add(struct device *dev)
{
struct subsys_private *sp;
struct device *parent;
struct kobject *kobj;
struct class_interface *class_intf;
int error = -EINVAL;
struct kobject *glue_dir = NULL;
dev = get_device(dev);
if (!dev)
goto done;
if (!dev->p) {
error = device_private_init(dev);
if (error)
goto done;
}
/*
* for statically allocated devices, which should all be converted
* some day, we need to initialize the name. We prevent reading back
* the name, and force the use of dev_name()
*/
if (dev->init_name) {
error = dev_set_name(dev, "%s", dev->init_name);
dev->init_name = NULL;
}
if (dev_name(dev))
error = 0;
/* subsystems can specify simple device enumeration */
else if (dev->bus && dev->bus->dev_name)
error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
else
error = -EINVAL;
if (error)
goto name_error;
pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
parent = get_device(dev->parent);
kobj = get_device_parent(dev, parent);
if (IS_ERR(kobj)) {
error = PTR_ERR(kobj);
goto parent_error;
}
if (kobj)
dev->kobj.parent = kobj;
/* use parent numa_node */
if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
set_dev_node(dev, dev_to_node(parent));
/* first, register with generic layer. */
/* we require the name to be set before, and pass NULL */
error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
if (error) {
glue_dir = kobj;
goto Error;
}
/* notify platform of device entry */
device_platform_notify(dev);
error = device_create_file(dev, &dev_attr_uevent);
if (error)
goto attrError;
error = device_add_class_symlinks(dev);
if (error)
goto SymlinkError;
error = device_add_attrs(dev);
if (error)
goto AttrsError;
error = bus_add_device(dev);
if (error)
goto BusError;
error = dpm_sysfs_add(dev);
if (error)
goto DPMError;
device_pm_add(dev);
if (MAJOR(dev->devt)) {
error = device_create_file(dev, &dev_attr_dev);
if (error)
goto DevAttrError;
error = device_create_sys_dev_entry(dev);
if (error)
goto SysEntryError;
devtmpfs_create_node(dev);
}
/* Notify clients of device addition. This call must come
* after dpm_sysfs_add() and before kobject_uevent().
*/
bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
kobject_uevent(&dev->kobj, KOBJ_ADD);
/*
* Check if any of the other devices (consumers) have been waiting for
* this device (supplier) to be added so that they can create a device
* link to it.
*
* This needs to happen after device_pm_add() because device_link_add()
* requires the supplier be registered before it's called.
*
* But this also needs to happen before bus_probe_device() to make sure
* waiting consumers can link to it before the driver is bound to the
* device and the driver sync_state callback is called for this device.
*/
if (dev->fwnode && !dev->fwnode->dev) {
dev->fwnode->dev = dev;
fw_devlink_link_device(dev);
}
bus_probe_device(dev);
/*
* If all driver registration is done and a newly added device doesn't
* match with any driver, don't block its consumers from probing in
* case the consumer device is able to operate without this supplier.
*/
if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
fw_devlink_unblock_consumers(dev);
if (parent)
klist_add_tail(&dev->p->knode_parent,
&parent->p->klist_children);
sp = class_to_subsys(dev->class);
if (sp) {
mutex_lock(&sp->mutex);
/* tie the class to the device */
klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
/* notify any interfaces that the device is here */
list_for_each_entry(class_intf, &sp->interfaces, node)
if (class_intf->add_dev)
class_intf->add_dev(dev);
mutex_unlock(&sp->mutex);
subsys_put(sp);
}
done:
put_device(dev);
return error;
SysEntryError:
if (MAJOR(dev->devt))
device_remove_file(dev, &dev_attr_dev);
DevAttrError:
device_pm_remove(dev);
dpm_sysfs_remove(dev);
DPMError:
dev->driver = NULL;
bus_remove_device(dev);
BusError:
device_remove_attrs(dev);
AttrsError:
device_remove_class_symlinks(dev);
SymlinkError:
device_remove_file(dev, &dev_attr_uevent);
attrError:
device_platform_notify_remove(dev);
kobject_uevent(&dev->kobj, KOBJ_REMOVE);
glue_dir = get_glue_dir(dev);
kobject_del(&dev->kobj);
Error:
cleanup_glue_dir(dev, glue_dir);
parent_error:
put_device(parent);
name_error:
kfree(dev->p);
dev->p = NULL;
goto done;
}
EXPORT_SYMBOL_GPL(device_add);
/**
* device_register - register a device with the system.
* @dev: pointer to the device structure
*
* This happens in two clean steps - initialize the device
* and add it to the system. The two steps can be called
* separately, but this is the easiest and most common.
* I.e. you should only call the two helpers separately if
* have a clearly defined need to use and refcount the device
* before it is added to the hierarchy.
*
* For more information, see the kerneldoc for device_initialize()
* and device_add().
*
* NOTE: _Never_ directly free @dev after calling this function, even
* if it returned an error! Always use put_device() to give up the
* reference initialized in this function instead.
*/
int device_register(struct device *dev)
{
device_initialize(dev);
return device_add(dev);
}
EXPORT_SYMBOL_GPL(device_register);
/**
* get_device - increment reference count for device.
* @dev: device.
*
* This simply forwards the call to kobject_get(), though
* we do take care to provide for the case that we get a NULL
* pointer passed in.
*/
struct device *get_device(struct device *dev)
{
return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
}
EXPORT_SYMBOL_GPL(get_device);
/**
* put_device - decrement reference count.
* @dev: device in question.
*/
void put_device(struct device *dev)
{
/* might_sleep(); */
if (dev)
kobject_put(&dev->kobj);
}
EXPORT_SYMBOL_GPL(put_device);
bool kill_device(struct device *dev)
{
/*
* Require the device lock and set the "dead" flag to guarantee that
* the update behavior is consistent with the other bitfields near
* it and that we cannot have an asynchronous probe routine trying
* to run while we are tearing out the bus/class/sysfs from
* underneath the device.
*/
device_lock_assert(dev);
if (dev->p->dead)
return false;
dev->p->dead = true;
return true;
}
EXPORT_SYMBOL_GPL(kill_device);
/**
* device_del - delete device from system.
* @dev: device.
*
* This is the first part of the device unregistration
* sequence. This removes the device from the lists we control
* from here, has it removed from the other driver model
* subsystems it was added to in device_add(), and removes it
* from the kobject hierarchy.
*
* NOTE: this should be called manually _iff_ device_add() was
* also called manually.
*/
void device_del(struct device *dev)
{
struct subsys_private *sp;
struct device *parent = dev->parent;
struct kobject *glue_dir = NULL;
struct class_interface *class_intf;
unsigned int noio_flag;
device_lock(dev);
kill_device(dev);
device_unlock(dev);
if (dev->fwnode && dev->fwnode->dev == dev)
dev->fwnode->dev = NULL;
/* Notify clients of device removal. This call must come
* before dpm_sysfs_remove().
*/
noio_flag = memalloc_noio_save();
bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
dpm_sysfs_remove(dev);
if (parent)
klist_del(&dev->p->knode_parent);
if (MAJOR(dev->devt)) {
devtmpfs_delete_node(dev);
device_remove_sys_dev_entry(dev);
device_remove_file(dev, &dev_attr_dev);
}
sp = class_to_subsys(dev->class);
if (sp) {
device_remove_class_symlinks(dev);
mutex_lock(&sp->mutex);
/* notify any interfaces that the device is now gone */
list_for_each_entry(class_intf, &sp->interfaces, node)
if (class_intf->remove_dev)
class_intf->remove_dev(dev);
/* remove the device from the class list */
klist_del(&dev->p->knode_class);
mutex_unlock(&sp->mutex);
subsys_put(sp);
}
device_remove_file(dev, &dev_attr_uevent);
device_remove_attrs(dev);
bus_remove_device(dev);
device_pm_remove(dev);
driver_deferred_probe_del(dev);
device_platform_notify_remove(dev);
device_links_purge(dev);
/*
* If a device does not have a driver attached, we need to clean
* up any managed resources. We do this in device_release(), but
* it's never called (and we leak the device) if a managed
* resource holds a reference to the device. So release all
* managed resources here, like we do in driver_detach(). We
* still need to do so again in device_release() in case someone
* adds a new resource after this point, though.
*/
devres_release_all(dev);
bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
kobject_uevent(&dev->kobj, KOBJ_REMOVE);
glue_dir = get_glue_dir(dev);
kobject_del(&dev->kobj);
cleanup_glue_dir(dev, glue_dir);
memalloc_noio_restore(noio_flag);
put_device(parent);
}
EXPORT_SYMBOL_GPL(device_del);
/**
* device_unregister - unregister device from system.
* @dev: device going away.
*
* We do this in two parts, like we do device_register(). First,
* we remove it from all the subsystems with device_del(), then
* we decrement the reference count via put_device(). If that
* is the final reference count, the device will be cleaned up
* via device_release() above. Otherwise, the structure will
* stick around until the final reference to the device is dropped.
*/
void device_unregister(struct device *dev)
{
pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
device_del(dev);
put_device(dev);
}
EXPORT_SYMBOL_GPL(device_unregister);
static struct device *prev_device(struct klist_iter *i)
{
struct klist_node *n = klist_prev(i);
struct device *dev = NULL;
struct device_private *p;
if (n) {
p = to_device_private_parent(n);
dev = p->device;
}
return dev;
}
static struct device *next_device(struct klist_iter *i)
{
struct klist_node *n = klist_next(i);
struct device *dev = NULL;
struct device_private *p;
if (n) {
p = to_device_private_parent(n);
dev = p->device;
}
return dev;
}
/**
* device_get_devnode - path of device node file
* @dev: device
* @mode: returned file access mode
* @uid: returned file owner
* @gid: returned file group
* @tmp: possibly allocated string
*
* Return the relative path of a possible device node.
* Non-default names may need to allocate a memory to compose
* a name. This memory is returned in tmp and needs to be
* freed by the caller.
*/
const char *device_get_devnode(const struct device *dev,
umode_t *mode, kuid_t *uid, kgid_t *gid,
const char **tmp)
{
char *s;
*tmp = NULL;
/* the device type may provide a specific name */
if (dev->type && dev->type->devnode)
*tmp = dev->type->devnode(dev, mode, uid, gid);
if (*tmp)
return *tmp;
/* the class may provide a specific name */
if (dev->class && dev->class->devnode)
*tmp = dev->class->devnode(dev, mode);
if (*tmp)
return *tmp;
/* return name without allocation, tmp == NULL */
if (strchr(dev_name(dev), '!') == NULL)
return dev_name(dev);
/* replace '!' in the name with '/' */
s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
if (!s)
return NULL;
return *tmp = s;
}
/**
* device_for_each_child - device child iterator.
* @parent: parent struct device.
* @fn: function to be called for each device.
* @data: data for the callback.
*
* Iterate over @parent's child devices, and call @fn for each,
* passing it @data.
*
* We check the return of @fn each time. If it returns anything
* other than 0, we break out and return that value.
*/
int device_for_each_child(struct device *parent, void *data,
int (*fn)(struct device *dev, void *data))
{
struct klist_iter i;
struct device *child;
int error = 0;
if (!parent || !parent->p)
return 0;
klist_iter_init(&parent->p->klist_children, &i);
while (!error && (child = next_device(&i)))
error = fn(child, data);
klist_iter_exit(&i);
return error;
}
EXPORT_SYMBOL_GPL(device_for_each_child);
/**
* device_for_each_child_reverse - device child iterator in reversed order.
* @parent: parent struct device.
* @fn: function to be called for each device.
* @data: data for the callback.
*
* Iterate over @parent's child devices, and call @fn for each,
* passing it @data.
*
* We check the return of @fn each time. If it returns anything
* other than 0, we break out and return that value.
*/
int device_for_each_child_reverse(struct device *parent, void *data,
int (*fn)(struct device *dev, void *data))
{
struct klist_iter i;
struct device *child;
int error = 0;
if (!parent || !parent->p)
return 0;
klist_iter_init(&parent->p->klist_children, &i);
while ((child = prev_device(&i)) && !error)
error = fn(child, data);
klist_iter_exit(&i);
return error;
}
EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
/**
* device_find_child - device iterator for locating a particular device.
* @parent: parent struct device
* @match: Callback function to check device
* @data: Data to pass to match function
*
* This is similar to the device_for_each_child() function above, but it
* returns a reference to a device that is 'found' for later use, as
* determined by the @match callback.
*
* The callback should return 0 if the device doesn't match and non-zero
* if it does. If the callback returns non-zero and a reference to the
* current device can be obtained, this function will return to the caller
* and not iterate over any more devices.
*
* NOTE: you will need to drop the reference with put_device() after use.
*/
struct device *device_find_child(struct device *parent, void *data,
int (*match)(struct device *dev, void *data))
{
struct klist_iter i;
struct device *child;
if (!parent || !parent->p)
return NULL;
klist_iter_init(&parent->p->klist_children, &i);
while ((child = next_device(&i)))
if (match(child, data) && get_device(child))
break;
klist_iter_exit(&i);
return child;
}
EXPORT_SYMBOL_GPL(device_find_child);
/**
* device_find_child_by_name - device iterator for locating a child device.
* @parent: parent struct device
* @name: name of the child device
*
* This is similar to the device_find_child() function above, but it
* returns a reference to a device that has the name @name.
*
* NOTE: you will need to drop the reference with put_device() after use.
*/
struct device *device_find_child_by_name(struct device *parent,
const char *name)
{
struct klist_iter i;
struct device *child;
if (!parent)
return NULL;
klist_iter_init(&parent->p->klist_children, &i);
while ((child = next_device(&i)))
if (sysfs_streq(dev_name(child), name) && get_device(child))
break;
klist_iter_exit(&i);
return child;
}
EXPORT_SYMBOL_GPL(device_find_child_by_name);
static int match_any(struct device *dev, void *unused)
{
return 1;
}
/**
* device_find_any_child - device iterator for locating a child device, if any.
* @parent: parent struct device
*
* This is similar to the device_find_child() function above, but it
* returns a reference to a child device, if any.
*
* NOTE: you will need to drop the reference with put_device() after use.
*/
struct device *device_find_any_child(struct device *parent)
{
return device_find_child(parent, NULL, match_any);
}
EXPORT_SYMBOL_GPL(device_find_any_child);
int __init devices_init(void)
{
devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
if (!devices_kset)
return -ENOMEM;
dev_kobj = kobject_create_and_add("dev", NULL);
if (!dev_kobj)
goto dev_kobj_err;
sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
if (!sysfs_dev_block_kobj)
goto block_kobj_err;
sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
if (!sysfs_dev_char_kobj)
goto char_kobj_err;
device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
if (!device_link_wq)
goto wq_err;
return 0;
wq_err:
kobject_put(sysfs_dev_char_kobj);
char_kobj_err:
kobject_put(sysfs_dev_block_kobj);
block_kobj_err:
kobject_put(dev_kobj);
dev_kobj_err:
kset_unregister(devices_kset);
return -ENOMEM;
}
static int device_check_offline(struct device *dev, void *not_used)
{
int ret;
ret = device_for_each_child(dev, NULL, device_check_offline);
if (ret)
return ret;
return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
}
/**
* device_offline - Prepare the device for hot-removal.
* @dev: Device to be put offline.
*
* Execute the device bus type's .offline() callback, if present, to prepare
* the device for a subsequent hot-removal. If that succeeds, the device must
* not be used until either it is removed or its bus type's .online() callback
* is executed.
*
* Call under device_hotplug_lock.
*/
int device_offline(struct device *dev)
{
int ret;
if (dev->offline_disabled)
return -EPERM;
ret = device_for_each_child(dev, NULL, device_check_offline);
if (ret)
return ret;
device_lock(dev);
if (device_supports_offline(dev)) {
if (dev->offline) {
ret = 1;
} else {
ret = dev->bus->offline(dev);
if (!ret) {
kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
dev->offline = true;
}
}
}
device_unlock(dev);
return ret;
}
/**
* device_online - Put the device back online after successful device_offline().
* @dev: Device to be put back online.
*
* If device_offline() has been successfully executed for @dev, but the device
* has not been removed subsequently, execute its bus type's .online() callback
* to indicate that the device can be used again.
*
* Call under device_hotplug_lock.
*/
int device_online(struct device *dev)
{
int ret = 0;
device_lock(dev);
if (device_supports_offline(dev)) {
if (dev->offline) {
ret = dev->bus->online(dev);
if (!ret) {
kobject_uevent(&dev->kobj, KOBJ_ONLINE);
dev->offline = false;
}
} else {
ret = 1;
}
}
device_unlock(dev);
return ret;
}
struct root_device {
struct device dev;
struct module *owner;
};
static inline struct root_device *to_root_device(struct device *d)
{
return container_of(d, struct root_device, dev);
}
static void root_device_release(struct device *dev)
{
kfree(to_root_device(dev));
}
/**
* __root_device_register - allocate and register a root device
* @name: root device name
* @owner: owner module of the root device, usually THIS_MODULE
*
* This function allocates a root device and registers it
* using device_register(). In order to free the returned
* device, use root_device_unregister().
*
* Root devices are dummy devices which allow other devices
* to be grouped under /sys/devices. Use this function to
* allocate a root device and then use it as the parent of
* any device which should appear under /sys/devices/{name}
*
* The /sys/devices/{name} directory will also contain a
* 'module' symlink which points to the @owner directory
* in sysfs.
*
* Returns &struct device pointer on success, or ERR_PTR() on error.
*
* Note: You probably want to use root_device_register().
*/
struct device *__root_device_register(const char *name, struct module *owner)
{
struct root_device *root;
int err = -ENOMEM;
root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
if (!root)
return ERR_PTR(err);
err = dev_set_name(&root->dev, "%s", name);
if (err) {
kfree(root);
return ERR_PTR(err);
}
root->dev.release = root_device_release;
err = device_register(&root->dev);
if (err) {
put_device(&root->dev);
return ERR_PTR(err);
}
#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
if (owner) {
struct module_kobject *mk = &owner->mkobj;
err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
if (err) {
device_unregister(&root->dev);
return ERR_PTR(err);
}
root->owner = owner;
}
#endif
return &root->dev;
}
EXPORT_SYMBOL_GPL(__root_device_register);
/**
* root_device_unregister - unregister and free a root device
* @dev: device going away
*
* This function unregisters and cleans up a device that was created by
* root_device_register().
*/
void root_device_unregister(struct device *dev)
{
struct root_device *root = to_root_device(dev);
if (root->owner)
sysfs_remove_link(&root->dev.kobj, "module");
device_unregister(dev);
}
EXPORT_SYMBOL_GPL(root_device_unregister);
static void device_create_release(struct device *dev)
{
pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
kfree(dev);
}
static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class *class, struct device *parent,
dev_t devt, void *drvdata,
const struct attribute_group **groups,
const char *fmt, va_list args)
{
struct device *dev = NULL;
int retval = -ENODEV;
if (IS_ERR_OR_NULL(class))
goto error;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
retval = -ENOMEM;
goto error;
}
device_initialize(dev);
dev->devt = devt;
dev->class = class;
dev->parent = parent;
dev->groups = groups;
dev->release = device_create_release;
dev_set_drvdata(dev, drvdata);
retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
if (retval)
goto error;
retval = device_add(dev);
if (retval)
goto error;
return dev;
error:
put_device(dev);
return ERR_PTR(retval);
}
/**
* device_create - creates a device and registers it with sysfs
* @class: pointer to the struct class that this device should be registered to
* @parent: pointer to the parent struct device of this new device, if any
* @devt: the dev_t for the char device to be added
* @drvdata: the data to be added to the device for callbacks
* @fmt: string for the device's name
*
* This function can be used by char device classes. A struct device
* will be created in sysfs, registered to the specified class.
*
* A "dev" file will be created, showing the dev_t for the device, if
* the dev_t is not 0,0.
* If a pointer to a parent struct device is passed in, the newly created
* struct device will be a child of that device in sysfs.
* The pointer to the struct device will be returned from the call.
* Any further sysfs files that might be required can be created using this
* pointer.
*
* Returns &struct device pointer on success, or ERR_PTR() on error.
*/
struct device *device_create(const struct class *class, struct device *parent,
dev_t devt, void *drvdata, const char *fmt, ...)
{
va_list vargs;
struct device *dev;
va_start(vargs, fmt);
dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
fmt, vargs);
va_end(vargs);
return dev;
}
EXPORT_SYMBOL_GPL(device_create);
/**
* device_create_with_groups - creates a device and registers it with sysfs
* @class: pointer to the struct class that this device should be registered to
* @parent: pointer to the parent struct device of this new device, if any
* @devt: the dev_t for the char device to be added
* @drvdata: the data to be added to the device for callbacks
* @groups: NULL-terminated list of attribute groups to be created
* @fmt: string for the device's name
*
* This function can be used by char device classes. A struct device
* will be created in sysfs, registered to the specified class.
* Additional attributes specified in the groups parameter will also
* be created automatically.
*
* A "dev" file will be created, showing the dev_t for the device, if
* the dev_t is not 0,0.
* If a pointer to a parent struct device is passed in, the newly created
* struct device will be a child of that device in sysfs.
* The pointer to the struct device will be returned from the call.
* Any further sysfs files that might be required can be created using this
* pointer.
*
* Returns &struct device pointer on success, or ERR_PTR() on error.
*/
struct device *device_create_with_groups(const struct class *class,
struct device *parent, dev_t devt,
void *drvdata,
const struct attribute_group **groups,
const char *fmt, ...)
{
va_list vargs;
struct device *dev;
va_start(vargs, fmt);
dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
fmt, vargs);
va_end(vargs);
return dev;
}
EXPORT_SYMBOL_GPL(device_create_with_groups);
/**
* device_destroy - removes a device that was created with device_create()
* @class: pointer to the struct class that this device was registered with
* @devt: the dev_t of the device that was previously registered
*
* This call unregisters and cleans up a device that was created with a
* call to device_create().
*/
void device_destroy(const struct class *class, dev_t devt)
{
struct device *dev;
dev = class_find_device_by_devt(class, devt);
if (dev) {
put_device(dev);
device_unregister(dev);
}
}
EXPORT_SYMBOL_GPL(device_destroy);
/**
* device_rename - renames a device
* @dev: the pointer to the struct device to be renamed
* @new_name: the new name of the device
*
* It is the responsibility of the caller to provide mutual
* exclusion between two different calls of device_rename
* on the same device to ensure that new_name is valid and
* won't conflict with other devices.
*
* Note: given that some subsystems (networking and infiniband) use this
* function, with no immediate plans for this to change, we cannot assume or
* require that this function not be called at all.
*
* However, if you're writing new code, do not call this function. The following
* text from Kay Sievers offers some insight:
*
* Renaming devices is racy at many levels, symlinks and other stuff are not
* replaced atomically, and you get a "move" uevent, but it's not easy to
* connect the event to the old and new device. Device nodes are not renamed at
* all, there isn't even support for that in the kernel now.
*
* In the meantime, during renaming, your target name might be taken by another
* driver, creating conflicts. Or the old name is taken directly after you
* renamed it -- then you get events for the same DEVPATH, before you even see
* the "move" event. It's just a mess, and nothing new should ever rely on
* kernel device renaming. Besides that, it's not even implemented now for
* other things than (driver-core wise very simple) network devices.
*
* Make up a "real" name in the driver before you register anything, or add
* some other attributes for userspace to find the device, or use udev to add
* symlinks -- but never rename kernel devices later, it's a complete mess. We
* don't even want to get into that and try to implement the missing pieces in
* the core. We really have other pieces to fix in the driver core mess. :)
*/
int device_rename(struct device *dev, const char *new_name)
{
struct subsys_private *sp = NULL;
struct kobject *kobj = &dev->kobj;
char *old_device_name = NULL;
int error;
bool is_link_renamed = false;
dev = get_device(dev);
if (!dev)
return -EINVAL;
dev_dbg(dev, "renaming to %s\n", new_name);
old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
if (!old_device_name) {
error = -ENOMEM;
goto out;
}
if (dev->class) {
sp = class_to_subsys(dev->class);
if (!sp) {
error = -EINVAL;
goto out;
}
error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
new_name, kobject_namespace(kobj));
if (error)
goto out;
is_link_renamed = true;
}
error = kobject_rename(kobj, new_name);
out:
if (error && is_link_renamed)
sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
old_device_name, kobject_namespace(kobj));
subsys_put(sp);
put_device(dev);
kfree(old_device_name);
return error;
}
EXPORT_SYMBOL_GPL(device_rename);
static int device_move_class_links(struct device *dev,
struct device *old_parent,
struct device *new_parent)
{
int error = 0;
if (old_parent)
sysfs_remove_link(&dev->kobj, "device");
if (new_parent)
error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
"device");
return error;
}
/**
* device_move - moves a device to a new parent
* @dev: the pointer to the struct device to be moved
* @new_parent: the new parent of the device (can be NULL)
* @dpm_order: how to reorder the dpm_list
*/
int device_move(struct device *dev, struct device *new_parent,
enum dpm_order dpm_order)
{
int error;
struct device *old_parent;
struct kobject *new_parent_kobj;
dev = get_device(dev);
if (!dev)
return -EINVAL;
device_pm_lock();
new_parent = get_device(new_parent);
new_parent_kobj = get_device_parent(dev, new_parent);
if (IS_ERR(new_parent_kobj)) {
error = PTR_ERR(new_parent_kobj);
put_device(new_parent);
goto out;
}
pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
__func__, new_parent ? dev_name(new_parent) : "<NULL>");
error = kobject_move(&dev->kobj, new_parent_kobj);
if (error) {
cleanup_glue_dir(dev, new_parent_kobj);
put_device(new_parent);
goto out;
}
old_parent = dev->parent;
dev->parent = new_parent;
if (old_parent)
klist_remove(&dev->p->knode_parent);
if (new_parent) {
klist_add_tail(&dev->p->knode_parent,
&new_parent->p->klist_children);
set_dev_node(dev, dev_to_node(new_parent));
}
if (dev->class) {
error = device_move_class_links(dev, old_parent, new_parent);
if (error) {
/* We ignore errors on cleanup since we're hosed anyway... */
device_move_class_links(dev, new_parent, old_parent);
if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
if (new_parent)
klist_remove(&dev->p->knode_parent);
dev->parent = old_parent;
if (old_parent) {
klist_add_tail(&dev->p->knode_parent,
&old_parent->p->klist_children);
set_dev_node(dev, dev_to_node(old_parent));
}
}
cleanup_glue_dir(dev, new_parent_kobj);
put_device(new_parent);
goto out;
}
}
switch (dpm_order) {
case DPM_ORDER_NONE:
break;
case DPM_ORDER_DEV_AFTER_PARENT:
device_pm_move_after(dev, new_parent);
devices_kset_move_after(dev, new_parent);
break;
case DPM_ORDER_PARENT_BEFORE_DEV:
device_pm_move_before(new_parent, dev);
devices_kset_move_before(new_parent, dev);
break;
case DPM_ORDER_DEV_LAST:
device_pm_move_last(dev);
devices_kset_move_last(dev);
break;
}
put_device(old_parent);
out:
device_pm_unlock();
put_device(dev);
return error;
}
EXPORT_SYMBOL_GPL(device_move);
static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
kgid_t kgid)
{
struct kobject *kobj = &dev->kobj;
const struct class *class = dev->class;
const struct device_type *type = dev->type;
int error;
if (class) {
/*
* Change the device groups of the device class for @dev to
* @kuid/@kgid.
*/
error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
kgid);
if (error)
return error;
}
if (type) {
/*
* Change the device groups of the device type for @dev to
* @kuid/@kgid.
*/
error = sysfs_groups_change_owner(kobj, type->groups, kuid,
kgid);
if (error)
return error;
}
/* Change the device groups of @dev to @kuid/@kgid. */
error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
if (error)
return error;
if (device_supports_offline(dev) && !dev->offline_disabled) {
/* Change online device attributes of @dev to @kuid/@kgid. */
error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
kuid, kgid);
if (error)
return error;
}
return 0;
}
/**
* device_change_owner - change the owner of an existing device.
* @dev: device.
* @kuid: new owner's kuid
* @kgid: new owner's kgid
*
* This changes the owner of @dev and its corresponding sysfs entries to
* @kuid/@kgid. This function closely mirrors how @dev was added via driver
* core.
*
* Returns 0 on success or error code on failure.
*/
int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
{
int error;
struct kobject *kobj = &dev->kobj;
struct subsys_private *sp;
dev = get_device(dev);
if (!dev)
return -EINVAL;
/*
* Change the kobject and the default attributes and groups of the
* ktype associated with it to @kuid/@kgid.
*/
error = sysfs_change_owner(kobj, kuid, kgid);
if (error)
goto out;
/*
* Change the uevent file for @dev to the new owner. The uevent file
* was created in a separate step when @dev got added and we mirror
* that step here.
*/
error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
kgid);
if (error)
goto out;
/*
* Change the device groups, the device groups associated with the
* device class, and the groups associated with the device type of @dev
* to @kuid/@kgid.
*/
error = device_attrs_change_owner(dev, kuid, kgid);
if (error)
goto out;
error = dpm_sysfs_change_owner(dev, kuid, kgid);
if (error)
goto out;
/*
* Change the owner of the symlink located in the class directory of
* the device class associated with @dev which points to the actual
* directory entry for @dev to @kuid/@kgid. This ensures that the
* symlink shows the same permissions as its target.
*/
sp = class_to_subsys(dev->class);
if (!sp) {
error = -EINVAL;
goto out;
}
error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
subsys_put(sp);
out:
put_device(dev);
return error;
}
EXPORT_SYMBOL_GPL(device_change_owner);
/**
* device_shutdown - call ->shutdown() on each device to shutdown.
*/
void device_shutdown(void)
{
struct device *dev, *parent;
wait_for_device_probe();
device_block_probing();
cpufreq_suspend();
spin_lock(&devices_kset->list_lock);
/*
* Walk the devices list backward, shutting down each in turn.
* Beware that device unplug events may also start pulling
* devices offline, even as the system is shutting down.
*/
while (!list_empty(&devices_kset->list)) {
dev = list_entry(devices_kset->list.prev, struct device,
kobj.entry);
/*
* hold reference count of device's parent to
* prevent it from being freed because parent's
* lock is to be held
*/
parent = get_device(dev->parent);
get_device(dev);
/*
* Make sure the device is off the kset list, in the
* event that dev->*->shutdown() doesn't remove it.
*/
list_del_init(&dev->kobj.entry);
spin_unlock(&devices_kset->list_lock);
/* hold lock to avoid race with probe/release */
if (parent)
device_lock(parent);
device_lock(dev);
/* Don't allow any more runtime suspends */
pm_runtime_get_noresume(dev);
pm_runtime_barrier(dev);
if (dev->class && dev->class->shutdown_pre) {
if (initcall_debug)
dev_info(dev, "shutdown_pre\n");
dev->class->shutdown_pre(dev);
}
if (dev->bus && dev->bus->shutdown) {
if (initcall_debug)
dev_info(dev, "shutdown\n");
dev->bus->shutdown(dev);
} else if (dev->driver && dev->driver->shutdown) {
if (initcall_debug)
dev_info(dev, "shutdown\n");
dev->driver->shutdown(dev);
}
device_unlock(dev);
if (parent)
device_unlock(parent);
put_device(dev);
put_device(parent);
spin_lock(&devices_kset->list_lock);
}
spin_unlock(&devices_kset->list_lock);
}
/*
* Device logging functions
*/
#ifdef CONFIG_PRINTK
static void
set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
{
const char *subsys;
memset(dev_info, 0, sizeof(*dev_info));
if (dev->class)
subsys = dev->class->name;
else if (dev->bus)
subsys = dev->bus->name;
else
return;
strscpy(dev_info->subsystem, subsys);
/*
* Add device identifier DEVICE=:
* b12:8 block dev_t
* c127:3 char dev_t
* n8 netdev ifindex
* +sound:card0 subsystem:devname
*/
if (MAJOR(dev->devt)) {
char c;
if (strcmp(subsys, "block") == 0)
c = 'b';
else
c = 'c';
snprintf(dev_info->device, sizeof(dev_info->device),
"%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
} else if (strcmp(subsys, "net") == 0) {
struct net_device *net = to_net_dev(dev);
snprintf(dev_info->device, sizeof(dev_info->device),
"n%u", net->ifindex);
} else {
snprintf(dev_info->device, sizeof(dev_info->device),
"+%s:%s", subsys, dev_name(dev));
}
}
int dev_vprintk_emit(int level, const struct device *dev,
const char *fmt, va_list args)
{
struct dev_printk_info dev_info;
set_dev_info(dev, &dev_info);
return vprintk_emit(0, level, &dev_info, fmt, args);
}
EXPORT_SYMBOL(dev_vprintk_emit);
int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
{
va_list args;
int r;
va_start(args, fmt);
r = dev_vprintk_emit(level, dev, fmt, args);
va_end(args);
return r;
}
EXPORT_SYMBOL(dev_printk_emit);
static void __dev_printk(const char *level, const struct device *dev,
struct va_format *vaf)
{
if (dev)
dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
dev_driver_string(dev), dev_name(dev), vaf);
else
printk("%s(NULL device *): %pV", level, vaf);
}
void _dev_printk(const char *level, const struct device *dev,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
__dev_printk(level, dev, &vaf);
va_end(args);
}
EXPORT_SYMBOL(_dev_printk);
#define define_dev_printk_level(func, kern_level) \
void func(const struct device *dev, const char *fmt, ...) \
{ \
struct va_format vaf; \
va_list args; \
\
va_start(args, fmt); \
\
vaf.fmt = fmt; \
vaf.va = &args; \
\
__dev_printk(kern_level, dev, &vaf); \
\
va_end(args); \
} \
EXPORT_SYMBOL(func);
define_dev_printk_level(_dev_emerg, KERN_EMERG);
define_dev_printk_level(_dev_alert, KERN_ALERT);
define_dev_printk_level(_dev_crit, KERN_CRIT);
define_dev_printk_level(_dev_err, KERN_ERR);
define_dev_printk_level(_dev_warn, KERN_WARNING);
define_dev_printk_level(_dev_notice, KERN_NOTICE);
define_dev_printk_level(_dev_info, KERN_INFO);
#endif
/**
* dev_err_probe - probe error check and log helper
* @dev: the pointer to the struct device
* @err: error value to test
* @fmt: printf-style format string
* @...: arguments as specified in the format string
*
* This helper implements common pattern present in probe functions for error
* checking: print debug or error message depending if the error value is
* -EPROBE_DEFER and propagate error upwards.
* In case of -EPROBE_DEFER it sets also defer probe reason, which can be
* checked later by reading devices_deferred debugfs attribute.
* It replaces code sequence::
*
* if (err != -EPROBE_DEFER)
* dev_err(dev, ...);
* else
* dev_dbg(dev, ...);
* return err;
*
* with::
*
* return dev_err_probe(dev, err, ...);
*
* Using this helper in your probe function is totally fine even if @err is
* known to never be -EPROBE_DEFER.
* The benefit compared to a normal dev_err() is the standardized format
* of the error code, it being emitted symbolically (i.e. you get "EAGAIN"
* instead of "-35") and the fact that the error code is returned which allows
* more compact error paths.
*
* Returns @err.
*/
int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
switch (err) {
case -EPROBE_DEFER:
device_set_deferred_probe_reason(dev, &vaf);
dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
break;
case -ENOMEM:
/*
* We don't print anything on -ENOMEM, there is already enough
* output.
*/
break;
default:
dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
break;
}
va_end(args);
return err;
}
EXPORT_SYMBOL_GPL(dev_err_probe);
static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
{
return fwnode && !IS_ERR(fwnode->secondary);
}
/**
* set_primary_fwnode - Change the primary firmware node of a given device.
* @dev: Device to handle.
* @fwnode: New primary firmware node of the device.
*
* Set the device's firmware node pointer to @fwnode, but if a secondary
* firmware node of the device is present, preserve it.
*
* Valid fwnode cases are:
* - primary --> secondary --> -ENODEV
* - primary --> NULL
* - secondary --> -ENODEV
* - NULL
*/
void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
{
struct device *parent = dev->parent;
struct fwnode_handle *fn = dev->fwnode;
if (fwnode) {
if (fwnode_is_primary(fn))
fn = fn->secondary;
if (fn) {
WARN_ON(fwnode->secondary);
fwnode->secondary = fn;
}
dev->fwnode = fwnode;
} else {
if (fwnode_is_primary(fn)) {
dev->fwnode = fn->secondary;
/* Skip nullifying fn->secondary if the primary is shared */
if (parent && fn == parent->fwnode)
return;
/* Set fn->secondary = NULL, so fn remains the primary fwnode */
fn->secondary = NULL;
} else {
dev->fwnode = NULL;
}
}
}
EXPORT_SYMBOL_GPL(set_primary_fwnode);
/**
* set_secondary_fwnode - Change the secondary firmware node of a given device.
* @dev: Device to handle.
* @fwnode: New secondary firmware node of the device.
*
* If a primary firmware node of the device is present, set its secondary
* pointer to @fwnode. Otherwise, set the device's firmware node pointer to
* @fwnode.
*/
void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
{
if (fwnode)
fwnode->secondary = ERR_PTR(-ENODEV);
if (fwnode_is_primary(dev->fwnode))
dev->fwnode->secondary = fwnode;
else
dev->fwnode = fwnode;
}
EXPORT_SYMBOL_GPL(set_secondary_fwnode);
/**
* device_set_of_node_from_dev - reuse device-tree node of another device
* @dev: device whose device-tree node is being set
* @dev2: device whose device-tree node is being reused
*
* Takes another reference to the new device-tree node after first dropping
* any reference held to the old node.
*/
void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
{
of_node_put(dev->of_node);
dev->of_node = of_node_get(dev2->of_node);
dev->of_node_reused = true;
}
EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
{
dev->fwnode = fwnode;
dev->of_node = to_of_node(fwnode);
}
EXPORT_SYMBOL_GPL(device_set_node);
int device_match_name(struct device *dev, const void *name)
{
return sysfs_streq(dev_name(dev), name);
}
EXPORT_SYMBOL_GPL(device_match_name);
int device_match_of_node(struct device *dev, const void *np)
{
return dev->of_node == np;
}
EXPORT_SYMBOL_GPL(device_match_of_node);
int device_match_fwnode(struct device *dev, const void *fwnode)
{
return dev_fwnode(dev) == fwnode;
}
EXPORT_SYMBOL_GPL(device_match_fwnode);
int device_match_devt(struct device *dev, const void *pdevt)
{
return dev->devt == *(dev_t *)pdevt;
}
EXPORT_SYMBOL_GPL(device_match_devt);
int device_match_acpi_dev(struct device *dev, const void *adev)
{
return ACPI_COMPANION(dev) == adev;
}
EXPORT_SYMBOL(device_match_acpi_dev);
int device_match_acpi_handle(struct device *dev, const void *handle)
{
return ACPI_HANDLE(dev) == handle;
}
EXPORT_SYMBOL(device_match_acpi_handle);
int device_match_any(struct device *dev, const void *unused)
{
return 1;
}
EXPORT_SYMBOL_GPL(device_match_any);