// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Linux MegaRAID driver for SAS based RAID controllers
*
* Copyright (c) 2003-2013 LSI Corporation
* Copyright (c) 2013-2016 Avago Technologies
* Copyright (c) 2016-2018 Broadcom Inc.
*
* Authors: Broadcom Inc.
* Sreenivas Bagalkote
* Sumant Patro
* Bo Yang
* Adam Radford
* Kashyap Desai <[email protected]>
* Sumit Saxena <[email protected]>
*
* Send feedback to: [email protected]
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/list.h>
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/uio.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/unaligned.h>
#include <linux/fs.h>
#include <linux/compat.h>
#include <linux/blkdev.h>
#include <linux/mutex.h>
#include <linux/poll.h>
#include <linux/vmalloc.h>
#include <linux/irq_poll.h>
#include <linux/blk-mq-pci.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_dbg.h>
#include "megaraid_sas_fusion.h"
#include "megaraid_sas.h"
/*
* Number of sectors per IO command
* Will be set in megasas_init_mfi if user does not provide
*/
static unsigned int max_sectors;
module_param_named(max_sectors, max_sectors, int, 0444);
MODULE_PARM_DESC(max_sectors,
"Maximum number of sectors per IO command");
static int msix_disable;
module_param(msix_disable, int, 0444);
MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0");
static unsigned int msix_vectors;
module_param(msix_vectors, int, 0444);
MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW");
static int allow_vf_ioctls;
module_param(allow_vf_ioctls, int, 0444);
MODULE_PARM_DESC(allow_vf_ioctls, "Allow ioctls in SR-IOV VF mode. Default: 0");
static unsigned int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH;
module_param(throttlequeuedepth, int, 0444);
MODULE_PARM_DESC(throttlequeuedepth,
"Adapter queue depth when throttled due to I/O timeout. Default: 16");
unsigned int resetwaittime = MEGASAS_RESET_WAIT_TIME;
module_param(resetwaittime, int, 0444);
MODULE_PARM_DESC(resetwaittime, "Wait time in (1-180s) after I/O timeout before resetting adapter. Default: 180s");
static int smp_affinity_enable = 1;
module_param(smp_affinity_enable, int, 0444);
MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
static int rdpq_enable = 1;
module_param(rdpq_enable, int, 0444);
MODULE_PARM_DESC(rdpq_enable, "Allocate reply queue in chunks for large queue depth enable/disable Default: enable(1)");
unsigned int dual_qdepth_disable;
module_param(dual_qdepth_disable, int, 0444);
MODULE_PARM_DESC(dual_qdepth_disable, "Disable dual queue depth feature. Default: 0");
static unsigned int scmd_timeout = MEGASAS_DEFAULT_CMD_TIMEOUT;
module_param(scmd_timeout, int, 0444);
MODULE_PARM_DESC(scmd_timeout, "scsi command timeout (10-90s), default 90s. See megasas_reset_timer.");
int perf_mode = -1;
module_param(perf_mode, int, 0444);
MODULE_PARM_DESC(perf_mode, "Performance mode (only for Aero adapters), options:\n\t\t"
"0 - balanced: High iops and low latency queues are allocated &\n\t\t"
"interrupt coalescing is enabled only on high iops queues\n\t\t"
"1 - iops: High iops queues are not allocated &\n\t\t"
"interrupt coalescing is enabled on all queues\n\t\t"
"2 - latency: High iops queues are not allocated &\n\t\t"
"interrupt coalescing is disabled on all queues\n\t\t"
"default mode is 'balanced'"
);
int event_log_level = MFI_EVT_CLASS_CRITICAL;
module_param(event_log_level, int, 0644);
MODULE_PARM_DESC(event_log_level, "Asynchronous event logging level- range is: -2(CLASS_DEBUG) to 4(CLASS_DEAD), Default: 2(CLASS_CRITICAL)");
unsigned int enable_sdev_max_qd;
module_param(enable_sdev_max_qd, int, 0444);
MODULE_PARM_DESC(enable_sdev_max_qd, "Enable sdev max qd as can_queue. Default: 0");
int poll_queues;
module_param(poll_queues, int, 0444);
MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
"This parameter is effective only if host_tagset_enable=1 &\n\t\t"
"It is not applicable for MFI_SERIES. &\n\t\t"
"Driver will work in latency mode. &\n\t\t"
"High iops queues are not allocated &\n\t\t"
);
int host_tagset_enable = 1;
module_param(host_tagset_enable, int, 0444);
MODULE_PARM_DESC(host_tagset_enable, "Shared host tagset enable/disable Default: enable(1)");
MODULE_LICENSE("GPL");
MODULE_VERSION(MEGASAS_VERSION);
MODULE_AUTHOR("[email protected]");
MODULE_DESCRIPTION("Broadcom MegaRAID SAS Driver");
int megasas_transition_to_ready(struct megasas_instance *instance, int ocr);
static int megasas_get_pd_list(struct megasas_instance *instance);
static int megasas_ld_list_query(struct megasas_instance *instance,
u8 query_type);
static int megasas_issue_init_mfi(struct megasas_instance *instance);
static int megasas_register_aen(struct megasas_instance *instance,
u32 seq_num, u32 class_locale_word);
static void megasas_get_pd_info(struct megasas_instance *instance,
struct scsi_device *sdev);
static void
megasas_set_ld_removed_by_fw(struct megasas_instance *instance);
/*
* PCI ID table for all supported controllers
*/
static struct pci_device_id megasas_pci_table[] = {
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
/* xscale IOP */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
/* ppc IOP */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
/* ppc IOP */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)},
/* gen2*/
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)},
/* gen2*/
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)},
/* skinny*/
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)},
/* skinny*/
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
/* xscale IOP, vega */
{PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
/* xscale IOP */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)},
/* Fusion */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_PLASMA)},
/* Plasma */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)},
/* Invader */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)},
/* Fury */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INTRUDER)},
/* Intruder */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INTRUDER_24)},
/* Intruder 24 port*/
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_CUTLASS_52)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_CUTLASS_53)},
/* VENTURA */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VENTURA)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_CRUSADER)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_HARPOON)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_TOMCAT)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VENTURA_4PORT)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_CRUSADER_4PORT)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E1)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E2)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E5)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E6)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E0)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E3)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E4)},
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E7)},
{}
};
MODULE_DEVICE_TABLE(pci, megasas_pci_table);
static int megasas_mgmt_majorno;
struct megasas_mgmt_info megasas_mgmt_info;
static struct fasync_struct *megasas_async_queue;
static DEFINE_MUTEX(megasas_async_queue_mutex);
static int megasas_poll_wait_aen;
static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait);
static u32 support_poll_for_event;
u32 megasas_dbg_lvl;
static u32 support_device_change;
static bool support_nvme_encapsulation;
static bool support_pci_lane_margining;
/* define lock for aen poll */
static DEFINE_SPINLOCK(poll_aen_lock);
extern struct dentry *megasas_debugfs_root;
extern int megasas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num);
void
megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
u8 alt_status);
static u32
megasas_read_fw_status_reg_gen2(struct megasas_instance *instance);
static int
megasas_adp_reset_gen2(struct megasas_instance *instance,
struct megasas_register_set __iomem *reg_set);
static irqreturn_t megasas_isr(int irq, void *devp);
static u32
megasas_init_adapter_mfi(struct megasas_instance *instance);
u32
megasas_build_and_issue_cmd(struct megasas_instance *instance,
struct scsi_cmnd *scmd);
static void megasas_complete_cmd_dpc(unsigned long instance_addr);
int
wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd,
int seconds);
void megasas_fusion_ocr_wq(struct work_struct *work);
static int megasas_get_ld_vf_affiliation(struct megasas_instance *instance,
int initial);
static int
megasas_set_dma_mask(struct megasas_instance *instance);
static int
megasas_alloc_ctrl_mem(struct megasas_instance *instance);
static inline void
megasas_free_ctrl_mem(struct megasas_instance *instance);
static inline int
megasas_alloc_ctrl_dma_buffers(struct megasas_instance *instance);
static inline void
megasas_free_ctrl_dma_buffers(struct megasas_instance *instance);
static inline void
megasas_init_ctrl_params(struct megasas_instance *instance);
u32 megasas_readl(struct megasas_instance *instance,
const volatile void __iomem *addr)
{
u32 i = 0, ret_val;
/*
* Due to a HW errata in Aero controllers, reads to certain
* Fusion registers could intermittently return all zeroes.
* This behavior is transient in nature and subsequent reads will
* return valid value. As a workaround in driver, retry readl for
* up to thirty times until a non-zero value is read.
*/
if (instance->adapter_type == AERO_SERIES) {
do {
ret_val = readl(addr);
i++;
} while (ret_val == 0 && i < 30);
return ret_val;
} else {
return readl(addr);
}
}
/**
* megasas_set_dma_settings - Populate DMA address, length and flags for DCMDs
* @instance: Adapter soft state
* @dcmd: DCMD frame inside MFI command
* @dma_addr: DMA address of buffer to be passed to FW
* @dma_len: Length of DMA buffer to be passed to FW
* @return: void
*/
void megasas_set_dma_settings(struct megasas_instance *instance,
struct megasas_dcmd_frame *dcmd,
dma_addr_t dma_addr, u32 dma_len)
{
if (instance->consistent_mask_64bit) {
dcmd->sgl.sge64[0].phys_addr = cpu_to_le64(dma_addr);
dcmd->sgl.sge64[0].length = cpu_to_le32(dma_len);
dcmd->flags = cpu_to_le16(dcmd->flags | MFI_FRAME_SGL64);
} else {
dcmd->sgl.sge32[0].phys_addr =
cpu_to_le32(lower_32_bits(dma_addr));
dcmd->sgl.sge32[0].length = cpu_to_le32(dma_len);
dcmd->flags = cpu_to_le16(dcmd->flags);
}
}
static void
megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
instance->instancet->fire_cmd(instance,
cmd->frame_phys_addr, 0, instance->reg_set);
return;
}
/**
* megasas_get_cmd - Get a command from the free pool
* @instance: Adapter soft state
*
* Returns a free command from the pool
*/
struct megasas_cmd *megasas_get_cmd(struct megasas_instance
*instance)
{
unsigned long flags;
struct megasas_cmd *cmd = NULL;
spin_lock_irqsave(&instance->mfi_pool_lock, flags);
if (!list_empty(&instance->cmd_pool)) {
cmd = list_entry((&instance->cmd_pool)->next,
struct megasas_cmd, list);
list_del_init(&cmd->list);
} else {
dev_err(&instance->pdev->dev, "Command pool empty!\n");
}
spin_unlock_irqrestore(&instance->mfi_pool_lock, flags);
return cmd;
}
/**
* megasas_return_cmd - Return a cmd to free command pool
* @instance: Adapter soft state
* @cmd: Command packet to be returned to free command pool
*/
void
megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
unsigned long flags;
u32 blk_tags;
struct megasas_cmd_fusion *cmd_fusion;
struct fusion_context *fusion = instance->ctrl_context;
/* This flag is used only for fusion adapter.
* Wait for Interrupt for Polled mode DCMD
*/
if (cmd->flags & DRV_DCMD_POLLED_MODE)
return;
spin_lock_irqsave(&instance->mfi_pool_lock, flags);
if (fusion) {
blk_tags = instance->max_scsi_cmds + cmd->index;
cmd_fusion = fusion->cmd_list[blk_tags];
megasas_return_cmd_fusion(instance, cmd_fusion);
}
cmd->scmd = NULL;
cmd->frame_count = 0;
cmd->flags = 0;
memset(cmd->frame, 0, instance->mfi_frame_size);
cmd->frame->io.context = cpu_to_le32(cmd->index);
if (!fusion && reset_devices)
cmd->frame->hdr.cmd = MFI_CMD_INVALID;
list_add(&cmd->list, (&instance->cmd_pool)->next);
spin_unlock_irqrestore(&instance->mfi_pool_lock, flags);
}
static const char *
format_timestamp(uint32_t timestamp)
{
static char buffer[32];
if ((timestamp & 0xff000000) == 0xff000000)
snprintf(buffer, sizeof(buffer), "boot + %us", timestamp &
0x00ffffff);
else
snprintf(buffer, sizeof(buffer), "%us", timestamp);
return buffer;
}
static const char *
format_class(int8_t class)
{
static char buffer[6];
switch (class) {
case MFI_EVT_CLASS_DEBUG:
return "debug";
case MFI_EVT_CLASS_PROGRESS:
return "progress";
case MFI_EVT_CLASS_INFO:
return "info";
case MFI_EVT_CLASS_WARNING:
return "WARN";
case MFI_EVT_CLASS_CRITICAL:
return "CRIT";
case MFI_EVT_CLASS_FATAL:
return "FATAL";
case MFI_EVT_CLASS_DEAD:
return "DEAD";
default:
snprintf(buffer, sizeof(buffer), "%d", class);
return buffer;
}
}
/**
* megasas_decode_evt: Decode FW AEN event and print critical event
* for information.
* @instance: Adapter soft state
*/
static void
megasas_decode_evt(struct megasas_instance *instance)
{
struct megasas_evt_detail *evt_detail = instance->evt_detail;
union megasas_evt_class_locale class_locale;
class_locale.word = le32_to_cpu(evt_detail->cl.word);
if ((event_log_level < MFI_EVT_CLASS_DEBUG) ||
(event_log_level > MFI_EVT_CLASS_DEAD)) {
printk(KERN_WARNING "megaraid_sas: provided event log level is out of range, setting it to default 2(CLASS_CRITICAL), permissible range is: -2 to 4\n");
event_log_level = MFI_EVT_CLASS_CRITICAL;
}
if (class_locale.members.class >= event_log_level)
dev_info(&instance->pdev->dev, "%d (%s/0x%04x/%s) - %s\n",
le32_to_cpu(evt_detail->seq_num),
format_timestamp(le32_to_cpu(evt_detail->time_stamp)),
(class_locale.members.locale),
format_class(class_locale.members.class),
evt_detail->description);
if (megasas_dbg_lvl & LD_PD_DEBUG)
dev_info(&instance->pdev->dev,
"evt_detail.args.ld.target_id/index %d/%d\n",
evt_detail->args.ld.target_id, evt_detail->args.ld.ld_index);
}
/*
* The following functions are defined for xscale
* (deviceid : 1064R, PERC5) controllers
*/
/**
* megasas_enable_intr_xscale - Enables interrupts
* @instance: Adapter soft state
*/
static inline void
megasas_enable_intr_xscale(struct megasas_instance *instance)
{
struct megasas_register_set __iomem *regs;
regs = instance->reg_set;
writel(0, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(®s->outbound_intr_mask);
}
/**
* megasas_disable_intr_xscale -Disables interrupt
* @instance: Adapter soft state
*/
static inline void
megasas_disable_intr_xscale(struct megasas_instance *instance)
{
struct megasas_register_set __iomem *regs;
u32 mask = 0x1f;
regs = instance->reg_set;
writel(mask, ®s->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(®s->outbound_intr_mask);
}
/**
* megasas_read_fw_status_reg_xscale - returns the current FW status value
* @instance: Adapter soft state
*/
static u32
megasas_read_fw_status_reg_xscale(struct megasas_instance *instance)
{
return readl(&instance->reg_set->outbound_msg_0);
}
/**
* megasas_clear_intr_xscale - Check & clear interrupt
* @instance: Adapter soft state
*/
static int
megasas_clear_intr_xscale(struct megasas_instance *instance)
{
u32 status;
u32 mfiStatus = 0;
struct megasas_register_set __iomem *regs;
regs = instance->reg_set;
/*
* Check if it is our interrupt
*/
status = readl(®s->outbound_intr_status);
if (status & MFI_OB_INTR_STATUS_MASK)
mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT)
mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
/*
* Clear the interrupt by writing back the same value
*/
if (mfiStatus)
writel(status, ®s->outbound_intr_status);
/* Dummy readl to force pci flush */
readl(®s->outbound_intr_status);
return mfiStatus;
}
/**
* megasas_fire_cmd_xscale - Sends command to the FW
* @instance: Adapter soft state
* @frame_phys_addr : Physical address of cmd
* @frame_count : Number of frames for the command
* @regs : MFI register set
*/
static inline void
megasas_fire_cmd_xscale(struct megasas_instance *instance,
dma_addr_t frame_phys_addr,
u32 frame_count,
struct megasas_register_set __iomem *regs)
{
unsigned long flags;
spin_lock_irqsave(&instance->hba_lock, flags);
writel((frame_phys_addr >> 3)|(frame_count),
&(regs)->inbound_queue_port);
spin_unlock_irqrestore(&instance->hba_lock, flags);
}
/**
* megasas_adp_reset_xscale - For controller reset
* @instance: Adapter soft state
* @regs: MFI register set
*/
static int
megasas_adp_reset_xscale(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
u32 i;
u32 pcidata;
writel(MFI_ADP_RESET, ®s->inbound_doorbell);
for (i = 0; i < 3; i++)
msleep(1000); /* sleep for 3 secs */
pcidata = 0;
pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata);
dev_notice(&instance->pdev->dev, "pcidata = %x\n", pcidata);
if (pcidata & 0x2) {
dev_notice(&instance->pdev->dev, "mfi 1068 offset read=%x\n", pcidata);
pcidata &= ~0x2;
pci_write_config_dword(instance->pdev,
MFI_1068_PCSR_OFFSET, pcidata);
for (i = 0; i < 2; i++)
msleep(1000); /* need to wait 2 secs again */
pcidata = 0;
pci_read_config_dword(instance->pdev,
MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata);
dev_notice(&instance->pdev->dev, "1068 offset handshake read=%x\n", pcidata);
if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) {
dev_notice(&instance->pdev->dev, "1068 offset pcidt=%x\n", pcidata);
pcidata = 0;
pci_write_config_dword(instance->pdev,
MFI_1068_FW_HANDSHAKE_OFFSET, pcidata);
}
}
return 0;
}
/**
* megasas_check_reset_xscale - For controller reset check
* @instance: Adapter soft state
* @regs: MFI register set
*/
static int
megasas_check_reset_xscale(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
if ((atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) &&
(le32_to_cpu(*instance->consumer) ==
MEGASAS_ADPRESET_INPROG_SIGN))
return 1;
return 0;
}
static struct megasas_instance_template megasas_instance_template_xscale = {
.fire_cmd = megasas_fire_cmd_xscale,
.enable_intr = megasas_enable_intr_xscale,
.disable_intr = megasas_disable_intr_xscale,
.clear_intr = megasas_clear_intr_xscale,
.read_fw_status_reg = megasas_read_fw_status_reg_xscale,
.adp_reset = megasas_adp_reset_xscale,
.check_reset = megasas_check_reset_xscale,
.service_isr = megasas_isr,
.tasklet = megasas_complete_cmd_dpc,
.init_adapter = megasas_init_adapter_mfi,
.build_and_issue_cmd = megasas_build_and_issue_cmd,
.issue_dcmd = megasas_issue_dcmd,
};
/*
* This is the end of set of functions & definitions specific
* to xscale (deviceid : 1064R, PERC5) controllers
*/
/*
* The following functions are defined for ppc (deviceid : 0x60)
* controllers
*/
/**
* megasas_enable_intr_ppc - Enables interrupts
* @instance: Adapter soft state
*/
static inline void
megasas_enable_intr_ppc(struct megasas_instance *instance)
{
struct megasas_register_set __iomem *regs;
regs = instance->reg_set;
writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
writel(~0x80000000, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(®s->outbound_intr_mask);
}
/**
* megasas_disable_intr_ppc - Disable interrupt
* @instance: Adapter soft state
*/
static inline void
megasas_disable_intr_ppc(struct megasas_instance *instance)
{
struct megasas_register_set __iomem *regs;
u32 mask = 0xFFFFFFFF;
regs = instance->reg_set;
writel(mask, ®s->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(®s->outbound_intr_mask);
}
/**
* megasas_read_fw_status_reg_ppc - returns the current FW status value
* @instance: Adapter soft state
*/
static u32
megasas_read_fw_status_reg_ppc(struct megasas_instance *instance)
{
return readl(&instance->reg_set->outbound_scratch_pad_0);
}
/**
* megasas_clear_intr_ppc - Check & clear interrupt
* @instance: Adapter soft state
*/
static int
megasas_clear_intr_ppc(struct megasas_instance *instance)
{
u32 status, mfiStatus = 0;
struct megasas_register_set __iomem *regs;
regs = instance->reg_set;
/*
* Check if it is our interrupt
*/
status = readl(®s->outbound_intr_status);
if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT)
mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT)
mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
/*
* Clear the interrupt by writing back the same value
*/
writel(status, ®s->outbound_doorbell_clear);
/* Dummy readl to force pci flush */
readl(®s->outbound_doorbell_clear);
return mfiStatus;
}
/**
* megasas_fire_cmd_ppc - Sends command to the FW
* @instance: Adapter soft state
* @frame_phys_addr: Physical address of cmd
* @frame_count: Number of frames for the command
* @regs: MFI register set
*/
static inline void
megasas_fire_cmd_ppc(struct megasas_instance *instance,
dma_addr_t frame_phys_addr,
u32 frame_count,
struct megasas_register_set __iomem *regs)
{
unsigned long flags;
spin_lock_irqsave(&instance->hba_lock, flags);
writel((frame_phys_addr | (frame_count<<1))|1,
&(regs)->inbound_queue_port);
spin_unlock_irqrestore(&instance->hba_lock, flags);
}
/**
* megasas_check_reset_ppc - For controller reset check
* @instance: Adapter soft state
* @regs: MFI register set
*/
static int
megasas_check_reset_ppc(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL)
return 1;
return 0;
}
static struct megasas_instance_template megasas_instance_template_ppc = {
.fire_cmd = megasas_fire_cmd_ppc,
.enable_intr = megasas_enable_intr_ppc,
.disable_intr = megasas_disable_intr_ppc,
.clear_intr = megasas_clear_intr_ppc,
.read_fw_status_reg = megasas_read_fw_status_reg_ppc,
.adp_reset = megasas_adp_reset_xscale,
.check_reset = megasas_check_reset_ppc,
.service_isr = megasas_isr,
.tasklet = megasas_complete_cmd_dpc,
.init_adapter = megasas_init_adapter_mfi,
.build_and_issue_cmd = megasas_build_and_issue_cmd,
.issue_dcmd = megasas_issue_dcmd,
};
/**
* megasas_enable_intr_skinny - Enables interrupts
* @instance: Adapter soft state
*/
static inline void
megasas_enable_intr_skinny(struct megasas_instance *instance)
{
struct megasas_register_set __iomem *regs;
regs = instance->reg_set;
writel(0xFFFFFFFF, &(regs)->outbound_intr_mask);
writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(®s->outbound_intr_mask);
}
/**
* megasas_disable_intr_skinny - Disables interrupt
* @instance: Adapter soft state
*/
static inline void
megasas_disable_intr_skinny(struct megasas_instance *instance)
{
struct megasas_register_set __iomem *regs;
u32 mask = 0xFFFFFFFF;
regs = instance->reg_set;
writel(mask, ®s->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(®s->outbound_intr_mask);
}
/**
* megasas_read_fw_status_reg_skinny - returns the current FW status value
* @instance: Adapter soft state
*/
static u32
megasas_read_fw_status_reg_skinny(struct megasas_instance *instance)
{
return readl(&instance->reg_set->outbound_scratch_pad_0);
}
/**
* megasas_clear_intr_skinny - Check & clear interrupt
* @instance: Adapter soft state
*/
static int
megasas_clear_intr_skinny(struct megasas_instance *instance)
{
u32 status;
u32 mfiStatus = 0;
struct megasas_register_set __iomem *regs;
regs = instance->reg_set;
/*
* Check if it is our interrupt
*/
status = readl(®s->outbound_intr_status);
if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) {
return 0;
}
/*
* Check if it is our interrupt
*/
if ((megasas_read_fw_status_reg_skinny(instance) & MFI_STATE_MASK) ==
MFI_STATE_FAULT) {
mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
} else
mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
/*
* Clear the interrupt by writing back the same value
*/
writel(status, ®s->outbound_intr_status);
/*
* dummy read to flush PCI
*/
readl(®s->outbound_intr_status);
return mfiStatus;
}
/**
* megasas_fire_cmd_skinny - Sends command to the FW
* @instance: Adapter soft state
* @frame_phys_addr: Physical address of cmd
* @frame_count: Number of frames for the command
* @regs: MFI register set
*/
static inline void
megasas_fire_cmd_skinny(struct megasas_instance *instance,
dma_addr_t frame_phys_addr,
u32 frame_count,
struct megasas_register_set __iomem *regs)
{
unsigned long flags;
spin_lock_irqsave(&instance->hba_lock, flags);
writel(upper_32_bits(frame_phys_addr),
&(regs)->inbound_high_queue_port);
writel((lower_32_bits(frame_phys_addr) | (frame_count<<1))|1,
&(regs)->inbound_low_queue_port);
spin_unlock_irqrestore(&instance->hba_lock, flags);
}
/**
* megasas_check_reset_skinny - For controller reset check
* @instance: Adapter soft state
* @regs: MFI register set
*/
static int
megasas_check_reset_skinny(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL)
return 1;
return 0;
}
static struct megasas_instance_template megasas_instance_template_skinny = {
.fire_cmd = megasas_fire_cmd_skinny,
.enable_intr = megasas_enable_intr_skinny,
.disable_intr = megasas_disable_intr_skinny,
.clear_intr = megasas_clear_intr_skinny,
.read_fw_status_reg = megasas_read_fw_status_reg_skinny,
.adp_reset = megasas_adp_reset_gen2,
.check_reset = megasas_check_reset_skinny,
.service_isr = megasas_isr,
.tasklet = megasas_complete_cmd_dpc,
.init_adapter = megasas_init_adapter_mfi,
.build_and_issue_cmd = megasas_build_and_issue_cmd,
.issue_dcmd = megasas_issue_dcmd,
};
/*
* The following functions are defined for gen2 (deviceid : 0x78 0x79)
* controllers
*/
/**
* megasas_enable_intr_gen2 - Enables interrupts
* @instance: Adapter soft state
*/
static inline void
megasas_enable_intr_gen2(struct megasas_instance *instance)
{
struct megasas_register_set __iomem *regs;
regs = instance->reg_set;
writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
/* write ~0x00000005 (4 & 1) to the intr mask*/
writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(®s->outbound_intr_mask);
}
/**
* megasas_disable_intr_gen2 - Disables interrupt
* @instance: Adapter soft state
*/
static inline void
megasas_disable_intr_gen2(struct megasas_instance *instance)
{
struct megasas_register_set __iomem *regs;
u32 mask = 0xFFFFFFFF;
regs = instance->reg_set;
writel(mask, ®s->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(®s->outbound_intr_mask);
}
/**
* megasas_read_fw_status_reg_gen2 - returns the current FW status value
* @instance: Adapter soft state
*/
static u32
megasas_read_fw_status_reg_gen2(struct megasas_instance *instance)
{
return readl(&instance->reg_set->outbound_scratch_pad_0);
}
/**
* megasas_clear_intr_gen2 - Check & clear interrupt
* @instance: Adapter soft state
*/
static int
megasas_clear_intr_gen2(struct megasas_instance *instance)
{
u32 status;
u32 mfiStatus = 0;
struct megasas_register_set __iomem *regs;
regs = instance->reg_set;
/*
* Check if it is our interrupt
*/
status = readl(®s->outbound_intr_status);
if (status & MFI_INTR_FLAG_REPLY_MESSAGE) {
mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
}
if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) {
mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
}
/*
* Clear the interrupt by writing back the same value
*/
if (mfiStatus)
writel(status, ®s->outbound_doorbell_clear);
/* Dummy readl to force pci flush */
readl(®s->outbound_intr_status);
return mfiStatus;
}
/**
* megasas_fire_cmd_gen2 - Sends command to the FW
* @instance: Adapter soft state
* @frame_phys_addr: Physical address of cmd
* @frame_count: Number of frames for the command
* @regs: MFI register set
*/
static inline void
megasas_fire_cmd_gen2(struct megasas_instance *instance,
dma_addr_t frame_phys_addr,
u32 frame_count,
struct megasas_register_set __iomem *regs)
{
unsigned long flags;
spin_lock_irqsave(&instance->hba_lock, flags);
writel((frame_phys_addr | (frame_count<<1))|1,
&(regs)->inbound_queue_port);
spin_unlock_irqrestore(&instance->hba_lock, flags);
}
/**
* megasas_adp_reset_gen2 - For controller reset
* @instance: Adapter soft state
* @reg_set: MFI register set
*/
static int
megasas_adp_reset_gen2(struct megasas_instance *instance,
struct megasas_register_set __iomem *reg_set)
{
u32 retry = 0 ;
u32 HostDiag;
u32 __iomem *seq_offset = ®_set->seq_offset;
u32 __iomem *hostdiag_offset = ®_set->host_diag;
if (instance->instancet == &megasas_instance_template_skinny) {
seq_offset = ®_set->fusion_seq_offset;
hostdiag_offset = ®_set->fusion_host_diag;
}
writel(0, seq_offset);
writel(4, seq_offset);
writel(0xb, seq_offset);
writel(2, seq_offset);
writel(7, seq_offset);
writel(0xd, seq_offset);
msleep(1000);
HostDiag = (u32)readl(hostdiag_offset);
while (!(HostDiag & DIAG_WRITE_ENABLE)) {
msleep(100);
HostDiag = (u32)readl(hostdiag_offset);
dev_notice(&instance->pdev->dev, "RESETGEN2: retry=%x, hostdiag=%x\n",
retry, HostDiag);
if (retry++ >= 100)
return 1;
}
dev_notice(&instance->pdev->dev, "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag);
writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset);
ssleep(10);
HostDiag = (u32)readl(hostdiag_offset);
while (HostDiag & DIAG_RESET_ADAPTER) {
msleep(100);
HostDiag = (u32)readl(hostdiag_offset);
dev_notice(&instance->pdev->dev, "RESET_GEN2: retry=%x, hostdiag=%x\n",
retry, HostDiag);
if (retry++ >= 1000)
return 1;
}
return 0;
}
/**
* megasas_check_reset_gen2 - For controller reset check
* @instance: Adapter soft state
* @regs: MFI register set
*/
static int
megasas_check_reset_gen2(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL)
return 1;
return 0;
}
static struct megasas_instance_template megasas_instance_template_gen2 = {
.fire_cmd = megasas_fire_cmd_gen2,
.enable_intr = megasas_enable_intr_gen2,
.disable_intr = megasas_disable_intr_gen2,
.clear_intr = megasas_clear_intr_gen2,
.read_fw_status_reg = megasas_read_fw_status_reg_gen2,
.adp_reset = megasas_adp_reset_gen2,
.check_reset = megasas_check_reset_gen2,
.service_isr = megasas_isr,
.tasklet = megasas_complete_cmd_dpc,
.init_adapter = megasas_init_adapter_mfi,
.build_and_issue_cmd = megasas_build_and_issue_cmd,
.issue_dcmd = megasas_issue_dcmd,
};
/*
* This is the end of set of functions & definitions
* specific to gen2 (deviceid : 0x78, 0x79) controllers
*/
/*
* Template added for TB (Fusion)
*/
extern struct megasas_instance_template megasas_instance_template_fusion;
/**
* megasas_issue_polled - Issues a polling command
* @instance: Adapter soft state
* @cmd: Command packet to be issued
*
* For polling, MFI requires the cmd_status to be set to MFI_STAT_INVALID_STATUS before posting.
*/
int
megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
struct megasas_header *frame_hdr = &cmd->frame->hdr;
frame_hdr->cmd_status = MFI_STAT_INVALID_STATUS;
frame_hdr->flags |= cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE);
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) {
dev_err(&instance->pdev->dev, "Failed from %s %d\n",
__func__, __LINE__);
return DCMD_INIT;
}
instance->instancet->issue_dcmd(instance, cmd);
return wait_and_poll(instance, cmd, instance->requestorId ?
MEGASAS_ROUTINE_WAIT_TIME_VF : MFI_IO_TIMEOUT_SECS);
}
/**
* megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
* @instance: Adapter soft state
* @cmd: Command to be issued
* @timeout: Timeout in seconds
*
* This function waits on an event for the command to be returned from ISR.
* Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
* Used to issue ioctl commands.
*/
int
megasas_issue_blocked_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd, int timeout)
{
int ret = 0;
cmd->cmd_status_drv = DCMD_INIT;
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) {
dev_err(&instance->pdev->dev, "Failed from %s %d\n",
__func__, __LINE__);
return DCMD_INIT;
}
instance->instancet->issue_dcmd(instance, cmd);
if (timeout) {
ret = wait_event_timeout(instance->int_cmd_wait_q,
cmd->cmd_status_drv != DCMD_INIT, timeout * HZ);
if (!ret) {
dev_err(&instance->pdev->dev,
"DCMD(opcode: 0x%x) is timed out, func:%s\n",
cmd->frame->dcmd.opcode, __func__);
return DCMD_TIMEOUT;
}
} else
wait_event(instance->int_cmd_wait_q,
cmd->cmd_status_drv != DCMD_INIT);
return cmd->cmd_status_drv;
}
/**
* megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
* @instance: Adapter soft state
* @cmd_to_abort: Previously issued cmd to be aborted
* @timeout: Timeout in seconds
*
* MFI firmware can abort previously issued AEN comamnd (automatic event
* notification). The megasas_issue_blocked_abort_cmd() issues such abort
* cmd and waits for return status.
* Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
*/
static int
megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd_to_abort, int timeout)
{
struct megasas_cmd *cmd;
struct megasas_abort_frame *abort_fr;
int ret = 0;
u32 opcode;
cmd = megasas_get_cmd(instance);
if (!cmd)
return -1;
abort_fr = &cmd->frame->abort;
/*
* Prepare and issue the abort frame
*/
abort_fr->cmd = MFI_CMD_ABORT;
abort_fr->cmd_status = MFI_STAT_INVALID_STATUS;
abort_fr->flags = cpu_to_le16(0);
abort_fr->abort_context = cpu_to_le32(cmd_to_abort->index);
abort_fr->abort_mfi_phys_addr_lo =
cpu_to_le32(lower_32_bits(cmd_to_abort->frame_phys_addr));
abort_fr->abort_mfi_phys_addr_hi =
cpu_to_le32(upper_32_bits(cmd_to_abort->frame_phys_addr));
cmd->sync_cmd = 1;
cmd->cmd_status_drv = DCMD_INIT;
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) {
dev_err(&instance->pdev->dev, "Failed from %s %d\n",
__func__, __LINE__);
return DCMD_INIT;
}
instance->instancet->issue_dcmd(instance, cmd);
if (timeout) {
ret = wait_event_timeout(instance->abort_cmd_wait_q,
cmd->cmd_status_drv != DCMD_INIT, timeout * HZ);
if (!ret) {
opcode = cmd_to_abort->frame->dcmd.opcode;
dev_err(&instance->pdev->dev,
"Abort(to be aborted DCMD opcode: 0x%x) is timed out func:%s\n",
opcode, __func__);
return DCMD_TIMEOUT;
}
} else
wait_event(instance->abort_cmd_wait_q,
cmd->cmd_status_drv != DCMD_INIT);
cmd->sync_cmd = 0;
megasas_return_cmd(instance, cmd);
return cmd->cmd_status_drv;
}
/**
* megasas_make_sgl32 - Prepares 32-bit SGL
* @instance: Adapter soft state
* @scp: SCSI command from the mid-layer
* @mfi_sgl: SGL to be filled in
*
* If successful, this function returns the number of SG elements. Otherwise,
* it returnes -1.
*/
static int
megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
union megasas_sgl *mfi_sgl)
{
int i;
int sge_count;
struct scatterlist *os_sgl;
sge_count = scsi_dma_map(scp);
BUG_ON(sge_count < 0);
if (sge_count) {
scsi_for_each_sg(scp, os_sgl, sge_count, i) {
mfi_sgl->sge32[i].length = cpu_to_le32(sg_dma_len(os_sgl));
mfi_sgl->sge32[i].phys_addr = cpu_to_le32(sg_dma_address(os_sgl));
}
}
return sge_count;
}
/**
* megasas_make_sgl64 - Prepares 64-bit SGL
* @instance: Adapter soft state
* @scp: SCSI command from the mid-layer
* @mfi_sgl: SGL to be filled in
*
* If successful, this function returns the number of SG elements. Otherwise,
* it returnes -1.
*/
static int
megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
union megasas_sgl *mfi_sgl)
{
int i;
int sge_count;
struct scatterlist *os_sgl;
sge_count = scsi_dma_map(scp);
BUG_ON(sge_count < 0);
if (sge_count) {
scsi_for_each_sg(scp, os_sgl, sge_count, i) {
mfi_sgl->sge64[i].length = cpu_to_le32(sg_dma_len(os_sgl));
mfi_sgl->sge64[i].phys_addr = cpu_to_le64(sg_dma_address(os_sgl));
}
}
return sge_count;
}
/**
* megasas_make_sgl_skinny - Prepares IEEE SGL
* @instance: Adapter soft state
* @scp: SCSI command from the mid-layer
* @mfi_sgl: SGL to be filled in
*
* If successful, this function returns the number of SG elements. Otherwise,
* it returnes -1.
*/
static int
megasas_make_sgl_skinny(struct megasas_instance *instance,
struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl)
{
int i;
int sge_count;
struct scatterlist *os_sgl;
sge_count = scsi_dma_map(scp);
if (sge_count) {
scsi_for_each_sg(scp, os_sgl, sge_count, i) {
mfi_sgl->sge_skinny[i].length =
cpu_to_le32(sg_dma_len(os_sgl));
mfi_sgl->sge_skinny[i].phys_addr =
cpu_to_le64(sg_dma_address(os_sgl));
mfi_sgl->sge_skinny[i].flag = cpu_to_le32(0);
}
}
return sge_count;
}
/**
* megasas_get_frame_count - Computes the number of frames
* @frame_type : type of frame- io or pthru frame
* @sge_count : number of sg elements
*
* Returns the number of frames required for numnber of sge's (sge_count)
*/
static u32 megasas_get_frame_count(struct megasas_instance *instance,
u8 sge_count, u8 frame_type)
{
int num_cnt;
int sge_bytes;
u32 sge_sz;
u32 frame_count = 0;
sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
sizeof(struct megasas_sge32);
if (instance->flag_ieee) {
sge_sz = sizeof(struct megasas_sge_skinny);
}
/*
* Main frame can contain 2 SGEs for 64-bit SGLs and
* 3 SGEs for 32-bit SGLs for ldio &
* 1 SGEs for 64-bit SGLs and
* 2 SGEs for 32-bit SGLs for pthru frame
*/
if (unlikely(frame_type == PTHRU_FRAME)) {
if (instance->flag_ieee == 1) {
num_cnt = sge_count - 1;
} else if (IS_DMA64)
num_cnt = sge_count - 1;
else
num_cnt = sge_count - 2;
} else {
if (instance->flag_ieee == 1) {
num_cnt = sge_count - 1;
} else if (IS_DMA64)
num_cnt = sge_count - 2;
else
num_cnt = sge_count - 3;
}
if (num_cnt > 0) {
sge_bytes = sge_sz * num_cnt;
frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
}
/* Main frame */
frame_count += 1;
if (frame_count > 7)
frame_count = 8;
return frame_count;
}
/**
* megasas_build_dcdb - Prepares a direct cdb (DCDB) command
* @instance: Adapter soft state
* @scp: SCSI command
* @cmd: Command to be prepared in
*
* This function prepares CDB commands. These are typcially pass-through
* commands to the devices.
*/
static int
megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
struct megasas_cmd *cmd)
{
u32 is_logical;
u32 device_id;
u16 flags = 0;
struct megasas_pthru_frame *pthru;
is_logical = MEGASAS_IS_LOGICAL(scp->device);
device_id = MEGASAS_DEV_INDEX(scp);
pthru = (struct megasas_pthru_frame *)cmd->frame;
if (scp->sc_data_direction == DMA_TO_DEVICE)
flags = MFI_FRAME_DIR_WRITE;
else if (scp->sc_data_direction == DMA_FROM_DEVICE)
flags = MFI_FRAME_DIR_READ;
else if (scp->sc_data_direction == DMA_NONE)
flags = MFI_FRAME_DIR_NONE;
if (instance->flag_ieee == 1) {
flags |= MFI_FRAME_IEEE;
}
/*
* Prepare the DCDB frame
*/
pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
pthru->cmd_status = 0x0;
pthru->scsi_status = 0x0;
pthru->target_id = device_id;
pthru->lun = scp->device->lun;
pthru->cdb_len = scp->cmd_len;
pthru->timeout = 0;
pthru->pad_0 = 0;
pthru->flags = cpu_to_le16(flags);
pthru->data_xfer_len = cpu_to_le32(scsi_bufflen(scp));
memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
/*
* If the command is for the tape device, set the
* pthru timeout to the os layer timeout value.
*/
if (scp->device->type == TYPE_TAPE) {
if (scsi_cmd_to_rq(scp)->timeout / HZ > 0xFFFF)
pthru->timeout = cpu_to_le16(0xFFFF);
else
pthru->timeout = cpu_to_le16(scsi_cmd_to_rq(scp)->timeout / HZ);
}
/*
* Construct SGL
*/
if (instance->flag_ieee == 1) {
pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64);
pthru->sge_count = megasas_make_sgl_skinny(instance, scp,
&pthru->sgl);
} else if (IS_DMA64) {
pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64);
pthru->sge_count = megasas_make_sgl64(instance, scp,
&pthru->sgl);
} else
pthru->sge_count = megasas_make_sgl32(instance, scp,
&pthru->sgl);
if (pthru->sge_count > instance->max_num_sge) {
dev_err(&instance->pdev->dev, "DCDB too many SGE NUM=%x\n",
pthru->sge_count);
return 0;
}
/*
* Sense info specific
*/
pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
pthru->sense_buf_phys_addr_hi =
cpu_to_le32(upper_32_bits(cmd->sense_phys_addr));
pthru->sense_buf_phys_addr_lo =
cpu_to_le32(lower_32_bits(cmd->sense_phys_addr));
/*
* Compute the total number of frames this command consumes. FW uses
* this number to pull sufficient number of frames from host memory.
*/
cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count,
PTHRU_FRAME);
return cmd->frame_count;
}
/**
* megasas_build_ldio - Prepares IOs to logical devices
* @instance: Adapter soft state
* @scp: SCSI command
* @cmd: Command to be prepared
*
* Frames (and accompanying SGLs) for regular SCSI IOs use this function.
*/
static int
megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
struct megasas_cmd *cmd)
{
u32 device_id;
u8 sc = scp->cmnd[0];
u16 flags = 0;
struct megasas_io_frame *ldio;
device_id = MEGASAS_DEV_INDEX(scp);
ldio = (struct megasas_io_frame *)cmd->frame;
if (scp->sc_data_direction == DMA_TO_DEVICE)
flags = MFI_FRAME_DIR_WRITE;
else if (scp->sc_data_direction == DMA_FROM_DEVICE)
flags = MFI_FRAME_DIR_READ;
if (instance->flag_ieee == 1) {
flags |= MFI_FRAME_IEEE;
}
/*
* Prepare the Logical IO frame: 2nd bit is zero for all read cmds
*/
ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
ldio->cmd_status = 0x0;
ldio->scsi_status = 0x0;
ldio->target_id = device_id;
ldio->timeout = 0;
ldio->reserved_0 = 0;
ldio->pad_0 = 0;
ldio->flags = cpu_to_le16(flags);
ldio->start_lba_hi = 0;
ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
/*
* 6-byte READ(0x08) or WRITE(0x0A) cdb
*/
if (scp->cmd_len == 6) {
ldio->lba_count = cpu_to_le32((u32) scp->cmnd[4]);
ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[1] << 16) |
((u32) scp->cmnd[2] << 8) |
(u32) scp->cmnd[3]);
ldio->start_lba_lo &= cpu_to_le32(0x1FFFFF);
}
/*
* 10-byte READ(0x28) or WRITE(0x2A) cdb
*/
else if (scp->cmd_len == 10) {
ldio->lba_count = cpu_to_le32((u32) scp->cmnd[8] |
((u32) scp->cmnd[7] << 8));
ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) |
(u32) scp->cmnd[5]);
}
/*
* 12-byte READ(0xA8) or WRITE(0xAA) cdb
*/
else if (scp->cmd_len == 12) {
ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[6] << 24) |
((u32) scp->cmnd[7] << 16) |
((u32) scp->cmnd[8] << 8) |
(u32) scp->cmnd[9]);
ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) |
(u32) scp->cmnd[5]);
}
/*
* 16-byte READ(0x88) or WRITE(0x8A) cdb
*/
else if (scp->cmd_len == 16) {
ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[10] << 24) |
((u32) scp->cmnd[11] << 16) |
((u32) scp->cmnd[12] << 8) |
(u32) scp->cmnd[13]);
ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[6] << 24) |
((u32) scp->cmnd[7] << 16) |
((u32) scp->cmnd[8] << 8) |
(u32) scp->cmnd[9]);
ldio->start_lba_hi = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) |
(u32) scp->cmnd[5]);
}
/*
* Construct SGL
*/
if (instance->flag_ieee) {
ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64);
ldio->sge_count = megasas_make_sgl_skinny(instance, scp,
&ldio->sgl);
} else if (IS_DMA64) {
ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64);
ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
} else
ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
if (ldio->sge_count > instance->max_num_sge) {
dev_err(&instance->pdev->dev, "build_ld_io: sge_count = %x\n",
ldio->sge_count);
return 0;
}
/*
* Sense info specific
*/
ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
ldio->sense_buf_phys_addr_hi = 0;
ldio->sense_buf_phys_addr_lo = cpu_to_le32(cmd->sense_phys_addr);
/*
* Compute the total number of frames this command consumes. FW uses
* this number to pull sufficient number of frames from host memory.
*/
cmd->frame_count = megasas_get_frame_count(instance,
ldio->sge_count, IO_FRAME);
return cmd->frame_count;
}
/**
* megasas_cmd_type - Checks if the cmd is for logical drive/sysPD
* and whether it's RW or non RW
* @cmd: SCSI command
*
*/
inline int megasas_cmd_type(struct scsi_cmnd *cmd)
{
int ret;
switch (cmd->cmnd[0]) {
case READ_10:
case WRITE_10:
case READ_12:
case WRITE_12:
case READ_6:
case WRITE_6:
case READ_16:
case WRITE_16:
ret = (MEGASAS_IS_LOGICAL(cmd->device)) ?
READ_WRITE_LDIO : READ_WRITE_SYSPDIO;
break;
default:
ret = (MEGASAS_IS_LOGICAL(cmd->device)) ?
NON_READ_WRITE_LDIO : NON_READ_WRITE_SYSPDIO;
}
return ret;
}
/**
* megasas_dump_pending_frames - Dumps the frame address of all pending cmds
* in FW
* @instance: Adapter soft state
*/
static inline void
megasas_dump_pending_frames(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
int i,n;
union megasas_sgl *mfi_sgl;
struct megasas_io_frame *ldio;
struct megasas_pthru_frame *pthru;
u32 sgcount;
u16 max_cmd = instance->max_fw_cmds;
dev_err(&instance->pdev->dev, "[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
dev_err(&instance->pdev->dev, "[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
if (IS_DMA64)
dev_err(&instance->pdev->dev, "[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
else
dev_err(&instance->pdev->dev, "[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
dev_err(&instance->pdev->dev, "[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
if (!cmd->scmd)
continue;
dev_err(&instance->pdev->dev, "[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
if (megasas_cmd_type(cmd->scmd) == READ_WRITE_LDIO) {
ldio = (struct megasas_io_frame *)cmd->frame;
mfi_sgl = &ldio->sgl;
sgcount = ldio->sge_count;
dev_err(&instance->pdev->dev, "[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x,"
" lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",
instance->host->host_no, cmd->frame_count, ldio->cmd, ldio->target_id,
le32_to_cpu(ldio->start_lba_lo), le32_to_cpu(ldio->start_lba_hi),
le32_to_cpu(ldio->sense_buf_phys_addr_lo), sgcount);
} else {
pthru = (struct megasas_pthru_frame *) cmd->frame;
mfi_sgl = &pthru->sgl;
sgcount = pthru->sge_count;
dev_err(&instance->pdev->dev, "[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, "
"lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",
instance->host->host_no, cmd->frame_count, pthru->cmd, pthru->target_id,
pthru->lun, pthru->cdb_len, le32_to_cpu(pthru->data_xfer_len),
le32_to_cpu(pthru->sense_buf_phys_addr_lo), sgcount);
}
if (megasas_dbg_lvl & MEGASAS_DBG_LVL) {
for (n = 0; n < sgcount; n++) {
if (IS_DMA64)
dev_err(&instance->pdev->dev, "sgl len : 0x%x, sgl addr : 0x%llx\n",
le32_to_cpu(mfi_sgl->sge64[n].length),
le64_to_cpu(mfi_sgl->sge64[n].phys_addr));
else
dev_err(&instance->pdev->dev, "sgl len : 0x%x, sgl addr : 0x%x\n",
le32_to_cpu(mfi_sgl->sge32[n].length),
le32_to_cpu(mfi_sgl->sge32[n].phys_addr));
}
}
} /*for max_cmd*/
dev_err(&instance->pdev->dev, "[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
if (cmd->sync_cmd == 1)
dev_err(&instance->pdev->dev, "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
}
dev_err(&instance->pdev->dev, "[%d]: Dumping Done\n\n",instance->host->host_no);
}
u32
megasas_build_and_issue_cmd(struct megasas_instance *instance,
struct scsi_cmnd *scmd)
{
struct megasas_cmd *cmd;
u32 frame_count;
cmd = megasas_get_cmd(instance);
if (!cmd)
return SCSI_MLQUEUE_HOST_BUSY;
/*
* Logical drive command
*/
if (megasas_cmd_type(scmd) == READ_WRITE_LDIO)
frame_count = megasas_build_ldio(instance, scmd, cmd);
else
frame_count = megasas_build_dcdb(instance, scmd, cmd);
if (!frame_count)
goto out_return_cmd;
cmd->scmd = scmd;
megasas_priv(scmd)->cmd_priv = cmd;
/*
* Issue the command to the FW
*/
atomic_inc(&instance->fw_outstanding);
instance->instancet->fire_cmd(instance, cmd->frame_phys_addr,
cmd->frame_count-1, instance->reg_set);
return 0;
out_return_cmd:
megasas_return_cmd(instance, cmd);
return SCSI_MLQUEUE_HOST_BUSY;
}
/**
* megasas_queue_command - Queue entry point
* @shost: adapter SCSI host
* @scmd: SCSI command to be queued
*/
static int
megasas_queue_command(struct Scsi_Host *shost, struct scsi_cmnd *scmd)
{
struct megasas_instance *instance;
struct MR_PRIV_DEVICE *mr_device_priv_data;
u32 ld_tgt_id;
instance = (struct megasas_instance *)
scmd->device->host->hostdata;
if (instance->unload == 1) {
scmd->result = DID_NO_CONNECT << 16;
scsi_done(scmd);
return 0;
}
if (instance->issuepend_done == 0)
return SCSI_MLQUEUE_HOST_BUSY;
/* Check for an mpio path and adjust behavior */
if (atomic_read(&instance->adprecovery) == MEGASAS_ADPRESET_SM_INFAULT) {
if (megasas_check_mpio_paths(instance, scmd) ==
(DID_REQUEUE << 16)) {
return SCSI_MLQUEUE_HOST_BUSY;
} else {
scmd->result = DID_NO_CONNECT << 16;
scsi_done(scmd);
return 0;
}
}
mr_device_priv_data = scmd->device->hostdata;
if (!mr_device_priv_data ||
(atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR)) {
scmd->result = DID_NO_CONNECT << 16;
scsi_done(scmd);
return 0;
}
if (MEGASAS_IS_LOGICAL(scmd->device)) {
ld_tgt_id = MEGASAS_TARGET_ID(scmd->device);
if (instance->ld_tgtid_status[ld_tgt_id] == LD_TARGET_ID_DELETED) {
scmd->result = DID_NO_CONNECT << 16;
scsi_done(scmd);
return 0;
}
}
if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL)
return SCSI_MLQUEUE_HOST_BUSY;
if (mr_device_priv_data->tm_busy)
return SCSI_MLQUEUE_DEVICE_BUSY;
scmd->result = 0;
if (MEGASAS_IS_LOGICAL(scmd->device) &&
(scmd->device->id >= instance->fw_supported_vd_count ||
scmd->device->lun)) {
scmd->result = DID_BAD_TARGET << 16;
goto out_done;
}
if ((scmd->cmnd[0] == SYNCHRONIZE_CACHE) &&
MEGASAS_IS_LOGICAL(scmd->device) &&
(!instance->fw_sync_cache_support)) {
scmd->result = DID_OK << 16;
goto out_done;
}
return instance->instancet->build_and_issue_cmd(instance, scmd);
out_done:
scsi_done(scmd);
return 0;
}
static struct megasas_instance *megasas_lookup_instance(u16 host_no)
{
int i;
for (i = 0; i < megasas_mgmt_info.max_index; i++) {
if ((megasas_mgmt_info.instance[i]) &&
(megasas_mgmt_info.instance[i]->host->host_no == host_no))
return megasas_mgmt_info.instance[i];
}
return NULL;
}
/*
* megasas_set_dynamic_target_properties -
* Device property set by driver may not be static and it is required to be
* updated after OCR
*
* set tm_capable.
* set dma alignment (only for eedp protection enable vd).
*
* @sdev: OS provided scsi device
*
* Returns void
*/
void megasas_set_dynamic_target_properties(struct scsi_device *sdev,
struct queue_limits *lim, bool is_target_prop)
{
u16 pd_index = 0, ld;
u32 device_id;
struct megasas_instance *instance;
struct fusion_context *fusion;
struct MR_PRIV_DEVICE *mr_device_priv_data;
struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync;
struct MR_LD_RAID *raid;
struct MR_DRV_RAID_MAP_ALL *local_map_ptr;
instance = megasas_lookup_instance(sdev->host->host_no);
fusion = instance->ctrl_context;
mr_device_priv_data = sdev->hostdata;
if (!fusion || !mr_device_priv_data)
return;
if (MEGASAS_IS_LOGICAL(sdev)) {
device_id = ((sdev->channel % 2) * MEGASAS_MAX_DEV_PER_CHANNEL)
+ sdev->id;
local_map_ptr = fusion->ld_drv_map[(instance->map_id & 1)];
ld = MR_TargetIdToLdGet(device_id, local_map_ptr);
if (ld >= instance->fw_supported_vd_count)
return;
raid = MR_LdRaidGet(ld, local_map_ptr);
if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
if (lim)
lim->dma_alignment = 0x7;
}
mr_device_priv_data->is_tm_capable =
raid->capability.tmCapable;
if (!raid->flags.isEPD)
sdev->no_write_same = 1;
} else if (instance->use_seqnum_jbod_fp) {
pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
sdev->id;
pd_sync = (void *)fusion->pd_seq_sync
[(instance->pd_seq_map_id - 1) & 1];
mr_device_priv_data->is_tm_capable =
pd_sync->seq[pd_index].capability.tmCapable;
}
if (is_target_prop && instance->tgt_prop->reset_tmo) {
/*
* If FW provides a target reset timeout value, driver will use
* it. If not set, fallback to default values.
*/
mr_device_priv_data->target_reset_tmo =
min_t(u8, instance->max_reset_tmo,
instance->tgt_prop->reset_tmo);
mr_device_priv_data->task_abort_tmo = instance->task_abort_tmo;
} else {
mr_device_priv_data->target_reset_tmo =
MEGASAS_DEFAULT_TM_TIMEOUT;
mr_device_priv_data->task_abort_tmo =
MEGASAS_DEFAULT_TM_TIMEOUT;
}
}
/*
* megasas_set_nvme_device_properties -
* set nomerges=2
* set virtual page boundary = 4K (current mr_nvme_pg_size is 4K).
* set maximum io transfer = MDTS of NVME device provided by MR firmware.
*
* MR firmware provides value in KB. Caller of this function converts
* kb into bytes.
*
* e.a MDTS=5 means 2^5 * nvme page size. (In case of 4K page size,
* MR firmware provides value 128 as (32 * 4K) = 128K.
*
* @sdev: scsi device
* @max_io_size: maximum io transfer size
*
*/
static inline void
megasas_set_nvme_device_properties(struct scsi_device *sdev,
struct queue_limits *lim, u32 max_io_size)
{
struct megasas_instance *instance;
u32 mr_nvme_pg_size;
instance = (struct megasas_instance *)sdev->host->hostdata;
mr_nvme_pg_size = max_t(u32, instance->nvme_page_size,
MR_DEFAULT_NVME_PAGE_SIZE);
lim->max_hw_sectors = max_io_size / 512;
lim->virt_boundary_mask = mr_nvme_pg_size - 1;
}
/*
* megasas_set_fw_assisted_qd -
* set device queue depth to can_queue
* set device queue depth to fw assisted qd
*
* @sdev: scsi device
* @is_target_prop true, if fw provided target properties.
*/
static void megasas_set_fw_assisted_qd(struct scsi_device *sdev,
bool is_target_prop)
{
u8 interface_type;
u32 device_qd = MEGASAS_DEFAULT_CMD_PER_LUN;
u32 tgt_device_qd;
struct megasas_instance *instance;
struct MR_PRIV_DEVICE *mr_device_priv_data;
instance = megasas_lookup_instance(sdev->host->host_no);
mr_device_priv_data = sdev->hostdata;
interface_type = mr_device_priv_data->interface_type;
switch (interface_type) {
case SAS_PD:
device_qd = MEGASAS_SAS_QD;
break;
case SATA_PD:
device_qd = MEGASAS_SATA_QD;
break;
case NVME_PD:
device_qd = MEGASAS_NVME_QD;
break;
}
if (is_target_prop) {
tgt_device_qd = le32_to_cpu(instance->tgt_prop->device_qdepth);
if (tgt_device_qd)
device_qd = min(instance->host->can_queue,
(int)tgt_device_qd);
}
if (instance->enable_sdev_max_qd && interface_type != UNKNOWN_DRIVE)
device_qd = instance->host->can_queue;
scsi_change_queue_depth(sdev, device_qd);
}
/*
* megasas_set_static_target_properties -
* Device property set by driver are static and it is not required to be
* updated after OCR.
*
* set io timeout
* set device queue depth
* set nvme device properties. see - megasas_set_nvme_device_properties
*
* @sdev: scsi device
* @is_target_prop true, if fw provided target properties.
*/
static void megasas_set_static_target_properties(struct scsi_device *sdev,
struct queue_limits *lim, bool is_target_prop)
{
u32 max_io_size_kb = MR_DEFAULT_NVME_MDTS_KB;
struct megasas_instance *instance;
instance = megasas_lookup_instance(sdev->host->host_no);
/*
* The RAID firmware may require extended timeouts.
*/
blk_queue_rq_timeout(sdev->request_queue, scmd_timeout * HZ);
/* max_io_size_kb will be set to non zero for
* nvme based vd and syspd.
*/
if (is_target_prop)
max_io_size_kb = le32_to_cpu(instance->tgt_prop->max_io_size_kb);
if (instance->nvme_page_size && max_io_size_kb)
megasas_set_nvme_device_properties(sdev, lim,
max_io_size_kb << 10);
megasas_set_fw_assisted_qd(sdev, is_target_prop);
}
static int megasas_device_configure(struct scsi_device *sdev,
struct queue_limits *lim)
{
u16 pd_index = 0;
struct megasas_instance *instance;
int ret_target_prop = DCMD_FAILED;
bool is_target_prop = false;
instance = megasas_lookup_instance(sdev->host->host_no);
if (instance->pd_list_not_supported) {
if (!MEGASAS_IS_LOGICAL(sdev) && sdev->type == TYPE_DISK) {
pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
sdev->id;
if (instance->pd_list[pd_index].driveState !=
MR_PD_STATE_SYSTEM)
return -ENXIO;
}
}
mutex_lock(&instance->reset_mutex);
/* Send DCMD to Firmware and cache the information */
if ((instance->pd_info) && !MEGASAS_IS_LOGICAL(sdev))
megasas_get_pd_info(instance, sdev);
/* Some ventura firmware may not have instance->nvme_page_size set.
* Do not send MR_DCMD_DRV_GET_TARGET_PROP
*/
if ((instance->tgt_prop) && (instance->nvme_page_size))
ret_target_prop = megasas_get_target_prop(instance, sdev);
is_target_prop = (ret_target_prop == DCMD_SUCCESS) ? true : false;
megasas_set_static_target_properties(sdev, lim, is_target_prop);
/* This sdev property may change post OCR */
megasas_set_dynamic_target_properties(sdev, lim, is_target_prop);
mutex_unlock(&instance->reset_mutex);
return 0;
}
static int megasas_slave_alloc(struct scsi_device *sdev)
{
u16 pd_index = 0, ld_tgt_id;
struct megasas_instance *instance ;
struct MR_PRIV_DEVICE *mr_device_priv_data;
instance = megasas_lookup_instance(sdev->host->host_no);
if (!MEGASAS_IS_LOGICAL(sdev)) {
/*
* Open the OS scan to the SYSTEM PD
*/
pd_index =
(sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
sdev->id;
if ((instance->pd_list_not_supported ||
instance->pd_list[pd_index].driveState ==
MR_PD_STATE_SYSTEM)) {
goto scan_target;
}
return -ENXIO;
} else if (!MEGASAS_IS_LUN_VALID(sdev)) {
sdev_printk(KERN_INFO, sdev, "%s: invalid LUN\n", __func__);
return -ENXIO;
}
scan_target:
mr_device_priv_data = kzalloc(sizeof(*mr_device_priv_data),
GFP_KERNEL);
if (!mr_device_priv_data)
return -ENOMEM;
if (MEGASAS_IS_LOGICAL(sdev)) {
ld_tgt_id = MEGASAS_TARGET_ID(sdev);
instance->ld_tgtid_status[ld_tgt_id] = LD_TARGET_ID_ACTIVE;
if (megasas_dbg_lvl & LD_PD_DEBUG)
sdev_printk(KERN_INFO, sdev, "LD target ID %d created.\n", ld_tgt_id);
}
sdev->hostdata = mr_device_priv_data;
atomic_set(&mr_device_priv_data->r1_ldio_hint,
instance->r1_ldio_hint_default);
return 0;
}
static void megasas_slave_destroy(struct scsi_device *sdev)
{
u16 ld_tgt_id;
struct megasas_instance *instance;
instance = megasas_lookup_instance(sdev->host->host_no);
if (MEGASAS_IS_LOGICAL(sdev)) {
if (!MEGASAS_IS_LUN_VALID(sdev)) {
sdev_printk(KERN_INFO, sdev, "%s: invalid LUN\n", __func__);
return;
}
ld_tgt_id = MEGASAS_TARGET_ID(sdev);
instance->ld_tgtid_status[ld_tgt_id] = LD_TARGET_ID_DELETED;
if (megasas_dbg_lvl & LD_PD_DEBUG)
sdev_printk(KERN_INFO, sdev,
"LD target ID %d removed from OS stack\n", ld_tgt_id);
}
kfree(sdev->hostdata);
sdev->hostdata = NULL;
}
/*
* megasas_complete_outstanding_ioctls - Complete outstanding ioctls after a
* kill adapter
* @instance: Adapter soft state
*
*/
static void megasas_complete_outstanding_ioctls(struct megasas_instance *instance)
{
int i;
struct megasas_cmd *cmd_mfi;
struct megasas_cmd_fusion *cmd_fusion;
struct fusion_context *fusion = instance->ctrl_context;
/* Find all outstanding ioctls */
if (fusion) {
for (i = 0; i < instance->max_fw_cmds; i++) {
cmd_fusion = fusion->cmd_list[i];
if (cmd_fusion->sync_cmd_idx != (u32)ULONG_MAX) {
cmd_mfi = instance->cmd_list[cmd_fusion->sync_cmd_idx];
if (cmd_mfi->sync_cmd &&
(cmd_mfi->frame->hdr.cmd != MFI_CMD_ABORT)) {
cmd_mfi->frame->hdr.cmd_status =
MFI_STAT_WRONG_STATE;
megasas_complete_cmd(instance,
cmd_mfi, DID_OK);
}
}
}
} else {
for (i = 0; i < instance->max_fw_cmds; i++) {
cmd_mfi = instance->cmd_list[i];
if (cmd_mfi->sync_cmd && cmd_mfi->frame->hdr.cmd !=
MFI_CMD_ABORT)
megasas_complete_cmd(instance, cmd_mfi, DID_OK);
}
}
}
void megaraid_sas_kill_hba(struct megasas_instance *instance)
{
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) {
dev_warn(&instance->pdev->dev,
"Adapter already dead, skipping kill HBA\n");
return;
}
/* Set critical error to block I/O & ioctls in case caller didn't */
atomic_set(&instance->adprecovery, MEGASAS_HW_CRITICAL_ERROR);
/* Wait 1 second to ensure IO or ioctls in build have posted */
msleep(1000);
if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->adapter_type != MFI_SERIES)) {
if (!instance->requestorId) {
writel(MFI_STOP_ADP, &instance->reg_set->doorbell);
/* Flush */
readl(&instance->reg_set->doorbell);
}
if (instance->requestorId && instance->peerIsPresent)
memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
} else {
writel(MFI_STOP_ADP,
&instance->reg_set->inbound_doorbell);
}
/* Complete outstanding ioctls when adapter is killed */
megasas_complete_outstanding_ioctls(instance);
}
/**
* megasas_check_and_restore_queue_depth - Check if queue depth needs to be
* restored to max value
* @instance: Adapter soft state
*
*/
void
megasas_check_and_restore_queue_depth(struct megasas_instance *instance)
{
unsigned long flags;
if (instance->flag & MEGASAS_FW_BUSY
&& time_after(jiffies, instance->last_time + 5 * HZ)
&& atomic_read(&instance->fw_outstanding) <
instance->throttlequeuedepth + 1) {
spin_lock_irqsave(instance->host->host_lock, flags);
instance->flag &= ~MEGASAS_FW_BUSY;
instance->host->can_queue = instance->cur_can_queue;
spin_unlock_irqrestore(instance->host->host_lock, flags);
}
}
/**
* megasas_complete_cmd_dpc - Returns FW's controller structure
* @instance_addr: Address of adapter soft state
*
* Tasklet to complete cmds
*/
static void megasas_complete_cmd_dpc(unsigned long instance_addr)
{
u32 producer;
u32 consumer;
u32 context;
struct megasas_cmd *cmd;
struct megasas_instance *instance =
(struct megasas_instance *)instance_addr;
unsigned long flags;
/* If we have already declared adapter dead, donot complete cmds */
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR)
return;
spin_lock_irqsave(&instance->completion_lock, flags);
producer = le32_to_cpu(*instance->producer);
consumer = le32_to_cpu(*instance->consumer);
while (consumer != producer) {
context = le32_to_cpu(instance->reply_queue[consumer]);
if (context >= instance->max_fw_cmds) {
dev_err(&instance->pdev->dev, "Unexpected context value %x\n",
context);
BUG();
}
cmd = instance->cmd_list[context];
megasas_complete_cmd(instance, cmd, DID_OK);
consumer++;
if (consumer == (instance->max_fw_cmds + 1)) {
consumer = 0;
}
}
*instance->consumer = cpu_to_le32(producer);
spin_unlock_irqrestore(&instance->completion_lock, flags);
/*
* Check if we can restore can_queue
*/
megasas_check_and_restore_queue_depth(instance);
}
static void megasas_sriov_heartbeat_handler(struct timer_list *t);
/**
* megasas_start_timer - Initializes sriov heartbeat timer object
* @instance: Adapter soft state
*
*/
void megasas_start_timer(struct megasas_instance *instance)
{
struct timer_list *timer = &instance->sriov_heartbeat_timer;
timer_setup(timer, megasas_sriov_heartbeat_handler, 0);
timer->expires = jiffies + MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF;
add_timer(timer);
}
static void
megasas_internal_reset_defer_cmds(struct megasas_instance *instance);
static void
process_fw_state_change_wq(struct work_struct *work);
static void megasas_do_ocr(struct megasas_instance *instance)
{
if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
(instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
*instance->consumer = cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN);
}
instance->instancet->disable_intr(instance);
atomic_set(&instance->adprecovery, MEGASAS_ADPRESET_SM_INFAULT);
instance->issuepend_done = 0;
atomic_set(&instance->fw_outstanding, 0);
megasas_internal_reset_defer_cmds(instance);
process_fw_state_change_wq(&instance->work_init);
}
static int megasas_get_ld_vf_affiliation_111(struct megasas_instance *instance,
int initial)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct MR_LD_VF_AFFILIATION_111 *new_affiliation_111 = NULL;
dma_addr_t new_affiliation_111_h;
int ld, retval = 0;
u8 thisVf;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "megasas_get_ld_vf_affiliation_111:"
"Failed to get cmd for scsi%d\n",
instance->host->host_no);
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
if (!instance->vf_affiliation_111) {
dev_warn(&instance->pdev->dev, "SR-IOV: Couldn't get LD/VF "
"affiliation for scsi%d\n", instance->host->host_no);
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
if (initial)
memset(instance->vf_affiliation_111, 0,
sizeof(struct MR_LD_VF_AFFILIATION_111));
else {
new_affiliation_111 =
dma_alloc_coherent(&instance->pdev->dev,
sizeof(struct MR_LD_VF_AFFILIATION_111),
&new_affiliation_111_h, GFP_KERNEL);
if (!new_affiliation_111) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "SR-IOV: Couldn't allocate "
"memory for new affiliation for scsi%d\n",
instance->host->host_no);
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
}
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = MFI_STAT_INVALID_STATUS;
dcmd->sge_count = 1;
dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_BOTH);
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len =
cpu_to_le32(sizeof(struct MR_LD_VF_AFFILIATION_111));
dcmd->opcode = cpu_to_le32(MR_DCMD_LD_VF_MAP_GET_ALL_LDS_111);
if (initial)
dcmd->sgl.sge32[0].phys_addr =
cpu_to_le32(instance->vf_affiliation_111_h);
else
dcmd->sgl.sge32[0].phys_addr =
cpu_to_le32(new_affiliation_111_h);
dcmd->sgl.sge32[0].length = cpu_to_le32(
sizeof(struct MR_LD_VF_AFFILIATION_111));
dev_warn(&instance->pdev->dev, "SR-IOV: Getting LD/VF affiliation for "
"scsi%d\n", instance->host->host_no);
if (megasas_issue_blocked_cmd(instance, cmd, 0) != DCMD_SUCCESS) {
dev_warn(&instance->pdev->dev, "SR-IOV: LD/VF affiliation DCMD"
" failed with status 0x%x for scsi%d\n",
dcmd->cmd_status, instance->host->host_no);
retval = 1; /* Do a scan if we couldn't get affiliation */
goto out;
}
if (!initial) {
thisVf = new_affiliation_111->thisVf;
for (ld = 0 ; ld < new_affiliation_111->vdCount; ld++)
if (instance->vf_affiliation_111->map[ld].policy[thisVf] !=
new_affiliation_111->map[ld].policy[thisVf]) {
dev_warn(&instance->pdev->dev, "SR-IOV: "
"Got new LD/VF affiliation for scsi%d\n",
instance->host->host_no);
memcpy(instance->vf_affiliation_111,
new_affiliation_111,
sizeof(struct MR_LD_VF_AFFILIATION_111));
retval = 1;
goto out;
}
}
out:
if (new_affiliation_111) {
dma_free_coherent(&instance->pdev->dev,
sizeof(struct MR_LD_VF_AFFILIATION_111),
new_affiliation_111,
new_affiliation_111_h);
}
megasas_return_cmd(instance, cmd);
return retval;
}
static int megasas_get_ld_vf_affiliation_12(struct megasas_instance *instance,
int initial)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct MR_LD_VF_AFFILIATION *new_affiliation = NULL;
struct MR_LD_VF_MAP *newmap = NULL, *savedmap = NULL;
dma_addr_t new_affiliation_h;
int i, j, retval = 0, found = 0, doscan = 0;
u8 thisVf;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "megasas_get_ld_vf_affiliation12: "
"Failed to get cmd for scsi%d\n",
instance->host->host_no);
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
if (!instance->vf_affiliation) {
dev_warn(&instance->pdev->dev, "SR-IOV: Couldn't get LD/VF "
"affiliation for scsi%d\n", instance->host->host_no);
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
if (initial)
memset(instance->vf_affiliation, 0, (MAX_LOGICAL_DRIVES + 1) *
sizeof(struct MR_LD_VF_AFFILIATION));
else {
new_affiliation =
dma_alloc_coherent(&instance->pdev->dev,
(MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION),
&new_affiliation_h, GFP_KERNEL);
if (!new_affiliation) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "SR-IOV: Couldn't allocate "
"memory for new affiliation for scsi%d\n",
instance->host->host_no);
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
}
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = MFI_STAT_INVALID_STATUS;
dcmd->sge_count = 1;
dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_BOTH);
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32((MAX_LOGICAL_DRIVES + 1) *
sizeof(struct MR_LD_VF_AFFILIATION));
dcmd->opcode = cpu_to_le32(MR_DCMD_LD_VF_MAP_GET_ALL_LDS);
if (initial)
dcmd->sgl.sge32[0].phys_addr =
cpu_to_le32(instance->vf_affiliation_h);
else
dcmd->sgl.sge32[0].phys_addr =
cpu_to_le32(new_affiliation_h);
dcmd->sgl.sge32[0].length = cpu_to_le32((MAX_LOGICAL_DRIVES + 1) *
sizeof(struct MR_LD_VF_AFFILIATION));
dev_warn(&instance->pdev->dev, "SR-IOV: Getting LD/VF affiliation for "
"scsi%d\n", instance->host->host_no);
if (megasas_issue_blocked_cmd(instance, cmd, 0) != DCMD_SUCCESS) {
dev_warn(&instance->pdev->dev, "SR-IOV: LD/VF affiliation DCMD"
" failed with status 0x%x for scsi%d\n",
dcmd->cmd_status, instance->host->host_no);
retval = 1; /* Do a scan if we couldn't get affiliation */
goto out;
}
if (!initial) {
if (!new_affiliation->ldCount) {
dev_warn(&instance->pdev->dev, "SR-IOV: Got new LD/VF "
"affiliation for passive path for scsi%d\n",
instance->host->host_no);
retval = 1;
goto out;
}
newmap = new_affiliation->map;
savedmap = instance->vf_affiliation->map;
thisVf = new_affiliation->thisVf;
for (i = 0 ; i < new_affiliation->ldCount; i++) {
found = 0;
for (j = 0; j < instance->vf_affiliation->ldCount;
j++) {
if (newmap->ref.targetId ==
savedmap->ref.targetId) {
found = 1;
if (newmap->policy[thisVf] !=
savedmap->policy[thisVf]) {
doscan = 1;
goto out;
}
}
savedmap = (struct MR_LD_VF_MAP *)
((unsigned char *)savedmap +
savedmap->size);
}
if (!found && newmap->policy[thisVf] !=
MR_LD_ACCESS_HIDDEN) {
doscan = 1;
goto out;
}
newmap = (struct MR_LD_VF_MAP *)
((unsigned char *)newmap + newmap->size);
}
newmap = new_affiliation->map;
savedmap = instance->vf_affiliation->map;
for (i = 0 ; i < instance->vf_affiliation->ldCount; i++) {
found = 0;
for (j = 0 ; j < new_affiliation->ldCount; j++) {
if (savedmap->ref.targetId ==
newmap->ref.targetId) {
found = 1;
if (savedmap->policy[thisVf] !=
newmap->policy[thisVf]) {
doscan = 1;
goto out;
}
}
newmap = (struct MR_LD_VF_MAP *)
((unsigned char *)newmap +
newmap->size);
}
if (!found && savedmap->policy[thisVf] !=
MR_LD_ACCESS_HIDDEN) {
doscan = 1;
goto out;
}
savedmap = (struct MR_LD_VF_MAP *)
((unsigned char *)savedmap +
savedmap->size);
}
}
out:
if (doscan) {
dev_warn(&instance->pdev->dev, "SR-IOV: Got new LD/VF "
"affiliation for scsi%d\n", instance->host->host_no);
memcpy(instance->vf_affiliation, new_affiliation,
new_affiliation->size);
retval = 1;
}
if (new_affiliation)
dma_free_coherent(&instance->pdev->dev,
(MAX_LOGICAL_DRIVES + 1) *
sizeof(struct MR_LD_VF_AFFILIATION),
new_affiliation, new_affiliation_h);
megasas_return_cmd(instance, cmd);
return retval;
}
/* This function will get the current SR-IOV LD/VF affiliation */
static int megasas_get_ld_vf_affiliation(struct megasas_instance *instance,
int initial)
{
int retval;
if (instance->PlasmaFW111)
retval = megasas_get_ld_vf_affiliation_111(instance, initial);
else
retval = megasas_get_ld_vf_affiliation_12(instance, initial);
return retval;
}
/* This function will tell FW to start the SR-IOV heartbeat */
int megasas_sriov_start_heartbeat(struct megasas_instance *instance,
int initial)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
int retval = 0;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "megasas_sriov_start_heartbeat: "
"Failed to get cmd for scsi%d\n",
instance->host->host_no);
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
if (initial) {
instance->hb_host_mem =
dma_alloc_coherent(&instance->pdev->dev,
sizeof(struct MR_CTRL_HB_HOST_MEM),
&instance->hb_host_mem_h,
GFP_KERNEL);
if (!instance->hb_host_mem) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "SR-IOV: Couldn't allocate"
" memory for heartbeat host memory for scsi%d\n",
instance->host->host_no);
retval = -ENOMEM;
goto out;
}
}
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->mbox.s[0] = cpu_to_le16(sizeof(struct MR_CTRL_HB_HOST_MEM));
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = MFI_STAT_INVALID_STATUS;
dcmd->sge_count = 1;
dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_BOTH);
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_CTRL_HB_HOST_MEM));
dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_SHARED_HOST_MEM_ALLOC);
megasas_set_dma_settings(instance, dcmd, instance->hb_host_mem_h,
sizeof(struct MR_CTRL_HB_HOST_MEM));
dev_warn(&instance->pdev->dev, "SR-IOV: Starting heartbeat for scsi%d\n",
instance->host->host_no);
if ((instance->adapter_type != MFI_SERIES) &&
!instance->mask_interrupts)
retval = megasas_issue_blocked_cmd(instance, cmd,
MEGASAS_ROUTINE_WAIT_TIME_VF);
else
retval = megasas_issue_polled(instance, cmd);
if (retval) {
dev_warn(&instance->pdev->dev, "SR-IOV: MR_DCMD_CTRL_SHARED_HOST"
"_MEM_ALLOC DCMD %s for scsi%d\n",
(dcmd->cmd_status == MFI_STAT_INVALID_STATUS) ?
"timed out" : "failed", instance->host->host_no);
retval = 1;
}
out:
megasas_return_cmd(instance, cmd);
return retval;
}
/* Handler for SR-IOV heartbeat */
static void megasas_sriov_heartbeat_handler(struct timer_list *t)
{
struct megasas_instance *instance =
from_timer(instance, t, sriov_heartbeat_timer);
if (instance->hb_host_mem->HB.fwCounter !=
instance->hb_host_mem->HB.driverCounter) {
instance->hb_host_mem->HB.driverCounter =
instance->hb_host_mem->HB.fwCounter;
mod_timer(&instance->sriov_heartbeat_timer,
jiffies + MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF);
} else {
dev_warn(&instance->pdev->dev, "SR-IOV: Heartbeat never "
"completed for scsi%d\n", instance->host->host_no);
schedule_work(&instance->work_init);
}
}
/**
* megasas_wait_for_outstanding - Wait for all outstanding cmds
* @instance: Adapter soft state
*
* This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to
* complete all its outstanding commands. Returns error if one or more IOs
* are pending after this time period. It also marks the controller dead.
*/
static int megasas_wait_for_outstanding(struct megasas_instance *instance)
{
int i, sl, outstanding;
u32 reset_index;
u32 wait_time = MEGASAS_RESET_WAIT_TIME;
unsigned long flags;
struct list_head clist_local;
struct megasas_cmd *reset_cmd;
u32 fw_state;
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) {
dev_info(&instance->pdev->dev, "%s:%d HBA is killed.\n",
__func__, __LINE__);
return FAILED;
}
if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) {
INIT_LIST_HEAD(&clist_local);
spin_lock_irqsave(&instance->hba_lock, flags);
list_splice_init(&instance->internal_reset_pending_q,
&clist_local);
spin_unlock_irqrestore(&instance->hba_lock, flags);
dev_notice(&instance->pdev->dev, "HBA reset wait ...\n");
for (i = 0; i < wait_time; i++) {
msleep(1000);
if (atomic_read(&instance->adprecovery) == MEGASAS_HBA_OPERATIONAL)
break;
}
if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) {
dev_notice(&instance->pdev->dev, "reset: Stopping HBA.\n");
atomic_set(&instance->adprecovery, MEGASAS_HW_CRITICAL_ERROR);
return FAILED;
}
reset_index = 0;
while (!list_empty(&clist_local)) {
reset_cmd = list_entry((&clist_local)->next,
struct megasas_cmd, list);
list_del_init(&reset_cmd->list);
if (reset_cmd->scmd) {
reset_cmd->scmd->result = DID_REQUEUE << 16;
dev_notice(&instance->pdev->dev, "%d:%p reset [%02x]\n",
reset_index, reset_cmd,
reset_cmd->scmd->cmnd[0]);
scsi_done(reset_cmd->scmd);
megasas_return_cmd(instance, reset_cmd);
} else if (reset_cmd->sync_cmd) {
dev_notice(&instance->pdev->dev, "%p synch cmds"
"reset queue\n",
reset_cmd);
reset_cmd->cmd_status_drv = DCMD_INIT;
instance->instancet->fire_cmd(instance,
reset_cmd->frame_phys_addr,
0, instance->reg_set);
} else {
dev_notice(&instance->pdev->dev, "%p unexpected"
"cmds lst\n",
reset_cmd);
}
reset_index++;
}
return SUCCESS;
}
for (i = 0; i < resetwaittime; i++) {
outstanding = atomic_read(&instance->fw_outstanding);
if (!outstanding)
break;
if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
dev_notice(&instance->pdev->dev, "[%2d]waiting for %d "
"commands to complete\n",i,outstanding);
/*
* Call cmd completion routine. Cmd to be
* be completed directly without depending on isr.
*/
megasas_complete_cmd_dpc((unsigned long)instance);
}
msleep(1000);
}
i = 0;
outstanding = atomic_read(&instance->fw_outstanding);
fw_state = instance->instancet->read_fw_status_reg(instance) & MFI_STATE_MASK;
if ((!outstanding && (fw_state == MFI_STATE_OPERATIONAL)))
goto no_outstanding;
if (instance->disableOnlineCtrlReset)
goto kill_hba_and_failed;
do {
if ((fw_state == MFI_STATE_FAULT) || atomic_read(&instance->fw_outstanding)) {
dev_info(&instance->pdev->dev,
"%s:%d waiting_for_outstanding: before issue OCR. FW state = 0x%x, outstanding 0x%x\n",
__func__, __LINE__, fw_state, atomic_read(&instance->fw_outstanding));
if (i == 3)
goto kill_hba_and_failed;
megasas_do_ocr(instance);
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) {
dev_info(&instance->pdev->dev, "%s:%d OCR failed and HBA is killed.\n",
__func__, __LINE__);
return FAILED;
}
dev_info(&instance->pdev->dev, "%s:%d waiting_for_outstanding: after issue OCR.\n",
__func__, __LINE__);
for (sl = 0; sl < 10; sl++)
msleep(500);
outstanding = atomic_read(&instance->fw_outstanding);
fw_state = instance->instancet->read_fw_status_reg(instance) & MFI_STATE_MASK;
if ((!outstanding && (fw_state == MFI_STATE_OPERATIONAL)))
goto no_outstanding;
}
i++;
} while (i <= 3);
no_outstanding:
dev_info(&instance->pdev->dev, "%s:%d no more pending commands remain after reset handling.\n",
__func__, __LINE__);
return SUCCESS;
kill_hba_and_failed:
/* Reset not supported, kill adapter */
dev_info(&instance->pdev->dev, "%s:%d killing adapter scsi%d"
" disableOnlineCtrlReset %d fw_outstanding %d \n",
__func__, __LINE__, instance->host->host_no, instance->disableOnlineCtrlReset,
atomic_read(&instance->fw_outstanding));
megasas_dump_pending_frames(instance);
megaraid_sas_kill_hba(instance);
return FAILED;
}
/**
* megasas_generic_reset - Generic reset routine
* @scmd: Mid-layer SCSI command
*
* This routine implements a generic reset handler for device, bus and host
* reset requests. Device, bus and host specific reset handlers can use this
* function after they do their specific tasks.
*/
static int megasas_generic_reset(struct scsi_cmnd *scmd)
{
int ret_val;
struct megasas_instance *instance;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n",
scmd->cmnd[0], scmd->retries);
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) {
dev_err(&instance->pdev->dev, "cannot recover from previous reset failures\n");
return FAILED;
}
ret_val = megasas_wait_for_outstanding(instance);
if (ret_val == SUCCESS)
dev_notice(&instance->pdev->dev, "reset successful\n");
else
dev_err(&instance->pdev->dev, "failed to do reset\n");
return ret_val;
}
/**
* megasas_reset_timer - quiesce the adapter if required
* @scmd: scsi cmnd
*
* Sets the FW busy flag and reduces the host->can_queue if the
* cmd has not been completed within the timeout period.
*/
static enum scsi_timeout_action megasas_reset_timer(struct scsi_cmnd *scmd)
{
struct megasas_instance *instance;
unsigned long flags;
if (time_after(jiffies, scmd->jiffies_at_alloc +
(scmd_timeout * 2) * HZ)) {
return SCSI_EH_NOT_HANDLED;
}
instance = (struct megasas_instance *)scmd->device->host->hostdata;
if (!(instance->flag & MEGASAS_FW_BUSY)) {
/* FW is busy, throttle IO */
spin_lock_irqsave(instance->host->host_lock, flags);
instance->host->can_queue = instance->throttlequeuedepth;
instance->last_time = jiffies;
instance->flag |= MEGASAS_FW_BUSY;
spin_unlock_irqrestore(instance->host->host_lock, flags);
}
return SCSI_EH_RESET_TIMER;
}
/**
* megasas_dump - This function will print hexdump of provided buffer.
* @buf: Buffer to be dumped
* @sz: Size in bytes
* @format: Different formats of dumping e.g. format=n will
* cause only 'n' 32 bit words to be dumped in a single
* line.
*/
inline void
megasas_dump(void *buf, int sz, int format)
{
int i;
__le32 *buf_loc = (__le32 *)buf;
for (i = 0; i < (sz / sizeof(__le32)); i++) {
if ((i % format) == 0) {
if (i != 0)
printk(KERN_CONT "\n");
printk(KERN_CONT "%08x: ", (i * 4));
}
printk(KERN_CONT "%08x ", le32_to_cpu(buf_loc[i]));
}
printk(KERN_CONT "\n");
}
/**
* megasas_dump_reg_set - This function will print hexdump of register set
* @reg_set: Register set to be dumped
*/
inline void
megasas_dump_reg_set(void __iomem *reg_set)
{
unsigned int i, sz = 256;
u32 __iomem *reg = (u32 __iomem *)reg_set;
for (i = 0; i < (sz / sizeof(u32)); i++)
printk("%08x: %08x\n", (i * 4), readl(®[i]));
}
/**
* megasas_dump_fusion_io - This function will print key details
* of SCSI IO
* @scmd: SCSI command pointer of SCSI IO
*/
void
megasas_dump_fusion_io(struct scsi_cmnd *scmd)
{
struct megasas_cmd_fusion *cmd = megasas_priv(scmd)->cmd_priv;
union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc;
struct megasas_instance *instance;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
scmd_printk(KERN_INFO, scmd,
"scmd: (0x%p) retries: 0x%x allowed: 0x%x\n",
scmd, scmd->retries, scmd->allowed);
scsi_print_command(scmd);
if (cmd) {
req_desc = (union MEGASAS_REQUEST_DESCRIPTOR_UNION *)cmd->request_desc;
scmd_printk(KERN_INFO, scmd, "Request descriptor details:\n");
scmd_printk(KERN_INFO, scmd,
"RequestFlags:0x%x MSIxIndex:0x%x SMID:0x%x LMID:0x%x DevHandle:0x%x\n",
req_desc->SCSIIO.RequestFlags,
req_desc->SCSIIO.MSIxIndex, req_desc->SCSIIO.SMID,
req_desc->SCSIIO.LMID, req_desc->SCSIIO.DevHandle);
printk(KERN_INFO "IO request frame:\n");
megasas_dump(cmd->io_request,
MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE, 8);
printk(KERN_INFO "Chain frame:\n");
megasas_dump(cmd->sg_frame,
instance->max_chain_frame_sz, 8);
}
}
/*
* megasas_dump_sys_regs - This function will dump system registers through
* sysfs.
* @reg_set: Pointer to System register set.
* @buf: Buffer to which output is to be written.
* @return: Number of bytes written to buffer.
*/
static inline ssize_t
megasas_dump_sys_regs(void __iomem *reg_set, char *buf)
{
unsigned int i, sz = 256;
int bytes_wrote = 0;
char *loc = (char *)buf;
u32 __iomem *reg = (u32 __iomem *)reg_set;
for (i = 0; i < sz / sizeof(u32); i++) {
bytes_wrote += scnprintf(loc + bytes_wrote,
PAGE_SIZE - bytes_wrote,
"%08x: %08x\n", (i * 4),
readl(®[i]));
}
return bytes_wrote;
}
/**
* megasas_reset_bus_host - Bus & host reset handler entry point
* @scmd: Mid-layer SCSI command
*/
static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
{
int ret;
struct megasas_instance *instance;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
scmd_printk(KERN_INFO, scmd,
"OCR is requested due to IO timeout!!\n");
scmd_printk(KERN_INFO, scmd,
"SCSI host state: %d SCSI host busy: %d FW outstanding: %d\n",
scmd->device->host->shost_state,
scsi_host_busy(scmd->device->host),
atomic_read(&instance->fw_outstanding));
/*
* First wait for all commands to complete
*/
if (instance->adapter_type == MFI_SERIES) {
ret = megasas_generic_reset(scmd);
} else {
megasas_dump_fusion_io(scmd);
ret = megasas_reset_fusion(scmd->device->host,
SCSIIO_TIMEOUT_OCR);
}
return ret;
}
/**
* megasas_task_abort - Issues task abort request to firmware
* (supported only for fusion adapters)
* @scmd: SCSI command pointer
*/
static int megasas_task_abort(struct scsi_cmnd *scmd)
{
int ret;
struct megasas_instance *instance;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
if (instance->adapter_type != MFI_SERIES)
ret = megasas_task_abort_fusion(scmd);
else {
sdev_printk(KERN_NOTICE, scmd->device, "TASK ABORT not supported\n");
ret = FAILED;
}
return ret;
}
/**
* megasas_reset_target: Issues target reset request to firmware
* (supported only for fusion adapters)
* @scmd: SCSI command pointer
*/
static int megasas_reset_target(struct scsi_cmnd *scmd)
{
int ret;
struct megasas_instance *instance;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
if (instance->adapter_type != MFI_SERIES)
ret = megasas_reset_target_fusion(scmd);
else {
sdev_printk(KERN_NOTICE, scmd->device, "TARGET RESET not supported\n");
ret = FAILED;
}
return ret;
}
/**
* megasas_bios_param - Returns disk geometry for a disk
* @sdev: device handle
* @bdev: block device
* @capacity: drive capacity
* @geom: geometry parameters
*/
static int
megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
sector_t capacity, int geom[])
{
int heads;
int sectors;
sector_t cylinders;
unsigned long tmp;
/* Default heads (64) & sectors (32) */
heads = 64;
sectors = 32;
tmp = heads * sectors;
cylinders = capacity;
sector_div(cylinders, tmp);
/*
* Handle extended translation size for logical drives > 1Gb
*/
if (capacity >= 0x200000) {
heads = 255;
sectors = 63;
tmp = heads*sectors;
cylinders = capacity;
sector_div(cylinders, tmp);
}
geom[0] = heads;
geom[1] = sectors;
geom[2] = cylinders;
return 0;
}
static void megasas_map_queues(struct Scsi_Host *shost)
{
struct megasas_instance *instance;
int qoff = 0, offset;
struct blk_mq_queue_map *map;
instance = (struct megasas_instance *)shost->hostdata;
if (shost->nr_hw_queues == 1)
return;
offset = instance->low_latency_index_start;
/* Setup Default hctx */
map = &shost->tag_set.map[HCTX_TYPE_DEFAULT];
map->nr_queues = instance->msix_vectors - offset;
map->queue_offset = 0;
blk_mq_pci_map_queues(map, instance->pdev, offset);
qoff += map->nr_queues;
offset += map->nr_queues;
/* we never use READ queue, so can't cheat blk-mq */
shost->tag_set.map[HCTX_TYPE_READ].nr_queues = 0;
/* Setup Poll hctx */
map = &shost->tag_set.map[HCTX_TYPE_POLL];
map->nr_queues = instance->iopoll_q_count;
if (map->nr_queues) {
/*
* The poll queue(s) doesn't have an IRQ (and hence IRQ
* affinity), so use the regular blk-mq cpu mapping
*/
map->queue_offset = qoff;
blk_mq_map_queues(map);
}
}
static void megasas_aen_polling(struct work_struct *work);
/**
* megasas_service_aen - Processes an event notification
* @instance: Adapter soft state
* @cmd: AEN command completed by the ISR
*
* For AEN, driver sends a command down to FW that is held by the FW till an
* event occurs. When an event of interest occurs, FW completes the command
* that it was previously holding.
*
* This routines sends SIGIO signal to processes that have registered with the
* driver for AEN.
*/
static void
megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
unsigned long flags;
/*
* Don't signal app if it is just an aborted previously registered aen
*/
if ((!cmd->abort_aen) && (instance->unload == 0)) {
spin_lock_irqsave(&poll_aen_lock, flags);
megasas_poll_wait_aen = 1;
spin_unlock_irqrestore(&poll_aen_lock, flags);
wake_up(&megasas_poll_wait);
kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
}
else
cmd->abort_aen = 0;
instance->aen_cmd = NULL;
megasas_return_cmd(instance, cmd);
if ((instance->unload == 0) &&
((instance->issuepend_done == 1))) {
struct megasas_aen_event *ev;
ev = kzalloc(sizeof(*ev), GFP_ATOMIC);
if (!ev) {
dev_err(&instance->pdev->dev, "megasas_service_aen: out of memory\n");
} else {
ev->instance = instance;
instance->ev = ev;
INIT_DELAYED_WORK(&ev->hotplug_work,
megasas_aen_polling);
schedule_delayed_work(&ev->hotplug_work, 0);
}
}
}
static ssize_t
fw_crash_buffer_store(struct device *cdev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct megasas_instance *instance =
(struct megasas_instance *) shost->hostdata;
int val = 0;
if (kstrtoint(buf, 0, &val) != 0)
return -EINVAL;
mutex_lock(&instance->crashdump_lock);
instance->fw_crash_buffer_offset = val;
mutex_unlock(&instance->crashdump_lock);
return strlen(buf);
}
static ssize_t
fw_crash_buffer_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct megasas_instance *instance =
(struct megasas_instance *) shost->hostdata;
u32 size;
unsigned long dmachunk = CRASH_DMA_BUF_SIZE;
unsigned long chunk_left_bytes;
unsigned long src_addr;
u32 buff_offset;
mutex_lock(&instance->crashdump_lock);
buff_offset = instance->fw_crash_buffer_offset;
if (!instance->crash_dump_buf ||
!((instance->fw_crash_state == AVAILABLE) ||
(instance->fw_crash_state == COPYING))) {
dev_err(&instance->pdev->dev,
"Firmware crash dump is not available\n");
mutex_unlock(&instance->crashdump_lock);
return -EINVAL;
}
if (buff_offset > (instance->fw_crash_buffer_size * dmachunk)) {
dev_err(&instance->pdev->dev,
"Firmware crash dump offset is out of range\n");
mutex_unlock(&instance->crashdump_lock);
return 0;
}
size = (instance->fw_crash_buffer_size * dmachunk) - buff_offset;
chunk_left_bytes = dmachunk - (buff_offset % dmachunk);
size = (size > chunk_left_bytes) ? chunk_left_bytes : size;
size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size;
src_addr = (unsigned long)instance->crash_buf[buff_offset / dmachunk] +
(buff_offset % dmachunk);
memcpy(buf, (void *)src_addr, size);
mutex_unlock(&instance->crashdump_lock);
return size;
}
static ssize_t
fw_crash_buffer_size_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct megasas_instance *instance =
(struct megasas_instance *) shost->hostdata;
return snprintf(buf, PAGE_SIZE, "%ld\n", (unsigned long)
((instance->fw_crash_buffer_size) * 1024 * 1024)/PAGE_SIZE);
}
static ssize_t
fw_crash_state_store(struct device *cdev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct megasas_instance *instance =
(struct megasas_instance *) shost->hostdata;
int val = 0;
if (kstrtoint(buf, 0, &val) != 0)
return -EINVAL;
if ((val <= AVAILABLE || val > COPY_ERROR)) {
dev_err(&instance->pdev->dev, "application updates invalid "
"firmware crash state\n");
return -EINVAL;
}
instance->fw_crash_state = val;
if ((val == COPIED) || (val == COPY_ERROR)) {
mutex_lock(&instance->crashdump_lock);
megasas_free_host_crash_buffer(instance);
mutex_unlock(&instance->crashdump_lock);
if (val == COPY_ERROR)
dev_info(&instance->pdev->dev, "application failed to "
"copy Firmware crash dump\n");
else
dev_info(&instance->pdev->dev, "Firmware crash dump "
"copied successfully\n");
}
return strlen(buf);
}
static ssize_t
fw_crash_state_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct megasas_instance *instance =
(struct megasas_instance *) shost->hostdata;
return snprintf(buf, PAGE_SIZE, "%d\n", instance->fw_crash_state);
}
static ssize_t
page_size_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%ld\n", (unsigned long)PAGE_SIZE - 1);
}
static ssize_t
ldio_outstanding_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct megasas_instance *instance = (struct megasas_instance *)shost->hostdata;
return snprintf(buf, PAGE_SIZE, "%d\n", atomic_read(&instance->ldio_outstanding));
}
static ssize_t
fw_cmds_outstanding_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct megasas_instance *instance = (struct megasas_instance *)shost->hostdata;
return snprintf(buf, PAGE_SIZE, "%d\n", atomic_read(&instance->fw_outstanding));
}
static ssize_t
enable_sdev_max_qd_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct megasas_instance *instance = (struct megasas_instance *)shost->hostdata;
return snprintf(buf, PAGE_SIZE, "%d\n", instance->enable_sdev_max_qd);
}
static ssize_t
enable_sdev_max_qd_store(struct device *cdev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct megasas_instance *instance = (struct megasas_instance *)shost->hostdata;
u32 val = 0;
bool is_target_prop;
int ret_target_prop = DCMD_FAILED;
struct scsi_device *sdev;
if (kstrtou32(buf, 0, &val) != 0) {
pr_err("megasas: could not set enable_sdev_max_qd\n");
return -EINVAL;
}
mutex_lock(&instance->reset_mutex);
if (val)
instance->enable_sdev_max_qd = true;
else
instance->enable_sdev_max_qd = false;
shost_for_each_device(sdev, shost) {
ret_target_prop = megasas_get_target_prop(instance, sdev);
is_target_prop = (ret_target_prop == DCMD_SUCCESS) ? true : false;
megasas_set_fw_assisted_qd(sdev, is_target_prop);
}
mutex_unlock(&instance->reset_mutex);
return strlen(buf);
}
static ssize_t
dump_system_regs_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct megasas_instance *instance =
(struct megasas_instance *)shost->hostdata;
return megasas_dump_sys_regs(instance->reg_set, buf);
}
static ssize_t
raid_map_id_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct megasas_instance *instance =
(struct megasas_instance *)shost->hostdata;
return snprintf(buf, PAGE_SIZE, "%ld\n",
(unsigned long)instance->map_id);
}
static DEVICE_ATTR_RW(fw_crash_buffer);
static DEVICE_ATTR_RO(fw_crash_buffer_size);
static DEVICE_ATTR_RW(fw_crash_state);
static DEVICE_ATTR_RO(page_size);
static DEVICE_ATTR_RO(ldio_outstanding);
static DEVICE_ATTR_RO(fw_cmds_outstanding);
static DEVICE_ATTR_RW(enable_sdev_max_qd);
static DEVICE_ATTR_RO(dump_system_regs);
static DEVICE_ATTR_RO(raid_map_id);
static struct attribute *megaraid_host_attrs[] = {
&dev_attr_fw_crash_buffer_size.attr,
&dev_attr_fw_crash_buffer.attr,
&dev_attr_fw_crash_state.attr,
&dev_attr_page_size.attr,
&dev_attr_ldio_outstanding.attr,
&dev_attr_fw_cmds_outstanding.attr,
&dev_attr_enable_sdev_max_qd.attr,
&dev_attr_dump_system_regs.attr,
&dev_attr_raid_map_id.attr,
NULL,
};
ATTRIBUTE_GROUPS(megaraid_host);
/*
* Scsi host template for megaraid_sas driver
*/
static const struct scsi_host_template megasas_template = {
.module = THIS_MODULE,
.name = "Avago SAS based MegaRAID driver",
.proc_name = "megaraid_sas",
.device_configure = megasas_device_configure,
.slave_alloc = megasas_slave_alloc,
.slave_destroy = megasas_slave_destroy,
.queuecommand = megasas_queue_command,
.eh_target_reset_handler = megasas_reset_target,
.eh_abort_handler = megasas_task_abort,
.eh_host_reset_handler = megasas_reset_bus_host,
.eh_timed_out = megasas_reset_timer,
.shost_groups = megaraid_host_groups,
.bios_param = megasas_bios_param,
.map_queues = megasas_map_queues,
.mq_poll = megasas_blk_mq_poll,
.change_queue_depth = scsi_change_queue_depth,
.max_segment_size = 0xffffffff,
.cmd_size = sizeof(struct megasas_cmd_priv),
};
/**
* megasas_complete_int_cmd - Completes an internal command
* @instance: Adapter soft state
* @cmd: Command to be completed
*
* The megasas_issue_blocked_cmd() function waits for a command to complete
* after it issues a command. This function wakes up that waiting routine by
* calling wake_up() on the wait queue.
*/
static void
megasas_complete_int_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
if (cmd->cmd_status_drv == DCMD_INIT)
cmd->cmd_status_drv =
(cmd->frame->io.cmd_status == MFI_STAT_OK) ?
DCMD_SUCCESS : DCMD_FAILED;
wake_up(&instance->int_cmd_wait_q);
}
/**
* megasas_complete_abort - Completes aborting a command
* @instance: Adapter soft state
* @cmd: Cmd that was issued to abort another cmd
*
* The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
* after it issues an abort on a previously issued command. This function
* wakes up all functions waiting on the same wait queue.
*/
static void
megasas_complete_abort(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
if (cmd->sync_cmd) {
cmd->sync_cmd = 0;
cmd->cmd_status_drv = DCMD_SUCCESS;
wake_up(&instance->abort_cmd_wait_q);
}
}
static void
megasas_set_ld_removed_by_fw(struct megasas_instance *instance)
{
uint i;
for (i = 0; (i < MEGASAS_MAX_LD_IDS); i++) {
if (instance->ld_ids_prev[i] != 0xff &&
instance->ld_ids_from_raidmap[i] == 0xff) {
if (megasas_dbg_lvl & LD_PD_DEBUG)
dev_info(&instance->pdev->dev,
"LD target ID %d removed from RAID map\n", i);
instance->ld_tgtid_status[i] = LD_TARGET_ID_DELETED;
}
}
}
/**
* megasas_complete_cmd - Completes a command
* @instance: Adapter soft state
* @cmd: Command to be completed
* @alt_status: If non-zero, use this value as status to
* SCSI mid-layer instead of the value returned
* by the FW. This should be used if caller wants
* an alternate status (as in the case of aborted
* commands)
*/
void
megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
u8 alt_status)
{
int exception = 0;
struct megasas_header *hdr = &cmd->frame->hdr;
unsigned long flags;
struct fusion_context *fusion = instance->ctrl_context;
u32 opcode, status;
/* flag for the retry reset */
cmd->retry_for_fw_reset = 0;
if (cmd->scmd)
megasas_priv(cmd->scmd)->cmd_priv = NULL;
switch (hdr->cmd) {
case MFI_CMD_INVALID:
/* Some older 1068 controller FW may keep a pended
MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel
when booting the kdump kernel. Ignore this command to
prevent a kernel panic on shutdown of the kdump kernel. */
dev_warn(&instance->pdev->dev, "MFI_CMD_INVALID command "
"completed\n");
dev_warn(&instance->pdev->dev, "If you have a controller "
"other than PERC5, please upgrade your firmware\n");
break;
case MFI_CMD_PD_SCSI_IO:
case MFI_CMD_LD_SCSI_IO:
/*
* MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
* issued either through an IO path or an IOCTL path. If it
* was via IOCTL, we will send it to internal completion.
*/
if (cmd->sync_cmd) {
cmd->sync_cmd = 0;
megasas_complete_int_cmd(instance, cmd);
break;
}
fallthrough;
case MFI_CMD_LD_READ:
case MFI_CMD_LD_WRITE:
if (alt_status) {
cmd->scmd->result = alt_status << 16;
exception = 1;
}
if (exception) {
atomic_dec(&instance->fw_outstanding);
scsi_dma_unmap(cmd->scmd);
scsi_done(cmd->scmd);
megasas_return_cmd(instance, cmd);
break;
}
switch (hdr->cmd_status) {
case MFI_STAT_OK:
cmd->scmd->result = DID_OK << 16;
break;
case MFI_STAT_SCSI_IO_FAILED:
case MFI_STAT_LD_INIT_IN_PROGRESS:
cmd->scmd->result =
(DID_ERROR << 16) | hdr->scsi_status;
break;
case MFI_STAT_SCSI_DONE_WITH_ERROR:
cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
memset(cmd->scmd->sense_buffer, 0,
SCSI_SENSE_BUFFERSIZE);
memcpy(cmd->scmd->sense_buffer, cmd->sense,
hdr->sense_len);
}
break;
case MFI_STAT_LD_OFFLINE:
case MFI_STAT_DEVICE_NOT_FOUND:
cmd->scmd->result = DID_BAD_TARGET << 16;
break;
default:
dev_printk(KERN_DEBUG, &instance->pdev->dev, "MFI FW status %#x\n",
hdr->cmd_status);
cmd->scmd->result = DID_ERROR << 16;
break;
}
atomic_dec(&instance->fw_outstanding);
scsi_dma_unmap(cmd->scmd);
scsi_done(cmd->scmd);
megasas_return_cmd(instance, cmd);
break;
case MFI_CMD_SMP:
case MFI_CMD_STP:
case MFI_CMD_NVME:
case MFI_CMD_TOOLBOX:
megasas_complete_int_cmd(instance, cmd);
break;
case MFI_CMD_DCMD:
opcode = le32_to_cpu(cmd->frame->dcmd.opcode);
/* Check for LD map update */
if ((opcode == MR_DCMD_LD_MAP_GET_INFO)
&& (cmd->frame->dcmd.mbox.b[1] == 1)) {
fusion->fast_path_io = 0;
spin_lock_irqsave(instance->host->host_lock, flags);
status = cmd->frame->hdr.cmd_status;
instance->map_update_cmd = NULL;
if (status != MFI_STAT_OK) {
if (status != MFI_STAT_NOT_FOUND)
dev_warn(&instance->pdev->dev, "map syncfailed, status = 0x%x\n",
cmd->frame->hdr.cmd_status);
else {
megasas_return_cmd(instance, cmd);
spin_unlock_irqrestore(
instance->host->host_lock,
flags);
break;
}
}
megasas_return_cmd(instance, cmd);
/*
* Set fast path IO to ZERO.
* Validate Map will set proper value.
* Meanwhile all IOs will go as LD IO.
*/
if (status == MFI_STAT_OK &&
(MR_ValidateMapInfo(instance, (instance->map_id + 1)))) {
instance->map_id++;
fusion->fast_path_io = 1;
} else {
fusion->fast_path_io = 0;
}
if (instance->adapter_type >= INVADER_SERIES)
megasas_set_ld_removed_by_fw(instance);
megasas_sync_map_info(instance);
spin_unlock_irqrestore(instance->host->host_lock,
flags);
break;
}
if (opcode == MR_DCMD_CTRL_EVENT_GET_INFO ||
opcode == MR_DCMD_CTRL_EVENT_GET) {
spin_lock_irqsave(&poll_aen_lock, flags);
megasas_poll_wait_aen = 0;
spin_unlock_irqrestore(&poll_aen_lock, flags);
}
/* FW has an updated PD sequence */
if ((opcode == MR_DCMD_SYSTEM_PD_MAP_GET_INFO) &&
(cmd->frame->dcmd.mbox.b[0] == 1)) {
spin_lock_irqsave(instance->host->host_lock, flags);
status = cmd->frame->hdr.cmd_status;
instance->jbod_seq_cmd = NULL;
megasas_return_cmd(instance, cmd);
if (status == MFI_STAT_OK) {
instance->pd_seq_map_id++;
/* Re-register a pd sync seq num cmd */
if (megasas_sync_pd_seq_num(instance, true))
instance->use_seqnum_jbod_fp = false;
} else
instance->use_seqnum_jbod_fp = false;
spin_unlock_irqrestore(instance->host->host_lock, flags);
break;
}
/*
* See if got an event notification
*/
if (opcode == MR_DCMD_CTRL_EVENT_WAIT)
megasas_service_aen(instance, cmd);
else
megasas_complete_int_cmd(instance, cmd);
break;
case MFI_CMD_ABORT:
/*
* Cmd issued to abort another cmd returned
*/
megasas_complete_abort(instance, cmd);
break;
default:
dev_info(&instance->pdev->dev, "Unknown command completed! [0x%X]\n",
hdr->cmd);
megasas_complete_int_cmd(instance, cmd);
break;
}
}
/**
* megasas_issue_pending_cmds_again - issue all pending cmds
* in FW again because of the fw reset
* @instance: Adapter soft state
*/
static inline void
megasas_issue_pending_cmds_again(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
struct list_head clist_local;
union megasas_evt_class_locale class_locale;
unsigned long flags;
u32 seq_num;
INIT_LIST_HEAD(&clist_local);
spin_lock_irqsave(&instance->hba_lock, flags);
list_splice_init(&instance->internal_reset_pending_q, &clist_local);
spin_unlock_irqrestore(&instance->hba_lock, flags);
while (!list_empty(&clist_local)) {
cmd = list_entry((&clist_local)->next,
struct megasas_cmd, list);
list_del_init(&cmd->list);
if (cmd->sync_cmd || cmd->scmd) {
dev_notice(&instance->pdev->dev, "command %p, %p:%d"
"detected to be pending while HBA reset\n",
cmd, cmd->scmd, cmd->sync_cmd);
cmd->retry_for_fw_reset++;
if (cmd->retry_for_fw_reset == 3) {
dev_notice(&instance->pdev->dev, "cmd %p, %p:%d"
"was tried multiple times during reset."
"Shutting down the HBA\n",
cmd, cmd->scmd, cmd->sync_cmd);
instance->instancet->disable_intr(instance);
atomic_set(&instance->fw_reset_no_pci_access, 1);
megaraid_sas_kill_hba(instance);
return;
}
}
if (cmd->sync_cmd == 1) {
if (cmd->scmd) {
dev_notice(&instance->pdev->dev, "unexpected"
"cmd attached to internal command!\n");
}
dev_notice(&instance->pdev->dev, "%p synchronous cmd"
"on the internal reset queue,"
"issue it again.\n", cmd);
cmd->cmd_status_drv = DCMD_INIT;
instance->instancet->fire_cmd(instance,
cmd->frame_phys_addr,
0, instance->reg_set);
} else if (cmd->scmd) {
dev_notice(&instance->pdev->dev, "%p scsi cmd [%02x]"
"detected on the internal queue, issue again.\n",
cmd, cmd->scmd->cmnd[0]);
atomic_inc(&instance->fw_outstanding);
instance->instancet->fire_cmd(instance,
cmd->frame_phys_addr,
cmd->frame_count-1, instance->reg_set);
} else {
dev_notice(&instance->pdev->dev, "%p unexpected cmd on the"
"internal reset defer list while re-issue!!\n",
cmd);
}
}
if (instance->aen_cmd) {
dev_notice(&instance->pdev->dev, "aen_cmd in def process\n");
megasas_return_cmd(instance, instance->aen_cmd);
instance->aen_cmd = NULL;
}
/*
* Initiate AEN (Asynchronous Event Notification)
*/
seq_num = instance->last_seq_num;
class_locale.members.reserved = 0;
class_locale.members.locale = MR_EVT_LOCALE_ALL;
class_locale.members.class = MR_EVT_CLASS_DEBUG;
megasas_register_aen(instance, seq_num, class_locale.word);
}
/*
* Move the internal reset pending commands to a deferred queue.
*
* We move the commands pending at internal reset time to a
* pending queue. This queue would be flushed after successful
* completion of the internal reset sequence. if the internal reset
* did not complete in time, the kernel reset handler would flush
* these commands.
*/
static void
megasas_internal_reset_defer_cmds(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
int i;
u16 max_cmd = instance->max_fw_cmds;
u32 defer_index;
unsigned long flags;
defer_index = 0;
spin_lock_irqsave(&instance->mfi_pool_lock, flags);
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
if (cmd->sync_cmd == 1 || cmd->scmd) {
dev_notice(&instance->pdev->dev, "moving cmd[%d]:%p:%d:%p"
"on the defer queue as internal\n",
defer_index, cmd, cmd->sync_cmd, cmd->scmd);
if (!list_empty(&cmd->list)) {
dev_notice(&instance->pdev->dev, "ERROR while"
" moving this cmd:%p, %d %p, it was"
"discovered on some list?\n",
cmd, cmd->sync_cmd, cmd->scmd);
list_del_init(&cmd->list);
}
defer_index++;
list_add_tail(&cmd->list,
&instance->internal_reset_pending_q);
}
}
spin_unlock_irqrestore(&instance->mfi_pool_lock, flags);
}
static void
process_fw_state_change_wq(struct work_struct *work)
{
struct megasas_instance *instance =
container_of(work, struct megasas_instance, work_init);
u32 wait;
unsigned long flags;
if (atomic_read(&instance->adprecovery) != MEGASAS_ADPRESET_SM_INFAULT) {
dev_notice(&instance->pdev->dev, "error, recovery st %x\n",
atomic_read(&instance->adprecovery));
return ;
}
if (atomic_read(&instance->adprecovery) == MEGASAS_ADPRESET_SM_INFAULT) {
dev_notice(&instance->pdev->dev, "FW detected to be in fault"
"state, restarting it...\n");
instance->instancet->disable_intr(instance);
atomic_set(&instance->fw_outstanding, 0);
atomic_set(&instance->fw_reset_no_pci_access, 1);
instance->instancet->adp_reset(instance, instance->reg_set);
atomic_set(&instance->fw_reset_no_pci_access, 0);
dev_notice(&instance->pdev->dev, "FW restarted successfully,"
"initiating next stage...\n");
dev_notice(&instance->pdev->dev, "HBA recovery state machine,"
"state 2 starting...\n");
/* waiting for about 20 second before start the second init */
for (wait = 0; wait < 30; wait++) {
msleep(1000);
}
if (megasas_transition_to_ready(instance, 1)) {
dev_notice(&instance->pdev->dev, "adapter not ready\n");
atomic_set(&instance->fw_reset_no_pci_access, 1);
megaraid_sas_kill_hba(instance);
return ;
}
if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
(instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)
) {
*instance->consumer = *instance->producer;
} else {
*instance->consumer = 0;
*instance->producer = 0;
}
megasas_issue_init_mfi(instance);
spin_lock_irqsave(&instance->hba_lock, flags);
atomic_set(&instance->adprecovery, MEGASAS_HBA_OPERATIONAL);
spin_unlock_irqrestore(&instance->hba_lock, flags);
instance->instancet->enable_intr(instance);
megasas_issue_pending_cmds_again(instance);
instance->issuepend_done = 1;
}
}
/**
* megasas_deplete_reply_queue - Processes all completed commands
* @instance: Adapter soft state
* @alt_status: Alternate status to be returned to
* SCSI mid-layer instead of the status
* returned by the FW
* Note: this must be called with hba lock held
*/
static int
megasas_deplete_reply_queue(struct megasas_instance *instance,
u8 alt_status)
{
u32 mfiStatus;
u32 fw_state;
if (instance->instancet->check_reset(instance, instance->reg_set) == 1)
return IRQ_HANDLED;
mfiStatus = instance->instancet->clear_intr(instance);
if (mfiStatus == 0) {
/* Hardware may not set outbound_intr_status in MSI-X mode */
if (!instance->msix_vectors)
return IRQ_NONE;
}
instance->mfiStatus = mfiStatus;
if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) {
fw_state = instance->instancet->read_fw_status_reg(
instance) & MFI_STATE_MASK;
if (fw_state != MFI_STATE_FAULT) {
dev_notice(&instance->pdev->dev, "fw state:%x\n",
fw_state);
}
if ((fw_state == MFI_STATE_FAULT) &&
(instance->disableOnlineCtrlReset == 0)) {
dev_notice(&instance->pdev->dev, "wait adp restart\n");
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS1064R) ||
(instance->pdev->device ==
PCI_DEVICE_ID_DELL_PERC5) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
*instance->consumer =
cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN);
}
instance->instancet->disable_intr(instance);
atomic_set(&instance->adprecovery, MEGASAS_ADPRESET_SM_INFAULT);
instance->issuepend_done = 0;
atomic_set(&instance->fw_outstanding, 0);
megasas_internal_reset_defer_cmds(instance);
dev_notice(&instance->pdev->dev, "fwState=%x, stage:%d\n",
fw_state, atomic_read(&instance->adprecovery));
schedule_work(&instance->work_init);
return IRQ_HANDLED;
} else {
dev_notice(&instance->pdev->dev, "fwstate:%x, dis_OCR=%x\n",
fw_state, instance->disableOnlineCtrlReset);
}
}
tasklet_schedule(&instance->isr_tasklet);
return IRQ_HANDLED;
}
/**
* megasas_isr - isr entry point
* @irq: IRQ number
* @devp: IRQ context address
*/
static irqreturn_t megasas_isr(int irq, void *devp)
{
struct megasas_irq_context *irq_context = devp;
struct megasas_instance *instance = irq_context->instance;
unsigned long flags;
irqreturn_t rc;
if (atomic_read(&instance->fw_reset_no_pci_access))
return IRQ_HANDLED;
spin_lock_irqsave(&instance->hba_lock, flags);
rc = megasas_deplete_reply_queue(instance, DID_OK);
spin_unlock_irqrestore(&instance->hba_lock, flags);
return rc;
}
/**
* megasas_transition_to_ready - Move the FW to READY state
* @instance: Adapter soft state
* @ocr: Adapter reset state
*
* During the initialization, FW passes can potentially be in any one of
* several possible states. If the FW in operational, waiting-for-handshake
* states, driver must take steps to bring it to ready state. Otherwise, it
* has to wait for the ready state.
*/
int
megasas_transition_to_ready(struct megasas_instance *instance, int ocr)
{
int i;
u8 max_wait;
u32 fw_state;
u32 abs_state, curr_abs_state;
abs_state = instance->instancet->read_fw_status_reg(instance);
fw_state = abs_state & MFI_STATE_MASK;
if (fw_state != MFI_STATE_READY)
dev_info(&instance->pdev->dev, "Waiting for FW to come to ready"
" state\n");
while (fw_state != MFI_STATE_READY) {
switch (fw_state) {
case MFI_STATE_FAULT:
dev_printk(KERN_ERR, &instance->pdev->dev,
"FW in FAULT state, Fault code:0x%x subcode:0x%x func:%s\n",
abs_state & MFI_STATE_FAULT_CODE,
abs_state & MFI_STATE_FAULT_SUBCODE, __func__);
if (ocr) {
max_wait = MEGASAS_RESET_WAIT_TIME;
break;
} else {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "System Register set:\n");
megasas_dump_reg_set(instance->reg_set);
return -ENODEV;
}
case MFI_STATE_WAIT_HANDSHAKE:
/*
* Set the CLR bit in inbound doorbell
*/
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->adapter_type != MFI_SERIES))
writel(
MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
&instance->reg_set->doorbell);
else
writel(
MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
&instance->reg_set->inbound_doorbell);
max_wait = MEGASAS_RESET_WAIT_TIME;
break;
case MFI_STATE_BOOT_MESSAGE_PENDING:
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->adapter_type != MFI_SERIES))
writel(MFI_INIT_HOTPLUG,
&instance->reg_set->doorbell);
else
writel(MFI_INIT_HOTPLUG,
&instance->reg_set->inbound_doorbell);
max_wait = MEGASAS_RESET_WAIT_TIME;
break;
case MFI_STATE_OPERATIONAL:
/*
* Bring it to READY state; assuming max wait 10 secs
*/
instance->instancet->disable_intr(instance);
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->adapter_type != MFI_SERIES)) {
writel(MFI_RESET_FLAGS,
&instance->reg_set->doorbell);
if (instance->adapter_type != MFI_SERIES) {
for (i = 0; i < (10 * 1000); i += 20) {
if (megasas_readl(
instance,
&instance->
reg_set->
doorbell) & 1)
msleep(20);
else
break;
}
}
} else
writel(MFI_RESET_FLAGS,
&instance->reg_set->inbound_doorbell);
max_wait = MEGASAS_RESET_WAIT_TIME;
break;
case MFI_STATE_UNDEFINED:
/*
* This state should not last for more than 2 seconds
*/
max_wait = MEGASAS_RESET_WAIT_TIME;
break;
case MFI_STATE_BB_INIT:
max_wait = MEGASAS_RESET_WAIT_TIME;
break;
case MFI_STATE_FW_INIT:
max_wait = MEGASAS_RESET_WAIT_TIME;
break;
case MFI_STATE_FW_INIT_2:
max_wait = MEGASAS_RESET_WAIT_TIME;
break;
case MFI_STATE_DEVICE_SCAN:
max_wait = MEGASAS_RESET_WAIT_TIME;
break;
case MFI_STATE_FLUSH_CACHE:
max_wait = MEGASAS_RESET_WAIT_TIME;
break;
default:
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Unknown state 0x%x\n",
fw_state);
dev_printk(KERN_DEBUG, &instance->pdev->dev, "System Register set:\n");
megasas_dump_reg_set(instance->reg_set);
return -ENODEV;
}
/*
* The cur_state should not last for more than max_wait secs
*/
for (i = 0; i < max_wait * 50; i++) {
curr_abs_state = instance->instancet->
read_fw_status_reg(instance);
if (abs_state == curr_abs_state) {
msleep(20);
} else
break;
}
/*
* Return error if fw_state hasn't changed after max_wait
*/
if (curr_abs_state == abs_state) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "FW state [%d] hasn't changed "
"in %d secs\n", fw_state, max_wait);
dev_printk(KERN_DEBUG, &instance->pdev->dev, "System Register set:\n");
megasas_dump_reg_set(instance->reg_set);
return -ENODEV;
}
abs_state = curr_abs_state;
fw_state = curr_abs_state & MFI_STATE_MASK;
}
dev_info(&instance->pdev->dev, "FW now in Ready state\n");
return 0;
}
/**
* megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
* @instance: Adapter soft state
*/
static void megasas_teardown_frame_pool(struct megasas_instance *instance)
{
int i;
u16 max_cmd = instance->max_mfi_cmds;
struct megasas_cmd *cmd;
if (!instance->frame_dma_pool)
return;
/*
* Return all frames to pool
*/
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
if (cmd->frame)
dma_pool_free(instance->frame_dma_pool, cmd->frame,
cmd->frame_phys_addr);
if (cmd->sense)
dma_pool_free(instance->sense_dma_pool, cmd->sense,
cmd->sense_phys_addr);
}
/*
* Now destroy the pool itself
*/
dma_pool_destroy(instance->frame_dma_pool);
dma_pool_destroy(instance->sense_dma_pool);
instance->frame_dma_pool = NULL;
instance->sense_dma_pool = NULL;
}
/**
* megasas_create_frame_pool - Creates DMA pool for cmd frames
* @instance: Adapter soft state
*
* Each command packet has an embedded DMA memory buffer that is used for
* filling MFI frame and the SG list that immediately follows the frame. This
* function creates those DMA memory buffers for each command packet by using
* PCI pool facility.
*/
static int megasas_create_frame_pool(struct megasas_instance *instance)
{
int i;
u16 max_cmd;
u32 frame_count;
struct megasas_cmd *cmd;
max_cmd = instance->max_mfi_cmds;
/*
* For MFI controllers.
* max_num_sge = 60
* max_sge_sz = 16 byte (sizeof megasas_sge_skinny)
* Total 960 byte (15 MFI frame of 64 byte)
*
* Fusion adapter require only 3 extra frame.
* max_num_sge = 16 (defined as MAX_IOCTL_SGE)
* max_sge_sz = 12 byte (sizeof megasas_sge64)
* Total 192 byte (3 MFI frame of 64 byte)
*/
frame_count = (instance->adapter_type == MFI_SERIES) ?
(15 + 1) : (3 + 1);
instance->mfi_frame_size = MEGAMFI_FRAME_SIZE * frame_count;
/*
* Use DMA pool facility provided by PCI layer
*/
instance->frame_dma_pool = dma_pool_create("megasas frame pool",
&instance->pdev->dev,
instance->mfi_frame_size, 256, 0);
if (!instance->frame_dma_pool) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "failed to setup frame pool\n");
return -ENOMEM;
}
instance->sense_dma_pool = dma_pool_create("megasas sense pool",
&instance->pdev->dev, 128,
4, 0);
if (!instance->sense_dma_pool) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "failed to setup sense pool\n");
dma_pool_destroy(instance->frame_dma_pool);
instance->frame_dma_pool = NULL;
return -ENOMEM;
}
/*
* Allocate and attach a frame to each of the commands in cmd_list.
* By making cmd->index as the context instead of the &cmd, we can
* always use 32bit context regardless of the architecture
*/
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
cmd->frame = dma_pool_zalloc(instance->frame_dma_pool,
GFP_KERNEL, &cmd->frame_phys_addr);
cmd->sense = dma_pool_alloc(instance->sense_dma_pool,
GFP_KERNEL, &cmd->sense_phys_addr);
/*
* megasas_teardown_frame_pool() takes care of freeing
* whatever has been allocated
*/
if (!cmd->frame || !cmd->sense) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "dma_pool_alloc failed\n");
megasas_teardown_frame_pool(instance);
return -ENOMEM;
}
cmd->frame->io.context = cpu_to_le32(cmd->index);
cmd->frame->io.pad_0 = 0;
if ((instance->adapter_type == MFI_SERIES) && reset_devices)
cmd->frame->hdr.cmd = MFI_CMD_INVALID;
}
return 0;
}
/**
* megasas_free_cmds - Free all the cmds in the free cmd pool
* @instance: Adapter soft state
*/
void megasas_free_cmds(struct megasas_instance *instance)
{
int i;
/* First free the MFI frame pool */
megasas_teardown_frame_pool(instance);
/* Free all the commands in the cmd_list */
for (i = 0; i < instance->max_mfi_cmds; i++)
kfree(instance->cmd_list[i]);
/* Free the cmd_list buffer itself */
kfree(instance->cmd_list);
instance->cmd_list = NULL;
INIT_LIST_HEAD(&instance->cmd_pool);
}
/**
* megasas_alloc_cmds - Allocates the command packets
* @instance: Adapter soft state
*
* Each command that is issued to the FW, whether IO commands from the OS or
* internal commands like IOCTLs, are wrapped in local data structure called
* megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
* the FW.
*
* Each frame has a 32-bit field called context (tag). This context is used
* to get back the megasas_cmd from the frame when a frame gets completed in
* the ISR. Typically the address of the megasas_cmd itself would be used as
* the context. But we wanted to keep the differences between 32 and 64 bit
* systems to the mininum. We always use 32 bit integers for the context. In
* this driver, the 32 bit values are the indices into an array cmd_list.
* This array is used only to look up the megasas_cmd given the context. The
* free commands themselves are maintained in a linked list called cmd_pool.
*/
int megasas_alloc_cmds(struct megasas_instance *instance)
{
int i;
int j;
u16 max_cmd;
struct megasas_cmd *cmd;
max_cmd = instance->max_mfi_cmds;
/*
* instance->cmd_list is an array of struct megasas_cmd pointers.
* Allocate the dynamic array first and then allocate individual
* commands.
*/
instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
if (!instance->cmd_list) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "out of memory\n");
return -ENOMEM;
}
for (i = 0; i < max_cmd; i++) {
instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
GFP_KERNEL);
if (!instance->cmd_list[i]) {
for (j = 0; j < i; j++)
kfree(instance->cmd_list[j]);
kfree(instance->cmd_list);
instance->cmd_list = NULL;
return -ENOMEM;
}
}
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
memset(cmd, 0, sizeof(struct megasas_cmd));
cmd->index = i;
cmd->scmd = NULL;
cmd->instance = instance;
list_add_tail(&cmd->list, &instance->cmd_pool);
}
/*
* Create a frame pool and assign one frame to each cmd
*/
if (megasas_create_frame_pool(instance)) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Error creating frame DMA pool\n");
megasas_free_cmds(instance);
return -ENOMEM;
}
return 0;
}
/*
* dcmd_timeout_ocr_possible - Check if OCR is possible based on Driver/FW state.
* @instance: Adapter soft state
*
* Return 0 for only Fusion adapter, if driver load/unload is not in progress
* or FW is not under OCR.
*/
inline int
dcmd_timeout_ocr_possible(struct megasas_instance *instance) {
if (instance->adapter_type == MFI_SERIES)
return KILL_ADAPTER;
else if (instance->unload ||
test_bit(MEGASAS_FUSION_OCR_NOT_POSSIBLE,
&instance->reset_flags))
return IGNORE_TIMEOUT;
else
return INITIATE_OCR;
}
static void
megasas_get_pd_info(struct megasas_instance *instance, struct scsi_device *sdev)
{
int ret;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct MR_PRIV_DEVICE *mr_device_priv_data;
u16 device_id = 0;
device_id = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_err(&instance->pdev->dev, "Failed to get cmd %s\n", __func__);
return;
}
dcmd = &cmd->frame->dcmd;
memset(instance->pd_info, 0, sizeof(*instance->pd_info));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->mbox.s[0] = cpu_to_le16(device_id);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_PD_INFO));
dcmd->opcode = cpu_to_le32(MR_DCMD_PD_GET_INFO);
megasas_set_dma_settings(instance, dcmd, instance->pd_info_h,
sizeof(struct MR_PD_INFO));
if ((instance->adapter_type != MFI_SERIES) &&
!instance->mask_interrupts)
ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS);
else
ret = megasas_issue_polled(instance, cmd);
switch (ret) {
case DCMD_SUCCESS:
mr_device_priv_data = sdev->hostdata;
le16_to_cpus((u16 *)&instance->pd_info->state.ddf.pdType);
mr_device_priv_data->interface_type =
instance->pd_info->state.ddf.pdType.intf;
break;
case DCMD_TIMEOUT:
switch (dcmd_timeout_ocr_possible(instance)) {
case INITIATE_OCR:
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
mutex_unlock(&instance->reset_mutex);
megasas_reset_fusion(instance->host,
MFI_IO_TIMEOUT_OCR);
mutex_lock(&instance->reset_mutex);
break;
case KILL_ADAPTER:
megaraid_sas_kill_hba(instance);
break;
case IGNORE_TIMEOUT:
dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n",
__func__, __LINE__);
break;
}
break;
}
if (ret != DCMD_TIMEOUT)
megasas_return_cmd(instance, cmd);
return;
}
/*
* megasas_get_pd_list_info - Returns FW's pd_list structure
* @instance: Adapter soft state
* @pd_list: pd_list structure
*
* Issues an internal command (DCMD) to get the FW's controller PD
* list structure. This information is mainly used to find out SYSTEM
* supported by the FW.
*/
static int
megasas_get_pd_list(struct megasas_instance *instance)
{
int ret = 0, pd_index = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct MR_PD_LIST *ci;
struct MR_PD_ADDRESS *pd_addr;
if (instance->pd_list_not_supported) {
dev_info(&instance->pdev->dev, "MR_DCMD_PD_LIST_QUERY "
"not supported by firmware\n");
return ret;
}
ci = instance->pd_list_buf;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "(get_pd_list): Failed to get cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
memset(ci, 0, sizeof(*ci));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST;
dcmd->mbox.b[1] = 0;
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = MFI_STAT_INVALID_STATUS;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST));
dcmd->opcode = cpu_to_le32(MR_DCMD_PD_LIST_QUERY);
megasas_set_dma_settings(instance, dcmd, instance->pd_list_buf_h,
(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST)));
if ((instance->adapter_type != MFI_SERIES) &&
!instance->mask_interrupts)
ret = megasas_issue_blocked_cmd(instance, cmd,
MFI_IO_TIMEOUT_SECS);
else
ret = megasas_issue_polled(instance, cmd);
switch (ret) {
case DCMD_FAILED:
dev_info(&instance->pdev->dev, "MR_DCMD_PD_LIST_QUERY "
"failed/not supported by firmware\n");
if (instance->adapter_type != MFI_SERIES)
megaraid_sas_kill_hba(instance);
else
instance->pd_list_not_supported = 1;
break;
case DCMD_TIMEOUT:
switch (dcmd_timeout_ocr_possible(instance)) {
case INITIATE_OCR:
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
/*
* DCMD failed from AEN path.
* AEN path already hold reset_mutex to avoid PCI access
* while OCR is in progress.
*/
mutex_unlock(&instance->reset_mutex);
megasas_reset_fusion(instance->host,
MFI_IO_TIMEOUT_OCR);
mutex_lock(&instance->reset_mutex);
break;
case KILL_ADAPTER:
megaraid_sas_kill_hba(instance);
break;
case IGNORE_TIMEOUT:
dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d \n",
__func__, __LINE__);
break;
}
break;
case DCMD_SUCCESS:
pd_addr = ci->addr;
if (megasas_dbg_lvl & LD_PD_DEBUG)
dev_info(&instance->pdev->dev, "%s, sysPD count: 0x%x\n",
__func__, le32_to_cpu(ci->count));
if ((le32_to_cpu(ci->count) >
(MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL)))
break;
memset(instance->local_pd_list, 0,
MEGASAS_MAX_PD * sizeof(struct megasas_pd_list));
for (pd_index = 0; pd_index < le32_to_cpu(ci->count); pd_index++) {
instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].tid =
le16_to_cpu(pd_addr->deviceId);
instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveType =
pd_addr->scsiDevType;
instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveState =
MR_PD_STATE_SYSTEM;
if (megasas_dbg_lvl & LD_PD_DEBUG)
dev_info(&instance->pdev->dev,
"PD%d: targetID: 0x%03x deviceType:0x%x\n",
pd_index, le16_to_cpu(pd_addr->deviceId),
pd_addr->scsiDevType);
pd_addr++;
}
memcpy(instance->pd_list, instance->local_pd_list,
sizeof(instance->pd_list));
break;
}
if (ret != DCMD_TIMEOUT)
megasas_return_cmd(instance, cmd);
return ret;
}
/*
* megasas_get_ld_list_info - Returns FW's ld_list structure
* @instance: Adapter soft state
* @ld_list: ld_list structure
*
* Issues an internal command (DCMD) to get the FW's controller PD
* list structure. This information is mainly used to find out SYSTEM
* supported by the FW.
*/
static int
megasas_get_ld_list(struct megasas_instance *instance)
{
int ret = 0, ld_index = 0, ids = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct MR_LD_LIST *ci;
dma_addr_t ci_h = 0;
u32 ld_count;
ci = instance->ld_list_buf;
ci_h = instance->ld_list_buf_h;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "megasas_get_ld_list: Failed to get cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
memset(ci, 0, sizeof(*ci));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
if (instance->supportmax256vd)
dcmd->mbox.b[0] = 1;
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = MFI_STAT_INVALID_STATUS;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_LIST));
dcmd->opcode = cpu_to_le32(MR_DCMD_LD_GET_LIST);
dcmd->pad_0 = 0;
megasas_set_dma_settings(instance, dcmd, ci_h,
sizeof(struct MR_LD_LIST));
if ((instance->adapter_type != MFI_SERIES) &&
!instance->mask_interrupts)
ret = megasas_issue_blocked_cmd(instance, cmd,
MFI_IO_TIMEOUT_SECS);
else
ret = megasas_issue_polled(instance, cmd);
ld_count = le32_to_cpu(ci->ldCount);
switch (ret) {
case DCMD_FAILED:
megaraid_sas_kill_hba(instance);
break;
case DCMD_TIMEOUT:
switch (dcmd_timeout_ocr_possible(instance)) {
case INITIATE_OCR:
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
/*
* DCMD failed from AEN path.
* AEN path already hold reset_mutex to avoid PCI access
* while OCR is in progress.
*/
mutex_unlock(&instance->reset_mutex);
megasas_reset_fusion(instance->host,
MFI_IO_TIMEOUT_OCR);
mutex_lock(&instance->reset_mutex);
break;
case KILL_ADAPTER:
megaraid_sas_kill_hba(instance);
break;
case IGNORE_TIMEOUT:
dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n",
__func__, __LINE__);
break;
}
break;
case DCMD_SUCCESS:
if (megasas_dbg_lvl & LD_PD_DEBUG)
dev_info(&instance->pdev->dev, "%s, LD count: 0x%x\n",
__func__, ld_count);
if (ld_count > instance->fw_supported_vd_count)
break;
memset(instance->ld_ids, 0xff, MAX_LOGICAL_DRIVES_EXT);
for (ld_index = 0; ld_index < ld_count; ld_index++) {
if (ci->ldList[ld_index].state != 0) {
ids = ci->ldList[ld_index].ref.targetId;
instance->ld_ids[ids] = ci->ldList[ld_index].ref.targetId;
if (megasas_dbg_lvl & LD_PD_DEBUG)
dev_info(&instance->pdev->dev,
"LD%d: targetID: 0x%03x\n",
ld_index, ids);
}
}
break;
}
if (ret != DCMD_TIMEOUT)
megasas_return_cmd(instance, cmd);
return ret;
}
/**
* megasas_ld_list_query - Returns FW's ld_list structure
* @instance: Adapter soft state
* @query_type: ld_list structure type
*
* Issues an internal command (DCMD) to get the FW's controller PD
* list structure. This information is mainly used to find out SYSTEM
* supported by the FW.
*/
static int
megasas_ld_list_query(struct megasas_instance *instance, u8 query_type)
{
int ret = 0, ld_index = 0, ids = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct MR_LD_TARGETID_LIST *ci;
dma_addr_t ci_h = 0;
u32 tgtid_count;
ci = instance->ld_targetid_list_buf;
ci_h = instance->ld_targetid_list_buf_h;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_warn(&instance->pdev->dev,
"megasas_ld_list_query: Failed to get cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
memset(ci, 0, sizeof(*ci));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->mbox.b[0] = query_type;
if (instance->supportmax256vd)
dcmd->mbox.b[2] = 1;
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = MFI_STAT_INVALID_STATUS;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST));
dcmd->opcode = cpu_to_le32(MR_DCMD_LD_LIST_QUERY);
dcmd->pad_0 = 0;
megasas_set_dma_settings(instance, dcmd, ci_h,
sizeof(struct MR_LD_TARGETID_LIST));
if ((instance->adapter_type != MFI_SERIES) &&
!instance->mask_interrupts)
ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS);
else
ret = megasas_issue_polled(instance, cmd);
switch (ret) {
case DCMD_FAILED:
dev_info(&instance->pdev->dev,
"DCMD not supported by firmware - %s %d\n",
__func__, __LINE__);
ret = megasas_get_ld_list(instance);
break;
case DCMD_TIMEOUT:
switch (dcmd_timeout_ocr_possible(instance)) {
case INITIATE_OCR:
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
/*
* DCMD failed from AEN path.
* AEN path already hold reset_mutex to avoid PCI access
* while OCR is in progress.
*/
mutex_unlock(&instance->reset_mutex);
megasas_reset_fusion(instance->host,
MFI_IO_TIMEOUT_OCR);
mutex_lock(&instance->reset_mutex);
break;
case KILL_ADAPTER:
megaraid_sas_kill_hba(instance);
break;
case IGNORE_TIMEOUT:
dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n",
__func__, __LINE__);
break;
}
break;
case DCMD_SUCCESS:
tgtid_count = le32_to_cpu(ci->count);
if (megasas_dbg_lvl & LD_PD_DEBUG)
dev_info(&instance->pdev->dev, "%s, LD count: 0x%x\n",
__func__, tgtid_count);
if ((tgtid_count > (instance->fw_supported_vd_count)))
break;
memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
for (ld_index = 0; ld_index < tgtid_count; ld_index++) {
ids = ci->targetId[ld_index];
instance->ld_ids[ids] = ci->targetId[ld_index];
if (megasas_dbg_lvl & LD_PD_DEBUG)
dev_info(&instance->pdev->dev, "LD%d: targetID: 0x%03x\n",
ld_index, ci->targetId[ld_index]);
}
break;
}
if (ret != DCMD_TIMEOUT)
megasas_return_cmd(instance, cmd);
return ret;
}
/**
* megasas_host_device_list_query
* dcmd.opcode - MR_DCMD_CTRL_DEVICE_LIST_GET
* dcmd.mbox - reserved
* dcmd.sge IN - ptr to return MR_HOST_DEVICE_LIST structure
* Desc: This DCMD will return the combined device list
* Status: MFI_STAT_OK - List returned successfully
* MFI_STAT_INVALID_CMD - Firmware support for the feature has been
* disabled
* @instance: Adapter soft state
* @is_probe: Driver probe check
* Return: 0 if DCMD succeeded
* non-zero if failed
*/
static int
megasas_host_device_list_query(struct megasas_instance *instance,
bool is_probe)
{
int ret, i, target_id;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct MR_HOST_DEVICE_LIST *ci;
u32 count;
dma_addr_t ci_h;
ci = instance->host_device_list_buf;
ci_h = instance->host_device_list_buf_h;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_warn(&instance->pdev->dev,
"%s: failed to get cmd\n",
__func__);
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
memset(ci, 0, sizeof(*ci));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->mbox.b[0] = is_probe ? 0 : 1;
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = MFI_STAT_INVALID_STATUS;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(HOST_DEVICE_LIST_SZ);
dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_DEVICE_LIST_GET);
megasas_set_dma_settings(instance, dcmd, ci_h, HOST_DEVICE_LIST_SZ);
if (!instance->mask_interrupts) {
ret = megasas_issue_blocked_cmd(instance, cmd,
MFI_IO_TIMEOUT_SECS);
} else {
ret = megasas_issue_polled(instance, cmd);
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
}
switch (ret) {
case DCMD_SUCCESS:
/* Fill the internal pd_list and ld_ids array based on
* targetIds returned by FW
*/
count = le32_to_cpu(ci->count);
if (count > (MEGASAS_MAX_PD + MAX_LOGICAL_DRIVES_EXT))
break;
if (megasas_dbg_lvl & LD_PD_DEBUG)
dev_info(&instance->pdev->dev, "%s, Device count: 0x%x\n",
__func__, count);
memset(instance->local_pd_list, 0,
MEGASAS_MAX_PD * sizeof(struct megasas_pd_list));
memset(instance->ld_ids, 0xff, MAX_LOGICAL_DRIVES_EXT);
for (i = 0; i < count; i++) {
target_id = le16_to_cpu(ci->host_device_list[i].target_id);
if (ci->host_device_list[i].flags.u.bits.is_sys_pd) {
instance->local_pd_list[target_id].tid = target_id;
instance->local_pd_list[target_id].driveType =
ci->host_device_list[i].scsi_type;
instance->local_pd_list[target_id].driveState =
MR_PD_STATE_SYSTEM;
if (megasas_dbg_lvl & LD_PD_DEBUG)
dev_info(&instance->pdev->dev,
"Device %d: PD targetID: 0x%03x deviceType:0x%x\n",
i, target_id, ci->host_device_list[i].scsi_type);
} else {
instance->ld_ids[target_id] = target_id;
if (megasas_dbg_lvl & LD_PD_DEBUG)
dev_info(&instance->pdev->dev,
"Device %d: LD targetID: 0x%03x\n",
i, target_id);
}
}
memcpy(instance->pd_list, instance->local_pd_list,
sizeof(instance->pd_list));
break;
case DCMD_TIMEOUT:
switch (dcmd_timeout_ocr_possible(instance)) {
case INITIATE_OCR:
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
mutex_unlock(&instance->reset_mutex);
megasas_reset_fusion(instance->host,
MFI_IO_TIMEOUT_OCR);
mutex_lock(&instance->reset_mutex);
break;
case KILL_ADAPTER:
megaraid_sas_kill_hba(instance);
break;
case IGNORE_TIMEOUT:
dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n",
__func__, __LINE__);
break;
}
break;
case DCMD_FAILED:
dev_err(&instance->pdev->dev,
"%s: MR_DCMD_CTRL_DEVICE_LIST_GET failed\n",
__func__);
break;
}
if (ret != DCMD_TIMEOUT)
megasas_return_cmd(instance, cmd);
return ret;
}
/*
* megasas_update_ext_vd_details : Update details w.r.t Extended VD
* instance : Controller's instance
*/
static void megasas_update_ext_vd_details(struct megasas_instance *instance)
{
struct fusion_context *fusion;
u32 ventura_map_sz = 0;
fusion = instance->ctrl_context;
/* For MFI based controllers return dummy success */
if (!fusion)
return;
instance->supportmax256vd =
instance->ctrl_info_buf->adapterOperations3.supportMaxExtLDs;
/* Below is additional check to address future FW enhancement */
if (instance->ctrl_info_buf->max_lds > 64)
instance->supportmax256vd = 1;
instance->drv_supported_vd_count = MEGASAS_MAX_LD_CHANNELS
* MEGASAS_MAX_DEV_PER_CHANNEL;
instance->drv_supported_pd_count = MEGASAS_MAX_PD_CHANNELS
* MEGASAS_MAX_DEV_PER_CHANNEL;
if (instance->supportmax256vd) {
instance->fw_supported_vd_count = MAX_LOGICAL_DRIVES_EXT;
instance->fw_supported_pd_count = MAX_PHYSICAL_DEVICES;
} else {
instance->fw_supported_vd_count = MAX_LOGICAL_DRIVES;
instance->fw_supported_pd_count = MAX_PHYSICAL_DEVICES;
}
dev_info(&instance->pdev->dev,
"FW provided supportMaxExtLDs: %d\tmax_lds: %d\n",
instance->ctrl_info_buf->adapterOperations3.supportMaxExtLDs ? 1 : 0,
instance->ctrl_info_buf->max_lds);
if (instance->max_raid_mapsize) {
ventura_map_sz = instance->max_raid_mapsize *
MR_MIN_MAP_SIZE; /* 64k */
fusion->current_map_sz = ventura_map_sz;
fusion->max_map_sz = ventura_map_sz;
} else {
fusion->old_map_sz =
struct_size_t(struct MR_FW_RAID_MAP, ldSpanMap,
instance->fw_supported_vd_count);
fusion->new_map_sz = sizeof(struct MR_FW_RAID_MAP_EXT);
fusion->max_map_sz =
max(fusion->old_map_sz, fusion->new_map_sz);
if (instance->supportmax256vd)
fusion->current_map_sz = fusion->new_map_sz;
else
fusion->current_map_sz = fusion->old_map_sz;
}
/* irrespective of FW raid maps, driver raid map is constant */
fusion->drv_map_sz = sizeof(struct MR_DRV_RAID_MAP_ALL);
}
/*
* dcmd.opcode - MR_DCMD_CTRL_SNAPDUMP_GET_PROPERTIES
* dcmd.hdr.length - number of bytes to read
* dcmd.sge - Ptr to MR_SNAPDUMP_PROPERTIES
* Desc: Fill in snapdump properties
* Status: MFI_STAT_OK- Command successful
*/
void megasas_get_snapdump_properties(struct megasas_instance *instance)
{
int ret = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct MR_SNAPDUMP_PROPERTIES *ci;
dma_addr_t ci_h = 0;
ci = instance->snapdump_prop;
ci_h = instance->snapdump_prop_h;
if (!ci)
return;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_dbg(&instance->pdev->dev, "Failed to get a free cmd\n");
return;
}
dcmd = &cmd->frame->dcmd;
memset(ci, 0, sizeof(*ci));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = MFI_STAT_INVALID_STATUS;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_SNAPDUMP_PROPERTIES));
dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_SNAPDUMP_GET_PROPERTIES);
megasas_set_dma_settings(instance, dcmd, ci_h,
sizeof(struct MR_SNAPDUMP_PROPERTIES));
if (!instance->mask_interrupts) {
ret = megasas_issue_blocked_cmd(instance, cmd,
MFI_IO_TIMEOUT_SECS);
} else {
ret = megasas_issue_polled(instance, cmd);
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
}
switch (ret) {
case DCMD_SUCCESS:
instance->snapdump_wait_time =
min_t(u8, ci->trigger_min_num_sec_before_ocr,
MEGASAS_MAX_SNAP_DUMP_WAIT_TIME);
break;
case DCMD_TIMEOUT:
switch (dcmd_timeout_ocr_possible(instance)) {
case INITIATE_OCR:
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
mutex_unlock(&instance->reset_mutex);
megasas_reset_fusion(instance->host,
MFI_IO_TIMEOUT_OCR);
mutex_lock(&instance->reset_mutex);
break;
case KILL_ADAPTER:
megaraid_sas_kill_hba(instance);
break;
case IGNORE_TIMEOUT:
dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n",
__func__, __LINE__);
break;
}
}
if (ret != DCMD_TIMEOUT)
megasas_return_cmd(instance, cmd);
}
/**
* megasas_get_ctrl_info - Returns FW's controller structure
* @instance: Adapter soft state
*
* Issues an internal command (DCMD) to get the FW's controller structure.
* This information is mainly used to find out the maximum IO transfer per
* command supported by the FW.
*/
int
megasas_get_ctrl_info(struct megasas_instance *instance)
{
int ret = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct megasas_ctrl_info *ci;
dma_addr_t ci_h = 0;
ci = instance->ctrl_info_buf;
ci_h = instance->ctrl_info_buf_h;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to get a free cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
memset(ci, 0, sizeof(*ci));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = MFI_STAT_INVALID_STATUS;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_ctrl_info));
dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_GET_INFO);
dcmd->mbox.b[0] = 1;
megasas_set_dma_settings(instance, dcmd, ci_h,
sizeof(struct megasas_ctrl_info));
if ((instance->adapter_type != MFI_SERIES) &&
!instance->mask_interrupts) {
ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS);
} else {
ret = megasas_issue_polled(instance, cmd);
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
}
switch (ret) {
case DCMD_SUCCESS:
/* Save required controller information in
* CPU endianness format.
*/
le32_to_cpus((u32 *)&ci->properties.OnOffProperties);
le16_to_cpus((u16 *)&ci->properties.on_off_properties2);
le32_to_cpus((u32 *)&ci->adapterOperations2);
le32_to_cpus((u32 *)&ci->adapterOperations3);
le16_to_cpus((u16 *)&ci->adapter_operations4);
le32_to_cpus((u32 *)&ci->adapter_operations5);
/* Update the latest Ext VD info.
* From Init path, store current firmware details.
* From OCR path, detect any firmware properties changes.
* in case of Firmware upgrade without system reboot.
*/
megasas_update_ext_vd_details(instance);
instance->support_seqnum_jbod_fp =
ci->adapterOperations3.useSeqNumJbodFP;
instance->support_morethan256jbod =
ci->adapter_operations4.support_pd_map_target_id;
instance->support_nvme_passthru =
ci->adapter_operations4.support_nvme_passthru;
instance->support_pci_lane_margining =
ci->adapter_operations5.support_pci_lane_margining;
instance->task_abort_tmo = ci->TaskAbortTO;
instance->max_reset_tmo = ci->MaxResetTO;
/*Check whether controller is iMR or MR */
instance->is_imr = (ci->memory_size ? 0 : 1);
instance->snapdump_wait_time =
(ci->properties.on_off_properties2.enable_snap_dump ?
MEGASAS_DEFAULT_SNAP_DUMP_WAIT_TIME : 0);
instance->enable_fw_dev_list =
ci->properties.on_off_properties2.enable_fw_dev_list;
dev_info(&instance->pdev->dev,
"controller type\t: %s(%dMB)\n",
instance->is_imr ? "iMR" : "MR",
le16_to_cpu(ci->memory_size));
instance->disableOnlineCtrlReset =
ci->properties.OnOffProperties.disableOnlineCtrlReset;
instance->secure_jbod_support =
ci->adapterOperations3.supportSecurityonJBOD;
dev_info(&instance->pdev->dev, "Online Controller Reset(OCR)\t: %s\n",
instance->disableOnlineCtrlReset ? "Disabled" : "Enabled");
dev_info(&instance->pdev->dev, "Secure JBOD support\t: %s\n",
instance->secure_jbod_support ? "Yes" : "No");
dev_info(&instance->pdev->dev, "NVMe passthru support\t: %s\n",
instance->support_nvme_passthru ? "Yes" : "No");
dev_info(&instance->pdev->dev,
"FW provided TM TaskAbort/Reset timeout\t: %d secs/%d secs\n",
instance->task_abort_tmo, instance->max_reset_tmo);
dev_info(&instance->pdev->dev, "JBOD sequence map support\t: %s\n",
instance->support_seqnum_jbod_fp ? "Yes" : "No");
dev_info(&instance->pdev->dev, "PCI Lane Margining support\t: %s\n",
instance->support_pci_lane_margining ? "Yes" : "No");
break;
case DCMD_TIMEOUT:
switch (dcmd_timeout_ocr_possible(instance)) {
case INITIATE_OCR:
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
mutex_unlock(&instance->reset_mutex);
megasas_reset_fusion(instance->host,
MFI_IO_TIMEOUT_OCR);
mutex_lock(&instance->reset_mutex);
break;
case KILL_ADAPTER:
megaraid_sas_kill_hba(instance);
break;
case IGNORE_TIMEOUT:
dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n",
__func__, __LINE__);
break;
}
break;
case DCMD_FAILED:
megaraid_sas_kill_hba(instance);
break;
}
if (ret != DCMD_TIMEOUT)
megasas_return_cmd(instance, cmd);
return ret;
}
/*
* megasas_set_crash_dump_params - Sends address of crash dump DMA buffer
* to firmware
*
* @instance: Adapter soft state
* @crash_buf_state - tell FW to turn ON/OFF crash dump feature
MR_CRASH_BUF_TURN_OFF = 0
MR_CRASH_BUF_TURN_ON = 1
* @return 0 on success non-zero on failure.
* Issues an internal command (DCMD) to set parameters for crash dump feature.
* Driver will send address of crash dump DMA buffer and set mbox to tell FW
* that driver supports crash dump feature. This DCMD will be sent only if
* crash dump feature is supported by the FW.
*
*/
int megasas_set_crash_dump_params(struct megasas_instance *instance,
u8 crash_buf_state)
{
int ret = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_err(&instance->pdev->dev, "Failed to get a free cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->mbox.b[0] = crash_buf_state;
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = MFI_STAT_INVALID_STATUS;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_NONE;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(CRASH_DMA_BUF_SIZE);
dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_SET_CRASH_DUMP_PARAMS);
megasas_set_dma_settings(instance, dcmd, instance->crash_dump_h,
CRASH_DMA_BUF_SIZE);
if ((instance->adapter_type != MFI_SERIES) &&
!instance->mask_interrupts)
ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS);
else
ret = megasas_issue_polled(instance, cmd);
if (ret == DCMD_TIMEOUT) {
switch (dcmd_timeout_ocr_possible(instance)) {
case INITIATE_OCR:
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
megasas_reset_fusion(instance->host,
MFI_IO_TIMEOUT_OCR);
break;
case KILL_ADAPTER:
megaraid_sas_kill_hba(instance);
break;
case IGNORE_TIMEOUT:
dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n",
__func__, __LINE__);
break;
}
} else
megasas_return_cmd(instance, cmd);
return ret;
}
/**
* megasas_issue_init_mfi - Initializes the FW
* @instance: Adapter soft state
*
* Issues the INIT MFI cmd
*/
static int
megasas_issue_init_mfi(struct megasas_instance *instance)
{
__le32 context;
struct megasas_cmd *cmd;
struct megasas_init_frame *init_frame;
struct megasas_init_queue_info *initq_info;
dma_addr_t init_frame_h;
dma_addr_t initq_info_h;
/*
* Prepare a init frame. Note the init frame points to queue info
* structure. Each frame has SGL allocated after first 64 bytes. For
* this frame - since we don't need any SGL - we use SGL's space as
* queue info structure
*
* We will not get a NULL command below. We just created the pool.
*/
cmd = megasas_get_cmd(instance);
init_frame = (struct megasas_init_frame *)cmd->frame;
initq_info = (struct megasas_init_queue_info *)
((unsigned long)init_frame + 64);
init_frame_h = cmd->frame_phys_addr;
initq_info_h = init_frame_h + 64;
context = init_frame->context;
memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
init_frame->context = context;
initq_info->reply_queue_entries = cpu_to_le32(instance->max_fw_cmds + 1);
initq_info->reply_queue_start_phys_addr_lo = cpu_to_le32(instance->reply_queue_h);
initq_info->producer_index_phys_addr_lo = cpu_to_le32(instance->producer_h);
initq_info->consumer_index_phys_addr_lo = cpu_to_le32(instance->consumer_h);
init_frame->cmd = MFI_CMD_INIT;
init_frame->cmd_status = MFI_STAT_INVALID_STATUS;
init_frame->queue_info_new_phys_addr_lo =
cpu_to_le32(lower_32_bits(initq_info_h));
init_frame->queue_info_new_phys_addr_hi =
cpu_to_le32(upper_32_bits(initq_info_h));
init_frame->data_xfer_len = cpu_to_le32(sizeof(struct megasas_init_queue_info));
/*
* disable the intr before firing the init frame to FW
*/
instance->instancet->disable_intr(instance);
/*
* Issue the init frame in polled mode
*/
if (megasas_issue_polled(instance, cmd)) {
dev_err(&instance->pdev->dev, "Failed to init firmware\n");
megasas_return_cmd(instance, cmd);
goto fail_fw_init;
}
megasas_return_cmd(instance, cmd);
return 0;
fail_fw_init:
return -EINVAL;
}
static u32
megasas_init_adapter_mfi(struct megasas_instance *instance)
{
u32 context_sz;
u32 reply_q_sz;
/*
* Get various operational parameters from status register
*/
instance->max_fw_cmds = instance->instancet->read_fw_status_reg(instance) & 0x00FFFF;
/*
* Reduce the max supported cmds by 1. This is to ensure that the
* reply_q_sz (1 more than the max cmd that driver may send)
* does not exceed max cmds that the FW can support
*/
instance->max_fw_cmds = instance->max_fw_cmds-1;
instance->max_mfi_cmds = instance->max_fw_cmds;
instance->max_num_sge = (instance->instancet->read_fw_status_reg(instance) & 0xFF0000) >>
0x10;
/*
* For MFI skinny adapters, MEGASAS_SKINNY_INT_CMDS commands
* are reserved for IOCTL + driver's internal DCMDs.
*/
if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
instance->max_scsi_cmds = (instance->max_fw_cmds -
MEGASAS_SKINNY_INT_CMDS);
sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS);
} else {
instance->max_scsi_cmds = (instance->max_fw_cmds -
MEGASAS_INT_CMDS);
sema_init(&instance->ioctl_sem, (MEGASAS_MFI_IOCTL_CMDS));
}
instance->cur_can_queue = instance->max_scsi_cmds;
/*
* Create a pool of commands
*/
if (megasas_alloc_cmds(instance))
goto fail_alloc_cmds;
/*
* Allocate memory for reply queue. Length of reply queue should
* be _one_ more than the maximum commands handled by the firmware.
*
* Note: When FW completes commands, it places corresponding contex
* values in this circular reply queue. This circular queue is a fairly
* typical producer-consumer queue. FW is the producer (of completed
* commands) and the driver is the consumer.
*/
context_sz = sizeof(u32);
reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
instance->reply_queue = dma_alloc_coherent(&instance->pdev->dev,
reply_q_sz, &instance->reply_queue_h, GFP_KERNEL);
if (!instance->reply_queue) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Out of DMA mem for reply queue\n");
goto fail_reply_queue;
}
if (megasas_issue_init_mfi(instance))
goto fail_fw_init;
if (megasas_get_ctrl_info(instance)) {
dev_err(&instance->pdev->dev, "(%d): Could get controller info "
"Fail from %s %d\n", instance->unique_id,
__func__, __LINE__);
goto fail_fw_init;
}
instance->fw_support_ieee = 0;
instance->fw_support_ieee =
(instance->instancet->read_fw_status_reg(instance) &
0x04000000);
dev_notice(&instance->pdev->dev, "megasas_init_mfi: fw_support_ieee=%d",
instance->fw_support_ieee);
if (instance->fw_support_ieee)
instance->flag_ieee = 1;
return 0;
fail_fw_init:
dma_free_coherent(&instance->pdev->dev, reply_q_sz,
instance->reply_queue, instance->reply_queue_h);
fail_reply_queue:
megasas_free_cmds(instance);
fail_alloc_cmds:
return 1;
}
static
void megasas_setup_irq_poll(struct megasas_instance *instance)
{
struct megasas_irq_context *irq_ctx;
u32 count, i;
count = instance->msix_vectors > 0 ? instance->msix_vectors : 1;
/* Initialize IRQ poll */
for (i = 0; i < count; i++) {
irq_ctx = &instance->irq_context[i];
irq_ctx->os_irq = pci_irq_vector(instance->pdev, i);
irq_ctx->irq_poll_scheduled = false;
irq_poll_init(&irq_ctx->irqpoll,
instance->threshold_reply_count,
megasas_irqpoll);
}
}
/*
* megasas_setup_irqs_ioapic - register legacy interrupts.
* @instance: Adapter soft state
*
* Do not enable interrupt, only setup ISRs.
*
* Return 0 on success.
*/
static int
megasas_setup_irqs_ioapic(struct megasas_instance *instance)
{
struct pci_dev *pdev;
pdev = instance->pdev;
instance->irq_context[0].instance = instance;
instance->irq_context[0].MSIxIndex = 0;
snprintf(instance->irq_context->name, MEGASAS_MSIX_NAME_LEN, "%s%u",
"megasas", instance->host->host_no);
if (request_irq(pci_irq_vector(pdev, 0),
instance->instancet->service_isr, IRQF_SHARED,
instance->irq_context->name, &instance->irq_context[0])) {
dev_err(&instance->pdev->dev,
"Failed to register IRQ from %s %d\n",
__func__, __LINE__);
return -1;
}
instance->perf_mode = MR_LATENCY_PERF_MODE;
instance->low_latency_index_start = 0;
return 0;
}
/**
* megasas_setup_irqs_msix - register MSI-x interrupts.
* @instance: Adapter soft state
* @is_probe: Driver probe check
*
* Do not enable interrupt, only setup ISRs.
*
* Return 0 on success.
*/
static int
megasas_setup_irqs_msix(struct megasas_instance *instance, u8 is_probe)
{
int i, j;
struct pci_dev *pdev;
pdev = instance->pdev;
/* Try MSI-x */
for (i = 0; i < instance->msix_vectors; i++) {
instance->irq_context[i].instance = instance;
instance->irq_context[i].MSIxIndex = i;
snprintf(instance->irq_context[i].name, MEGASAS_MSIX_NAME_LEN, "%s%u-msix%u",
"megasas", instance->host->host_no, i);
if (request_irq(pci_irq_vector(pdev, i),
instance->instancet->service_isr, 0, instance->irq_context[i].name,
&instance->irq_context[i])) {
dev_err(&instance->pdev->dev,
"Failed to register IRQ for vector %d.\n", i);
for (j = 0; j < i; j++) {
if (j < instance->low_latency_index_start)
irq_update_affinity_hint(
pci_irq_vector(pdev, j), NULL);
free_irq(pci_irq_vector(pdev, j),
&instance->irq_context[j]);
}
/* Retry irq register for IO_APIC*/
instance->msix_vectors = 0;
instance->msix_load_balance = false;
if (is_probe) {
pci_free_irq_vectors(instance->pdev);
return megasas_setup_irqs_ioapic(instance);
} else {
return -1;
}
}
}
return 0;
}
/*
* megasas_destroy_irqs- unregister interrupts.
* @instance: Adapter soft state
* return: void
*/
static void
megasas_destroy_irqs(struct megasas_instance *instance) {
int i;
int count;
struct megasas_irq_context *irq_ctx;
count = instance->msix_vectors > 0 ? instance->msix_vectors : 1;
if (instance->adapter_type != MFI_SERIES) {
for (i = 0; i < count; i++) {
irq_ctx = &instance->irq_context[i];
irq_poll_disable(&irq_ctx->irqpoll);
}
}
if (instance->msix_vectors)
for (i = 0; i < instance->msix_vectors; i++) {
if (i < instance->low_latency_index_start)
irq_update_affinity_hint(
pci_irq_vector(instance->pdev, i), NULL);
free_irq(pci_irq_vector(instance->pdev, i),
&instance->irq_context[i]);
}
else
free_irq(pci_irq_vector(instance->pdev, 0),
&instance->irq_context[0]);
}
/**
* megasas_setup_jbod_map - setup jbod map for FP seq_number.
* @instance: Adapter soft state
*
* Return 0 on success.
*/
void
megasas_setup_jbod_map(struct megasas_instance *instance)
{
int i;
struct fusion_context *fusion = instance->ctrl_context;
size_t pd_seq_map_sz;
pd_seq_map_sz = struct_size_t(struct MR_PD_CFG_SEQ_NUM_SYNC, seq,
MAX_PHYSICAL_DEVICES);
instance->use_seqnum_jbod_fp =
instance->support_seqnum_jbod_fp;
if (reset_devices || !fusion ||
!instance->support_seqnum_jbod_fp) {
dev_info(&instance->pdev->dev,
"JBOD sequence map is disabled %s %d\n",
__func__, __LINE__);
instance->use_seqnum_jbod_fp = false;
return;
}
if (fusion->pd_seq_sync[0])
goto skip_alloc;
for (i = 0; i < JBOD_MAPS_COUNT; i++) {
fusion->pd_seq_sync[i] = dma_alloc_coherent
(&instance->pdev->dev, pd_seq_map_sz,
&fusion->pd_seq_phys[i], GFP_KERNEL);
if (!fusion->pd_seq_sync[i]) {
dev_err(&instance->pdev->dev,
"Failed to allocate memory from %s %d\n",
__func__, __LINE__);
if (i == 1) {
dma_free_coherent(&instance->pdev->dev,
pd_seq_map_sz, fusion->pd_seq_sync[0],
fusion->pd_seq_phys[0]);
fusion->pd_seq_sync[0] = NULL;
}
instance->use_seqnum_jbod_fp = false;
return;
}
}
skip_alloc:
if (!megasas_sync_pd_seq_num(instance, false) &&
!megasas_sync_pd_seq_num(instance, true))
instance->use_seqnum_jbod_fp = true;
else
instance->use_seqnum_jbod_fp = false;
}
static void megasas_setup_reply_map(struct megasas_instance *instance)
{
const struct cpumask *mask;
unsigned int queue, cpu, low_latency_index_start;
low_latency_index_start = instance->low_latency_index_start;
for (queue = low_latency_index_start; queue < instance->msix_vectors; queue++) {
mask = pci_irq_get_affinity(instance->pdev, queue);
if (!mask)
goto fallback;
for_each_cpu(cpu, mask)
instance->reply_map[cpu] = queue;
}
return;
fallback:
queue = low_latency_index_start;
for_each_possible_cpu(cpu) {
instance->reply_map[cpu] = queue;
if (queue == (instance->msix_vectors - 1))
queue = low_latency_index_start;
else
queue++;
}
}
/**
* megasas_get_device_list - Get the PD and LD device list from FW.
* @instance: Adapter soft state
* @return: Success or failure
*
* Issue DCMDs to Firmware to get the PD and LD list.
* Based on the FW support, driver sends the HOST_DEVICE_LIST or combination
* of PD_LIST/LD_LIST_QUERY DCMDs to get the device list.
*/
static
int megasas_get_device_list(struct megasas_instance *instance)
{
if (instance->enable_fw_dev_list) {
if (megasas_host_device_list_query(instance, true))
return FAILED;
} else {
if (megasas_get_pd_list(instance) < 0) {
dev_err(&instance->pdev->dev, "failed to get PD list\n");
return FAILED;
}
if (megasas_ld_list_query(instance,
MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) {
dev_err(&instance->pdev->dev, "failed to get LD list\n");
return FAILED;
}
}
return SUCCESS;
}
/**
* megasas_set_high_iops_queue_affinity_and_hint - Set affinity and hint
* for high IOPS queues
* @instance: Adapter soft state
* return: void
*/
static inline void
megasas_set_high_iops_queue_affinity_and_hint(struct megasas_instance *instance)
{
int i;
unsigned int irq;
const struct cpumask *mask;
if (instance->perf_mode == MR_BALANCED_PERF_MODE) {
mask = cpumask_of_node(dev_to_node(&instance->pdev->dev));
for (i = 0; i < instance->low_latency_index_start; i++) {
irq = pci_irq_vector(instance->pdev, i);
irq_set_affinity_and_hint(irq, mask);
}
}
}
static int
__megasas_alloc_irq_vectors(struct megasas_instance *instance)
{
int i, irq_flags;
struct irq_affinity desc = { .pre_vectors = instance->low_latency_index_start };
struct irq_affinity *descp = &desc;
irq_flags = PCI_IRQ_MSIX;
if (instance->smp_affinity_enable)
irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
else
descp = NULL;
/* Do not allocate msix vectors for poll_queues.
* msix_vectors is always within a range of FW supported reply queue.
*/
i = pci_alloc_irq_vectors_affinity(instance->pdev,
instance->low_latency_index_start,
instance->msix_vectors - instance->iopoll_q_count, irq_flags, descp);
return i;
}
/**
* megasas_alloc_irq_vectors - Allocate IRQ vectors/enable MSI-x vectors
* @instance: Adapter soft state
* return: void
*/
static void
megasas_alloc_irq_vectors(struct megasas_instance *instance)
{
int i;
unsigned int num_msix_req;
instance->iopoll_q_count = 0;
if ((instance->adapter_type != MFI_SERIES) &&
poll_queues) {
instance->perf_mode = MR_LATENCY_PERF_MODE;
instance->low_latency_index_start = 1;
/* reserve for default and non-mananged pre-vector. */
if (instance->msix_vectors > (poll_queues + 2))
instance->iopoll_q_count = poll_queues;
else
instance->iopoll_q_count = 0;
num_msix_req = num_online_cpus() + instance->low_latency_index_start;
instance->msix_vectors = min(num_msix_req,
instance->msix_vectors);
}
i = __megasas_alloc_irq_vectors(instance);
if (((instance->perf_mode == MR_BALANCED_PERF_MODE)
|| instance->iopoll_q_count) &&
(i != (instance->msix_vectors - instance->iopoll_q_count))) {
if (instance->msix_vectors)
pci_free_irq_vectors(instance->pdev);
/* Disable Balanced IOPS mode and try realloc vectors */
instance->perf_mode = MR_LATENCY_PERF_MODE;
instance->low_latency_index_start = 1;
num_msix_req = num_online_cpus() + instance->low_latency_index_start;
instance->msix_vectors = min(num_msix_req,
instance->msix_vectors);
instance->iopoll_q_count = 0;
i = __megasas_alloc_irq_vectors(instance);
}
dev_info(&instance->pdev->dev,
"requested/available msix %d/%d poll_queue %d\n",
instance->msix_vectors - instance->iopoll_q_count,
i, instance->iopoll_q_count);
if (i > 0)
instance->msix_vectors = i;
else
instance->msix_vectors = 0;
if (instance->smp_affinity_enable)
megasas_set_high_iops_queue_affinity_and_hint(instance);
}
/**
* megasas_init_fw - Initializes the FW
* @instance: Adapter soft state
*
* This is the main function for initializing firmware
*/
static int megasas_init_fw(struct megasas_instance *instance)
{
u32 max_sectors_1;
u32 max_sectors_2, tmp_sectors, msix_enable;
u32 scratch_pad_1, scratch_pad_2, scratch_pad_3, status_reg;
resource_size_t base_addr;
void *base_addr_phys;
struct megasas_ctrl_info *ctrl_info = NULL;
unsigned long bar_list;
int i, j, loop;
struct IOV_111 *iovPtr;
struct fusion_context *fusion;
bool intr_coalescing;
unsigned int num_msix_req;
u16 lnksta, speed;
fusion = instance->ctrl_context;
/* Find first memory bar */
bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM);
instance->bar = find_first_bit(&bar_list, BITS_PER_LONG);
if (pci_request_selected_regions(instance->pdev, 1<<instance->bar,
"megasas: LSI")) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "IO memory region busy!\n");
return -EBUSY;
}
base_addr = pci_resource_start(instance->pdev, instance->bar);
instance->reg_set = ioremap(base_addr, 8192);
if (!instance->reg_set) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to map IO mem\n");
goto fail_ioremap;
}
base_addr_phys = &base_addr;
dev_printk(KERN_DEBUG, &instance->pdev->dev,
"BAR:0x%lx BAR's base_addr(phys):%pa mapped virt_addr:0x%p\n",
instance->bar, base_addr_phys, instance->reg_set);
if (instance->adapter_type != MFI_SERIES)
instance->instancet = &megasas_instance_template_fusion;
else {
switch (instance->pdev->device) {
case PCI_DEVICE_ID_LSI_SAS1078R:
case PCI_DEVICE_ID_LSI_SAS1078DE:
instance->instancet = &megasas_instance_template_ppc;
break;
case PCI_DEVICE_ID_LSI_SAS1078GEN2:
case PCI_DEVICE_ID_LSI_SAS0079GEN2:
instance->instancet = &megasas_instance_template_gen2;
break;
case PCI_DEVICE_ID_LSI_SAS0073SKINNY:
case PCI_DEVICE_ID_LSI_SAS0071SKINNY:
instance->instancet = &megasas_instance_template_skinny;
break;
case PCI_DEVICE_ID_LSI_SAS1064R:
case PCI_DEVICE_ID_DELL_PERC5:
default:
instance->instancet = &megasas_instance_template_xscale;
instance->pd_list_not_supported = 1;
break;
}
}
if (megasas_transition_to_ready(instance, 0)) {
dev_info(&instance->pdev->dev,
"Failed to transition controller to ready from %s!\n",
__func__);
if (instance->adapter_type != MFI_SERIES) {
status_reg = instance->instancet->read_fw_status_reg(
instance);
if (status_reg & MFI_RESET_ADAPTER) {
if (megasas_adp_reset_wait_for_ready
(instance, true, 0) == FAILED)
goto fail_ready_state;
} else {
goto fail_ready_state;
}
} else {
atomic_set(&instance->fw_reset_no_pci_access, 1);
instance->instancet->adp_reset
(instance, instance->reg_set);
atomic_set(&instance->fw_reset_no_pci_access, 0);
/*waiting for about 30 second before retry*/
ssleep(30);
if (megasas_transition_to_ready(instance, 0))
goto fail_ready_state;
}
dev_info(&instance->pdev->dev,
"FW restarted successfully from %s!\n",
__func__);
}
megasas_init_ctrl_params(instance);
if (megasas_set_dma_mask(instance))
goto fail_ready_state;
if (megasas_alloc_ctrl_mem(instance))
goto fail_alloc_dma_buf;
if (megasas_alloc_ctrl_dma_buffers(instance))
goto fail_alloc_dma_buf;
fusion = instance->ctrl_context;
if (instance->adapter_type >= VENTURA_SERIES) {
scratch_pad_2 =
megasas_readl(instance,
&instance->reg_set->outbound_scratch_pad_2);
instance->max_raid_mapsize = ((scratch_pad_2 >>
MR_MAX_RAID_MAP_SIZE_OFFSET_SHIFT) &
MR_MAX_RAID_MAP_SIZE_MASK);
}
instance->enable_sdev_max_qd = enable_sdev_max_qd;
switch (instance->adapter_type) {
case VENTURA_SERIES:
fusion->pcie_bw_limitation = true;
break;
case AERO_SERIES:
fusion->r56_div_offload = true;
break;
default:
break;
}
/* Check if MSI-X is supported while in ready state */
msix_enable = (instance->instancet->read_fw_status_reg(instance) &
0x4000000) >> 0x1a;
if (msix_enable && !msix_disable) {
scratch_pad_1 = megasas_readl
(instance, &instance->reg_set->outbound_scratch_pad_1);
/* Check max MSI-X vectors */
if (fusion) {
if (instance->adapter_type == THUNDERBOLT_SERIES) {
/* Thunderbolt Series*/
instance->msix_vectors = (scratch_pad_1
& MR_MAX_REPLY_QUEUES_OFFSET) + 1;
} else {
instance->msix_vectors = ((scratch_pad_1
& MR_MAX_REPLY_QUEUES_EXT_OFFSET)
>> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1;
/*
* For Invader series, > 8 MSI-x vectors
* supported by FW/HW implies combined
* reply queue mode is enabled.
* For Ventura series, > 16 MSI-x vectors
* supported by FW/HW implies combined
* reply queue mode is enabled.
*/
switch (instance->adapter_type) {
case INVADER_SERIES:
if (instance->msix_vectors > 8)
instance->msix_combined = true;
break;
case AERO_SERIES:
case VENTURA_SERIES:
if (instance->msix_vectors > 16)
instance->msix_combined = true;
break;
}
if (rdpq_enable)
instance->is_rdpq = (scratch_pad_1 & MR_RDPQ_MODE_OFFSET) ?
1 : 0;
if (instance->adapter_type >= INVADER_SERIES &&
!instance->msix_combined) {
instance->msix_load_balance = true;
instance->smp_affinity_enable = false;
}
/* Save 1-15 reply post index address to local memory
* Index 0 is already saved from reg offset
* MPI2_REPLY_POST_HOST_INDEX_OFFSET
*/
for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) {
instance->reply_post_host_index_addr[loop] =
(u32 __iomem *)
((u8 __iomem *)instance->reg_set +
MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET
+ (loop * 0x10));
}
}
dev_info(&instance->pdev->dev,
"firmware supports msix\t: (%d)",
instance->msix_vectors);
if (msix_vectors)
instance->msix_vectors = min(msix_vectors,
instance->msix_vectors);
} else /* MFI adapters */
instance->msix_vectors = 1;
/*
* For Aero (if some conditions are met), driver will configure a
* few additional reply queues with interrupt coalescing enabled.
* These queues with interrupt coalescing enabled are called
* High IOPS queues and rest of reply queues (based on number of
* logical CPUs) are termed as Low latency queues.
*
* Total Number of reply queues = High IOPS queues + low latency queues
*
* For rest of fusion adapters, 1 additional reply queue will be
* reserved for management commands, rest of reply queues
* (based on number of logical CPUs) will be used for IOs and
* referenced as IO queues.
* Total Number of reply queues = 1 + IO queues
*
* MFI adapters supports single MSI-x so single reply queue
* will be used for IO and management commands.
*/
intr_coalescing = (scratch_pad_1 & MR_INTR_COALESCING_SUPPORT_OFFSET) ?
true : false;
if (intr_coalescing &&
(num_online_cpus() >= MR_HIGH_IOPS_QUEUE_COUNT) &&
(instance->msix_vectors == MEGASAS_MAX_MSIX_QUEUES))
instance->perf_mode = MR_BALANCED_PERF_MODE;
else
instance->perf_mode = MR_LATENCY_PERF_MODE;
if (instance->adapter_type == AERO_SERIES) {
pcie_capability_read_word(instance->pdev, PCI_EXP_LNKSTA, &lnksta);
speed = lnksta & PCI_EXP_LNKSTA_CLS;
/*
* For Aero, if PCIe link speed is <16 GT/s, then driver should operate
* in latency perf mode and enable R1 PCI bandwidth algorithm
*/
if (speed < 0x4) {
instance->perf_mode = MR_LATENCY_PERF_MODE;
fusion->pcie_bw_limitation = true;
}
/*
* Performance mode settings provided through module parameter-perf_mode will
* take affect only for:
* 1. Aero family of adapters.
* 2. When user sets module parameter- perf_mode in range of 0-2.
*/
if ((perf_mode >= MR_BALANCED_PERF_MODE) &&
(perf_mode <= MR_LATENCY_PERF_MODE))
instance->perf_mode = perf_mode;
/*
* If intr coalescing is not supported by controller FW, then IOPS
* and Balanced modes are not feasible.
*/
if (!intr_coalescing)
instance->perf_mode = MR_LATENCY_PERF_MODE;
}
if (instance->perf_mode == MR_BALANCED_PERF_MODE)
instance->low_latency_index_start =
MR_HIGH_IOPS_QUEUE_COUNT;
else
instance->low_latency_index_start = 1;
num_msix_req = num_online_cpus() + instance->low_latency_index_start;
instance->msix_vectors = min(num_msix_req,
instance->msix_vectors);
megasas_alloc_irq_vectors(instance);
if (!instance->msix_vectors)
instance->msix_load_balance = false;
}
/*
* MSI-X host index 0 is common for all adapter.
* It is used for all MPT based Adapters.
*/
if (instance->msix_combined) {
instance->reply_post_host_index_addr[0] =
(u32 *)((u8 *)instance->reg_set +
MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET);
} else {
instance->reply_post_host_index_addr[0] =
(u32 *)((u8 *)instance->reg_set +
MPI2_REPLY_POST_HOST_INDEX_OFFSET);
}
if (!instance->msix_vectors) {
i = pci_alloc_irq_vectors(instance->pdev, 1, 1, PCI_IRQ_INTX);
if (i < 0)
goto fail_init_adapter;
}
megasas_setup_reply_map(instance);
dev_info(&instance->pdev->dev,
"current msix/online cpus\t: (%d/%d)\n",
instance->msix_vectors, (unsigned int)num_online_cpus());
dev_info(&instance->pdev->dev,
"RDPQ mode\t: (%s)\n", instance->is_rdpq ? "enabled" : "disabled");
tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
(unsigned long)instance);
/*
* Below are default value for legacy Firmware.
* non-fusion based controllers
*/
instance->fw_supported_vd_count = MAX_LOGICAL_DRIVES;
instance->fw_supported_pd_count = MAX_PHYSICAL_DEVICES;
/* Get operational params, sge flags, send init cmd to controller */
if (instance->instancet->init_adapter(instance))
goto fail_init_adapter;
if (instance->adapter_type >= VENTURA_SERIES) {
scratch_pad_3 =
megasas_readl(instance,
&instance->reg_set->outbound_scratch_pad_3);
if ((scratch_pad_3 & MR_NVME_PAGE_SIZE_MASK) >=
MR_DEFAULT_NVME_PAGE_SHIFT)
instance->nvme_page_size =
(1 << (scratch_pad_3 & MR_NVME_PAGE_SIZE_MASK));
dev_info(&instance->pdev->dev,
"NVME page size\t: (%d)\n", instance->nvme_page_size);
}
if (instance->msix_vectors ?
megasas_setup_irqs_msix(instance, 1) :
megasas_setup_irqs_ioapic(instance))
goto fail_init_adapter;
if (instance->adapter_type != MFI_SERIES)
megasas_setup_irq_poll(instance);
instance->instancet->enable_intr(instance);
dev_info(&instance->pdev->dev, "INIT adapter done\n");
megasas_setup_jbod_map(instance);
if (megasas_get_device_list(instance) != SUCCESS) {
dev_err(&instance->pdev->dev,
"%s: megasas_get_device_list failed\n",
__func__);
goto fail_get_ld_pd_list;
}
/* stream detection initialization */
if (instance->adapter_type >= VENTURA_SERIES) {
fusion->stream_detect_by_ld =
kcalloc(MAX_LOGICAL_DRIVES_EXT,
sizeof(struct LD_STREAM_DETECT *),
GFP_KERNEL);
if (!fusion->stream_detect_by_ld) {
dev_err(&instance->pdev->dev,
"unable to allocate stream detection for pool of LDs\n");
goto fail_get_ld_pd_list;
}
for (i = 0; i < MAX_LOGICAL_DRIVES_EXT; ++i) {
fusion->stream_detect_by_ld[i] =
kzalloc(sizeof(struct LD_STREAM_DETECT),
GFP_KERNEL);
if (!fusion->stream_detect_by_ld[i]) {
dev_err(&instance->pdev->dev,
"unable to allocate stream detect by LD\n");
for (j = 0; j < i; ++j)
kfree(fusion->stream_detect_by_ld[j]);
kfree(fusion->stream_detect_by_ld);
fusion->stream_detect_by_ld = NULL;
goto fail_get_ld_pd_list;
}
fusion->stream_detect_by_ld[i]->mru_bit_map
= MR_STREAM_BITMAP;
}
}
/*
* Compute the max allowed sectors per IO: The controller info has two
* limits on max sectors. Driver should use the minimum of these two.
*
* 1 << stripe_sz_ops.min = max sectors per strip
*
* Note that older firmwares ( < FW ver 30) didn't report information
* to calculate max_sectors_1. So the number ended up as zero always.
*/
tmp_sectors = 0;
ctrl_info = instance->ctrl_info_buf;
max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
le16_to_cpu(ctrl_info->max_strips_per_io);
max_sectors_2 = le32_to_cpu(ctrl_info->max_request_size);
tmp_sectors = min_t(u32, max_sectors_1, max_sectors_2);
instance->peerIsPresent = ctrl_info->cluster.peerIsPresent;
instance->passive = ctrl_info->cluster.passive;
memcpy(instance->clusterId, ctrl_info->clusterId, sizeof(instance->clusterId));
instance->UnevenSpanSupport =
ctrl_info->adapterOperations2.supportUnevenSpans;
if (instance->UnevenSpanSupport) {
struct fusion_context *fusion = instance->ctrl_context;
if (MR_ValidateMapInfo(instance, instance->map_id))
fusion->fast_path_io = 1;
else
fusion->fast_path_io = 0;
}
if (ctrl_info->host_interface.SRIOV) {
instance->requestorId = ctrl_info->iov.requestorId;
if (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) {
if (!ctrl_info->adapterOperations2.activePassive)
instance->PlasmaFW111 = 1;
dev_info(&instance->pdev->dev, "SR-IOV: firmware type: %s\n",
instance->PlasmaFW111 ? "1.11" : "new");
if (instance->PlasmaFW111) {
iovPtr = (struct IOV_111 *)
((unsigned char *)ctrl_info + IOV_111_OFFSET);
instance->requestorId = iovPtr->requestorId;
}
}
dev_info(&instance->pdev->dev, "SRIOV: VF requestorId %d\n",
instance->requestorId);
}
instance->crash_dump_fw_support =
ctrl_info->adapterOperations3.supportCrashDump;
instance->crash_dump_drv_support =
(instance->crash_dump_fw_support &&
instance->crash_dump_buf);
if (instance->crash_dump_drv_support)
megasas_set_crash_dump_params(instance,
MR_CRASH_BUF_TURN_OFF);
else {
if (instance->crash_dump_buf)
dma_free_coherent(&instance->pdev->dev,
CRASH_DMA_BUF_SIZE,
instance->crash_dump_buf,
instance->crash_dump_h);
instance->crash_dump_buf = NULL;
}
if (instance->snapdump_wait_time) {
megasas_get_snapdump_properties(instance);
dev_info(&instance->pdev->dev, "Snap dump wait time\t: %d\n",
instance->snapdump_wait_time);
}
dev_info(&instance->pdev->dev,
"pci id\t\t: (0x%04x)/(0x%04x)/(0x%04x)/(0x%04x)\n",
le16_to_cpu(ctrl_info->pci.vendor_id),
le16_to_cpu(ctrl_info->pci.device_id),
le16_to_cpu(ctrl_info->pci.sub_vendor_id),
le16_to_cpu(ctrl_info->pci.sub_device_id));
dev_info(&instance->pdev->dev, "unevenspan support : %s\n",
instance->UnevenSpanSupport ? "yes" : "no");
dev_info(&instance->pdev->dev, "firmware crash dump : %s\n",
instance->crash_dump_drv_support ? "yes" : "no");
dev_info(&instance->pdev->dev, "JBOD sequence map : %s\n",
instance->use_seqnum_jbod_fp ? "enabled" : "disabled");
instance->max_sectors_per_req = instance->max_num_sge *
SGE_BUFFER_SIZE / 512;
if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
instance->max_sectors_per_req = tmp_sectors;
/* Check for valid throttlequeuedepth module parameter */
if (throttlequeuedepth &&
throttlequeuedepth <= instance->max_scsi_cmds)
instance->throttlequeuedepth = throttlequeuedepth;
else
instance->throttlequeuedepth =
MEGASAS_THROTTLE_QUEUE_DEPTH;
if ((resetwaittime < 1) ||
(resetwaittime > MEGASAS_RESET_WAIT_TIME))
resetwaittime = MEGASAS_RESET_WAIT_TIME;
if ((scmd_timeout < 10) || (scmd_timeout > MEGASAS_DEFAULT_CMD_TIMEOUT))
scmd_timeout = MEGASAS_DEFAULT_CMD_TIMEOUT;
/* Launch SR-IOV heartbeat timer */
if (instance->requestorId) {
if (!megasas_sriov_start_heartbeat(instance, 1)) {
megasas_start_timer(instance);
} else {
instance->skip_heartbeat_timer_del = 1;
goto fail_get_ld_pd_list;
}
}
/*
* Create and start watchdog thread which will monitor
* controller state every 1 sec and trigger OCR when
* it enters fault state
*/
if (instance->adapter_type != MFI_SERIES)
if (megasas_fusion_start_watchdog(instance) != SUCCESS)
goto fail_start_watchdog;
return 0;
fail_start_watchdog:
if (instance->requestorId && !instance->skip_heartbeat_timer_del)
del_timer_sync(&instance->sriov_heartbeat_timer);
fail_get_ld_pd_list:
instance->instancet->disable_intr(instance);
megasas_destroy_irqs(instance);
fail_init_adapter:
if (instance->msix_vectors)
pci_free_irq_vectors(instance->pdev);
instance->msix_vectors = 0;
fail_alloc_dma_buf:
megasas_free_ctrl_dma_buffers(instance);
megasas_free_ctrl_mem(instance);
fail_ready_state:
iounmap(instance->reg_set);
fail_ioremap:
pci_release_selected_regions(instance->pdev, 1<<instance->bar);
dev_err(&instance->pdev->dev, "Failed from %s %d\n",
__func__, __LINE__);
return -EINVAL;
}
/**
* megasas_release_mfi - Reverses the FW initialization
* @instance: Adapter soft state
*/
static void megasas_release_mfi(struct megasas_instance *instance)
{
u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1);
if (instance->reply_queue)
dma_free_coherent(&instance->pdev->dev, reply_q_sz,
instance->reply_queue, instance->reply_queue_h);
megasas_free_cmds(instance);
iounmap(instance->reg_set);
pci_release_selected_regions(instance->pdev, 1<<instance->bar);
}
/**
* megasas_get_seq_num - Gets latest event sequence numbers
* @instance: Adapter soft state
* @eli: FW event log sequence numbers information
*
* FW maintains a log of all events in a non-volatile area. Upper layers would
* usually find out the latest sequence number of the events, the seq number at
* the boot etc. They would "read" all the events below the latest seq number
* by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
* number), they would subsribe to AEN (asynchronous event notification) and
* wait for the events to happen.
*/
static int
megasas_get_seq_num(struct megasas_instance *instance,
struct megasas_evt_log_info *eli)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct megasas_evt_log_info *el_info;
dma_addr_t el_info_h = 0;
int ret;
cmd = megasas_get_cmd(instance);
if (!cmd) {
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
el_info = dma_alloc_coherent(&instance->pdev->dev,
sizeof(struct megasas_evt_log_info),
&el_info_h, GFP_KERNEL);
if (!el_info) {
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_log_info));
dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_GET_INFO);
megasas_set_dma_settings(instance, dcmd, el_info_h,
sizeof(struct megasas_evt_log_info));
ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS);
if (ret != DCMD_SUCCESS) {
dev_err(&instance->pdev->dev, "Failed from %s %d\n",
__func__, __LINE__);
goto dcmd_failed;
}
/*
* Copy the data back into callers buffer
*/
eli->newest_seq_num = el_info->newest_seq_num;
eli->oldest_seq_num = el_info->oldest_seq_num;
eli->clear_seq_num = el_info->clear_seq_num;
eli->shutdown_seq_num = el_info->shutdown_seq_num;
eli->boot_seq_num = el_info->boot_seq_num;
dcmd_failed:
dma_free_coherent(&instance->pdev->dev,
sizeof(struct megasas_evt_log_info),
el_info, el_info_h);
megasas_return_cmd(instance, cmd);
return ret;
}
/**
* megasas_register_aen - Registers for asynchronous event notification
* @instance: Adapter soft state
* @seq_num: The starting sequence number
* @class_locale_word: Class of the event
*
* This function subscribes for AEN for events beyond the @seq_num. It requests
* to be notified if and only if the event is of type @class_locale
*/
static int
megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
u32 class_locale_word)
{
int ret_val;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
union megasas_evt_class_locale curr_aen;
union megasas_evt_class_locale prev_aen;
/*
* If there an AEN pending already (aen_cmd), check if the
* class_locale of that pending AEN is inclusive of the new
* AEN request we currently have. If it is, then we don't have
* to do anything. In other words, whichever events the current
* AEN request is subscribing to, have already been subscribed
* to.
*
* If the old_cmd is _not_ inclusive, then we have to abort
* that command, form a class_locale that is superset of both
* old and current and re-issue to the FW
*/
curr_aen.word = class_locale_word;
if (instance->aen_cmd) {
prev_aen.word =
le32_to_cpu(instance->aen_cmd->frame->dcmd.mbox.w[1]);
if ((curr_aen.members.class < MFI_EVT_CLASS_DEBUG) ||
(curr_aen.members.class > MFI_EVT_CLASS_DEAD)) {
dev_info(&instance->pdev->dev,
"%s %d out of range class %d send by application\n",
__func__, __LINE__, curr_aen.members.class);
return 0;
}
/*
* A class whose enum value is smaller is inclusive of all
* higher values. If a PROGRESS (= -1) was previously
* registered, then a new registration requests for higher
* classes need not be sent to FW. They are automatically
* included.
*
* Locale numbers don't have such hierarchy. They are bitmap
* values
*/
if ((prev_aen.members.class <= curr_aen.members.class) &&
!((prev_aen.members.locale & curr_aen.members.locale) ^
curr_aen.members.locale)) {
/*
* Previously issued event registration includes
* current request. Nothing to do.
*/
return 0;
} else {
curr_aen.members.locale |= prev_aen.members.locale;
if (prev_aen.members.class < curr_aen.members.class)
curr_aen.members.class = prev_aen.members.class;
instance->aen_cmd->abort_aen = 1;
ret_val = megasas_issue_blocked_abort_cmd(instance,
instance->
aen_cmd, 30);
if (ret_val) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to abort "
"previous AEN command\n");
return ret_val;
}
}
}
cmd = megasas_get_cmd(instance);
if (!cmd)
return -ENOMEM;
dcmd = &cmd->frame->dcmd;
memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
/*
* Prepare DCMD for aen registration
*/
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_detail));
dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_WAIT);
dcmd->mbox.w[0] = cpu_to_le32(seq_num);
instance->last_seq_num = seq_num;
dcmd->mbox.w[1] = cpu_to_le32(curr_aen.word);
megasas_set_dma_settings(instance, dcmd, instance->evt_detail_h,
sizeof(struct megasas_evt_detail));
if (instance->aen_cmd != NULL) {
megasas_return_cmd(instance, cmd);
return 0;
}
/*
* Store reference to the cmd used to register for AEN. When an
* application wants us to register for AEN, we have to abort this
* cmd and re-register with a new EVENT LOCALE supplied by that app
*/
instance->aen_cmd = cmd;
/*
* Issue the aen registration frame
*/
instance->instancet->issue_dcmd(instance, cmd);
return 0;
}
/* megasas_get_target_prop - Send DCMD with below details to firmware.
*
* This DCMD will fetch few properties of LD/system PD defined
* in MR_TARGET_DEV_PROPERTIES. eg. Queue Depth, MDTS value.
*
* DCMD send by drivers whenever new target is added to the OS.
*
* dcmd.opcode - MR_DCMD_DEV_GET_TARGET_PROP
* dcmd.mbox.b[0] - DCMD is to be fired for LD or system PD.
* 0 = system PD, 1 = LD.
* dcmd.mbox.s[1] - TargetID for LD/system PD.
* dcmd.sge IN - Pointer to return MR_TARGET_DEV_PROPERTIES.
*
* @instance: Adapter soft state
* @sdev: OS provided scsi device
*
* Returns 0 on success non-zero on failure.
*/
int
megasas_get_target_prop(struct megasas_instance *instance,
struct scsi_device *sdev)
{
int ret;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
u16 targetId = ((sdev->channel % 2) * MEGASAS_MAX_DEV_PER_CHANNEL) +
sdev->id;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_err(&instance->pdev->dev,
"Failed to get cmd %s\n", __func__);
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
memset(instance->tgt_prop, 0, sizeof(*instance->tgt_prop));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->mbox.b[0] = MEGASAS_IS_LOGICAL(sdev);
dcmd->mbox.s[1] = cpu_to_le16(targetId);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len =
cpu_to_le32(sizeof(struct MR_TARGET_PROPERTIES));
dcmd->opcode = cpu_to_le32(MR_DCMD_DRV_GET_TARGET_PROP);
megasas_set_dma_settings(instance, dcmd, instance->tgt_prop_h,
sizeof(struct MR_TARGET_PROPERTIES));
if ((instance->adapter_type != MFI_SERIES) &&
!instance->mask_interrupts)
ret = megasas_issue_blocked_cmd(instance,
cmd, MFI_IO_TIMEOUT_SECS);
else
ret = megasas_issue_polled(instance, cmd);
switch (ret) {
case DCMD_TIMEOUT:
switch (dcmd_timeout_ocr_possible(instance)) {
case INITIATE_OCR:
cmd->flags |= DRV_DCMD_SKIP_REFIRE;
mutex_unlock(&instance->reset_mutex);
megasas_reset_fusion(instance->host,
MFI_IO_TIMEOUT_OCR);
mutex_lock(&instance->reset_mutex);
break;
case KILL_ADAPTER:
megaraid_sas_kill_hba(instance);
break;
case IGNORE_TIMEOUT:
dev_info(&instance->pdev->dev,
"Ignore DCMD timeout: %s %d\n",
__func__, __LINE__);
break;
}
break;
default:
megasas_return_cmd(instance, cmd);
}
if (ret != DCMD_SUCCESS)
dev_err(&instance->pdev->dev,
"return from %s %d return value %d\n",
__func__, __LINE__, ret);
return ret;
}
/**
* megasas_start_aen - Subscribes to AEN during driver load time
* @instance: Adapter soft state
*/
static int megasas_start_aen(struct megasas_instance *instance)
{
struct megasas_evt_log_info eli;
union megasas_evt_class_locale class_locale;
/*
* Get the latest sequence number from FW
*/
memset(&eli, 0, sizeof(eli));
if (megasas_get_seq_num(instance, &eli))
return -1;
/*
* Register AEN with FW for latest sequence number plus 1
*/
class_locale.members.reserved = 0;
class_locale.members.locale = MR_EVT_LOCALE_ALL;
class_locale.members.class = MR_EVT_CLASS_DEBUG;
return megasas_register_aen(instance,
le32_to_cpu(eli.newest_seq_num) + 1,
class_locale.word);
}
/**
* megasas_io_attach - Attaches this driver to SCSI mid-layer
* @instance: Adapter soft state
*/
static int megasas_io_attach(struct megasas_instance *instance)
{
struct Scsi_Host *host = instance->host;
/*
* Export parameters required by SCSI mid-layer
*/
host->unique_id = instance->unique_id;
host->can_queue = instance->max_scsi_cmds;
host->this_id = instance->init_id;
host->sg_tablesize = instance->max_num_sge;
if (instance->fw_support_ieee)
instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE;
/*
* Check if the module parameter value for max_sectors can be used
*/
if (max_sectors && max_sectors < instance->max_sectors_per_req)
instance->max_sectors_per_req = max_sectors;
else {
if (max_sectors) {
if (((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS1078GEN2) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0079GEN2)) &&
(max_sectors <= MEGASAS_MAX_SECTORS)) {
instance->max_sectors_per_req = max_sectors;
} else {
dev_info(&instance->pdev->dev, "max_sectors should be > 0"
"and <= %d (or < 1MB for GEN2 controller)\n",
instance->max_sectors_per_req);
}
}
}
host->max_sectors = instance->max_sectors_per_req;
host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN;
host->max_channel = MEGASAS_MAX_CHANNELS - 1;
host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
host->max_lun = MEGASAS_MAX_LUN;
host->max_cmd_len = 16;
/* Use shared host tagset only for fusion adaptors
* if there are managed interrupts (smp affinity enabled case).
* Single msix_vectors in kdump, so shared host tag is also disabled.
*/
host->host_tagset = 0;
host->nr_hw_queues = 1;
if ((instance->adapter_type != MFI_SERIES) &&
(instance->msix_vectors > instance->low_latency_index_start) &&
host_tagset_enable &&
instance->smp_affinity_enable) {
host->host_tagset = 1;
host->nr_hw_queues = instance->msix_vectors -
instance->low_latency_index_start + instance->iopoll_q_count;
if (instance->iopoll_q_count)
host->nr_maps = 3;
} else {
instance->iopoll_q_count = 0;
}
dev_info(&instance->pdev->dev,
"Max firmware commands: %d shared with default "
"hw_queues = %d poll_queues %d\n", instance->max_fw_cmds,
host->nr_hw_queues - instance->iopoll_q_count,
instance->iopoll_q_count);
/*
* Notify the mid-layer about the new controller
*/
if (scsi_add_host(host, &instance->pdev->dev)) {
dev_err(&instance->pdev->dev,
"Failed to add host from %s %d\n",
__func__, __LINE__);
return -ENODEV;
}
return 0;
}
/**
* megasas_set_dma_mask - Set DMA mask for supported controllers
*
* @instance: Adapter soft state
* Description:
*
* For Ventura, driver/FW will operate in 63bit DMA addresses.
*
* For invader-
* By default, driver/FW will operate in 32bit DMA addresses
* for consistent DMA mapping but if 32 bit consistent
* DMA mask fails, driver will try with 63 bit consistent
* mask provided FW is true 63bit DMA capable
*
* For older controllers(Thunderbolt and MFI based adapters)-
* driver/FW will operate in 32 bit consistent DMA addresses.
*/
static int
megasas_set_dma_mask(struct megasas_instance *instance)
{
u64 consistent_mask;
struct pci_dev *pdev;
u32 scratch_pad_1;
pdev = instance->pdev;
consistent_mask = (instance->adapter_type >= VENTURA_SERIES) ?
DMA_BIT_MASK(63) : DMA_BIT_MASK(32);
if (IS_DMA64) {
if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(63)) &&
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
goto fail_set_dma_mask;
if ((*pdev->dev.dma_mask == DMA_BIT_MASK(63)) &&
(dma_set_coherent_mask(&pdev->dev, consistent_mask) &&
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))) {
/*
* If 32 bit DMA mask fails, then try for 64 bit mask
* for FW capable of handling 64 bit DMA.
*/
scratch_pad_1 = megasas_readl
(instance, &instance->reg_set->outbound_scratch_pad_1);
if (!(scratch_pad_1 & MR_CAN_HANDLE_64_BIT_DMA_OFFSET))
goto fail_set_dma_mask;
else if (dma_set_mask_and_coherent(&pdev->dev,
DMA_BIT_MASK(63)))
goto fail_set_dma_mask;
}
} else if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
goto fail_set_dma_mask;
if (pdev->dev.coherent_dma_mask == DMA_BIT_MASK(32))
instance->consistent_mask_64bit = false;
else
instance->consistent_mask_64bit = true;
dev_info(&pdev->dev, "%s bit DMA mask and %s bit consistent mask\n",
((*pdev->dev.dma_mask == DMA_BIT_MASK(63)) ? "63" : "32"),
(instance->consistent_mask_64bit ? "63" : "32"));
return 0;
fail_set_dma_mask:
dev_err(&pdev->dev, "Failed to set DMA mask\n");
return -1;
}
/*
* megasas_set_adapter_type - Set adapter type.
* Supported controllers can be divided in
* different categories-
* enum MR_ADAPTER_TYPE {
* MFI_SERIES = 1,
* THUNDERBOLT_SERIES = 2,
* INVADER_SERIES = 3,
* VENTURA_SERIES = 4,
* AERO_SERIES = 5,
* };
* @instance: Adapter soft state
* return: void
*/
static inline void megasas_set_adapter_type(struct megasas_instance *instance)
{
if ((instance->pdev->vendor == PCI_VENDOR_ID_DELL) &&
(instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5)) {
instance->adapter_type = MFI_SERIES;
} else {
switch (instance->pdev->device) {
case PCI_DEVICE_ID_LSI_AERO_10E1:
case PCI_DEVICE_ID_LSI_AERO_10E2:
case PCI_DEVICE_ID_LSI_AERO_10E5:
case PCI_DEVICE_ID_LSI_AERO_10E6:
instance->adapter_type = AERO_SERIES;
break;
case PCI_DEVICE_ID_LSI_VENTURA:
case PCI_DEVICE_ID_LSI_CRUSADER:
case PCI_DEVICE_ID_LSI_HARPOON:
case PCI_DEVICE_ID_LSI_TOMCAT:
case PCI_DEVICE_ID_LSI_VENTURA_4PORT:
case PCI_DEVICE_ID_LSI_CRUSADER_4PORT:
instance->adapter_type = VENTURA_SERIES;
break;
case PCI_DEVICE_ID_LSI_FUSION:
case PCI_DEVICE_ID_LSI_PLASMA:
instance->adapter_type = THUNDERBOLT_SERIES;
break;
case PCI_DEVICE_ID_LSI_INVADER:
case PCI_DEVICE_ID_LSI_INTRUDER:
case PCI_DEVICE_ID_LSI_INTRUDER_24:
case PCI_DEVICE_ID_LSI_CUTLASS_52:
case PCI_DEVICE_ID_LSI_CUTLASS_53:
case PCI_DEVICE_ID_LSI_FURY:
instance->adapter_type = INVADER_SERIES;
break;
default: /* For all other supported controllers */
instance->adapter_type = MFI_SERIES;
break;
}
}
}
static inline int megasas_alloc_mfi_ctrl_mem(struct megasas_instance *instance)
{
instance->producer = dma_alloc_coherent(&instance->pdev->dev,
sizeof(u32), &instance->producer_h, GFP_KERNEL);
instance->consumer = dma_alloc_coherent(&instance->pdev->dev,
sizeof(u32), &instance->consumer_h, GFP_KERNEL);
if (!instance->producer || !instance->consumer) {
dev_err(&instance->pdev->dev,
"Failed to allocate memory for producer, consumer\n");
return -1;
}
*instance->producer = 0;
*instance->consumer = 0;
return 0;
}
/**
* megasas_alloc_ctrl_mem - Allocate per controller memory for core data
* structures which are not common across MFI
* adapters and fusion adapters.
* For MFI based adapters, allocate producer and
* consumer buffers. For fusion adapters, allocate
* memory for fusion context.
* @instance: Adapter soft state
* return: 0 for SUCCESS
*/
static int megasas_alloc_ctrl_mem(struct megasas_instance *instance)
{
instance->reply_map = kcalloc(nr_cpu_ids, sizeof(unsigned int),
GFP_KERNEL);
if (!instance->reply_map)
return -ENOMEM;
switch (instance->adapter_type) {
case MFI_SERIES:
if (megasas_alloc_mfi_ctrl_mem(instance))
return -ENOMEM;
break;
case AERO_SERIES:
case VENTURA_SERIES:
case THUNDERBOLT_SERIES:
case INVADER_SERIES:
if (megasas_alloc_fusion_context(instance))
return -ENOMEM;
break;
}
return 0;
}
/*
* megasas_free_ctrl_mem - Free fusion context for fusion adapters and
* producer, consumer buffers for MFI adapters
*
* @instance - Adapter soft instance
*
*/
static inline void megasas_free_ctrl_mem(struct megasas_instance *instance)
{
kfree(instance->reply_map);
if (instance->adapter_type == MFI_SERIES) {
if (instance->producer)
dma_free_coherent(&instance->pdev->dev, sizeof(u32),
instance->producer,
instance->producer_h);
if (instance->consumer)
dma_free_coherent(&instance->pdev->dev, sizeof(u32),
instance->consumer,
instance->consumer_h);
} else {
megasas_free_fusion_context(instance);
}
}
/**
* megasas_alloc_ctrl_dma_buffers - Allocate consistent DMA buffers during
* driver load time
*
* @instance: Adapter soft instance
*
* @return: O for SUCCESS
*/
static inline
int megasas_alloc_ctrl_dma_buffers(struct megasas_instance *instance)
{
struct pci_dev *pdev = instance->pdev;
struct fusion_context *fusion = instance->ctrl_context;
instance->evt_detail = dma_alloc_coherent(&pdev->dev,
sizeof(struct megasas_evt_detail),
&instance->evt_detail_h, GFP_KERNEL);
if (!instance->evt_detail) {
dev_err(&instance->pdev->dev,
"Failed to allocate event detail buffer\n");
return -ENOMEM;
}
if (fusion) {
fusion->ioc_init_request =
dma_alloc_coherent(&pdev->dev,
sizeof(struct MPI2_IOC_INIT_REQUEST),
&fusion->ioc_init_request_phys,
GFP_KERNEL);
if (!fusion->ioc_init_request) {
dev_err(&pdev->dev,
"Failed to allocate ioc init request\n");
return -ENOMEM;
}
instance->snapdump_prop = dma_alloc_coherent(&pdev->dev,
sizeof(struct MR_SNAPDUMP_PROPERTIES),
&instance->snapdump_prop_h, GFP_KERNEL);
if (!instance->snapdump_prop)
dev_err(&pdev->dev,
"Failed to allocate snapdump properties buffer\n");
instance->host_device_list_buf = dma_alloc_coherent(&pdev->dev,
HOST_DEVICE_LIST_SZ,
&instance->host_device_list_buf_h,
GFP_KERNEL);
if (!instance->host_device_list_buf) {
dev_err(&pdev->dev,
"Failed to allocate targetid list buffer\n");
return -ENOMEM;
}
}
instance->pd_list_buf =
dma_alloc_coherent(&pdev->dev,
MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST),
&instance->pd_list_buf_h, GFP_KERNEL);
if (!instance->pd_list_buf) {
dev_err(&pdev->dev, "Failed to allocate PD list buffer\n");
return -ENOMEM;
}
instance->ctrl_info_buf =
dma_alloc_coherent(&pdev->dev,
sizeof(struct megasas_ctrl_info),
&instance->ctrl_info_buf_h, GFP_KERNEL);
if (!instance->ctrl_info_buf) {
dev_err(&pdev->dev,
"Failed to allocate controller info buffer\n");
return -ENOMEM;
}
instance->ld_list_buf =
dma_alloc_coherent(&pdev->dev,
sizeof(struct MR_LD_LIST),
&instance->ld_list_buf_h, GFP_KERNEL);
if (!instance->ld_list_buf) {
dev_err(&pdev->dev, "Failed to allocate LD list buffer\n");
return -ENOMEM;
}
instance->ld_targetid_list_buf =
dma_alloc_coherent(&pdev->dev,
sizeof(struct MR_LD_TARGETID_LIST),
&instance->ld_targetid_list_buf_h, GFP_KERNEL);
if (!instance->ld_targetid_list_buf) {
dev_err(&pdev->dev,
"Failed to allocate LD targetid list buffer\n");
return -ENOMEM;
}
if (!reset_devices) {
instance->system_info_buf =
dma_alloc_coherent(&pdev->dev,
sizeof(struct MR_DRV_SYSTEM_INFO),
&instance->system_info_h, GFP_KERNEL);
instance->pd_info =
dma_alloc_coherent(&pdev->dev,
sizeof(struct MR_PD_INFO),
&instance->pd_info_h, GFP_KERNEL);
instance->tgt_prop =
dma_alloc_coherent(&pdev->dev,
sizeof(struct MR_TARGET_PROPERTIES),
&instance->tgt_prop_h, GFP_KERNEL);
instance->crash_dump_buf =
dma_alloc_coherent(&pdev->dev, CRASH_DMA_BUF_SIZE,
&instance->crash_dump_h, GFP_KERNEL);
if (!instance->system_info_buf)
dev_err(&instance->pdev->dev,
"Failed to allocate system info buffer\n");
if (!instance->pd_info)
dev_err(&instance->pdev->dev,
"Failed to allocate pd_info buffer\n");
if (!instance->tgt_prop)
dev_err(&instance->pdev->dev,
"Failed to allocate tgt_prop buffer\n");
if (!instance->crash_dump_buf)
dev_err(&instance->pdev->dev,
"Failed to allocate crash dump buffer\n");
}
return 0;
}
/*
* megasas_free_ctrl_dma_buffers - Free consistent DMA buffers allocated
* during driver load time
*
* @instance- Adapter soft instance
*
*/
static inline
void megasas_free_ctrl_dma_buffers(struct megasas_instance *instance)
{
struct pci_dev *pdev = instance->pdev;
struct fusion_context *fusion = instance->ctrl_context;
if (instance->evt_detail)
dma_free_coherent(&pdev->dev, sizeof(struct megasas_evt_detail),
instance->evt_detail,
instance->evt_detail_h);
if (fusion && fusion->ioc_init_request)
dma_free_coherent(&pdev->dev,
sizeof(struct MPI2_IOC_INIT_REQUEST),
fusion->ioc_init_request,
fusion->ioc_init_request_phys);
if (instance->pd_list_buf)
dma_free_coherent(&pdev->dev,
MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST),
instance->pd_list_buf,
instance->pd_list_buf_h);
if (instance->ld_list_buf)
dma_free_coherent(&pdev->dev, sizeof(struct MR_LD_LIST),
instance->ld_list_buf,
instance->ld_list_buf_h);
if (instance->ld_targetid_list_buf)
dma_free_coherent(&pdev->dev, sizeof(struct MR_LD_TARGETID_LIST),
instance->ld_targetid_list_buf,
instance->ld_targetid_list_buf_h);
if (instance->ctrl_info_buf)
dma_free_coherent(&pdev->dev, sizeof(struct megasas_ctrl_info),
instance->ctrl_info_buf,
instance->ctrl_info_buf_h);
if (instance->system_info_buf)
dma_free_coherent(&pdev->dev, sizeof(struct MR_DRV_SYSTEM_INFO),
instance->system_info_buf,
instance->system_info_h);
if (instance->pd_info)
dma_free_coherent(&pdev->dev, sizeof(struct MR_PD_INFO),
instance->pd_info, instance->pd_info_h);
if (instance->tgt_prop)
dma_free_coherent(&pdev->dev, sizeof(struct MR_TARGET_PROPERTIES),
instance->tgt_prop, instance->tgt_prop_h);
if (instance->crash_dump_buf)
dma_free_coherent(&pdev->dev, CRASH_DMA_BUF_SIZE,
instance->crash_dump_buf,
instance->crash_dump_h);
if (instance->snapdump_prop)
dma_free_coherent(&pdev->dev,
sizeof(struct MR_SNAPDUMP_PROPERTIES),
instance->snapdump_prop,
instance->snapdump_prop_h);
if (instance->host_device_list_buf)
dma_free_coherent(&pdev->dev,
HOST_DEVICE_LIST_SZ,
instance->host_device_list_buf,
instance->host_device_list_buf_h);
}
/*
* megasas_init_ctrl_params - Initialize controller's instance
* parameters before FW init
* @instance - Adapter soft instance
* @return - void
*/
static inline void megasas_init_ctrl_params(struct megasas_instance *instance)
{
instance->fw_crash_state = UNAVAILABLE;
megasas_poll_wait_aen = 0;
instance->issuepend_done = 1;
atomic_set(&instance->adprecovery, MEGASAS_HBA_OPERATIONAL);
/*
* Initialize locks and queues
*/
INIT_LIST_HEAD(&instance->cmd_pool);
INIT_LIST_HEAD(&instance->internal_reset_pending_q);
atomic_set(&instance->fw_outstanding, 0);
atomic64_set(&instance->total_io_count, 0);
init_waitqueue_head(&instance->int_cmd_wait_q);
init_waitqueue_head(&instance->abort_cmd_wait_q);
mutex_init(&instance->crashdump_lock);
spin_lock_init(&instance->mfi_pool_lock);
spin_lock_init(&instance->hba_lock);
spin_lock_init(&instance->stream_lock);
spin_lock_init(&instance->completion_lock);
mutex_init(&instance->reset_mutex);
if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY))
instance->flag_ieee = 1;
instance->flag = 0;
instance->unload = 1;
instance->last_time = 0;
instance->disableOnlineCtrlReset = 1;
instance->UnevenSpanSupport = 0;
instance->smp_affinity_enable = smp_affinity_enable ? true : false;
instance->msix_load_balance = false;
if (instance->adapter_type != MFI_SERIES)
INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq);
else
INIT_WORK(&instance->work_init, process_fw_state_change_wq);
}
/**
* megasas_probe_one - PCI hotplug entry point
* @pdev: PCI device structure
* @id: PCI ids of supported hotplugged adapter
*/
static int megasas_probe_one(struct pci_dev *pdev,
const struct pci_device_id *id)
{
int rval, pos;
struct Scsi_Host *host;
struct megasas_instance *instance;
u16 control = 0;
switch (pdev->device) {
case PCI_DEVICE_ID_LSI_AERO_10E0:
case PCI_DEVICE_ID_LSI_AERO_10E3:
case PCI_DEVICE_ID_LSI_AERO_10E4:
case PCI_DEVICE_ID_LSI_AERO_10E7:
dev_err(&pdev->dev, "Adapter is in non secure mode\n");
return 1;
case PCI_DEVICE_ID_LSI_AERO_10E1:
case PCI_DEVICE_ID_LSI_AERO_10E5:
dev_info(&pdev->dev, "Adapter is in configurable secure mode\n");
break;
}
/* Reset MSI-X in the kdump kernel */
if (reset_devices) {
pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
if (pos) {
pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS,
&control);
if (control & PCI_MSIX_FLAGS_ENABLE) {
dev_info(&pdev->dev, "resetting MSI-X\n");
pci_write_config_word(pdev,
pos + PCI_MSIX_FLAGS,
control &
~PCI_MSIX_FLAGS_ENABLE);
}
}
}
/*
* PCI prepping: enable device set bus mastering and dma mask
*/
rval = pci_enable_device_mem(pdev);
if (rval) {
return rval;
}
pci_set_master(pdev);
host = scsi_host_alloc(&megasas_template,
sizeof(struct megasas_instance));
if (!host) {
dev_printk(KERN_DEBUG, &pdev->dev, "scsi_host_alloc failed\n");
goto fail_alloc_instance;
}
instance = (struct megasas_instance *)host->hostdata;
memset(instance, 0, sizeof(*instance));
atomic_set(&instance->fw_reset_no_pci_access, 0);
/*
* Initialize PCI related and misc parameters
*/
instance->pdev = pdev;
instance->host = host;
instance->unique_id = pci_dev_id(pdev);
instance->init_id = MEGASAS_DEFAULT_INIT_ID;
megasas_set_adapter_type(instance);
/*
* Initialize MFI Firmware
*/
if (megasas_init_fw(instance))
goto fail_init_mfi;
if (instance->requestorId) {
if (instance->PlasmaFW111) {
instance->vf_affiliation_111 =
dma_alloc_coherent(&pdev->dev,
sizeof(struct MR_LD_VF_AFFILIATION_111),
&instance->vf_affiliation_111_h,
GFP_KERNEL);
if (!instance->vf_affiliation_111)
dev_warn(&pdev->dev, "Can't allocate "
"memory for VF affiliation buffer\n");
} else {
instance->vf_affiliation =
dma_alloc_coherent(&pdev->dev,
(MAX_LOGICAL_DRIVES + 1) *
sizeof(struct MR_LD_VF_AFFILIATION),
&instance->vf_affiliation_h,
GFP_KERNEL);
if (!instance->vf_affiliation)
dev_warn(&pdev->dev, "Can't allocate "
"memory for VF affiliation buffer\n");
}
}
/*
* Store instance in PCI softstate
*/
pci_set_drvdata(pdev, instance);
/*
* Add this controller to megasas_mgmt_info structure so that it
* can be exported to management applications
*/
megasas_mgmt_info.count++;
megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
megasas_mgmt_info.max_index++;
/*
* Register with SCSI mid-layer
*/
if (megasas_io_attach(instance))
goto fail_io_attach;
instance->unload = 0;
/*
* Trigger SCSI to scan our drives
*/
if (!instance->enable_fw_dev_list ||
(instance->host_device_list_buf->count > 0))
scsi_scan_host(host);
/*
* Initiate AEN (Asynchronous Event Notification)
*/
if (megasas_start_aen(instance)) {
dev_printk(KERN_DEBUG, &pdev->dev, "start aen failed\n");
goto fail_start_aen;
}
megasas_setup_debugfs(instance);
/* Get current SR-IOV LD/VF affiliation */
if (instance->requestorId)
megasas_get_ld_vf_affiliation(instance, 1);
return 0;
fail_start_aen:
instance->unload = 1;
scsi_remove_host(instance->host);
fail_io_attach:
megasas_mgmt_info.count--;
megasas_mgmt_info.max_index--;
megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
if (instance->requestorId && !instance->skip_heartbeat_timer_del)
del_timer_sync(&instance->sriov_heartbeat_timer);
instance->instancet->disable_intr(instance);
megasas_destroy_irqs(instance);
if (instance->adapter_type != MFI_SERIES)
megasas_release_fusion(instance);
else
megasas_release_mfi(instance);
if (instance->msix_vectors)
pci_free_irq_vectors(instance->pdev);
instance->msix_vectors = 0;
if (instance->fw_crash_state != UNAVAILABLE)
megasas_free_host_crash_buffer(instance);
if (instance->adapter_type != MFI_SERIES)
megasas_fusion_stop_watchdog(instance);
fail_init_mfi:
scsi_host_put(host);
fail_alloc_instance:
pci_disable_device(pdev);
return -ENODEV;
}
/**
* megasas_flush_cache - Requests FW to flush all its caches
* @instance: Adapter soft state
*/
static void megasas_flush_cache(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR)
return;
cmd = megasas_get_cmd(instance);
if (!cmd)
return;
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 0;
dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE);
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = 0;
dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_CACHE_FLUSH);
dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
if (megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS)
!= DCMD_SUCCESS) {
dev_err(&instance->pdev->dev,
"return from %s %d\n", __func__, __LINE__);
return;
}
megasas_return_cmd(instance, cmd);
}
/**
* megasas_shutdown_controller - Instructs FW to shutdown the controller
* @instance: Adapter soft state
* @opcode: Shutdown/Hibernate
*/
static void megasas_shutdown_controller(struct megasas_instance *instance,
u32 opcode)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR)
return;
cmd = megasas_get_cmd(instance);
if (!cmd)
return;
if (instance->aen_cmd)
megasas_issue_blocked_abort_cmd(instance,
instance->aen_cmd, MFI_IO_TIMEOUT_SECS);
if (instance->map_update_cmd)
megasas_issue_blocked_abort_cmd(instance,
instance->map_update_cmd, MFI_IO_TIMEOUT_SECS);
if (instance->jbod_seq_cmd)
megasas_issue_blocked_abort_cmd(instance,
instance->jbod_seq_cmd, MFI_IO_TIMEOUT_SECS);
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 0;
dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE);
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = 0;
dcmd->opcode = cpu_to_le32(opcode);
if (megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS)
!= DCMD_SUCCESS) {
dev_err(&instance->pdev->dev,
"return from %s %d\n", __func__, __LINE__);
return;
}
megasas_return_cmd(instance, cmd);
}
/**
* megasas_suspend - driver suspend entry point
* @dev: Device structure
*/
static int __maybe_unused
megasas_suspend(struct device *dev)
{
struct megasas_instance *instance;
instance = dev_get_drvdata(dev);
if (!instance)
return 0;
instance->unload = 1;
dev_info(dev, "%s is called\n", __func__);
/* Shutdown SR-IOV heartbeat timer */
if (instance->requestorId && !instance->skip_heartbeat_timer_del)
del_timer_sync(&instance->sriov_heartbeat_timer);
/* Stop the FW fault detection watchdog */
if (instance->adapter_type != MFI_SERIES)
megasas_fusion_stop_watchdog(instance);
megasas_flush_cache(instance);
megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
/* cancel the delayed work if this work still in queue */
if (instance->ev != NULL) {
struct megasas_aen_event *ev = instance->ev;
cancel_delayed_work_sync(&ev->hotplug_work);
instance->ev = NULL;
}
tasklet_kill(&instance->isr_tasklet);
pci_set_drvdata(instance->pdev, instance);
instance->instancet->disable_intr(instance);
megasas_destroy_irqs(instance);
if (instance->msix_vectors)
pci_free_irq_vectors(instance->pdev);
return 0;
}
/**
* megasas_resume- driver resume entry point
* @dev: Device structure
*/
static int __maybe_unused
megasas_resume(struct device *dev)
{
int rval;
struct Scsi_Host *host;
struct megasas_instance *instance;
u32 status_reg;
instance = dev_get_drvdata(dev);
if (!instance)
return 0;
host = instance->host;
dev_info(dev, "%s is called\n", __func__);
/*
* We expect the FW state to be READY
*/
if (megasas_transition_to_ready(instance, 0)) {
dev_info(&instance->pdev->dev,
"Failed to transition controller to ready from %s!\n",
__func__);
if (instance->adapter_type != MFI_SERIES) {
status_reg =
instance->instancet->read_fw_status_reg(instance);
if (!(status_reg & MFI_RESET_ADAPTER) ||
((megasas_adp_reset_wait_for_ready
(instance, true, 0)) == FAILED))
goto fail_ready_state;
} else {
atomic_set(&instance->fw_reset_no_pci_access, 1);
instance->instancet->adp_reset
(instance, instance->reg_set);
atomic_set(&instance->fw_reset_no_pci_access, 0);
/* waiting for about 30 seconds before retry */
ssleep(30);
if (megasas_transition_to_ready(instance, 0))
goto fail_ready_state;
}
dev_info(&instance->pdev->dev,
"FW restarted successfully from %s!\n",
__func__);
}
if (megasas_set_dma_mask(instance))
goto fail_set_dma_mask;
/*
* Initialize MFI Firmware
*/
atomic_set(&instance->fw_outstanding, 0);
atomic_set(&instance->ldio_outstanding, 0);
/* Now re-enable MSI-X */
if (instance->msix_vectors)
megasas_alloc_irq_vectors(instance);
if (!instance->msix_vectors) {
rval = pci_alloc_irq_vectors(instance->pdev, 1, 1,
PCI_IRQ_INTX);
if (rval < 0)
goto fail_reenable_msix;
}
megasas_setup_reply_map(instance);
if (instance->adapter_type != MFI_SERIES) {
megasas_reset_reply_desc(instance);
if (megasas_ioc_init_fusion(instance)) {
megasas_free_cmds(instance);
megasas_free_cmds_fusion(instance);
goto fail_init_mfi;
}
if (!megasas_get_map_info(instance))
megasas_sync_map_info(instance);
} else {
*instance->producer = 0;
*instance->consumer = 0;
if (megasas_issue_init_mfi(instance))
goto fail_init_mfi;
}
if (megasas_get_ctrl_info(instance) != DCMD_SUCCESS)
goto fail_init_mfi;
tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
(unsigned long)instance);
if (instance->msix_vectors ?
megasas_setup_irqs_msix(instance, 0) :
megasas_setup_irqs_ioapic(instance))
goto fail_init_mfi;
if (instance->adapter_type != MFI_SERIES)
megasas_setup_irq_poll(instance);
/* Re-launch SR-IOV heartbeat timer */
if (instance->requestorId) {
if (!megasas_sriov_start_heartbeat(instance, 0))
megasas_start_timer(instance);
else {
instance->skip_heartbeat_timer_del = 1;
goto fail_init_mfi;
}
}
instance->instancet->enable_intr(instance);
megasas_setup_jbod_map(instance);
instance->unload = 0;
/*
* Initiate AEN (Asynchronous Event Notification)
*/
if (megasas_start_aen(instance))
dev_err(&instance->pdev->dev, "Start AEN failed\n");
/* Re-launch FW fault watchdog */
if (instance->adapter_type != MFI_SERIES)
if (megasas_fusion_start_watchdog(instance) != SUCCESS)
goto fail_start_watchdog;
return 0;
fail_start_watchdog:
if (instance->requestorId && !instance->skip_heartbeat_timer_del)
del_timer_sync(&instance->sriov_heartbeat_timer);
fail_init_mfi:
megasas_free_ctrl_dma_buffers(instance);
megasas_free_ctrl_mem(instance);
scsi_host_put(host);
fail_reenable_msix:
fail_set_dma_mask:
fail_ready_state:
return -ENODEV;
}
static inline int
megasas_wait_for_adapter_operational(struct megasas_instance *instance)
{
int wait_time = MEGASAS_RESET_WAIT_TIME * 2;
int i;
u8 adp_state;
for (i = 0; i < wait_time; i++) {
adp_state = atomic_read(&instance->adprecovery);
if ((adp_state == MEGASAS_HBA_OPERATIONAL) ||
(adp_state == MEGASAS_HW_CRITICAL_ERROR))
break;
if (!(i % MEGASAS_RESET_NOTICE_INTERVAL))
dev_notice(&instance->pdev->dev, "waiting for controller reset to finish\n");
msleep(1000);
}
if (adp_state != MEGASAS_HBA_OPERATIONAL) {
dev_info(&instance->pdev->dev,
"%s HBA failed to become operational, adp_state %d\n",
__func__, adp_state);
return 1;
}
return 0;
}
/**
* megasas_detach_one - PCI hot"un"plug entry point
* @pdev: PCI device structure
*/
static void megasas_detach_one(struct pci_dev *pdev)
{
int i;
struct Scsi_Host *host;
struct megasas_instance *instance;
struct fusion_context *fusion;
size_t pd_seq_map_sz;
instance = pci_get_drvdata(pdev);
if (!instance)
return;
host = instance->host;
fusion = instance->ctrl_context;
/* Shutdown SR-IOV heartbeat timer */
if (instance->requestorId && !instance->skip_heartbeat_timer_del)
del_timer_sync(&instance->sriov_heartbeat_timer);
/* Stop the FW fault detection watchdog */
if (instance->adapter_type != MFI_SERIES)
megasas_fusion_stop_watchdog(instance);
if (instance->fw_crash_state != UNAVAILABLE)
megasas_free_host_crash_buffer(instance);
scsi_remove_host(instance->host);
instance->unload = 1;
if (megasas_wait_for_adapter_operational(instance))
goto skip_firing_dcmds;
megasas_flush_cache(instance);
megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
skip_firing_dcmds:
/* cancel the delayed work if this work still in queue*/
if (instance->ev != NULL) {
struct megasas_aen_event *ev = instance->ev;
cancel_delayed_work_sync(&ev->hotplug_work);
instance->ev = NULL;
}
/* cancel all wait events */
wake_up_all(&instance->int_cmd_wait_q);
tasklet_kill(&instance->isr_tasklet);
/*
* Take the instance off the instance array. Note that we will not
* decrement the max_index. We let this array be sparse array
*/
for (i = 0; i < megasas_mgmt_info.max_index; i++) {
if (megasas_mgmt_info.instance[i] == instance) {
megasas_mgmt_info.count--;
megasas_mgmt_info.instance[i] = NULL;
break;
}
}
instance->instancet->disable_intr(instance);
megasas_destroy_irqs(instance);
if (instance->msix_vectors)
pci_free_irq_vectors(instance->pdev);
if (instance->adapter_type >= VENTURA_SERIES) {
for (i = 0; i < MAX_LOGICAL_DRIVES_EXT; ++i)
kfree(fusion->stream_detect_by_ld[i]);
kfree(fusion->stream_detect_by_ld);
fusion->stream_detect_by_ld = NULL;
}
if (instance->adapter_type != MFI_SERIES) {
megasas_release_fusion(instance);
pd_seq_map_sz =
struct_size_t(struct MR_PD_CFG_SEQ_NUM_SYNC,
seq, MAX_PHYSICAL_DEVICES);
for (i = 0; i < 2 ; i++) {
if (fusion->ld_map[i])
dma_free_coherent(&instance->pdev->dev,
fusion->max_map_sz,
fusion->ld_map[i],
fusion->ld_map_phys[i]);
if (fusion->ld_drv_map[i]) {
if (is_vmalloc_addr(fusion->ld_drv_map[i]))
vfree(fusion->ld_drv_map[i]);
else
free_pages((ulong)fusion->ld_drv_map[i],
fusion->drv_map_pages);
}
if (fusion->pd_seq_sync[i])
dma_free_coherent(&instance->pdev->dev,
pd_seq_map_sz,
fusion->pd_seq_sync[i],
fusion->pd_seq_phys[i]);
}
} else {
megasas_release_mfi(instance);
}
if (instance->vf_affiliation)
dma_free_coherent(&pdev->dev, (MAX_LOGICAL_DRIVES + 1) *
sizeof(struct MR_LD_VF_AFFILIATION),
instance->vf_affiliation,
instance->vf_affiliation_h);
if (instance->vf_affiliation_111)
dma_free_coherent(&pdev->dev,
sizeof(struct MR_LD_VF_AFFILIATION_111),
instance->vf_affiliation_111,
instance->vf_affiliation_111_h);
if (instance->hb_host_mem)
dma_free_coherent(&pdev->dev, sizeof(struct MR_CTRL_HB_HOST_MEM),
instance->hb_host_mem,
instance->hb_host_mem_h);
megasas_free_ctrl_dma_buffers(instance);
megasas_free_ctrl_mem(instance);
megasas_destroy_debugfs(instance);
scsi_host_put(host);
pci_disable_device(pdev);
}
/**
* megasas_shutdown - Shutdown entry point
* @pdev: PCI device structure
*/
static void megasas_shutdown(struct pci_dev *pdev)
{
struct megasas_instance *instance = pci_get_drvdata(pdev);
if (!instance)
return;
instance->unload = 1;
if (megasas_wait_for_adapter_operational(instance))
goto skip_firing_dcmds;
megasas_flush_cache(instance);
megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
skip_firing_dcmds:
instance->instancet->disable_intr(instance);
megasas_destroy_irqs(instance);
if (instance->msix_vectors)
pci_free_irq_vectors(instance->pdev);
}
/*
* megasas_mgmt_open - char node "open" entry point
* @inode: char node inode
* @filep: char node file
*/
static int megasas_mgmt_open(struct inode *inode, struct file *filep)
{
/*
* Allow only those users with admin rights
*/
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
return 0;
}
/*
* megasas_mgmt_fasync - Async notifier registration from applications
* @fd: char node file descriptor number
* @filep: char node file
* @mode: notifier on/off
*
* This function adds the calling process to a driver global queue. When an
* event occurs, SIGIO will be sent to all processes in this queue.
*/
static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
{
int rc;
mutex_lock(&megasas_async_queue_mutex);
rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
mutex_unlock(&megasas_async_queue_mutex);
if (rc >= 0) {
/* For sanity check when we get ioctl */
filep->private_data = filep;
return 0;
}
printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
return rc;
}
/*
* megasas_mgmt_poll - char node "poll" entry point
* @filep: char node file
* @wait: Events to poll for
*/
static __poll_t megasas_mgmt_poll(struct file *file, poll_table *wait)
{
__poll_t mask;
unsigned long flags;
poll_wait(file, &megasas_poll_wait, wait);
spin_lock_irqsave(&poll_aen_lock, flags);
if (megasas_poll_wait_aen)
mask = (EPOLLIN | EPOLLRDNORM);
else
mask = 0;
megasas_poll_wait_aen = 0;
spin_unlock_irqrestore(&poll_aen_lock, flags);
return mask;
}
/*
* megasas_set_crash_dump_params_ioctl:
* Send CRASH_DUMP_MODE DCMD to all controllers
* @cmd: MFI command frame
*/
static int megasas_set_crash_dump_params_ioctl(struct megasas_cmd *cmd)
{
struct megasas_instance *local_instance;
int i, error = 0;
int crash_support;
crash_support = cmd->frame->dcmd.mbox.w[0];
for (i = 0; i < megasas_mgmt_info.max_index; i++) {
local_instance = megasas_mgmt_info.instance[i];
if (local_instance && local_instance->crash_dump_drv_support) {
if ((atomic_read(&local_instance->adprecovery) ==
MEGASAS_HBA_OPERATIONAL) &&
!megasas_set_crash_dump_params(local_instance,
crash_support)) {
local_instance->crash_dump_app_support =
crash_support;
dev_info(&local_instance->pdev->dev,
"Application firmware crash "
"dump mode set success\n");
error = 0;
} else {
dev_info(&local_instance->pdev->dev,
"Application firmware crash "
"dump mode set failed\n");
error = -1;
}
}
}
return error;
}
/**
* megasas_mgmt_fw_ioctl - Issues management ioctls to FW
* @instance: Adapter soft state
* @user_ioc: User's ioctl packet
* @ioc: ioctl packet
*/
static int
megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
struct megasas_iocpacket __user * user_ioc,
struct megasas_iocpacket *ioc)
{
struct megasas_sge64 *kern_sge64 = NULL;
struct megasas_sge32 *kern_sge32 = NULL;
struct megasas_cmd *cmd;
void *kbuff_arr[MAX_IOCTL_SGE];
dma_addr_t buf_handle = 0;
int error = 0, i;
void *sense = NULL;
dma_addr_t sense_handle;
void *sense_ptr;
u32 opcode = 0;
int ret = DCMD_SUCCESS;
memset(kbuff_arr, 0, sizeof(kbuff_arr));
if (ioc->sge_count > MAX_IOCTL_SGE) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "SGE count [%d] > max limit [%d]\n",
ioc->sge_count, MAX_IOCTL_SGE);
return -EINVAL;
}
if ((ioc->frame.hdr.cmd >= MFI_CMD_OP_COUNT) ||
((ioc->frame.hdr.cmd == MFI_CMD_NVME) &&
!instance->support_nvme_passthru) ||
((ioc->frame.hdr.cmd == MFI_CMD_TOOLBOX) &&
!instance->support_pci_lane_margining)) {
dev_err(&instance->pdev->dev,
"Received invalid ioctl command 0x%x\n",
ioc->frame.hdr.cmd);
return -ENOTSUPP;
}
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to get a cmd packet\n");
return -ENOMEM;
}
/*
* User's IOCTL packet has 2 frames (maximum). Copy those two
* frames into our cmd's frames. cmd->frame's context will get
* overwritten when we copy from user's frames. So set that value
* alone separately
*/
memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
cmd->frame->hdr.context = cpu_to_le32(cmd->index);
cmd->frame->hdr.pad_0 = 0;
cmd->frame->hdr.flags &= (~MFI_FRAME_IEEE);
if (instance->consistent_mask_64bit)
cmd->frame->hdr.flags |= cpu_to_le16((MFI_FRAME_SGL64 |
MFI_FRAME_SENSE64));
else
cmd->frame->hdr.flags &= cpu_to_le16(~(MFI_FRAME_SGL64 |
MFI_FRAME_SENSE64));
if (cmd->frame->hdr.cmd == MFI_CMD_DCMD)
opcode = le32_to_cpu(cmd->frame->dcmd.opcode);
if (opcode == MR_DCMD_CTRL_SHUTDOWN) {
mutex_lock(&instance->reset_mutex);
if (megasas_get_ctrl_info(instance) != DCMD_SUCCESS) {
megasas_return_cmd(instance, cmd);
mutex_unlock(&instance->reset_mutex);
return -1;
}
mutex_unlock(&instance->reset_mutex);
}
if (opcode == MR_DRIVER_SET_APP_CRASHDUMP_MODE) {
error = megasas_set_crash_dump_params_ioctl(cmd);
megasas_return_cmd(instance, cmd);
return error;
}
/*
* The management interface between applications and the fw uses
* MFI frames. E.g, RAID configuration changes, LD property changes
* etc are accomplishes through different kinds of MFI frames. The
* driver needs to care only about substituting user buffers with
* kernel buffers in SGLs. The location of SGL is embedded in the
* struct iocpacket itself.
*/
if (instance->consistent_mask_64bit)
kern_sge64 = (struct megasas_sge64 *)
((unsigned long)cmd->frame + ioc->sgl_off);
else
kern_sge32 = (struct megasas_sge32 *)
((unsigned long)cmd->frame + ioc->sgl_off);
/*
* For each user buffer, create a mirror buffer and copy in
*/
for (i = 0; i < ioc->sge_count; i++) {
if (!ioc->sgl[i].iov_len)
continue;
kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
ioc->sgl[i].iov_len,
&buf_handle, GFP_KERNEL);
if (!kbuff_arr[i]) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to alloc "
"kernel SGL buffer for IOCTL\n");
error = -ENOMEM;
goto out;
}
/*
* We don't change the dma_coherent_mask, so
* dma_alloc_coherent only returns 32bit addresses
*/
if (instance->consistent_mask_64bit) {
kern_sge64[i].phys_addr = cpu_to_le64(buf_handle);
kern_sge64[i].length = cpu_to_le32(ioc->sgl[i].iov_len);
} else {
kern_sge32[i].phys_addr = cpu_to_le32(buf_handle);
kern_sge32[i].length = cpu_to_le32(ioc->sgl[i].iov_len);
}
/*
* We created a kernel buffer corresponding to the
* user buffer. Now copy in from the user buffer
*/
if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
(u32) (ioc->sgl[i].iov_len))) {
error = -EFAULT;
goto out;
}
}
if (ioc->sense_len) {
/* make sure the pointer is part of the frame */
if (ioc->sense_off >
(sizeof(union megasas_frame) - sizeof(__le64))) {
error = -EINVAL;
goto out;
}
sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
&sense_handle, GFP_KERNEL);
if (!sense) {
error = -ENOMEM;
goto out;
}
/* always store 64 bits regardless of addressing */
sense_ptr = (void *)cmd->frame + ioc->sense_off;
put_unaligned_le64(sense_handle, sense_ptr);
}
/*
* Set the sync_cmd flag so that the ISR knows not to complete this
* cmd to the SCSI mid-layer
*/
cmd->sync_cmd = 1;
ret = megasas_issue_blocked_cmd(instance, cmd, 0);
switch (ret) {
case DCMD_INIT:
case DCMD_BUSY:
cmd->sync_cmd = 0;
dev_err(&instance->pdev->dev,
"return -EBUSY from %s %d cmd 0x%x opcode 0x%x cmd->cmd_status_drv 0x%x\n",
__func__, __LINE__, cmd->frame->hdr.cmd, opcode,
cmd->cmd_status_drv);
error = -EBUSY;
goto out;
}
cmd->sync_cmd = 0;
if (instance->unload == 1) {
dev_info(&instance->pdev->dev, "Driver unload is in progress "
"don't submit data to application\n");
goto out;
}
/*
* copy out the kernel buffers to user buffers
*/
for (i = 0; i < ioc->sge_count; i++) {
if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
ioc->sgl[i].iov_len)) {
error = -EFAULT;
goto out;
}
}
/*
* copy out the sense
*/
if (ioc->sense_len) {
void __user *uptr;
/*
* sense_ptr points to the location that has the user
* sense buffer address
*/
sense_ptr = (void *)ioc->frame.raw + ioc->sense_off;
if (in_compat_syscall())
uptr = compat_ptr(get_unaligned((compat_uptr_t *)
sense_ptr));
else
uptr = get_unaligned((void __user **)sense_ptr);
if (copy_to_user(uptr, sense, ioc->sense_len)) {
dev_err(&instance->pdev->dev, "Failed to copy out to user "
"sense data\n");
error = -EFAULT;
goto out;
}
}
/*
* copy the status codes returned by the fw
*/
if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
&cmd->frame->hdr.cmd_status, sizeof(u8))) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Error copying out cmd_status\n");
error = -EFAULT;
}
out:
if (sense) {
dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
sense, sense_handle);
}
for (i = 0; i < ioc->sge_count; i++) {
if (kbuff_arr[i]) {
if (instance->consistent_mask_64bit)
dma_free_coherent(&instance->pdev->dev,
le32_to_cpu(kern_sge64[i].length),
kbuff_arr[i],
le64_to_cpu(kern_sge64[i].phys_addr));
else
dma_free_coherent(&instance->pdev->dev,
le32_to_cpu(kern_sge32[i].length),
kbuff_arr[i],
le32_to_cpu(kern_sge32[i].phys_addr));
kbuff_arr[i] = NULL;
}
}
megasas_return_cmd(instance, cmd);
return error;
}
static struct megasas_iocpacket *
megasas_compat_iocpacket_get_user(void __user *arg)
{
struct megasas_iocpacket *ioc;
struct compat_megasas_iocpacket __user *cioc = arg;
size_t size;
int err = -EFAULT;
int i;
ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
if (!ioc)
return ERR_PTR(-ENOMEM);
size = offsetof(struct megasas_iocpacket, frame) + sizeof(ioc->frame);
if (copy_from_user(ioc, arg, size))
goto out;
for (i = 0; i < MAX_IOCTL_SGE; i++) {
compat_uptr_t iov_base;
if (get_user(iov_base, &cioc->sgl[i].iov_base) ||
get_user(ioc->sgl[i].iov_len, &cioc->sgl[i].iov_len))
goto out;
ioc->sgl[i].iov_base = compat_ptr(iov_base);
}
return ioc;
out:
kfree(ioc);
return ERR_PTR(err);
}
static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
{
struct megasas_iocpacket __user *user_ioc =
(struct megasas_iocpacket __user *)arg;
struct megasas_iocpacket *ioc;
struct megasas_instance *instance;
int error;
if (in_compat_syscall())
ioc = megasas_compat_iocpacket_get_user(user_ioc);
else
ioc = memdup_user(user_ioc, sizeof(struct megasas_iocpacket));
if (IS_ERR(ioc))
return PTR_ERR(ioc);
instance = megasas_lookup_instance(ioc->host_no);
if (!instance) {
error = -ENODEV;
goto out_kfree_ioc;
}
/* Block ioctls in VF mode */
if (instance->requestorId && !allow_vf_ioctls) {
error = -ENODEV;
goto out_kfree_ioc;
}
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) {
dev_err(&instance->pdev->dev, "Controller in crit error\n");
error = -ENODEV;
goto out_kfree_ioc;
}
if (instance->unload == 1) {
error = -ENODEV;
goto out_kfree_ioc;
}
if (down_interruptible(&instance->ioctl_sem)) {
error = -ERESTARTSYS;
goto out_kfree_ioc;
}
if (megasas_wait_for_adapter_operational(instance)) {
error = -ENODEV;
goto out_up;
}
error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
out_up:
up(&instance->ioctl_sem);
out_kfree_ioc:
kfree(ioc);
return error;
}
static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
{
struct megasas_instance *instance;
struct megasas_aen aen;
int error;
if (file->private_data != file) {
printk(KERN_DEBUG "megasas: fasync_helper was not "
"called first\n");
return -EINVAL;
}
if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
return -EFAULT;
instance = megasas_lookup_instance(aen.host_no);
if (!instance)
return -ENODEV;
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) {
return -ENODEV;
}
if (instance->unload == 1) {
return -ENODEV;
}
if (megasas_wait_for_adapter_operational(instance))
return -ENODEV;
mutex_lock(&instance->reset_mutex);
error = megasas_register_aen(instance, aen.seq_num,
aen.class_locale_word);
mutex_unlock(&instance->reset_mutex);
return error;
}
/**
* megasas_mgmt_ioctl - char node ioctl entry point
* @file: char device file pointer
* @cmd: ioctl command
* @arg: ioctl command arguments address
*/
static long
megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case MEGASAS_IOC_FIRMWARE:
return megasas_mgmt_ioctl_fw(file, arg);
case MEGASAS_IOC_GET_AEN:
return megasas_mgmt_ioctl_aen(file, arg);
}
return -ENOTTY;
}
#ifdef CONFIG_COMPAT
static long
megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
switch (cmd) {
case MEGASAS_IOC_FIRMWARE32:
return megasas_mgmt_ioctl_fw(file, arg);
case MEGASAS_IOC_GET_AEN:
return megasas_mgmt_ioctl_aen(file, arg);
}
return -ENOTTY;
}
#endif
/*
* File operations structure for management interface
*/
static const struct file_operations megasas_mgmt_fops = {
.owner = THIS_MODULE,
.open = megasas_mgmt_open,
.fasync = megasas_mgmt_fasync,
.unlocked_ioctl = megasas_mgmt_ioctl,
.poll = megasas_mgmt_poll,
#ifdef CONFIG_COMPAT
.compat_ioctl = megasas_mgmt_compat_ioctl,
#endif
.llseek = noop_llseek,
};
static SIMPLE_DEV_PM_OPS(megasas_pm_ops, megasas_suspend, megasas_resume);
/*
* PCI hotplug support registration structure
*/
static struct pci_driver megasas_pci_driver = {
.name = "megaraid_sas",
.id_table = megasas_pci_table,
.probe = megasas_probe_one,
.remove = megasas_detach_one,
.driver.pm = &megasas_pm_ops,
.shutdown = megasas_shutdown,
};
/*
* Sysfs driver attributes
*/
static ssize_t version_show(struct device_driver *dd, char *buf)
{
return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
MEGASAS_VERSION);
}
static DRIVER_ATTR_RO(version);
static ssize_t release_date_show(struct device_driver *dd, char *buf)
{
return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
MEGASAS_RELDATE);
}
static DRIVER_ATTR_RO(release_date);
static ssize_t support_poll_for_event_show(struct device_driver *dd, char *buf)
{
return sprintf(buf, "%u\n", support_poll_for_event);
}
static DRIVER_ATTR_RO(support_poll_for_event);
static ssize_t support_device_change_show(struct device_driver *dd, char *buf)
{
return sprintf(buf, "%u\n", support_device_change);
}
static DRIVER_ATTR_RO(support_device_change);
static ssize_t dbg_lvl_show(struct device_driver *dd, char *buf)
{
return sprintf(buf, "%u\n", megasas_dbg_lvl);
}
static ssize_t dbg_lvl_store(struct device_driver *dd, const char *buf,
size_t count)
{
int retval = count;
if (sscanf(buf, "%u", &megasas_dbg_lvl) < 1) {
printk(KERN_ERR "megasas: could not set dbg_lvl\n");
retval = -EINVAL;
}
return retval;
}
static DRIVER_ATTR_RW(dbg_lvl);
static ssize_t
support_nvme_encapsulation_show(struct device_driver *dd, char *buf)
{
return sprintf(buf, "%u\n", support_nvme_encapsulation);
}
static DRIVER_ATTR_RO(support_nvme_encapsulation);
static ssize_t
support_pci_lane_margining_show(struct device_driver *dd, char *buf)
{
return sprintf(buf, "%u\n", support_pci_lane_margining);
}
static DRIVER_ATTR_RO(support_pci_lane_margining);
static inline void megasas_remove_scsi_device(struct scsi_device *sdev)
{
sdev_printk(KERN_INFO, sdev, "SCSI device is removed\n");
scsi_remove_device(sdev);
scsi_device_put(sdev);
}
/**
* megasas_update_device_list - Update the PD and LD device list from FW
* after an AEN event notification
* @instance: Adapter soft state
* @event_type: Indicates type of event (PD or LD event)
*
* @return: Success or failure
*
* Issue DCMDs to Firmware to update the internal device list in driver.
* Based on the FW support, driver sends the HOST_DEVICE_LIST or combination
* of PD_LIST/LD_LIST_QUERY DCMDs to get the device list.
*/
static
int megasas_update_device_list(struct megasas_instance *instance,
int event_type)
{
int dcmd_ret;
if (instance->enable_fw_dev_list) {
return megasas_host_device_list_query(instance, false);
} else {
if (event_type & SCAN_PD_CHANNEL) {
dcmd_ret = megasas_get_pd_list(instance);
if (dcmd_ret != DCMD_SUCCESS)
return dcmd_ret;
}
if (event_type & SCAN_VD_CHANNEL) {
if (!instance->requestorId ||
megasas_get_ld_vf_affiliation(instance, 0)) {
return megasas_ld_list_query(instance,
MR_LD_QUERY_TYPE_EXPOSED_TO_HOST);
}
}
}
return DCMD_SUCCESS;
}
/**
* megasas_add_remove_devices - Add/remove devices to SCSI mid-layer
* after an AEN event notification
* @instance: Adapter soft state
* @scan_type: Indicates type of devices (PD/LD) to add
* @return void
*/
static
void megasas_add_remove_devices(struct megasas_instance *instance,
int scan_type)
{
int i, j;
u16 pd_index = 0;
u16 ld_index = 0;
u16 channel = 0, id = 0;
struct Scsi_Host *host;
struct scsi_device *sdev1;
struct MR_HOST_DEVICE_LIST *targetid_list = NULL;
struct MR_HOST_DEVICE_LIST_ENTRY *targetid_entry = NULL;
host = instance->host;
if (instance->enable_fw_dev_list) {
targetid_list = instance->host_device_list_buf;
for (i = 0; i < targetid_list->count; i++) {
targetid_entry = &targetid_list->host_device_list[i];
if (targetid_entry->flags.u.bits.is_sys_pd) {
channel = le16_to_cpu(targetid_entry->target_id) /
MEGASAS_MAX_DEV_PER_CHANNEL;
id = le16_to_cpu(targetid_entry->target_id) %
MEGASAS_MAX_DEV_PER_CHANNEL;
} else {
channel = MEGASAS_MAX_PD_CHANNELS +
(le16_to_cpu(targetid_entry->target_id) /
MEGASAS_MAX_DEV_PER_CHANNEL);
id = le16_to_cpu(targetid_entry->target_id) %
MEGASAS_MAX_DEV_PER_CHANNEL;
}
sdev1 = scsi_device_lookup(host, channel, id, 0);
if (!sdev1) {
scsi_add_device(host, channel, id, 0);
} else {
scsi_device_put(sdev1);
}
}
}
if (scan_type & SCAN_PD_CHANNEL) {
for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
pd_index = i * MEGASAS_MAX_DEV_PER_CHANNEL + j;
sdev1 = scsi_device_lookup(host, i, j, 0);
if (instance->pd_list[pd_index].driveState ==
MR_PD_STATE_SYSTEM) {
if (!sdev1)
scsi_add_device(host, i, j, 0);
else
scsi_device_put(sdev1);
} else {
if (sdev1)
megasas_remove_scsi_device(sdev1);
}
}
}
}
if (scan_type & SCAN_VD_CHANNEL) {
for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
ld_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
sdev1 = scsi_device_lookup(host,
MEGASAS_MAX_PD_CHANNELS + i, j, 0);
if (instance->ld_ids[ld_index] != 0xff) {
if (!sdev1)
scsi_add_device(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0);
else
scsi_device_put(sdev1);
} else {
if (sdev1)
megasas_remove_scsi_device(sdev1);
}
}
}
}
}
static void
megasas_aen_polling(struct work_struct *work)
{
struct megasas_aen_event *ev =
container_of(work, struct megasas_aen_event, hotplug_work.work);
struct megasas_instance *instance = ev->instance;
union megasas_evt_class_locale class_locale;
int event_type = 0;
u32 seq_num;
u16 ld_target_id;
int error;
u8 dcmd_ret = DCMD_SUCCESS;
struct scsi_device *sdev1;
if (!instance) {
printk(KERN_ERR "invalid instance!\n");
kfree(ev);
return;
}
/* Don't run the event workqueue thread if OCR is running */
mutex_lock(&instance->reset_mutex);
instance->ev = NULL;
if (instance->evt_detail) {
megasas_decode_evt(instance);
switch (le32_to_cpu(instance->evt_detail->code)) {
case MR_EVT_PD_INSERTED:
case MR_EVT_PD_REMOVED:
event_type = SCAN_PD_CHANNEL;
break;
case MR_EVT_LD_OFFLINE:
case MR_EVT_LD_DELETED:
ld_target_id = instance->evt_detail->args.ld.target_id;
sdev1 = scsi_device_lookup(instance->host,
MEGASAS_MAX_PD_CHANNELS +
(ld_target_id / MEGASAS_MAX_DEV_PER_CHANNEL),
(ld_target_id % MEGASAS_MAX_DEV_PER_CHANNEL),
0);
if (sdev1)
megasas_remove_scsi_device(sdev1);
event_type = SCAN_VD_CHANNEL;
break;
case MR_EVT_LD_CREATED:
event_type = SCAN_VD_CHANNEL;
break;
case MR_EVT_CFG_CLEARED:
case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED:
case MR_EVT_FOREIGN_CFG_IMPORTED:
case MR_EVT_LD_STATE_CHANGE:
event_type = SCAN_PD_CHANNEL | SCAN_VD_CHANNEL;
dev_info(&instance->pdev->dev, "scanning for scsi%d...\n",
instance->host->host_no);
break;
case MR_EVT_CTRL_PROP_CHANGED:
dcmd_ret = megasas_get_ctrl_info(instance);
if (dcmd_ret == DCMD_SUCCESS &&
instance->snapdump_wait_time) {
megasas_get_snapdump_properties(instance);
dev_info(&instance->pdev->dev,
"Snap dump wait time\t: %d\n",
instance->snapdump_wait_time);
}
break;
default:
event_type = 0;
break;
}
} else {
dev_err(&instance->pdev->dev, "invalid evt_detail!\n");
mutex_unlock(&instance->reset_mutex);
kfree(ev);
return;
}
if (event_type)
dcmd_ret = megasas_update_device_list(instance, event_type);
mutex_unlock(&instance->reset_mutex);
if (event_type && dcmd_ret == DCMD_SUCCESS)
megasas_add_remove_devices(instance, event_type);
if (dcmd_ret == DCMD_SUCCESS)
seq_num = le32_to_cpu(instance->evt_detail->seq_num) + 1;
else
seq_num = instance->last_seq_num;
/* Register AEN with FW for latest sequence number plus 1 */
class_locale.members.reserved = 0;
class_locale.members.locale = MR_EVT_LOCALE_ALL;
class_locale.members.class = MR_EVT_CLASS_DEBUG;
if (instance->aen_cmd != NULL) {
kfree(ev);
return;
}
mutex_lock(&instance->reset_mutex);
error = megasas_register_aen(instance, seq_num,
class_locale.word);
if (error)
dev_err(&instance->pdev->dev,
"register aen failed error %x\n", error);
mutex_unlock(&instance->reset_mutex);
kfree(ev);
}
/**
* megasas_init - Driver load entry point
*/
static int __init megasas_init(void)
{
int rval;
/*
* Booted in kdump kernel, minimize memory footprints by
* disabling few features
*/
if (reset_devices) {
msix_vectors = 1;
rdpq_enable = 0;
dual_qdepth_disable = 1;
poll_queues = 0;
}
/*
* Announce driver version and other information
*/
pr_info("megasas: %s\n", MEGASAS_VERSION);
megasas_dbg_lvl = 0;
support_poll_for_event = 2;
support_device_change = 1;
support_nvme_encapsulation = true;
support_pci_lane_margining = true;
memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
/*
* Register character device node
*/
rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
if (rval < 0) {
printk(KERN_DEBUG "megasas: failed to open device node\n");
return rval;
}
megasas_mgmt_majorno = rval;
megasas_init_debugfs();
/*
* Register ourselves as PCI hotplug module
*/
rval = pci_register_driver(&megasas_pci_driver);
if (rval) {
printk(KERN_DEBUG "megasas: PCI hotplug registration failed \n");
goto err_pcidrv;
}
if ((event_log_level < MFI_EVT_CLASS_DEBUG) ||
(event_log_level > MFI_EVT_CLASS_DEAD)) {
pr_warn("megaraid_sas: provided event log level is out of range, setting it to default 2(CLASS_CRITICAL), permissible range is: -2 to 4\n");
event_log_level = MFI_EVT_CLASS_CRITICAL;
}
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_version);
if (rval)
goto err_dcf_attr_ver;
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_release_date);
if (rval)
goto err_dcf_rel_date;
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_support_poll_for_event);
if (rval)
goto err_dcf_support_poll_for_event;
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_dbg_lvl);
if (rval)
goto err_dcf_dbg_lvl;
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_support_device_change);
if (rval)
goto err_dcf_support_device_change;
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_support_nvme_encapsulation);
if (rval)
goto err_dcf_support_nvme_encapsulation;
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_support_pci_lane_margining);
if (rval)
goto err_dcf_support_pci_lane_margining;
return rval;
err_dcf_support_pci_lane_margining:
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_support_nvme_encapsulation);
err_dcf_support_nvme_encapsulation:
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_support_device_change);
err_dcf_support_device_change:
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_dbg_lvl);
err_dcf_dbg_lvl:
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_support_poll_for_event);
err_dcf_support_poll_for_event:
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_release_date);
err_dcf_rel_date:
driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
err_dcf_attr_ver:
pci_unregister_driver(&megasas_pci_driver);
err_pcidrv:
megasas_exit_debugfs();
unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
return rval;
}
/**
* megasas_exit - Driver unload entry point
*/
static void __exit megasas_exit(void)
{
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_dbg_lvl);
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_support_poll_for_event);
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_support_device_change);
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_release_date);
driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_support_nvme_encapsulation);
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_support_pci_lane_margining);
pci_unregister_driver(&megasas_pci_driver);
megasas_exit_debugfs();
unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
}
module_init(megasas_init);
module_exit(megasas_exit);