// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Broadcom. All Rights Reserved. The term
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
*/
#include "efct_driver.h"
#include "efct_hw.h"
#include "efct_unsol.h"
#include "efct_scsi.h"
LIST_HEAD(efct_devices);
static int logmask;
module_param(logmask, int, 0444);
MODULE_PARM_DESC(logmask, "logging bitmask (default 0)");
static struct libefc_function_template efct_libefc_templ = {
.issue_mbox_rqst = efct_issue_mbox_rqst,
.send_els = efct_els_hw_srrs_send,
.send_bls = efct_efc_bls_send,
.new_nport = efct_scsi_tgt_new_nport,
.del_nport = efct_scsi_tgt_del_nport,
.scsi_new_node = efct_scsi_new_initiator,
.scsi_del_node = efct_scsi_del_initiator,
.hw_seq_free = efct_efc_hw_sequence_free,
};
static int
efct_device_init(void)
{
int rc;
/* driver-wide init for target-server */
rc = efct_scsi_tgt_driver_init();
if (rc) {
pr_err("efct_scsi_tgt_init failed rc=%d\n", rc);
return rc;
}
rc = efct_scsi_reg_fc_transport();
if (rc) {
efct_scsi_tgt_driver_exit();
pr_err("failed to register to FC host\n");
return rc;
}
return 0;
}
static void
efct_device_shutdown(void)
{
efct_scsi_release_fc_transport();
efct_scsi_tgt_driver_exit();
}
static void *
efct_device_alloc(u32 nid)
{
struct efct *efct = NULL;
efct = kzalloc_node(sizeof(*efct), GFP_KERNEL, nid);
if (!efct)
return efct;
INIT_LIST_HEAD(&efct->list_entry);
list_add_tail(&efct->list_entry, &efct_devices);
return efct;
}
static void
efct_teardown_msix(struct efct *efct)
{
u32 i;
for (i = 0; i < efct->n_msix_vec; i++) {
free_irq(pci_irq_vector(efct->pci, i),
&efct->intr_context[i]);
}
pci_free_irq_vectors(efct->pci);
}
static int
efct_efclib_config(struct efct *efct, struct libefc_function_template *tt)
{
struct efc *efc;
struct sli4 *sli;
int rc = 0;
efc = kzalloc(sizeof(*efc), GFP_KERNEL);
if (!efc)
return -ENOMEM;
efct->efcport = efc;
memcpy(&efc->tt, tt, sizeof(*tt));
efc->base = efct;
efc->pci = efct->pci;
efc->def_wwnn = efct_get_wwnn(&efct->hw);
efc->def_wwpn = efct_get_wwpn(&efct->hw);
efc->enable_tgt = 1;
efc->log_level = EFC_LOG_LIB;
sli = &efct->hw.sli;
efc->max_xfer_size = sli->sge_supported_length *
sli_get_max_sgl(&efct->hw.sli);
efc->sli = sli;
efc->fcfi = efct->hw.fcf_indicator;
rc = efcport_init(efc);
if (rc)
efc_log_err(efc, "efcport_init failed\n");
return rc;
}
static int efct_request_firmware_update(struct efct *efct);
static const char*
efct_pci_model(u16 device)
{
switch (device) {
case EFCT_DEVICE_LANCER_G6: return "LPE31004";
case EFCT_DEVICE_LANCER_G7: return "LPE36000";
default: return "unknown";
}
}
static int
efct_device_attach(struct efct *efct)
{
u32 rc = 0, i = 0;
if (efct->attached) {
efc_log_err(efct, "Device is already attached\n");
return -EIO;
}
snprintf(efct->name, sizeof(efct->name), "[%s%d] ", "fc",
efct->instance_index);
efct->logmask = logmask;
efct->filter_def = EFCT_DEFAULT_FILTER;
efct->max_isr_time_msec = EFCT_OS_MAX_ISR_TIME_MSEC;
efct->model = efct_pci_model(efct->pci->device);
efct->efct_req_fw_upgrade = true;
/* Allocate transport object and bring online */
efct->xport = efct_xport_alloc(efct);
if (!efct->xport) {
efc_log_err(efct, "failed to allocate transport object\n");
rc = -ENOMEM;
goto out;
}
rc = efct_xport_attach(efct->xport);
if (rc) {
efc_log_err(efct, "failed to attach transport object\n");
goto xport_out;
}
rc = efct_xport_initialize(efct->xport);
if (rc) {
efc_log_err(efct, "failed to initialize transport object\n");
goto xport_out;
}
rc = efct_efclib_config(efct, &efct_libefc_templ);
if (rc) {
efc_log_err(efct, "failed to init efclib\n");
goto efclib_out;
}
for (i = 0; i < efct->n_msix_vec; i++) {
efc_log_debug(efct, "irq %d enabled\n", i);
enable_irq(pci_irq_vector(efct->pci, i));
}
efct->attached = true;
if (efct->efct_req_fw_upgrade)
efct_request_firmware_update(efct);
return rc;
efclib_out:
efct_xport_detach(efct->xport);
xport_out:
efct_xport_free(efct->xport);
efct->xport = NULL;
out:
return rc;
}
static int
efct_device_detach(struct efct *efct)
{
int i;
if (!efct || !efct->attached) {
pr_err("Device is not attached\n");
return -EIO;
}
if (efct_xport_control(efct->xport, EFCT_XPORT_SHUTDOWN))
efc_log_err(efct, "Transport Shutdown timed out\n");
for (i = 0; i < efct->n_msix_vec; i++)
disable_irq(pci_irq_vector(efct->pci, i));
efct_xport_detach(efct->xport);
efct_xport_free(efct->xport);
efct->xport = NULL;
efcport_destroy(efct->efcport);
kfree(efct->efcport);
efct->attached = false;
return 0;
}
static void
efct_fw_write_cb(int status, u32 actual_write_length,
u32 change_status, void *arg)
{
struct efct_fw_write_result *result = arg;
result->status = status;
result->actual_xfer = actual_write_length;
result->change_status = change_status;
complete(&result->done);
}
static int
efct_firmware_write(struct efct *efct, const u8 *buf, size_t buf_len,
u8 *change_status)
{
int rc = 0;
u32 bytes_left;
u32 xfer_size;
u32 offset;
struct efc_dma dma;
int last = 0;
struct efct_fw_write_result result;
init_completion(&result.done);
bytes_left = buf_len;
offset = 0;
dma.size = FW_WRITE_BUFSIZE;
dma.virt = dma_alloc_coherent(&efct->pci->dev,
dma.size, &dma.phys, GFP_KERNEL);
if (!dma.virt)
return -ENOMEM;
while (bytes_left > 0) {
if (bytes_left > FW_WRITE_BUFSIZE)
xfer_size = FW_WRITE_BUFSIZE;
else
xfer_size = bytes_left;
memcpy(dma.virt, buf + offset, xfer_size);
if (bytes_left == xfer_size)
last = 1;
efct_hw_firmware_write(&efct->hw, &dma, xfer_size, offset,
last, efct_fw_write_cb, &result);
if (wait_for_completion_interruptible(&result.done) != 0) {
rc = -ENXIO;
break;
}
if (result.actual_xfer == 0 || result.status != 0) {
rc = -EFAULT;
break;
}
if (last)
*change_status = result.change_status;
bytes_left -= result.actual_xfer;
offset += result.actual_xfer;
}
dma_free_coherent(&efct->pci->dev, dma.size, dma.virt, dma.phys);
return rc;
}
static int
efct_fw_reset(struct efct *efct)
{
/*
* Firmware reset to activate the new firmware.
* Function 0 will update and load the new firmware
* during attach.
*/
if (timer_pending(&efct->xport->stats_timer))
del_timer(&efct->xport->stats_timer);
if (efct_hw_reset(&efct->hw, EFCT_HW_RESET_FIRMWARE)) {
efc_log_info(efct, "failed to reset firmware\n");
return -EIO;
}
efc_log_info(efct, "successfully reset firmware.Now resetting port\n");
efct_device_detach(efct);
return efct_device_attach(efct);
}
static int
efct_request_firmware_update(struct efct *efct)
{
int rc = 0;
u8 file_name[256], fw_change_status = 0;
const struct firmware *fw;
struct efct_hw_grp_hdr *fw_image;
snprintf(file_name, 256, "%s.grp", efct->model);
rc = request_firmware(&fw, file_name, &efct->pci->dev);
if (rc) {
efc_log_debug(efct, "Firmware file(%s) not found.\n", file_name);
return rc;
}
fw_image = (struct efct_hw_grp_hdr *)fw->data;
if (!strncmp(efct->hw.sli.fw_name[0], fw_image->revision,
strnlen(fw_image->revision, 16))) {
efc_log_debug(efct,
"Skip update. Firmware is already up to date.\n");
goto exit;
}
efc_log_info(efct, "Firmware update is initiated. %s -> %s\n",
efct->hw.sli.fw_name[0], fw_image->revision);
rc = efct_firmware_write(efct, fw->data, fw->size, &fw_change_status);
if (rc) {
efc_log_err(efct, "Firmware update failed. rc = %d\n", rc);
goto exit;
}
efc_log_info(efct, "Firmware updated successfully\n");
switch (fw_change_status) {
case 0x00:
efc_log_info(efct, "New firmware is active.\n");
break;
case 0x01:
efc_log_info(efct,
"System reboot needed to activate the new firmware\n");
break;
case 0x02:
case 0x03:
efc_log_info(efct,
"firmware reset to activate the new firmware\n");
efct_fw_reset(efct);
break;
default:
efc_log_info(efct, "Unexpected value change_status:%d\n",
fw_change_status);
break;
}
exit:
release_firmware(fw);
return rc;
}
static void
efct_device_free(struct efct *efct)
{
if (efct) {
list_del(&efct->list_entry);
kfree(efct);
}
}
static int
efct_device_interrupts_required(struct efct *efct)
{
int rc;
rc = efct_hw_setup(&efct->hw, efct, efct->pci);
if (rc < 0)
return rc;
return efct->hw.config.n_eq;
}
static irqreturn_t
efct_intr_thread(int irq, void *handle)
{
struct efct_intr_context *intr_ctx = handle;
struct efct *efct = intr_ctx->efct;
efct_hw_process(&efct->hw, intr_ctx->index, efct->max_isr_time_msec);
return IRQ_HANDLED;
}
static irqreturn_t
efct_intr_msix(int irq, void *handle)
{
return IRQ_WAKE_THREAD;
}
static int
efct_setup_msix(struct efct *efct, u32 num_intrs)
{
int rc = 0, i;
if (!pci_find_capability(efct->pci, PCI_CAP_ID_MSIX)) {
dev_err(&efct->pci->dev,
"%s : MSI-X not available\n", __func__);
return -EIO;
}
efct->n_msix_vec = num_intrs;
rc = pci_alloc_irq_vectors(efct->pci, num_intrs, num_intrs,
PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
if (rc < 0) {
dev_err(&efct->pci->dev, "Failed to alloc irq : %d\n", rc);
return rc;
}
for (i = 0; i < num_intrs; i++) {
struct efct_intr_context *intr_ctx = NULL;
intr_ctx = &efct->intr_context[i];
intr_ctx->efct = efct;
intr_ctx->index = i;
rc = request_threaded_irq(pci_irq_vector(efct->pci, i),
efct_intr_msix, efct_intr_thread, 0,
EFCT_DRIVER_NAME, intr_ctx);
if (rc) {
dev_err(&efct->pci->dev,
"Failed to register %d vector: %d\n", i, rc);
goto out;
}
}
return rc;
out:
while (--i >= 0)
free_irq(pci_irq_vector(efct->pci, i),
&efct->intr_context[i]);
pci_free_irq_vectors(efct->pci);
return rc;
}
static struct pci_device_id efct_pci_table[] = {
{PCI_DEVICE(EFCT_VENDOR_ID, EFCT_DEVICE_LANCER_G6), 0},
{PCI_DEVICE(EFCT_VENDOR_ID, EFCT_DEVICE_LANCER_G7), 0},
{} /* terminate list */
};
static int
efct_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct efct *efct = NULL;
int rc;
u32 i, r;
int num_interrupts = 0;
int nid;
dev_info(&pdev->dev, "%s\n", EFCT_DRIVER_NAME);
rc = pci_enable_device_mem(pdev);
if (rc)
return rc;
pci_set_master(pdev);
rc = pci_set_mwi(pdev);
if (rc) {
dev_info(&pdev->dev, "pci_set_mwi returned %d\n", rc);
goto mwi_out;
}
rc = pci_request_regions(pdev, EFCT_DRIVER_NAME);
if (rc) {
dev_err(&pdev->dev, "pci_request_regions failed %d\n", rc);
goto req_regions_out;
}
/* Fetch the Numa node id for this device */
nid = dev_to_node(&pdev->dev);
if (nid < 0) {
dev_err(&pdev->dev, "Warning Numa node ID is %d\n", nid);
nid = 0;
}
/* Allocate efct */
efct = efct_device_alloc(nid);
if (!efct) {
dev_err(&pdev->dev, "Failed to allocate efct\n");
rc = -ENOMEM;
goto alloc_out;
}
efct->pci = pdev;
efct->numa_node = nid;
/* Map all memory BARs */
for (i = 0, r = 0; i < EFCT_PCI_MAX_REGS; i++) {
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
efct->reg[r] = ioremap(pci_resource_start(pdev, i),
pci_resource_len(pdev, i));
r++;
}
/*
* If the 64-bit attribute is set, both this BAR and the
* next form the complete address. Skip processing the
* next BAR.
*/
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM_64)
i++;
}
pci_set_drvdata(pdev, efct);
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (rc) {
dev_err(&pdev->dev, "setting DMA_BIT_MASK failed\n");
goto dma_mask_out;
}
num_interrupts = efct_device_interrupts_required(efct);
if (num_interrupts < 0) {
efc_log_err(efct, "efct_device_interrupts_required failed\n");
rc = -1;
goto dma_mask_out;
}
/*
* Initialize MSIX interrupts, note,
* efct_setup_msix() enables the interrupt
*/
rc = efct_setup_msix(efct, num_interrupts);
if (rc) {
dev_err(&pdev->dev, "Can't setup msix\n");
goto dma_mask_out;
}
/* Disable interrupt for now */
for (i = 0; i < efct->n_msix_vec; i++) {
efc_log_debug(efct, "irq %d disabled\n", i);
disable_irq(pci_irq_vector(efct->pci, i));
}
rc = efct_device_attach(efct);
if (rc)
goto attach_out;
return 0;
attach_out:
efct_teardown_msix(efct);
dma_mask_out:
pci_set_drvdata(pdev, NULL);
for (i = 0; i < EFCT_PCI_MAX_REGS; i++) {
if (efct->reg[i])
iounmap(efct->reg[i]);
}
efct_device_free(efct);
alloc_out:
pci_release_regions(pdev);
req_regions_out:
pci_clear_mwi(pdev);
mwi_out:
pci_disable_device(pdev);
return rc;
}
static void
efct_pci_remove(struct pci_dev *pdev)
{
struct efct *efct = pci_get_drvdata(pdev);
u32 i;
if (!efct)
return;
efct_device_detach(efct);
efct_teardown_msix(efct);
for (i = 0; i < EFCT_PCI_MAX_REGS; i++) {
if (efct->reg[i])
iounmap(efct->reg[i]);
}
pci_set_drvdata(pdev, NULL);
efct_device_free(efct);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static void
efct_device_prep_for_reset(struct efct *efct, struct pci_dev *pdev)
{
if (efct) {
efc_log_debug(efct,
"PCI channel disable preparing for reset\n");
efct_device_detach(efct);
/* Disable interrupt and pci device */
efct_teardown_msix(efct);
}
pci_disable_device(pdev);
}
static void
efct_device_prep_for_recover(struct efct *efct)
{
if (efct) {
efc_log_debug(efct, "PCI channel preparing for recovery\n");
efct_hw_io_abort_all(&efct->hw);
}
}
/**
* efct_pci_io_error_detected - method for handling PCI I/O error
* @pdev: pointer to PCI device.
* @state: the current PCI connection state.
*
* This routine is registered to the PCI subsystem for error handling. This
* function is called by the PCI subsystem after a PCI bus error affecting
* this device has been detected. When this routine is invoked, it dispatches
* device error detected handling routine, which will perform the proper
* error detected operation.
*
* Return codes
* PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
*/
static pci_ers_result_t
efct_pci_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
{
struct efct *efct = pci_get_drvdata(pdev);
pci_ers_result_t rc;
switch (state) {
case pci_channel_io_normal:
efct_device_prep_for_recover(efct);
rc = PCI_ERS_RESULT_CAN_RECOVER;
break;
case pci_channel_io_frozen:
efct_device_prep_for_reset(efct, pdev);
rc = PCI_ERS_RESULT_NEED_RESET;
break;
case pci_channel_io_perm_failure:
efct_device_detach(efct);
rc = PCI_ERS_RESULT_DISCONNECT;
break;
default:
efc_log_debug(efct, "Unknown PCI error state:0x%x\n", state);
efct_device_prep_for_reset(efct, pdev);
rc = PCI_ERS_RESULT_NEED_RESET;
break;
}
return rc;
}
static pci_ers_result_t
efct_pci_io_slot_reset(struct pci_dev *pdev)
{
int rc;
struct efct *efct = pci_get_drvdata(pdev);
rc = pci_enable_device_mem(pdev);
if (rc) {
efc_log_err(efct, "failed to enable PCI device after reset\n");
return PCI_ERS_RESULT_DISCONNECT;
}
/*
* As the new kernel behavior of pci_restore_state() API call clears
* device saved_state flag, need to save the restored state again.
*/
pci_save_state(pdev);
pci_set_master(pdev);
rc = efct_setup_msix(efct, efct->n_msix_vec);
if (rc)
efc_log_err(efct, "rc %d returned, IRQ allocation failed\n",
rc);
/* Perform device reset */
efct_device_detach(efct);
/* Bring device to online*/
efct_device_attach(efct);
return PCI_ERS_RESULT_RECOVERED;
}
static void
efct_pci_io_resume(struct pci_dev *pdev)
{
struct efct *efct = pci_get_drvdata(pdev);
/* Perform device reset */
efct_device_detach(efct);
/* Bring device to online*/
efct_device_attach(efct);
}
MODULE_DEVICE_TABLE(pci, efct_pci_table);
static struct pci_error_handlers efct_pci_err_handler = {
.error_detected = efct_pci_io_error_detected,
.slot_reset = efct_pci_io_slot_reset,
.resume = efct_pci_io_resume,
};
static struct pci_driver efct_pci_driver = {
.name = EFCT_DRIVER_NAME,
.id_table = efct_pci_table,
.probe = efct_pci_probe,
.remove = efct_pci_remove,
.err_handler = &efct_pci_err_handler,
};
static
int __init efct_init(void)
{
int rc;
rc = efct_device_init();
if (rc) {
pr_err("efct_device_init failed rc=%d\n", rc);
return rc;
}
rc = pci_register_driver(&efct_pci_driver);
if (rc) {
pr_err("pci_register_driver failed rc=%d\n", rc);
efct_device_shutdown();
}
return rc;
}
static void __exit efct_exit(void)
{
pci_unregister_driver(&efct_pci_driver);
efct_device_shutdown();
}
module_init(efct_init);
module_exit(efct_exit);
MODULE_VERSION(EFCT_DRIVER_VERSION);
MODULE_DESCRIPTION("Emulex Fibre Channel Target driver");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Broadcom");