// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for Broadcom MPI3 Storage Controllers
*
* Copyright (C) 2017-2023 Broadcom Inc.
* (mailto: [email protected])
*
*/
#include "mpi3mr.h"
#include <linux/io-64-nonatomic-lo-hi.h>
static int
mpi3mr_issue_reset(struct mpi3mr_ioc *mrioc, u16 reset_type, u16 reset_reason);
static int mpi3mr_setup_admin_qpair(struct mpi3mr_ioc *mrioc);
static void mpi3mr_process_factsdata(struct mpi3mr_ioc *mrioc,
struct mpi3_ioc_facts_data *facts_data);
static void mpi3mr_pel_wait_complete(struct mpi3mr_ioc *mrioc,
struct mpi3mr_drv_cmd *drv_cmd);
static int poll_queues;
module_param(poll_queues, int, 0444);
MODULE_PARM_DESC(poll_queues, "Number of queues for io_uring poll mode. (Range 1 - 126)");
#if defined(writeq) && defined(CONFIG_64BIT)
static inline void mpi3mr_writeq(__u64 b, volatile void __iomem *addr)
{
writeq(b, addr);
}
#else
static inline void mpi3mr_writeq(__u64 b, volatile void __iomem *addr)
{
__u64 data_out = b;
writel((u32)(data_out), addr);
writel((u32)(data_out >> 32), (addr + 4));
}
#endif
static inline bool
mpi3mr_check_req_qfull(struct op_req_qinfo *op_req_q)
{
u16 pi, ci, max_entries;
bool is_qfull = false;
pi = op_req_q->pi;
ci = READ_ONCE(op_req_q->ci);
max_entries = op_req_q->num_requests;
if ((ci == (pi + 1)) || ((!ci) && (pi == (max_entries - 1))))
is_qfull = true;
return is_qfull;
}
static void mpi3mr_sync_irqs(struct mpi3mr_ioc *mrioc)
{
u16 i, max_vectors;
max_vectors = mrioc->intr_info_count;
for (i = 0; i < max_vectors; i++)
synchronize_irq(pci_irq_vector(mrioc->pdev, i));
}
void mpi3mr_ioc_disable_intr(struct mpi3mr_ioc *mrioc)
{
mrioc->intr_enabled = 0;
mpi3mr_sync_irqs(mrioc);
}
void mpi3mr_ioc_enable_intr(struct mpi3mr_ioc *mrioc)
{
mrioc->intr_enabled = 1;
}
static void mpi3mr_cleanup_isr(struct mpi3mr_ioc *mrioc)
{
u16 i;
mpi3mr_ioc_disable_intr(mrioc);
if (!mrioc->intr_info)
return;
for (i = 0; i < mrioc->intr_info_count; i++)
free_irq(pci_irq_vector(mrioc->pdev, i),
(mrioc->intr_info + i));
kfree(mrioc->intr_info);
mrioc->intr_info = NULL;
mrioc->intr_info_count = 0;
mrioc->is_intr_info_set = false;
pci_free_irq_vectors(mrioc->pdev);
}
void mpi3mr_add_sg_single(void *paddr, u8 flags, u32 length,
dma_addr_t dma_addr)
{
struct mpi3_sge_common *sgel = paddr;
sgel->flags = flags;
sgel->length = cpu_to_le32(length);
sgel->address = cpu_to_le64(dma_addr);
}
void mpi3mr_build_zero_len_sge(void *paddr)
{
u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST;
mpi3mr_add_sg_single(paddr, sgl_flags, 0, -1);
}
void *mpi3mr_get_reply_virt_addr(struct mpi3mr_ioc *mrioc,
dma_addr_t phys_addr)
{
if (!phys_addr)
return NULL;
if ((phys_addr < mrioc->reply_buf_dma) ||
(phys_addr > mrioc->reply_buf_dma_max_address))
return NULL;
return mrioc->reply_buf + (phys_addr - mrioc->reply_buf_dma);
}
void *mpi3mr_get_sensebuf_virt_addr(struct mpi3mr_ioc *mrioc,
dma_addr_t phys_addr)
{
if (!phys_addr)
return NULL;
return mrioc->sense_buf + (phys_addr - mrioc->sense_buf_dma);
}
static void mpi3mr_repost_reply_buf(struct mpi3mr_ioc *mrioc,
u64 reply_dma)
{
u32 old_idx = 0;
unsigned long flags;
spin_lock_irqsave(&mrioc->reply_free_queue_lock, flags);
old_idx = mrioc->reply_free_queue_host_index;
mrioc->reply_free_queue_host_index = (
(mrioc->reply_free_queue_host_index ==
(mrioc->reply_free_qsz - 1)) ? 0 :
(mrioc->reply_free_queue_host_index + 1));
mrioc->reply_free_q[old_idx] = cpu_to_le64(reply_dma);
writel(mrioc->reply_free_queue_host_index,
&mrioc->sysif_regs->reply_free_host_index);
spin_unlock_irqrestore(&mrioc->reply_free_queue_lock, flags);
}
void mpi3mr_repost_sense_buf(struct mpi3mr_ioc *mrioc,
u64 sense_buf_dma)
{
u32 old_idx = 0;
unsigned long flags;
spin_lock_irqsave(&mrioc->sbq_lock, flags);
old_idx = mrioc->sbq_host_index;
mrioc->sbq_host_index = ((mrioc->sbq_host_index ==
(mrioc->sense_buf_q_sz - 1)) ? 0 :
(mrioc->sbq_host_index + 1));
mrioc->sense_buf_q[old_idx] = cpu_to_le64(sense_buf_dma);
writel(mrioc->sbq_host_index,
&mrioc->sysif_regs->sense_buffer_free_host_index);
spin_unlock_irqrestore(&mrioc->sbq_lock, flags);
}
static void mpi3mr_print_event_data(struct mpi3mr_ioc *mrioc,
struct mpi3_event_notification_reply *event_reply)
{
char *desc = NULL;
u16 event;
event = event_reply->event;
switch (event) {
case MPI3_EVENT_LOG_DATA:
desc = "Log Data";
break;
case MPI3_EVENT_CHANGE:
desc = "Event Change";
break;
case MPI3_EVENT_GPIO_INTERRUPT:
desc = "GPIO Interrupt";
break;
case MPI3_EVENT_CABLE_MGMT:
desc = "Cable Management";
break;
case MPI3_EVENT_ENERGY_PACK_CHANGE:
desc = "Energy Pack Change";
break;
case MPI3_EVENT_DEVICE_ADDED:
{
struct mpi3_device_page0 *event_data =
(struct mpi3_device_page0 *)event_reply->event_data;
ioc_info(mrioc, "Device Added: dev=0x%04x Form=0x%x\n",
event_data->dev_handle, event_data->device_form);
return;
}
case MPI3_EVENT_DEVICE_INFO_CHANGED:
{
struct mpi3_device_page0 *event_data =
(struct mpi3_device_page0 *)event_reply->event_data;
ioc_info(mrioc, "Device Info Changed: dev=0x%04x Form=0x%x\n",
event_data->dev_handle, event_data->device_form);
return;
}
case MPI3_EVENT_DEVICE_STATUS_CHANGE:
{
struct mpi3_event_data_device_status_change *event_data =
(struct mpi3_event_data_device_status_change *)event_reply->event_data;
ioc_info(mrioc, "Device status Change: dev=0x%04x RC=0x%x\n",
event_data->dev_handle, event_data->reason_code);
return;
}
case MPI3_EVENT_SAS_DISCOVERY:
{
struct mpi3_event_data_sas_discovery *event_data =
(struct mpi3_event_data_sas_discovery *)event_reply->event_data;
ioc_info(mrioc, "SAS Discovery: (%s) status (0x%08x)\n",
(event_data->reason_code == MPI3_EVENT_SAS_DISC_RC_STARTED) ?
"start" : "stop",
le32_to_cpu(event_data->discovery_status));
return;
}
case MPI3_EVENT_SAS_BROADCAST_PRIMITIVE:
desc = "SAS Broadcast Primitive";
break;
case MPI3_EVENT_SAS_NOTIFY_PRIMITIVE:
desc = "SAS Notify Primitive";
break;
case MPI3_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
desc = "SAS Init Device Status Change";
break;
case MPI3_EVENT_SAS_INIT_TABLE_OVERFLOW:
desc = "SAS Init Table Overflow";
break;
case MPI3_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
desc = "SAS Topology Change List";
break;
case MPI3_EVENT_ENCL_DEVICE_STATUS_CHANGE:
desc = "Enclosure Device Status Change";
break;
case MPI3_EVENT_ENCL_DEVICE_ADDED:
desc = "Enclosure Added";
break;
case MPI3_EVENT_HARD_RESET_RECEIVED:
desc = "Hard Reset Received";
break;
case MPI3_EVENT_SAS_PHY_COUNTER:
desc = "SAS PHY Counter";
break;
case MPI3_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
desc = "SAS Device Discovery Error";
break;
case MPI3_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
desc = "PCIE Topology Change List";
break;
case MPI3_EVENT_PCIE_ENUMERATION:
{
struct mpi3_event_data_pcie_enumeration *event_data =
(struct mpi3_event_data_pcie_enumeration *)event_reply->event_data;
ioc_info(mrioc, "PCIE Enumeration: (%s)",
(event_data->reason_code ==
MPI3_EVENT_PCIE_ENUM_RC_STARTED) ? "start" : "stop");
if (event_data->enumeration_status)
ioc_info(mrioc, "enumeration_status(0x%08x)\n",
le32_to_cpu(event_data->enumeration_status));
return;
}
case MPI3_EVENT_PREPARE_FOR_RESET:
desc = "Prepare For Reset";
break;
case MPI3_EVENT_DIAGNOSTIC_BUFFER_STATUS_CHANGE:
desc = "Diagnostic Buffer Status Change";
break;
}
if (!desc)
return;
ioc_info(mrioc, "%s\n", desc);
}
static void mpi3mr_handle_events(struct mpi3mr_ioc *mrioc,
struct mpi3_default_reply *def_reply)
{
struct mpi3_event_notification_reply *event_reply =
(struct mpi3_event_notification_reply *)def_reply;
mrioc->change_count = le16_to_cpu(event_reply->ioc_change_count);
mpi3mr_print_event_data(mrioc, event_reply);
mpi3mr_os_handle_events(mrioc, event_reply);
}
static struct mpi3mr_drv_cmd *
mpi3mr_get_drv_cmd(struct mpi3mr_ioc *mrioc, u16 host_tag,
struct mpi3_default_reply *def_reply)
{
u16 idx;
switch (host_tag) {
case MPI3MR_HOSTTAG_INITCMDS:
return &mrioc->init_cmds;
case MPI3MR_HOSTTAG_CFG_CMDS:
return &mrioc->cfg_cmds;
case MPI3MR_HOSTTAG_BSG_CMDS:
return &mrioc->bsg_cmds;
case MPI3MR_HOSTTAG_BLK_TMS:
return &mrioc->host_tm_cmds;
case MPI3MR_HOSTTAG_PEL_ABORT:
return &mrioc->pel_abort_cmd;
case MPI3MR_HOSTTAG_PEL_WAIT:
return &mrioc->pel_cmds;
case MPI3MR_HOSTTAG_TRANSPORT_CMDS:
return &mrioc->transport_cmds;
case MPI3MR_HOSTTAG_INVALID:
if (def_reply && def_reply->function ==
MPI3_FUNCTION_EVENT_NOTIFICATION)
mpi3mr_handle_events(mrioc, def_reply);
return NULL;
default:
break;
}
if (host_tag >= MPI3MR_HOSTTAG_DEVRMCMD_MIN &&
host_tag <= MPI3MR_HOSTTAG_DEVRMCMD_MAX) {
idx = host_tag - MPI3MR_HOSTTAG_DEVRMCMD_MIN;
return &mrioc->dev_rmhs_cmds[idx];
}
if (host_tag >= MPI3MR_HOSTTAG_EVTACKCMD_MIN &&
host_tag <= MPI3MR_HOSTTAG_EVTACKCMD_MAX) {
idx = host_tag - MPI3MR_HOSTTAG_EVTACKCMD_MIN;
return &mrioc->evtack_cmds[idx];
}
return NULL;
}
static void mpi3mr_process_admin_reply_desc(struct mpi3mr_ioc *mrioc,
struct mpi3_default_reply_descriptor *reply_desc, u64 *reply_dma)
{
u16 reply_desc_type, host_tag = 0;
u16 ioc_status = MPI3_IOCSTATUS_SUCCESS;
u16 masked_ioc_status = MPI3_IOCSTATUS_SUCCESS;
u32 ioc_loginfo = 0, sense_count = 0;
struct mpi3_status_reply_descriptor *status_desc;
struct mpi3_address_reply_descriptor *addr_desc;
struct mpi3_success_reply_descriptor *success_desc;
struct mpi3_default_reply *def_reply = NULL;
struct mpi3mr_drv_cmd *cmdptr = NULL;
struct mpi3_scsi_io_reply *scsi_reply;
struct scsi_sense_hdr sshdr;
u8 *sense_buf = NULL;
*reply_dma = 0;
reply_desc_type = le16_to_cpu(reply_desc->reply_flags) &
MPI3_REPLY_DESCRIPT_FLAGS_TYPE_MASK;
switch (reply_desc_type) {
case MPI3_REPLY_DESCRIPT_FLAGS_TYPE_STATUS:
status_desc = (struct mpi3_status_reply_descriptor *)reply_desc;
host_tag = le16_to_cpu(status_desc->host_tag);
ioc_status = le16_to_cpu(status_desc->ioc_status);
if (ioc_status &
MPI3_REPLY_DESCRIPT_STATUS_IOCSTATUS_LOGINFOAVAIL)
ioc_loginfo = le32_to_cpu(status_desc->ioc_log_info);
masked_ioc_status = ioc_status & MPI3_IOCSTATUS_STATUS_MASK;
mpi3mr_reply_trigger(mrioc, masked_ioc_status, ioc_loginfo);
break;
case MPI3_REPLY_DESCRIPT_FLAGS_TYPE_ADDRESS_REPLY:
addr_desc = (struct mpi3_address_reply_descriptor *)reply_desc;
*reply_dma = le64_to_cpu(addr_desc->reply_frame_address);
def_reply = mpi3mr_get_reply_virt_addr(mrioc, *reply_dma);
if (!def_reply)
goto out;
host_tag = le16_to_cpu(def_reply->host_tag);
ioc_status = le16_to_cpu(def_reply->ioc_status);
if (ioc_status &
MPI3_REPLY_DESCRIPT_STATUS_IOCSTATUS_LOGINFOAVAIL)
ioc_loginfo = le32_to_cpu(def_reply->ioc_log_info);
masked_ioc_status = ioc_status & MPI3_IOCSTATUS_STATUS_MASK;
if (def_reply->function == MPI3_FUNCTION_SCSI_IO) {
scsi_reply = (struct mpi3_scsi_io_reply *)def_reply;
sense_buf = mpi3mr_get_sensebuf_virt_addr(mrioc,
le64_to_cpu(scsi_reply->sense_data_buffer_address));
sense_count = le32_to_cpu(scsi_reply->sense_count);
if (sense_buf) {
scsi_normalize_sense(sense_buf, sense_count,
&sshdr);
mpi3mr_scsisense_trigger(mrioc, sshdr.sense_key,
sshdr.asc, sshdr.ascq);
}
}
mpi3mr_reply_trigger(mrioc, masked_ioc_status, ioc_loginfo);
break;
case MPI3_REPLY_DESCRIPT_FLAGS_TYPE_SUCCESS:
success_desc = (struct mpi3_success_reply_descriptor *)reply_desc;
host_tag = le16_to_cpu(success_desc->host_tag);
break;
default:
break;
}
cmdptr = mpi3mr_get_drv_cmd(mrioc, host_tag, def_reply);
if (cmdptr) {
if (cmdptr->state & MPI3MR_CMD_PENDING) {
cmdptr->state |= MPI3MR_CMD_COMPLETE;
cmdptr->ioc_loginfo = ioc_loginfo;
if (host_tag == MPI3MR_HOSTTAG_BSG_CMDS)
cmdptr->ioc_status = ioc_status;
else
cmdptr->ioc_status = masked_ioc_status;
cmdptr->state &= ~MPI3MR_CMD_PENDING;
if (def_reply) {
cmdptr->state |= MPI3MR_CMD_REPLY_VALID;
memcpy((u8 *)cmdptr->reply, (u8 *)def_reply,
mrioc->reply_sz);
}
if (sense_buf && cmdptr->sensebuf) {
cmdptr->is_sense = 1;
memcpy(cmdptr->sensebuf, sense_buf,
MPI3MR_SENSE_BUF_SZ);
}
if (cmdptr->is_waiting) {
complete(&cmdptr->done);
cmdptr->is_waiting = 0;
} else if (cmdptr->callback)
cmdptr->callback(mrioc, cmdptr);
}
}
out:
if (sense_buf)
mpi3mr_repost_sense_buf(mrioc,
le64_to_cpu(scsi_reply->sense_data_buffer_address));
}
int mpi3mr_process_admin_reply_q(struct mpi3mr_ioc *mrioc)
{
u32 exp_phase = mrioc->admin_reply_ephase;
u32 admin_reply_ci = mrioc->admin_reply_ci;
u32 num_admin_replies = 0;
u64 reply_dma = 0;
u16 threshold_comps = 0;
struct mpi3_default_reply_descriptor *reply_desc;
if (!atomic_add_unless(&mrioc->admin_reply_q_in_use, 1, 1))
return 0;
reply_desc = (struct mpi3_default_reply_descriptor *)mrioc->admin_reply_base +
admin_reply_ci;
if ((le16_to_cpu(reply_desc->reply_flags) &
MPI3_REPLY_DESCRIPT_FLAGS_PHASE_MASK) != exp_phase) {
atomic_dec(&mrioc->admin_reply_q_in_use);
return 0;
}
do {
if (mrioc->unrecoverable)
break;
mrioc->admin_req_ci = le16_to_cpu(reply_desc->request_queue_ci);
mpi3mr_process_admin_reply_desc(mrioc, reply_desc, &reply_dma);
if (reply_dma)
mpi3mr_repost_reply_buf(mrioc, reply_dma);
num_admin_replies++;
threshold_comps++;
if (++admin_reply_ci == mrioc->num_admin_replies) {
admin_reply_ci = 0;
exp_phase ^= 1;
}
reply_desc =
(struct mpi3_default_reply_descriptor *)mrioc->admin_reply_base +
admin_reply_ci;
if ((le16_to_cpu(reply_desc->reply_flags) &
MPI3_REPLY_DESCRIPT_FLAGS_PHASE_MASK) != exp_phase)
break;
if (threshold_comps == MPI3MR_THRESHOLD_REPLY_COUNT) {
writel(admin_reply_ci,
&mrioc->sysif_regs->admin_reply_queue_ci);
threshold_comps = 0;
}
} while (1);
writel(admin_reply_ci, &mrioc->sysif_regs->admin_reply_queue_ci);
mrioc->admin_reply_ci = admin_reply_ci;
mrioc->admin_reply_ephase = exp_phase;
atomic_dec(&mrioc->admin_reply_q_in_use);
return num_admin_replies;
}
/**
* mpi3mr_get_reply_desc - get reply descriptor frame corresponding to
* queue's consumer index from operational reply descriptor queue.
* @op_reply_q: op_reply_qinfo object
* @reply_ci: operational reply descriptor's queue consumer index
*
* Returns: reply descriptor frame address
*/
static inline struct mpi3_default_reply_descriptor *
mpi3mr_get_reply_desc(struct op_reply_qinfo *op_reply_q, u32 reply_ci)
{
void *segment_base_addr;
struct segments *segments = op_reply_q->q_segments;
struct mpi3_default_reply_descriptor *reply_desc = NULL;
segment_base_addr =
segments[reply_ci / op_reply_q->segment_qd].segment;
reply_desc = (struct mpi3_default_reply_descriptor *)segment_base_addr +
(reply_ci % op_reply_q->segment_qd);
return reply_desc;
}
/**
* mpi3mr_process_op_reply_q - Operational reply queue handler
* @mrioc: Adapter instance reference
* @op_reply_q: Operational reply queue info
*
* Checks the specific operational reply queue and drains the
* reply queue entries until the queue is empty and process the
* individual reply descriptors.
*
* Return: 0 if queue is already processed,or number of reply
* descriptors processed.
*/
int mpi3mr_process_op_reply_q(struct mpi3mr_ioc *mrioc,
struct op_reply_qinfo *op_reply_q)
{
struct op_req_qinfo *op_req_q;
u32 exp_phase;
u32 reply_ci;
u32 num_op_reply = 0;
u64 reply_dma = 0;
struct mpi3_default_reply_descriptor *reply_desc;
u16 req_q_idx = 0, reply_qidx, threshold_comps = 0;
reply_qidx = op_reply_q->qid - 1;
if (!atomic_add_unless(&op_reply_q->in_use, 1, 1))
return 0;
exp_phase = op_reply_q->ephase;
reply_ci = op_reply_q->ci;
reply_desc = mpi3mr_get_reply_desc(op_reply_q, reply_ci);
if ((le16_to_cpu(reply_desc->reply_flags) &
MPI3_REPLY_DESCRIPT_FLAGS_PHASE_MASK) != exp_phase) {
atomic_dec(&op_reply_q->in_use);
return 0;
}
do {
if (mrioc->unrecoverable)
break;
req_q_idx = le16_to_cpu(reply_desc->request_queue_id) - 1;
op_req_q = &mrioc->req_qinfo[req_q_idx];
WRITE_ONCE(op_req_q->ci, le16_to_cpu(reply_desc->request_queue_ci));
mpi3mr_process_op_reply_desc(mrioc, reply_desc, &reply_dma,
reply_qidx);
atomic_dec(&op_reply_q->pend_ios);
if (reply_dma)
mpi3mr_repost_reply_buf(mrioc, reply_dma);
num_op_reply++;
threshold_comps++;
if (++reply_ci == op_reply_q->num_replies) {
reply_ci = 0;
exp_phase ^= 1;
}
reply_desc = mpi3mr_get_reply_desc(op_reply_q, reply_ci);
if ((le16_to_cpu(reply_desc->reply_flags) &
MPI3_REPLY_DESCRIPT_FLAGS_PHASE_MASK) != exp_phase)
break;
#ifndef CONFIG_PREEMPT_RT
/*
* Exit completion loop to avoid CPU lockup
* Ensure remaining completion happens from threaded ISR.
*/
if (num_op_reply > mrioc->max_host_ios) {
op_reply_q->enable_irq_poll = true;
break;
}
#endif
if (threshold_comps == MPI3MR_THRESHOLD_REPLY_COUNT) {
writel(reply_ci,
&mrioc->sysif_regs->oper_queue_indexes[reply_qidx].consumer_index);
atomic_sub(threshold_comps, &op_reply_q->pend_ios);
threshold_comps = 0;
}
} while (1);
writel(reply_ci,
&mrioc->sysif_regs->oper_queue_indexes[reply_qidx].consumer_index);
op_reply_q->ci = reply_ci;
op_reply_q->ephase = exp_phase;
atomic_sub(threshold_comps, &op_reply_q->pend_ios);
atomic_dec(&op_reply_q->in_use);
return num_op_reply;
}
/**
* mpi3mr_blk_mq_poll - Operational reply queue handler
* @shost: SCSI Host reference
* @queue_num: Request queue number (w.r.t OS it is hardware context number)
*
* Checks the specific operational reply queue and drains the
* reply queue entries until the queue is empty and process the
* individual reply descriptors.
*
* Return: 0 if queue is already processed,or number of reply
* descriptors processed.
*/
int mpi3mr_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
{
int num_entries = 0;
struct mpi3mr_ioc *mrioc;
mrioc = (struct mpi3mr_ioc *)shost->hostdata;
if ((mrioc->reset_in_progress || mrioc->prepare_for_reset ||
mrioc->unrecoverable || mrioc->pci_err_recovery))
return 0;
num_entries = mpi3mr_process_op_reply_q(mrioc,
&mrioc->op_reply_qinfo[queue_num]);
return num_entries;
}
static irqreturn_t mpi3mr_isr_primary(int irq, void *privdata)
{
struct mpi3mr_intr_info *intr_info = privdata;
struct mpi3mr_ioc *mrioc;
u16 midx;
u32 num_admin_replies = 0, num_op_reply = 0;
if (!intr_info)
return IRQ_NONE;
mrioc = intr_info->mrioc;
if (!mrioc->intr_enabled)
return IRQ_NONE;
midx = intr_info->msix_index;
if (!midx)
num_admin_replies = mpi3mr_process_admin_reply_q(mrioc);
if (intr_info->op_reply_q)
num_op_reply = mpi3mr_process_op_reply_q(mrioc,
intr_info->op_reply_q);
if (num_admin_replies || num_op_reply)
return IRQ_HANDLED;
else
return IRQ_NONE;
}
#ifndef CONFIG_PREEMPT_RT
static irqreturn_t mpi3mr_isr(int irq, void *privdata)
{
struct mpi3mr_intr_info *intr_info = privdata;
int ret;
if (!intr_info)
return IRQ_NONE;
/* Call primary ISR routine */
ret = mpi3mr_isr_primary(irq, privdata);
/*
* If more IOs are expected, schedule IRQ polling thread.
* Otherwise exit from ISR.
*/
if (!intr_info->op_reply_q)
return ret;
if (!intr_info->op_reply_q->enable_irq_poll ||
!atomic_read(&intr_info->op_reply_q->pend_ios))
return ret;
disable_irq_nosync(intr_info->os_irq);
return IRQ_WAKE_THREAD;
}
/**
* mpi3mr_isr_poll - Reply queue polling routine
* @irq: IRQ
* @privdata: Interrupt info
*
* poll for pending I/O completions in a loop until pending I/Os
* present or controller queue depth I/Os are processed.
*
* Return: IRQ_NONE or IRQ_HANDLED
*/
static irqreturn_t mpi3mr_isr_poll(int irq, void *privdata)
{
struct mpi3mr_intr_info *intr_info = privdata;
struct mpi3mr_ioc *mrioc;
u16 midx;
u32 num_op_reply = 0;
if (!intr_info || !intr_info->op_reply_q)
return IRQ_NONE;
mrioc = intr_info->mrioc;
midx = intr_info->msix_index;
/* Poll for pending IOs completions */
do {
if (!mrioc->intr_enabled || mrioc->unrecoverable)
break;
if (!midx)
mpi3mr_process_admin_reply_q(mrioc);
if (intr_info->op_reply_q)
num_op_reply +=
mpi3mr_process_op_reply_q(mrioc,
intr_info->op_reply_q);
usleep_range(MPI3MR_IRQ_POLL_SLEEP, MPI3MR_IRQ_POLL_SLEEP + 1);
} while (atomic_read(&intr_info->op_reply_q->pend_ios) &&
(num_op_reply < mrioc->max_host_ios));
intr_info->op_reply_q->enable_irq_poll = false;
enable_irq(intr_info->os_irq);
return IRQ_HANDLED;
}
#endif
/**
* mpi3mr_request_irq - Request IRQ and register ISR
* @mrioc: Adapter instance reference
* @index: IRQ vector index
*
* Request threaded ISR with primary ISR and secondary
*
* Return: 0 on success and non zero on failures.
*/
static inline int mpi3mr_request_irq(struct mpi3mr_ioc *mrioc, u16 index)
{
struct pci_dev *pdev = mrioc->pdev;
struct mpi3mr_intr_info *intr_info = mrioc->intr_info + index;
int retval = 0;
intr_info->mrioc = mrioc;
intr_info->msix_index = index;
intr_info->op_reply_q = NULL;
snprintf(intr_info->name, MPI3MR_NAME_LENGTH, "%s%d-msix%d",
mrioc->driver_name, mrioc->id, index);
#ifndef CONFIG_PREEMPT_RT
retval = request_threaded_irq(pci_irq_vector(pdev, index), mpi3mr_isr,
mpi3mr_isr_poll, IRQF_SHARED, intr_info->name, intr_info);
#else
retval = request_threaded_irq(pci_irq_vector(pdev, index), mpi3mr_isr_primary,
NULL, IRQF_SHARED, intr_info->name, intr_info);
#endif
if (retval) {
ioc_err(mrioc, "%s: Unable to allocate interrupt %d!\n",
intr_info->name, pci_irq_vector(pdev, index));
return retval;
}
intr_info->os_irq = pci_irq_vector(pdev, index);
return retval;
}
static void mpi3mr_calc_poll_queues(struct mpi3mr_ioc *mrioc, u16 max_vectors)
{
if (!mrioc->requested_poll_qcount)
return;
/* Reserved for Admin and Default Queue */
if (max_vectors > 2 &&
(mrioc->requested_poll_qcount < max_vectors - 2)) {
ioc_info(mrioc,
"enabled polled queues (%d) msix (%d)\n",
mrioc->requested_poll_qcount, max_vectors);
} else {
ioc_info(mrioc,
"disabled polled queues (%d) msix (%d) because of no resources for default queue\n",
mrioc->requested_poll_qcount, max_vectors);
mrioc->requested_poll_qcount = 0;
}
}
/**
* mpi3mr_setup_isr - Setup ISR for the controller
* @mrioc: Adapter instance reference
* @setup_one: Request one IRQ or more
*
* Allocate IRQ vectors and call mpi3mr_request_irq to setup ISR
*
* Return: 0 on success and non zero on failures.
*/
static int mpi3mr_setup_isr(struct mpi3mr_ioc *mrioc, u8 setup_one)
{
unsigned int irq_flags = PCI_IRQ_MSIX;
int max_vectors, min_vec;
int retval;
int i;
struct irq_affinity desc = { .pre_vectors = 1, .post_vectors = 1 };
if (mrioc->is_intr_info_set)
return 0;
mpi3mr_cleanup_isr(mrioc);
if (setup_one || reset_devices) {
max_vectors = 1;
retval = pci_alloc_irq_vectors(mrioc->pdev,
1, max_vectors, irq_flags);
if (retval < 0) {
ioc_err(mrioc, "cannot allocate irq vectors, ret %d\n",
retval);
goto out_failed;
}
} else {
max_vectors =
min_t(int, mrioc->cpu_count + 1 +
mrioc->requested_poll_qcount, mrioc->msix_count);
mpi3mr_calc_poll_queues(mrioc, max_vectors);
ioc_info(mrioc,
"MSI-X vectors supported: %d, no of cores: %d,",
mrioc->msix_count, mrioc->cpu_count);
ioc_info(mrioc,
"MSI-x vectors requested: %d poll_queues %d\n",
max_vectors, mrioc->requested_poll_qcount);
desc.post_vectors = mrioc->requested_poll_qcount;
min_vec = desc.pre_vectors + desc.post_vectors;
irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
retval = pci_alloc_irq_vectors_affinity(mrioc->pdev,
min_vec, max_vectors, irq_flags, &desc);
if (retval < 0) {
ioc_err(mrioc, "cannot allocate irq vectors, ret %d\n",
retval);
goto out_failed;
}
/*
* If only one MSI-x is allocated, then MSI-x 0 will be shared
* between Admin queue and operational queue
*/
if (retval == min_vec)
mrioc->op_reply_q_offset = 0;
else if (retval != (max_vectors)) {
ioc_info(mrioc,
"allocated vectors (%d) are less than configured (%d)\n",
retval, max_vectors);
}
max_vectors = retval;
mrioc->op_reply_q_offset = (max_vectors > 1) ? 1 : 0;
mpi3mr_calc_poll_queues(mrioc, max_vectors);
}
mrioc->intr_info = kzalloc(sizeof(struct mpi3mr_intr_info) * max_vectors,
GFP_KERNEL);
if (!mrioc->intr_info) {
retval = -ENOMEM;
pci_free_irq_vectors(mrioc->pdev);
goto out_failed;
}
for (i = 0; i < max_vectors; i++) {
retval = mpi3mr_request_irq(mrioc, i);
if (retval) {
mrioc->intr_info_count = i;
goto out_failed;
}
}
if (reset_devices || !setup_one)
mrioc->is_intr_info_set = true;
mrioc->intr_info_count = max_vectors;
mpi3mr_ioc_enable_intr(mrioc);
return 0;
out_failed:
mpi3mr_cleanup_isr(mrioc);
return retval;
}
static const struct {
enum mpi3mr_iocstate value;
char *name;
} mrioc_states[] = {
{ MRIOC_STATE_READY, "ready" },
{ MRIOC_STATE_FAULT, "fault" },
{ MRIOC_STATE_RESET, "reset" },
{ MRIOC_STATE_BECOMING_READY, "becoming ready" },
{ MRIOC_STATE_RESET_REQUESTED, "reset requested" },
{ MRIOC_STATE_UNRECOVERABLE, "unrecoverable error" },
};
static const char *mpi3mr_iocstate_name(enum mpi3mr_iocstate mrioc_state)
{
int i;
char *name = NULL;
for (i = 0; i < ARRAY_SIZE(mrioc_states); i++) {
if (mrioc_states[i].value == mrioc_state) {
name = mrioc_states[i].name;
break;
}
}
return name;
}
/* Reset reason to name mapper structure*/
static const struct {
enum mpi3mr_reset_reason value;
char *name;
} mpi3mr_reset_reason_codes[] = {
{ MPI3MR_RESET_FROM_BRINGUP, "timeout in bringup" },
{ MPI3MR_RESET_FROM_FAULT_WATCH, "fault" },
{ MPI3MR_RESET_FROM_APP, "application invocation" },
{ MPI3MR_RESET_FROM_EH_HOS, "error handling" },
{ MPI3MR_RESET_FROM_TM_TIMEOUT, "TM timeout" },
{ MPI3MR_RESET_FROM_APP_TIMEOUT, "application command timeout" },
{ MPI3MR_RESET_FROM_MUR_FAILURE, "MUR failure" },
{ MPI3MR_RESET_FROM_CTLR_CLEANUP, "timeout in controller cleanup" },
{ MPI3MR_RESET_FROM_CIACTIV_FAULT, "component image activation fault" },
{ MPI3MR_RESET_FROM_PE_TIMEOUT, "port enable timeout" },
{ MPI3MR_RESET_FROM_TSU_TIMEOUT, "time stamp update timeout" },
{ MPI3MR_RESET_FROM_DELREQQ_TIMEOUT, "delete request queue timeout" },
{ MPI3MR_RESET_FROM_DELREPQ_TIMEOUT, "delete reply queue timeout" },
{
MPI3MR_RESET_FROM_CREATEREPQ_TIMEOUT,
"create request queue timeout"
},
{
MPI3MR_RESET_FROM_CREATEREQQ_TIMEOUT,
"create reply queue timeout"
},
{ MPI3MR_RESET_FROM_IOCFACTS_TIMEOUT, "IOC facts timeout" },
{ MPI3MR_RESET_FROM_IOCINIT_TIMEOUT, "IOC init timeout" },
{ MPI3MR_RESET_FROM_EVTNOTIFY_TIMEOUT, "event notify timeout" },
{ MPI3MR_RESET_FROM_EVTACK_TIMEOUT, "event acknowledgment timeout" },
{
MPI3MR_RESET_FROM_CIACTVRST_TIMER,
"component image activation timeout"
},
{
MPI3MR_RESET_FROM_GETPKGVER_TIMEOUT,
"get package version timeout"
},
{ MPI3MR_RESET_FROM_SYSFS, "sysfs invocation" },
{ MPI3MR_RESET_FROM_SYSFS_TIMEOUT, "sysfs TM timeout" },
{
MPI3MR_RESET_FROM_DIAG_BUFFER_POST_TIMEOUT,
"diagnostic buffer post timeout"
},
{
MPI3MR_RESET_FROM_DIAG_BUFFER_RELEASE_TIMEOUT,
"diagnostic buffer release timeout"
},
{ MPI3MR_RESET_FROM_FIRMWARE, "firmware asynchronous reset" },
{ MPI3MR_RESET_FROM_CFG_REQ_TIMEOUT, "configuration request timeout"},
{ MPI3MR_RESET_FROM_SAS_TRANSPORT_TIMEOUT, "timeout of a SAS transport layer request" },
};
/**
* mpi3mr_reset_rc_name - get reset reason code name
* @reason_code: reset reason code value
*
* Map reset reason to an NULL terminated ASCII string
*
* Return: name corresponding to reset reason value or NULL.
*/
static const char *mpi3mr_reset_rc_name(enum mpi3mr_reset_reason reason_code)
{
int i;
char *name = NULL;
for (i = 0; i < ARRAY_SIZE(mpi3mr_reset_reason_codes); i++) {
if (mpi3mr_reset_reason_codes[i].value == reason_code) {
name = mpi3mr_reset_reason_codes[i].name;
break;
}
}
return name;
}
/* Reset type to name mapper structure*/
static const struct {
u16 reset_type;
char *name;
} mpi3mr_reset_types[] = {
{ MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET, "soft" },
{ MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT, "diag fault" },
};
/**
* mpi3mr_reset_type_name - get reset type name
* @reset_type: reset type value
*
* Map reset type to an NULL terminated ASCII string
*
* Return: name corresponding to reset type value or NULL.
*/
static const char *mpi3mr_reset_type_name(u16 reset_type)
{
int i;
char *name = NULL;
for (i = 0; i < ARRAY_SIZE(mpi3mr_reset_types); i++) {
if (mpi3mr_reset_types[i].reset_type == reset_type) {
name = mpi3mr_reset_types[i].name;
break;
}
}
return name;
}
/**
* mpi3mr_print_fault_info - Display fault information
* @mrioc: Adapter instance reference
*
* Display the controller fault information if there is a
* controller fault.
*
* Return: Nothing.
*/
void mpi3mr_print_fault_info(struct mpi3mr_ioc *mrioc)
{
u32 ioc_status, code, code1, code2, code3;
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT) {
code = readl(&mrioc->sysif_regs->fault);
code1 = readl(&mrioc->sysif_regs->fault_info[0]);
code2 = readl(&mrioc->sysif_regs->fault_info[1]);
code3 = readl(&mrioc->sysif_regs->fault_info[2]);
ioc_info(mrioc,
"fault code(0x%08X): Additional code: (0x%08X:0x%08X:0x%08X)\n",
code, code1, code2, code3);
}
}
/**
* mpi3mr_get_iocstate - Get IOC State
* @mrioc: Adapter instance reference
*
* Return a proper IOC state enum based on the IOC status and
* IOC configuration and unrcoverable state of the controller.
*
* Return: Current IOC state.
*/
enum mpi3mr_iocstate mpi3mr_get_iocstate(struct mpi3mr_ioc *mrioc)
{
u32 ioc_status, ioc_config;
u8 ready, enabled;
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
if (mrioc->unrecoverable)
return MRIOC_STATE_UNRECOVERABLE;
if (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT)
return MRIOC_STATE_FAULT;
ready = (ioc_status & MPI3_SYSIF_IOC_STATUS_READY);
enabled = (ioc_config & MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC);
if (ready && enabled)
return MRIOC_STATE_READY;
if ((!ready) && (!enabled))
return MRIOC_STATE_RESET;
if ((!ready) && (enabled))
return MRIOC_STATE_BECOMING_READY;
return MRIOC_STATE_RESET_REQUESTED;
}
/**
* mpi3mr_free_ioctl_dma_memory - free memory for ioctl dma
* @mrioc: Adapter instance reference
*
* Free the DMA memory allocated for IOCTL handling purpose.
*
* Return: None
*/
static void mpi3mr_free_ioctl_dma_memory(struct mpi3mr_ioc *mrioc)
{
struct dma_memory_desc *mem_desc;
u16 i;
if (!mrioc->ioctl_dma_pool)
return;
for (i = 0; i < MPI3MR_NUM_IOCTL_SGE; i++) {
mem_desc = &mrioc->ioctl_sge[i];
if (mem_desc->addr) {
dma_pool_free(mrioc->ioctl_dma_pool,
mem_desc->addr,
mem_desc->dma_addr);
mem_desc->addr = NULL;
}
}
dma_pool_destroy(mrioc->ioctl_dma_pool);
mrioc->ioctl_dma_pool = NULL;
mem_desc = &mrioc->ioctl_chain_sge;
if (mem_desc->addr) {
dma_free_coherent(&mrioc->pdev->dev, mem_desc->size,
mem_desc->addr, mem_desc->dma_addr);
mem_desc->addr = NULL;
}
mem_desc = &mrioc->ioctl_resp_sge;
if (mem_desc->addr) {
dma_free_coherent(&mrioc->pdev->dev, mem_desc->size,
mem_desc->addr, mem_desc->dma_addr);
mem_desc->addr = NULL;
}
mrioc->ioctl_sges_allocated = false;
}
/**
* mpi3mr_alloc_ioctl_dma_memory - Alloc memory for ioctl dma
* @mrioc: Adapter instance reference
*
* This function allocates dmaable memory required to handle the
* application issued MPI3 IOCTL requests.
*
* Return: None
*/
static void mpi3mr_alloc_ioctl_dma_memory(struct mpi3mr_ioc *mrioc)
{
struct dma_memory_desc *mem_desc;
u16 i;
mrioc->ioctl_dma_pool = dma_pool_create("ioctl dma pool",
&mrioc->pdev->dev,
MPI3MR_IOCTL_SGE_SIZE,
MPI3MR_PAGE_SIZE_4K, 0);
if (!mrioc->ioctl_dma_pool) {
ioc_err(mrioc, "ioctl_dma_pool: dma_pool_create failed\n");
goto out_failed;
}
for (i = 0; i < MPI3MR_NUM_IOCTL_SGE; i++) {
mem_desc = &mrioc->ioctl_sge[i];
mem_desc->size = MPI3MR_IOCTL_SGE_SIZE;
mem_desc->addr = dma_pool_zalloc(mrioc->ioctl_dma_pool,
GFP_KERNEL,
&mem_desc->dma_addr);
if (!mem_desc->addr)
goto out_failed;
}
mem_desc = &mrioc->ioctl_chain_sge;
mem_desc->size = MPI3MR_PAGE_SIZE_4K;
mem_desc->addr = dma_alloc_coherent(&mrioc->pdev->dev,
mem_desc->size,
&mem_desc->dma_addr,
GFP_KERNEL);
if (!mem_desc->addr)
goto out_failed;
mem_desc = &mrioc->ioctl_resp_sge;
mem_desc->size = MPI3MR_PAGE_SIZE_4K;
mem_desc->addr = dma_alloc_coherent(&mrioc->pdev->dev,
mem_desc->size,
&mem_desc->dma_addr,
GFP_KERNEL);
if (!mem_desc->addr)
goto out_failed;
mrioc->ioctl_sges_allocated = true;
return;
out_failed:
ioc_warn(mrioc, "cannot allocate DMA memory for the mpt commands\n"
"from the applications, application interface for MPT command is disabled\n");
mpi3mr_free_ioctl_dma_memory(mrioc);
}
/**
* mpi3mr_clear_reset_history - clear reset history
* @mrioc: Adapter instance reference
*
* Write the reset history bit in IOC status to clear the bit,
* if it is already set.
*
* Return: Nothing.
*/
static inline void mpi3mr_clear_reset_history(struct mpi3mr_ioc *mrioc)
{
u32 ioc_status;
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if (ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY)
writel(ioc_status, &mrioc->sysif_regs->ioc_status);
}
/**
* mpi3mr_issue_and_process_mur - Message unit Reset handler
* @mrioc: Adapter instance reference
* @reset_reason: Reset reason code
*
* Issue Message unit Reset to the controller and wait for it to
* be complete.
*
* Return: 0 on success, -1 on failure.
*/
static int mpi3mr_issue_and_process_mur(struct mpi3mr_ioc *mrioc,
u32 reset_reason)
{
u32 ioc_config, timeout, ioc_status, scratch_pad0;
int retval = -1;
ioc_info(mrioc, "Issuing Message unit Reset(MUR)\n");
if (mrioc->unrecoverable) {
ioc_info(mrioc, "IOC is unrecoverable MUR not issued\n");
return retval;
}
mpi3mr_clear_reset_history(mrioc);
scratch_pad0 = ((MPI3MR_RESET_REASON_OSTYPE_LINUX <<
MPI3MR_RESET_REASON_OSTYPE_SHIFT) |
(mrioc->facts.ioc_num <<
MPI3MR_RESET_REASON_IOCNUM_SHIFT) | reset_reason);
writel(scratch_pad0, &mrioc->sysif_regs->scratchpad[0]);
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
ioc_config &= ~MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC;
writel(ioc_config, &mrioc->sysif_regs->ioc_configuration);
timeout = MPI3MR_MUR_TIMEOUT * 10;
do {
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if ((ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY)) {
mpi3mr_clear_reset_history(mrioc);
break;
}
if (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT) {
mpi3mr_print_fault_info(mrioc);
break;
}
msleep(100);
} while (--timeout);
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
if (timeout && !((ioc_status & MPI3_SYSIF_IOC_STATUS_READY) ||
(ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT) ||
(ioc_config & MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC)))
retval = 0;
ioc_info(mrioc, "Base IOC Sts/Config after %s MUR is (0x%x)/(0x%x)\n",
(!retval) ? "successful" : "failed", ioc_status, ioc_config);
return retval;
}
/**
* mpi3mr_revalidate_factsdata - validate IOCFacts parameters
* during reset/resume
* @mrioc: Adapter instance reference
*
* Return: zero if the new IOCFacts parameters value is compatible with
* older values else return -EPERM
*/
static int
mpi3mr_revalidate_factsdata(struct mpi3mr_ioc *mrioc)
{
unsigned long *removepend_bitmap;
if (mrioc->facts.reply_sz > mrioc->reply_sz) {
ioc_err(mrioc,
"cannot increase reply size from %d to %d\n",
mrioc->reply_sz, mrioc->facts.reply_sz);
return -EPERM;
}
if (mrioc->facts.max_op_reply_q < mrioc->num_op_reply_q) {
ioc_err(mrioc,
"cannot reduce number of operational reply queues from %d to %d\n",
mrioc->num_op_reply_q,
mrioc->facts.max_op_reply_q);
return -EPERM;
}
if (mrioc->facts.max_op_req_q < mrioc->num_op_req_q) {
ioc_err(mrioc,
"cannot reduce number of operational request queues from %d to %d\n",
mrioc->num_op_req_q, mrioc->facts.max_op_req_q);
return -EPERM;
}
if (mrioc->shost->max_sectors != (mrioc->facts.max_data_length / 512))
ioc_err(mrioc, "Warning: The maximum data transfer length\n"
"\tchanged after reset: previous(%d), new(%d),\n"
"the driver cannot change this at run time\n",
mrioc->shost->max_sectors * 512, mrioc->facts.max_data_length);
if ((mrioc->sas_transport_enabled) && (mrioc->facts.ioc_capabilities &
MPI3_IOCFACTS_CAPABILITY_MULTIPATH_SUPPORTED))
ioc_err(mrioc,
"critical error: multipath capability is enabled at the\n"
"\tcontroller while sas transport support is enabled at the\n"
"\tdriver, please reboot the system or reload the driver\n");
if (mrioc->facts.max_devhandle > mrioc->dev_handle_bitmap_bits) {
removepend_bitmap = bitmap_zalloc(mrioc->facts.max_devhandle,
GFP_KERNEL);
if (!removepend_bitmap) {
ioc_err(mrioc,
"failed to increase removepend_bitmap bits from %d to %d\n",
mrioc->dev_handle_bitmap_bits,
mrioc->facts.max_devhandle);
return -EPERM;
}
bitmap_free(mrioc->removepend_bitmap);
mrioc->removepend_bitmap = removepend_bitmap;
ioc_info(mrioc,
"increased bits of dev_handle_bitmap from %d to %d\n",
mrioc->dev_handle_bitmap_bits,
mrioc->facts.max_devhandle);
mrioc->dev_handle_bitmap_bits = mrioc->facts.max_devhandle;
}
return 0;
}
/**
* mpi3mr_bring_ioc_ready - Bring controller to ready state
* @mrioc: Adapter instance reference
*
* Set Enable IOC bit in IOC configuration register and wait for
* the controller to become ready.
*
* Return: 0 on success, appropriate error on failure.
*/
static int mpi3mr_bring_ioc_ready(struct mpi3mr_ioc *mrioc)
{
u32 ioc_config, ioc_status, timeout, host_diagnostic;
int retval = 0;
enum mpi3mr_iocstate ioc_state;
u64 base_info;
u8 retry = 0;
u64 start_time, elapsed_time_sec;
retry_bring_ioc_ready:
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
base_info = lo_hi_readq(&mrioc->sysif_regs->ioc_information);
ioc_info(mrioc, "ioc_status(0x%08x), ioc_config(0x%08x), ioc_info(0x%016llx) at the bringup\n",
ioc_status, ioc_config, base_info);
/*The timeout value is in 2sec unit, changing it to seconds*/
mrioc->ready_timeout =
((base_info & MPI3_SYSIF_IOC_INFO_LOW_TIMEOUT_MASK) >>
MPI3_SYSIF_IOC_INFO_LOW_TIMEOUT_SHIFT) * 2;
ioc_info(mrioc, "ready timeout: %d seconds\n", mrioc->ready_timeout);
ioc_state = mpi3mr_get_iocstate(mrioc);
ioc_info(mrioc, "controller is in %s state during detection\n",
mpi3mr_iocstate_name(ioc_state));
timeout = mrioc->ready_timeout * 10;
do {
ioc_state = mpi3mr_get_iocstate(mrioc);
if (ioc_state != MRIOC_STATE_BECOMING_READY &&
ioc_state != MRIOC_STATE_RESET_REQUESTED)
break;
if (!pci_device_is_present(mrioc->pdev)) {
mrioc->unrecoverable = 1;
ioc_err(mrioc, "controller is not present while waiting to reset\n");
goto out_device_not_present;
}
msleep(100);
} while (--timeout);
if (ioc_state == MRIOC_STATE_READY) {
ioc_info(mrioc, "issuing message unit reset (MUR) to bring to reset state\n");
retval = mpi3mr_issue_and_process_mur(mrioc,
MPI3MR_RESET_FROM_BRINGUP);
ioc_state = mpi3mr_get_iocstate(mrioc);
if (retval)
ioc_err(mrioc,
"message unit reset failed with error %d current state %s\n",
retval, mpi3mr_iocstate_name(ioc_state));
}
if (ioc_state != MRIOC_STATE_RESET) {
if (ioc_state == MRIOC_STATE_FAULT) {
timeout = MPI3_SYSIF_DIAG_SAVE_TIMEOUT * 10;
mpi3mr_print_fault_info(mrioc);
do {
host_diagnostic =
readl(&mrioc->sysif_regs->host_diagnostic);
if (!(host_diagnostic &
MPI3_SYSIF_HOST_DIAG_SAVE_IN_PROGRESS))
break;
if (!pci_device_is_present(mrioc->pdev)) {
mrioc->unrecoverable = 1;
ioc_err(mrioc, "controller is not present at the bringup\n");
goto out_device_not_present;
}
msleep(100);
} while (--timeout);
}
mpi3mr_print_fault_info(mrioc);
ioc_info(mrioc, "issuing soft reset to bring to reset state\n");
retval = mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET,
MPI3MR_RESET_FROM_BRINGUP);
if (retval) {
ioc_err(mrioc,
"soft reset failed with error %d\n", retval);
goto out_failed;
}
}
ioc_state = mpi3mr_get_iocstate(mrioc);
if (ioc_state != MRIOC_STATE_RESET) {
ioc_err(mrioc,
"cannot bring controller to reset state, current state: %s\n",
mpi3mr_iocstate_name(ioc_state));
goto out_failed;
}
mpi3mr_clear_reset_history(mrioc);
retval = mpi3mr_setup_admin_qpair(mrioc);
if (retval) {
ioc_err(mrioc, "failed to setup admin queues: error %d\n",
retval);
goto out_failed;
}
ioc_info(mrioc, "bringing controller to ready state\n");
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
ioc_config |= MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC;
writel(ioc_config, &mrioc->sysif_regs->ioc_configuration);
if (retry == 0)
start_time = jiffies;
timeout = mrioc->ready_timeout * 10;
do {
ioc_state = mpi3mr_get_iocstate(mrioc);
if (ioc_state == MRIOC_STATE_READY) {
ioc_info(mrioc,
"successfully transitioned to %s state\n",
mpi3mr_iocstate_name(ioc_state));
return 0;
}
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if ((ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY) ||
(ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT)) {
mpi3mr_print_fault_info(mrioc);
goto out_failed;
}
if (!pci_device_is_present(mrioc->pdev)) {
mrioc->unrecoverable = 1;
ioc_err(mrioc,
"controller is not present at the bringup\n");
retval = -1;
goto out_device_not_present;
}
msleep(100);
elapsed_time_sec = jiffies_to_msecs(jiffies - start_time)/1000;
} while (elapsed_time_sec < mrioc->ready_timeout);
out_failed:
elapsed_time_sec = jiffies_to_msecs(jiffies - start_time)/1000;
if ((retry < 2) && (elapsed_time_sec < (mrioc->ready_timeout - 60))) {
retry++;
ioc_warn(mrioc, "retrying to bring IOC ready, retry_count:%d\n"
" elapsed time =%llu\n", retry, elapsed_time_sec);
goto retry_bring_ioc_ready;
}
ioc_state = mpi3mr_get_iocstate(mrioc);
ioc_err(mrioc,
"failed to bring to ready state, current state: %s\n",
mpi3mr_iocstate_name(ioc_state));
out_device_not_present:
return retval;
}
/**
* mpi3mr_soft_reset_success - Check softreset is success or not
* @ioc_status: IOC status register value
* @ioc_config: IOC config register value
*
* Check whether the soft reset is successful or not based on
* IOC status and IOC config register values.
*
* Return: True when the soft reset is success, false otherwise.
*/
static inline bool
mpi3mr_soft_reset_success(u32 ioc_status, u32 ioc_config)
{
if (!((ioc_status & MPI3_SYSIF_IOC_STATUS_READY) ||
(ioc_config & MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC)))
return true;
return false;
}
/**
* mpi3mr_diagfault_success - Check diag fault is success or not
* @mrioc: Adapter reference
* @ioc_status: IOC status register value
*
* Check whether the controller hit diag reset fault code.
*
* Return: True when there is diag fault, false otherwise.
*/
static inline bool mpi3mr_diagfault_success(struct mpi3mr_ioc *mrioc,
u32 ioc_status)
{
u32 fault;
if (!(ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT))
return false;
fault = readl(&mrioc->sysif_regs->fault) & MPI3_SYSIF_FAULT_CODE_MASK;
if (fault == MPI3_SYSIF_FAULT_CODE_DIAG_FAULT_RESET) {
mpi3mr_print_fault_info(mrioc);
return true;
}
return false;
}
/**
* mpi3mr_set_diagsave - Set diag save bit for snapdump
* @mrioc: Adapter reference
*
* Set diag save bit in IOC configuration register to enable
* snapdump.
*
* Return: Nothing.
*/
static inline void mpi3mr_set_diagsave(struct mpi3mr_ioc *mrioc)
{
u32 ioc_config;
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
ioc_config |= MPI3_SYSIF_IOC_CONFIG_DIAG_SAVE;
writel(ioc_config, &mrioc->sysif_regs->ioc_configuration);
}
/**
* mpi3mr_issue_reset - Issue reset to the controller
* @mrioc: Adapter reference
* @reset_type: Reset type
* @reset_reason: Reset reason code
*
* Unlock the host diagnostic registers and write the specific
* reset type to that, wait for reset acknowledgment from the
* controller, if the reset is not successful retry for the
* predefined number of times.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_issue_reset(struct mpi3mr_ioc *mrioc, u16 reset_type,
u16 reset_reason)
{
int retval = -1;
u8 unlock_retry_count = 0;
u32 host_diagnostic, ioc_status, ioc_config, scratch_pad0;
u32 timeout = MPI3MR_RESET_ACK_TIMEOUT * 10;
if ((reset_type != MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET) &&
(reset_type != MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT))
return retval;
if (mrioc->unrecoverable)
return retval;
if (reset_reason == MPI3MR_RESET_FROM_FIRMWARE) {
retval = 0;
return retval;
}
ioc_info(mrioc, "%s reset due to %s(0x%x)\n",
mpi3mr_reset_type_name(reset_type),
mpi3mr_reset_rc_name(reset_reason), reset_reason);
mpi3mr_clear_reset_history(mrioc);
do {
ioc_info(mrioc,
"Write magic sequence to unlock host diag register (retry=%d)\n",
++unlock_retry_count);
if (unlock_retry_count >= MPI3MR_HOSTDIAG_UNLOCK_RETRY_COUNT) {
ioc_err(mrioc,
"%s reset failed due to unlock failure, host_diagnostic(0x%08x)\n",
mpi3mr_reset_type_name(reset_type),
host_diagnostic);
mrioc->unrecoverable = 1;
return retval;
}
writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_FLUSH,
&mrioc->sysif_regs->write_sequence);
writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_1ST,
&mrioc->sysif_regs->write_sequence);
writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_2ND,
&mrioc->sysif_regs->write_sequence);
writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_3RD,
&mrioc->sysif_regs->write_sequence);
writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_4TH,
&mrioc->sysif_regs->write_sequence);
writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_5TH,
&mrioc->sysif_regs->write_sequence);
writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_6TH,
&mrioc->sysif_regs->write_sequence);
usleep_range(1000, 1100);
host_diagnostic = readl(&mrioc->sysif_regs->host_diagnostic);
ioc_info(mrioc,
"wrote magic sequence: retry_count(%d), host_diagnostic(0x%08x)\n",
unlock_retry_count, host_diagnostic);
} while (!(host_diagnostic & MPI3_SYSIF_HOST_DIAG_DIAG_WRITE_ENABLE));
scratch_pad0 = ((MPI3MR_RESET_REASON_OSTYPE_LINUX <<
MPI3MR_RESET_REASON_OSTYPE_SHIFT) | (mrioc->facts.ioc_num <<
MPI3MR_RESET_REASON_IOCNUM_SHIFT) | reset_reason);
writel(reset_reason, &mrioc->sysif_regs->scratchpad[0]);
writel(host_diagnostic | reset_type,
&mrioc->sysif_regs->host_diagnostic);
switch (reset_type) {
case MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET:
do {
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
ioc_config =
readl(&mrioc->sysif_regs->ioc_configuration);
if ((ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY)
&& mpi3mr_soft_reset_success(ioc_status, ioc_config)
) {
mpi3mr_clear_reset_history(mrioc);
retval = 0;
break;
}
msleep(100);
} while (--timeout);
mpi3mr_print_fault_info(mrioc);
break;
case MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT:
do {
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if (mpi3mr_diagfault_success(mrioc, ioc_status)) {
retval = 0;
break;
}
msleep(100);
} while (--timeout);
break;
default:
break;
}
writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_2ND,
&mrioc->sysif_regs->write_sequence);
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
ioc_info(mrioc,
"ioc_status/ioc_onfig after %s reset is (0x%x)/(0x%x)\n",
(!retval)?"successful":"failed", ioc_status,
ioc_config);
if (retval)
mrioc->unrecoverable = 1;
return retval;
}
/**
* mpi3mr_admin_request_post - Post request to admin queue
* @mrioc: Adapter reference
* @admin_req: MPI3 request
* @admin_req_sz: Request size
* @ignore_reset: Ignore reset in process
*
* Post the MPI3 request into admin request queue and
* inform the controller, if the queue is full return
* appropriate error.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_admin_request_post(struct mpi3mr_ioc *mrioc, void *admin_req,
u16 admin_req_sz, u8 ignore_reset)
{
u16 areq_pi = 0, areq_ci = 0, max_entries = 0;
int retval = 0;
unsigned long flags;
u8 *areq_entry;
if (mrioc->unrecoverable) {
ioc_err(mrioc, "%s : Unrecoverable controller\n", __func__);
return -EFAULT;
}
spin_lock_irqsave(&mrioc->admin_req_lock, flags);
areq_pi = mrioc->admin_req_pi;
areq_ci = mrioc->admin_req_ci;
max_entries = mrioc->num_admin_req;
if ((areq_ci == (areq_pi + 1)) || ((!areq_ci) &&
(areq_pi == (max_entries - 1)))) {
ioc_err(mrioc, "AdminReqQ full condition detected\n");
retval = -EAGAIN;
goto out;
}
if (!ignore_reset && mrioc->reset_in_progress) {
ioc_err(mrioc, "AdminReqQ submit reset in progress\n");
retval = -EAGAIN;
goto out;
}
if (mrioc->pci_err_recovery) {
ioc_err(mrioc, "admin request queue submission failed due to pci error recovery in progress\n");
retval = -EAGAIN;
goto out;
}
areq_entry = (u8 *)mrioc->admin_req_base +
(areq_pi * MPI3MR_ADMIN_REQ_FRAME_SZ);
memset(areq_entry, 0, MPI3MR_ADMIN_REQ_FRAME_SZ);
memcpy(areq_entry, (u8 *)admin_req, admin_req_sz);
if (++areq_pi == max_entries)
areq_pi = 0;
mrioc->admin_req_pi = areq_pi;
writel(mrioc->admin_req_pi, &mrioc->sysif_regs->admin_request_queue_pi);
out:
spin_unlock_irqrestore(&mrioc->admin_req_lock, flags);
return retval;
}
/**
* mpi3mr_free_op_req_q_segments - free request memory segments
* @mrioc: Adapter instance reference
* @q_idx: operational request queue index
*
* Free memory segments allocated for operational request queue
*
* Return: Nothing.
*/
static void mpi3mr_free_op_req_q_segments(struct mpi3mr_ioc *mrioc, u16 q_idx)
{
u16 j;
int size;
struct segments *segments;
segments = mrioc->req_qinfo[q_idx].q_segments;
if (!segments)
return;
if (mrioc->enable_segqueue) {
size = MPI3MR_OP_REQ_Q_SEG_SIZE;
if (mrioc->req_qinfo[q_idx].q_segment_list) {
dma_free_coherent(&mrioc->pdev->dev,
MPI3MR_MAX_SEG_LIST_SIZE,
mrioc->req_qinfo[q_idx].q_segment_list,
mrioc->req_qinfo[q_idx].q_segment_list_dma);
mrioc->req_qinfo[q_idx].q_segment_list = NULL;
}
} else
size = mrioc->req_qinfo[q_idx].segment_qd *
mrioc->facts.op_req_sz;
for (j = 0; j < mrioc->req_qinfo[q_idx].num_segments; j++) {
if (!segments[j].segment)
continue;
dma_free_coherent(&mrioc->pdev->dev,
size, segments[j].segment, segments[j].segment_dma);
segments[j].segment = NULL;
}
kfree(mrioc->req_qinfo[q_idx].q_segments);
mrioc->req_qinfo[q_idx].q_segments = NULL;
mrioc->req_qinfo[q_idx].qid = 0;
}
/**
* mpi3mr_free_op_reply_q_segments - free reply memory segments
* @mrioc: Adapter instance reference
* @q_idx: operational reply queue index
*
* Free memory segments allocated for operational reply queue
*
* Return: Nothing.
*/
static void mpi3mr_free_op_reply_q_segments(struct mpi3mr_ioc *mrioc, u16 q_idx)
{
u16 j;
int size;
struct segments *segments;
segments = mrioc->op_reply_qinfo[q_idx].q_segments;
if (!segments)
return;
if (mrioc->enable_segqueue) {
size = MPI3MR_OP_REP_Q_SEG_SIZE;
if (mrioc->op_reply_qinfo[q_idx].q_segment_list) {
dma_free_coherent(&mrioc->pdev->dev,
MPI3MR_MAX_SEG_LIST_SIZE,
mrioc->op_reply_qinfo[q_idx].q_segment_list,
mrioc->op_reply_qinfo[q_idx].q_segment_list_dma);
mrioc->op_reply_qinfo[q_idx].q_segment_list = NULL;
}
} else
size = mrioc->op_reply_qinfo[q_idx].segment_qd *
mrioc->op_reply_desc_sz;
for (j = 0; j < mrioc->op_reply_qinfo[q_idx].num_segments; j++) {
if (!segments[j].segment)
continue;
dma_free_coherent(&mrioc->pdev->dev,
size, segments[j].segment, segments[j].segment_dma);
segments[j].segment = NULL;
}
kfree(mrioc->op_reply_qinfo[q_idx].q_segments);
mrioc->op_reply_qinfo[q_idx].q_segments = NULL;
mrioc->op_reply_qinfo[q_idx].qid = 0;
}
/**
* mpi3mr_delete_op_reply_q - delete operational reply queue
* @mrioc: Adapter instance reference
* @qidx: operational reply queue index
*
* Delete operatinal reply queue by issuing MPI request
* through admin queue.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_delete_op_reply_q(struct mpi3mr_ioc *mrioc, u16 qidx)
{
struct mpi3_delete_reply_queue_request delq_req;
struct op_reply_qinfo *op_reply_q = mrioc->op_reply_qinfo + qidx;
int retval = 0;
u16 reply_qid = 0, midx;
reply_qid = op_reply_q->qid;
midx = REPLY_QUEUE_IDX_TO_MSIX_IDX(qidx, mrioc->op_reply_q_offset);
if (!reply_qid) {
retval = -1;
ioc_err(mrioc, "Issue DelRepQ: called with invalid ReqQID\n");
goto out;
}
(op_reply_q->qtype == MPI3MR_DEFAULT_QUEUE) ? mrioc->default_qcount-- :
mrioc->active_poll_qcount--;
memset(&delq_req, 0, sizeof(delq_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "Issue DelRepQ: Init command is in use\n");
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
delq_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
delq_req.function = MPI3_FUNCTION_DELETE_REPLY_QUEUE;
delq_req.queue_id = cpu_to_le16(reply_qid);
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &delq_req, sizeof(delq_req),
1);
if (retval) {
ioc_err(mrioc, "Issue DelRepQ: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "delete reply queue timed out\n");
mpi3mr_check_rh_fault_ioc(mrioc,
MPI3MR_RESET_FROM_DELREPQ_TIMEOUT);
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"Issue DelRepQ: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
mrioc->intr_info[midx].op_reply_q = NULL;
mpi3mr_free_op_reply_q_segments(mrioc, qidx);
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
return retval;
}
/**
* mpi3mr_alloc_op_reply_q_segments -Alloc segmented reply pool
* @mrioc: Adapter instance reference
* @qidx: request queue index
*
* Allocate segmented memory pools for operational reply
* queue.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_alloc_op_reply_q_segments(struct mpi3mr_ioc *mrioc, u16 qidx)
{
struct op_reply_qinfo *op_reply_q = mrioc->op_reply_qinfo + qidx;
int i, size;
u64 *q_segment_list_entry = NULL;
struct segments *segments;
if (mrioc->enable_segqueue) {
op_reply_q->segment_qd =
MPI3MR_OP_REP_Q_SEG_SIZE / mrioc->op_reply_desc_sz;
size = MPI3MR_OP_REP_Q_SEG_SIZE;
op_reply_q->q_segment_list = dma_alloc_coherent(&mrioc->pdev->dev,
MPI3MR_MAX_SEG_LIST_SIZE, &op_reply_q->q_segment_list_dma,
GFP_KERNEL);
if (!op_reply_q->q_segment_list)
return -ENOMEM;
q_segment_list_entry = (u64 *)op_reply_q->q_segment_list;
} else {
op_reply_q->segment_qd = op_reply_q->num_replies;
size = op_reply_q->num_replies * mrioc->op_reply_desc_sz;
}
op_reply_q->num_segments = DIV_ROUND_UP(op_reply_q->num_replies,
op_reply_q->segment_qd);
op_reply_q->q_segments = kcalloc(op_reply_q->num_segments,
sizeof(struct segments), GFP_KERNEL);
if (!op_reply_q->q_segments)
return -ENOMEM;
segments = op_reply_q->q_segments;
for (i = 0; i < op_reply_q->num_segments; i++) {
segments[i].segment =
dma_alloc_coherent(&mrioc->pdev->dev,
size, &segments[i].segment_dma, GFP_KERNEL);
if (!segments[i].segment)
return -ENOMEM;
if (mrioc->enable_segqueue)
q_segment_list_entry[i] =
(unsigned long)segments[i].segment_dma;
}
return 0;
}
/**
* mpi3mr_alloc_op_req_q_segments - Alloc segmented req pool.
* @mrioc: Adapter instance reference
* @qidx: request queue index
*
* Allocate segmented memory pools for operational request
* queue.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_alloc_op_req_q_segments(struct mpi3mr_ioc *mrioc, u16 qidx)
{
struct op_req_qinfo *op_req_q = mrioc->req_qinfo + qidx;
int i, size;
u64 *q_segment_list_entry = NULL;
struct segments *segments;
if (mrioc->enable_segqueue) {
op_req_q->segment_qd =
MPI3MR_OP_REQ_Q_SEG_SIZE / mrioc->facts.op_req_sz;
size = MPI3MR_OP_REQ_Q_SEG_SIZE;
op_req_q->q_segment_list = dma_alloc_coherent(&mrioc->pdev->dev,
MPI3MR_MAX_SEG_LIST_SIZE, &op_req_q->q_segment_list_dma,
GFP_KERNEL);
if (!op_req_q->q_segment_list)
return -ENOMEM;
q_segment_list_entry = (u64 *)op_req_q->q_segment_list;
} else {
op_req_q->segment_qd = op_req_q->num_requests;
size = op_req_q->num_requests * mrioc->facts.op_req_sz;
}
op_req_q->num_segments = DIV_ROUND_UP(op_req_q->num_requests,
op_req_q->segment_qd);
op_req_q->q_segments = kcalloc(op_req_q->num_segments,
sizeof(struct segments), GFP_KERNEL);
if (!op_req_q->q_segments)
return -ENOMEM;
segments = op_req_q->q_segments;
for (i = 0; i < op_req_q->num_segments; i++) {
segments[i].segment =
dma_alloc_coherent(&mrioc->pdev->dev,
size, &segments[i].segment_dma, GFP_KERNEL);
if (!segments[i].segment)
return -ENOMEM;
if (mrioc->enable_segqueue)
q_segment_list_entry[i] =
(unsigned long)segments[i].segment_dma;
}
return 0;
}
/**
* mpi3mr_create_op_reply_q - create operational reply queue
* @mrioc: Adapter instance reference
* @qidx: operational reply queue index
*
* Create operatinal reply queue by issuing MPI request
* through admin queue.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_create_op_reply_q(struct mpi3mr_ioc *mrioc, u16 qidx)
{
struct mpi3_create_reply_queue_request create_req;
struct op_reply_qinfo *op_reply_q = mrioc->op_reply_qinfo + qidx;
int retval = 0;
u16 reply_qid = 0, midx;
reply_qid = op_reply_q->qid;
midx = REPLY_QUEUE_IDX_TO_MSIX_IDX(qidx, mrioc->op_reply_q_offset);
if (reply_qid) {
retval = -1;
ioc_err(mrioc, "CreateRepQ: called for duplicate qid %d\n",
reply_qid);
return retval;
}
reply_qid = qidx + 1;
op_reply_q->num_replies = MPI3MR_OP_REP_Q_QD;
if ((mrioc->pdev->device == MPI3_MFGPAGE_DEVID_SAS4116) &&
!mrioc->pdev->revision)
op_reply_q->num_replies = MPI3MR_OP_REP_Q_QD4K;
op_reply_q->ci = 0;
op_reply_q->ephase = 1;
atomic_set(&op_reply_q->pend_ios, 0);
atomic_set(&op_reply_q->in_use, 0);
op_reply_q->enable_irq_poll = false;
if (!op_reply_q->q_segments) {
retval = mpi3mr_alloc_op_reply_q_segments(mrioc, qidx);
if (retval) {
mpi3mr_free_op_reply_q_segments(mrioc, qidx);
goto out;
}
}
memset(&create_req, 0, sizeof(create_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "CreateRepQ: Init command is in use\n");
goto out_unlock;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
create_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
create_req.function = MPI3_FUNCTION_CREATE_REPLY_QUEUE;
create_req.queue_id = cpu_to_le16(reply_qid);
if (midx < (mrioc->intr_info_count - mrioc->requested_poll_qcount))
op_reply_q->qtype = MPI3MR_DEFAULT_QUEUE;
else
op_reply_q->qtype = MPI3MR_POLL_QUEUE;
if (op_reply_q->qtype == MPI3MR_DEFAULT_QUEUE) {
create_req.flags =
MPI3_CREATE_REPLY_QUEUE_FLAGS_INT_ENABLE_ENABLE;
create_req.msix_index =
cpu_to_le16(mrioc->intr_info[midx].msix_index);
} else {
create_req.msix_index = cpu_to_le16(mrioc->intr_info_count - 1);
ioc_info(mrioc, "create reply queue(polled): for qid(%d), midx(%d)\n",
reply_qid, midx);
if (!mrioc->active_poll_qcount)
disable_irq_nosync(pci_irq_vector(mrioc->pdev,
mrioc->intr_info_count - 1));
}
if (mrioc->enable_segqueue) {
create_req.flags |=
MPI3_CREATE_REQUEST_QUEUE_FLAGS_SEGMENTED_SEGMENTED;
create_req.base_address = cpu_to_le64(
op_reply_q->q_segment_list_dma);
} else
create_req.base_address = cpu_to_le64(
op_reply_q->q_segments[0].segment_dma);
create_req.size = cpu_to_le16(op_reply_q->num_replies);
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &create_req,
sizeof(create_req), 1);
if (retval) {
ioc_err(mrioc, "CreateRepQ: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "create reply queue timed out\n");
mpi3mr_check_rh_fault_ioc(mrioc,
MPI3MR_RESET_FROM_CREATEREPQ_TIMEOUT);
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"CreateRepQ: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
op_reply_q->qid = reply_qid;
if (midx < mrioc->intr_info_count)
mrioc->intr_info[midx].op_reply_q = op_reply_q;
(op_reply_q->qtype == MPI3MR_DEFAULT_QUEUE) ? mrioc->default_qcount++ :
mrioc->active_poll_qcount++;
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
return retval;
}
/**
* mpi3mr_create_op_req_q - create operational request queue
* @mrioc: Adapter instance reference
* @idx: operational request queue index
* @reply_qid: Reply queue ID
*
* Create operatinal request queue by issuing MPI request
* through admin queue.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_create_op_req_q(struct mpi3mr_ioc *mrioc, u16 idx,
u16 reply_qid)
{
struct mpi3_create_request_queue_request create_req;
struct op_req_qinfo *op_req_q = mrioc->req_qinfo + idx;
int retval = 0;
u16 req_qid = 0;
req_qid = op_req_q->qid;
if (req_qid) {
retval = -1;
ioc_err(mrioc, "CreateReqQ: called for duplicate qid %d\n",
req_qid);
return retval;
}
req_qid = idx + 1;
op_req_q->num_requests = MPI3MR_OP_REQ_Q_QD;
op_req_q->ci = 0;
op_req_q->pi = 0;
op_req_q->reply_qid = reply_qid;
spin_lock_init(&op_req_q->q_lock);
if (!op_req_q->q_segments) {
retval = mpi3mr_alloc_op_req_q_segments(mrioc, idx);
if (retval) {
mpi3mr_free_op_req_q_segments(mrioc, idx);
goto out;
}
}
memset(&create_req, 0, sizeof(create_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "CreateReqQ: Init command is in use\n");
goto out_unlock;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
create_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
create_req.function = MPI3_FUNCTION_CREATE_REQUEST_QUEUE;
create_req.queue_id = cpu_to_le16(req_qid);
if (mrioc->enable_segqueue) {
create_req.flags =
MPI3_CREATE_REQUEST_QUEUE_FLAGS_SEGMENTED_SEGMENTED;
create_req.base_address = cpu_to_le64(
op_req_q->q_segment_list_dma);
} else
create_req.base_address = cpu_to_le64(
op_req_q->q_segments[0].segment_dma);
create_req.reply_queue_id = cpu_to_le16(reply_qid);
create_req.size = cpu_to_le16(op_req_q->num_requests);
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &create_req,
sizeof(create_req), 1);
if (retval) {
ioc_err(mrioc, "CreateReqQ: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "create request queue timed out\n");
mpi3mr_check_rh_fault_ioc(mrioc,
MPI3MR_RESET_FROM_CREATEREQQ_TIMEOUT);
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"CreateReqQ: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
op_req_q->qid = req_qid;
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
return retval;
}
/**
* mpi3mr_create_op_queues - create operational queue pairs
* @mrioc: Adapter instance reference
*
* Allocate memory for operational queue meta data and call
* create request and reply queue functions.
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_create_op_queues(struct mpi3mr_ioc *mrioc)
{
int retval = 0;
u16 num_queues = 0, i = 0, msix_count_op_q = 1;
num_queues = min_t(int, mrioc->facts.max_op_reply_q,
mrioc->facts.max_op_req_q);
msix_count_op_q =
mrioc->intr_info_count - mrioc->op_reply_q_offset;
if (!mrioc->num_queues)
mrioc->num_queues = min_t(int, num_queues, msix_count_op_q);
/*
* During reset set the num_queues to the number of queues
* that was set before the reset.
*/
num_queues = mrioc->num_op_reply_q ?
mrioc->num_op_reply_q : mrioc->num_queues;
ioc_info(mrioc, "trying to create %d operational queue pairs\n",
num_queues);
if (!mrioc->req_qinfo) {
mrioc->req_qinfo = kcalloc(num_queues,
sizeof(struct op_req_qinfo), GFP_KERNEL);
if (!mrioc->req_qinfo) {
retval = -1;
goto out_failed;
}
mrioc->op_reply_qinfo = kzalloc(sizeof(struct op_reply_qinfo) *
num_queues, GFP_KERNEL);
if (!mrioc->op_reply_qinfo) {
retval = -1;
goto out_failed;
}
}
if (mrioc->enable_segqueue)
ioc_info(mrioc,
"allocating operational queues through segmented queues\n");
for (i = 0; i < num_queues; i++) {
if (mpi3mr_create_op_reply_q(mrioc, i)) {
ioc_err(mrioc, "Cannot create OP RepQ %d\n", i);
break;
}
if (mpi3mr_create_op_req_q(mrioc, i,
mrioc->op_reply_qinfo[i].qid)) {
ioc_err(mrioc, "Cannot create OP ReqQ %d\n", i);
mpi3mr_delete_op_reply_q(mrioc, i);
break;
}
}
if (i == 0) {
/* Not even one queue is created successfully*/
retval = -1;
goto out_failed;
}
mrioc->num_op_reply_q = mrioc->num_op_req_q = i;
ioc_info(mrioc,
"successfully created %d operational queue pairs(default/polled) queue = (%d/%d)\n",
mrioc->num_op_reply_q, mrioc->default_qcount,
mrioc->active_poll_qcount);
return retval;
out_failed:
kfree(mrioc->req_qinfo);
mrioc->req_qinfo = NULL;
kfree(mrioc->op_reply_qinfo);
mrioc->op_reply_qinfo = NULL;
return retval;
}
/**
* mpi3mr_op_request_post - Post request to operational queue
* @mrioc: Adapter reference
* @op_req_q: Operational request queue info
* @req: MPI3 request
*
* Post the MPI3 request into operational request queue and
* inform the controller, if the queue is full return
* appropriate error.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_op_request_post(struct mpi3mr_ioc *mrioc,
struct op_req_qinfo *op_req_q, u8 *req)
{
u16 pi = 0, max_entries, reply_qidx = 0, midx;
int retval = 0;
unsigned long flags;
u8 *req_entry;
void *segment_base_addr;
u16 req_sz = mrioc->facts.op_req_sz;
struct segments *segments = op_req_q->q_segments;
reply_qidx = op_req_q->reply_qid - 1;
if (mrioc->unrecoverable)
return -EFAULT;
spin_lock_irqsave(&op_req_q->q_lock, flags);
pi = op_req_q->pi;
max_entries = op_req_q->num_requests;
if (mpi3mr_check_req_qfull(op_req_q)) {
midx = REPLY_QUEUE_IDX_TO_MSIX_IDX(
reply_qidx, mrioc->op_reply_q_offset);
mpi3mr_process_op_reply_q(mrioc, mrioc->intr_info[midx].op_reply_q);
if (mpi3mr_check_req_qfull(op_req_q)) {
retval = -EAGAIN;
goto out;
}
}
if (mrioc->reset_in_progress) {
ioc_err(mrioc, "OpReqQ submit reset in progress\n");
retval = -EAGAIN;
goto out;
}
if (mrioc->pci_err_recovery) {
ioc_err(mrioc, "operational request queue submission failed due to pci error recovery in progress\n");
retval = -EAGAIN;
goto out;
}
segment_base_addr = segments[pi / op_req_q->segment_qd].segment;
req_entry = (u8 *)segment_base_addr +
((pi % op_req_q->segment_qd) * req_sz);
memset(req_entry, 0, req_sz);
memcpy(req_entry, req, MPI3MR_ADMIN_REQ_FRAME_SZ);
if (++pi == max_entries)
pi = 0;
op_req_q->pi = pi;
#ifndef CONFIG_PREEMPT_RT
if (atomic_inc_return(&mrioc->op_reply_qinfo[reply_qidx].pend_ios)
> MPI3MR_IRQ_POLL_TRIGGER_IOCOUNT)
mrioc->op_reply_qinfo[reply_qidx].enable_irq_poll = true;
#else
atomic_inc_return(&mrioc->op_reply_qinfo[reply_qidx].pend_ios);
#endif
writel(op_req_q->pi,
&mrioc->sysif_regs->oper_queue_indexes[reply_qidx].producer_index);
out:
spin_unlock_irqrestore(&op_req_q->q_lock, flags);
return retval;
}
/**
* mpi3mr_check_rh_fault_ioc - check reset history and fault
* controller
* @mrioc: Adapter instance reference
* @reason_code: reason code for the fault.
*
* This routine will save snapdump and fault the controller with
* the given reason code if it is not already in the fault or
* not asynchronosuly reset. This will be used to handle
* initilaization time faults/resets/timeout as in those cases
* immediate soft reset invocation is not required.
*
* Return: None.
*/
void mpi3mr_check_rh_fault_ioc(struct mpi3mr_ioc *mrioc, u32 reason_code)
{
u32 ioc_status, host_diagnostic, timeout;
union mpi3mr_trigger_data trigger_data;
if (mrioc->unrecoverable) {
ioc_err(mrioc, "controller is unrecoverable\n");
return;
}
if (!pci_device_is_present(mrioc->pdev)) {
mrioc->unrecoverable = 1;
ioc_err(mrioc, "controller is not present\n");
return;
}
memset(&trigger_data, 0, sizeof(trigger_data));
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if (ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY) {
mpi3mr_set_trigger_data_in_all_hdb(mrioc,
MPI3MR_HDB_TRIGGER_TYPE_FW_RELEASED, NULL, 0);
return;
} else if (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT) {
trigger_data.fault = (readl(&mrioc->sysif_regs->fault) &
MPI3_SYSIF_FAULT_CODE_MASK);
mpi3mr_set_trigger_data_in_all_hdb(mrioc,
MPI3MR_HDB_TRIGGER_TYPE_FAULT, &trigger_data, 0);
mpi3mr_print_fault_info(mrioc);
return;
}
mpi3mr_set_diagsave(mrioc);
mpi3mr_issue_reset(mrioc, MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT,
reason_code);
trigger_data.fault = (readl(&mrioc->sysif_regs->fault) &
MPI3_SYSIF_FAULT_CODE_MASK);
mpi3mr_set_trigger_data_in_all_hdb(mrioc, MPI3MR_HDB_TRIGGER_TYPE_FAULT,
&trigger_data, 0);
timeout = MPI3_SYSIF_DIAG_SAVE_TIMEOUT * 10;
do {
host_diagnostic = readl(&mrioc->sysif_regs->host_diagnostic);
if (!(host_diagnostic & MPI3_SYSIF_HOST_DIAG_SAVE_IN_PROGRESS))
break;
msleep(100);
} while (--timeout);
}
/**
* mpi3mr_sync_timestamp - Issue time stamp sync request
* @mrioc: Adapter reference
*
* Issue IO unit control MPI request to synchornize firmware
* timestamp with host time.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_sync_timestamp(struct mpi3mr_ioc *mrioc)
{
ktime_t current_time;
struct mpi3_iounit_control_request iou_ctrl;
int retval = 0;
memset(&iou_ctrl, 0, sizeof(iou_ctrl));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "Issue IOUCTL time_stamp: command is in use\n");
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
iou_ctrl.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
iou_ctrl.function = MPI3_FUNCTION_IO_UNIT_CONTROL;
iou_ctrl.operation = MPI3_CTRL_OP_UPDATE_TIMESTAMP;
current_time = ktime_get_real();
iou_ctrl.param64[0] = cpu_to_le64(ktime_to_ms(current_time));
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &iou_ctrl,
sizeof(iou_ctrl), 0);
if (retval) {
ioc_err(mrioc, "Issue IOUCTL time_stamp: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "Issue IOUCTL time_stamp: command timed out\n");
mrioc->init_cmds.is_waiting = 0;
if (!(mrioc->init_cmds.state & MPI3MR_CMD_RESET))
mpi3mr_check_rh_fault_ioc(mrioc,
MPI3MR_RESET_FROM_TSU_TIMEOUT);
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"Issue IOUCTL time_stamp: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
return retval;
}
/**
* mpi3mr_print_pkg_ver - display controller fw package version
* @mrioc: Adapter reference
*
* Retrieve firmware package version from the component image
* header of the controller flash and display it.
*
* Return: 0 on success and non-zero on failure.
*/
static int mpi3mr_print_pkg_ver(struct mpi3mr_ioc *mrioc)
{
struct mpi3_ci_upload_request ci_upload;
int retval = -1;
void *data = NULL;
dma_addr_t data_dma;
struct mpi3_ci_manifest_mpi *manifest;
u32 data_len = sizeof(struct mpi3_ci_manifest_mpi);
u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST;
data = dma_alloc_coherent(&mrioc->pdev->dev, data_len, &data_dma,
GFP_KERNEL);
if (!data)
return -ENOMEM;
memset(&ci_upload, 0, sizeof(ci_upload));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
ioc_err(mrioc, "sending get package version failed due to command in use\n");
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
ci_upload.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
ci_upload.function = MPI3_FUNCTION_CI_UPLOAD;
ci_upload.msg_flags = MPI3_CI_UPLOAD_MSGFLAGS_LOCATION_PRIMARY;
ci_upload.signature1 = cpu_to_le32(MPI3_IMAGE_HEADER_SIGNATURE1_MANIFEST);
ci_upload.image_offset = cpu_to_le32(MPI3_IMAGE_HEADER_SIZE);
ci_upload.segment_size = cpu_to_le32(data_len);
mpi3mr_add_sg_single(&ci_upload.sgl, sgl_flags, data_len,
data_dma);
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &ci_upload,
sizeof(ci_upload), 1);
if (retval) {
ioc_err(mrioc, "posting get package version failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "get package version timed out\n");
mpi3mr_check_rh_fault_ioc(mrioc,
MPI3MR_RESET_FROM_GETPKGVER_TIMEOUT);
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
== MPI3_IOCSTATUS_SUCCESS) {
manifest = (struct mpi3_ci_manifest_mpi *) data;
if (manifest->manifest_type == MPI3_CI_MANIFEST_TYPE_MPI) {
ioc_info(mrioc,
"firmware package version(%d.%d.%d.%d.%05d-%05d)\n",
manifest->package_version.gen_major,
manifest->package_version.gen_minor,
manifest->package_version.phase_major,
manifest->package_version.phase_minor,
manifest->package_version.customer_id,
manifest->package_version.build_num);
}
}
retval = 0;
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
if (data)
dma_free_coherent(&mrioc->pdev->dev, data_len, data,
data_dma);
return retval;
}
/**
* mpi3mr_watchdog_work - watchdog thread to monitor faults
* @work: work struct
*
* Watch dog work periodically executed (1 second interval) to
* monitor firmware fault and to issue periodic timer sync to
* the firmware.
*
* Return: Nothing.
*/
static void mpi3mr_watchdog_work(struct work_struct *work)
{
struct mpi3mr_ioc *mrioc =
container_of(work, struct mpi3mr_ioc, watchdog_work.work);
unsigned long flags;
enum mpi3mr_iocstate ioc_state;
u32 host_diagnostic, ioc_status;
union mpi3mr_trigger_data trigger_data;
u16 reset_reason = MPI3MR_RESET_FROM_FAULT_WATCH;
if (mrioc->reset_in_progress || mrioc->pci_err_recovery)
return;
if (!mrioc->unrecoverable && !pci_device_is_present(mrioc->pdev)) {
ioc_err(mrioc, "watchdog could not detect the controller\n");
mrioc->unrecoverable = 1;
}
if (mrioc->unrecoverable) {
ioc_err(mrioc,
"flush pending commands for unrecoverable controller\n");
mpi3mr_flush_cmds_for_unrecovered_controller(mrioc);
return;
}
if (mrioc->ts_update_counter++ >= mrioc->ts_update_interval) {
mrioc->ts_update_counter = 0;
mpi3mr_sync_timestamp(mrioc);
}
if ((mrioc->prepare_for_reset) &&
((mrioc->prepare_for_reset_timeout_counter++) >=
MPI3MR_PREPARE_FOR_RESET_TIMEOUT)) {
mpi3mr_soft_reset_handler(mrioc,
MPI3MR_RESET_FROM_CIACTVRST_TIMER, 1);
return;
}
memset(&trigger_data, 0, sizeof(trigger_data));
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if (ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY) {
mpi3mr_set_trigger_data_in_all_hdb(mrioc,
MPI3MR_HDB_TRIGGER_TYPE_FW_RELEASED, NULL, 0);
mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_FIRMWARE, 0);
return;
}
/*Check for fault state every one second and issue Soft reset*/
ioc_state = mpi3mr_get_iocstate(mrioc);
if (ioc_state != MRIOC_STATE_FAULT)
goto schedule_work;
trigger_data.fault = readl(&mrioc->sysif_regs->fault) & MPI3_SYSIF_FAULT_CODE_MASK;
mpi3mr_set_trigger_data_in_all_hdb(mrioc,
MPI3MR_HDB_TRIGGER_TYPE_FAULT, &trigger_data, 0);
host_diagnostic = readl(&mrioc->sysif_regs->host_diagnostic);
if (host_diagnostic & MPI3_SYSIF_HOST_DIAG_SAVE_IN_PROGRESS) {
if (!mrioc->diagsave_timeout) {
mpi3mr_print_fault_info(mrioc);
ioc_warn(mrioc, "diag save in progress\n");
}
if ((mrioc->diagsave_timeout++) <= MPI3_SYSIF_DIAG_SAVE_TIMEOUT)
goto schedule_work;
}
mpi3mr_print_fault_info(mrioc);
mrioc->diagsave_timeout = 0;
switch (trigger_data.fault) {
case MPI3_SYSIF_FAULT_CODE_COMPLETE_RESET_NEEDED:
case MPI3_SYSIF_FAULT_CODE_POWER_CYCLE_REQUIRED:
ioc_warn(mrioc,
"controller requires system power cycle, marking controller as unrecoverable\n");
mrioc->unrecoverable = 1;
goto schedule_work;
case MPI3_SYSIF_FAULT_CODE_SOFT_RESET_IN_PROGRESS:
goto schedule_work;
case MPI3_SYSIF_FAULT_CODE_CI_ACTIVATION_RESET:
reset_reason = MPI3MR_RESET_FROM_CIACTIV_FAULT;
break;
default:
break;
}
mpi3mr_soft_reset_handler(mrioc, reset_reason, 0);
return;
schedule_work:
spin_lock_irqsave(&mrioc->watchdog_lock, flags);
if (mrioc->watchdog_work_q)
queue_delayed_work(mrioc->watchdog_work_q,
&mrioc->watchdog_work,
msecs_to_jiffies(MPI3MR_WATCHDOG_INTERVAL));
spin_unlock_irqrestore(&mrioc->watchdog_lock, flags);
return;
}
/**
* mpi3mr_start_watchdog - Start watchdog
* @mrioc: Adapter instance reference
*
* Create and start the watchdog thread to monitor controller
* faults.
*
* Return: Nothing.
*/
void mpi3mr_start_watchdog(struct mpi3mr_ioc *mrioc)
{
if (mrioc->watchdog_work_q)
return;
INIT_DELAYED_WORK(&mrioc->watchdog_work, mpi3mr_watchdog_work);
snprintf(mrioc->watchdog_work_q_name,
sizeof(mrioc->watchdog_work_q_name), "watchdog_%s%d", mrioc->name,
mrioc->id);
mrioc->watchdog_work_q = alloc_ordered_workqueue(
"%s", WQ_MEM_RECLAIM, mrioc->watchdog_work_q_name);
if (!mrioc->watchdog_work_q) {
ioc_err(mrioc, "%s: failed (line=%d)\n", __func__, __LINE__);
return;
}
if (mrioc->watchdog_work_q)
queue_delayed_work(mrioc->watchdog_work_q,
&mrioc->watchdog_work,
msecs_to_jiffies(MPI3MR_WATCHDOG_INTERVAL));
}
/**
* mpi3mr_stop_watchdog - Stop watchdog
* @mrioc: Adapter instance reference
*
* Stop the watchdog thread created to monitor controller
* faults.
*
* Return: Nothing.
*/
void mpi3mr_stop_watchdog(struct mpi3mr_ioc *mrioc)
{
unsigned long flags;
struct workqueue_struct *wq;
spin_lock_irqsave(&mrioc->watchdog_lock, flags);
wq = mrioc->watchdog_work_q;
mrioc->watchdog_work_q = NULL;
spin_unlock_irqrestore(&mrioc->watchdog_lock, flags);
if (wq) {
if (!cancel_delayed_work_sync(&mrioc->watchdog_work))
flush_workqueue(wq);
destroy_workqueue(wq);
}
}
/**
* mpi3mr_setup_admin_qpair - Setup admin queue pair
* @mrioc: Adapter instance reference
*
* Allocate memory for admin queue pair if required and register
* the admin queue with the controller.
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_setup_admin_qpair(struct mpi3mr_ioc *mrioc)
{
int retval = 0;
u32 num_admin_entries = 0;
mrioc->admin_req_q_sz = MPI3MR_ADMIN_REQ_Q_SIZE;
mrioc->num_admin_req = mrioc->admin_req_q_sz /
MPI3MR_ADMIN_REQ_FRAME_SZ;
mrioc->admin_req_ci = mrioc->admin_req_pi = 0;
mrioc->admin_reply_q_sz = MPI3MR_ADMIN_REPLY_Q_SIZE;
mrioc->num_admin_replies = mrioc->admin_reply_q_sz /
MPI3MR_ADMIN_REPLY_FRAME_SZ;
mrioc->admin_reply_ci = 0;
mrioc->admin_reply_ephase = 1;
atomic_set(&mrioc->admin_reply_q_in_use, 0);
if (!mrioc->admin_req_base) {
mrioc->admin_req_base = dma_alloc_coherent(&mrioc->pdev->dev,
mrioc->admin_req_q_sz, &mrioc->admin_req_dma, GFP_KERNEL);
if (!mrioc->admin_req_base) {
retval = -1;
goto out_failed;
}
mrioc->admin_reply_base = dma_alloc_coherent(&mrioc->pdev->dev,
mrioc->admin_reply_q_sz, &mrioc->admin_reply_dma,
GFP_KERNEL);
if (!mrioc->admin_reply_base) {
retval = -1;
goto out_failed;
}
}
num_admin_entries = (mrioc->num_admin_replies << 16) |
(mrioc->num_admin_req);
writel(num_admin_entries, &mrioc->sysif_regs->admin_queue_num_entries);
mpi3mr_writeq(mrioc->admin_req_dma,
&mrioc->sysif_regs->admin_request_queue_address);
mpi3mr_writeq(mrioc->admin_reply_dma,
&mrioc->sysif_regs->admin_reply_queue_address);
writel(mrioc->admin_req_pi, &mrioc->sysif_regs->admin_request_queue_pi);
writel(mrioc->admin_reply_ci, &mrioc->sysif_regs->admin_reply_queue_ci);
return retval;
out_failed:
if (mrioc->admin_reply_base) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_reply_q_sz,
mrioc->admin_reply_base, mrioc->admin_reply_dma);
mrioc->admin_reply_base = NULL;
}
if (mrioc->admin_req_base) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_req_q_sz,
mrioc->admin_req_base, mrioc->admin_req_dma);
mrioc->admin_req_base = NULL;
}
return retval;
}
/**
* mpi3mr_issue_iocfacts - Send IOC Facts
* @mrioc: Adapter instance reference
* @facts_data: Cached IOC facts data
*
* Issue IOC Facts MPI request through admin queue and wait for
* the completion of it or time out.
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_issue_iocfacts(struct mpi3mr_ioc *mrioc,
struct mpi3_ioc_facts_data *facts_data)
{
struct mpi3_ioc_facts_request iocfacts_req;
void *data = NULL;
dma_addr_t data_dma;
u32 data_len = sizeof(*facts_data);
int retval = 0;
u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST;
data = dma_alloc_coherent(&mrioc->pdev->dev, data_len, &data_dma,
GFP_KERNEL);
if (!data) {
retval = -1;
goto out;
}
memset(&iocfacts_req, 0, sizeof(iocfacts_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "Issue IOCFacts: Init command is in use\n");
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
iocfacts_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
iocfacts_req.function = MPI3_FUNCTION_IOC_FACTS;
mpi3mr_add_sg_single(&iocfacts_req.sgl, sgl_flags, data_len,
data_dma);
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &iocfacts_req,
sizeof(iocfacts_req), 1);
if (retval) {
ioc_err(mrioc, "Issue IOCFacts: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "ioc_facts timed out\n");
mpi3mr_check_rh_fault_ioc(mrioc,
MPI3MR_RESET_FROM_IOCFACTS_TIMEOUT);
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"Issue IOCFacts: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
memcpy(facts_data, (u8 *)data, data_len);
mpi3mr_process_factsdata(mrioc, facts_data);
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
if (data)
dma_free_coherent(&mrioc->pdev->dev, data_len, data, data_dma);
return retval;
}
/**
* mpi3mr_check_reset_dma_mask - Process IOC facts data
* @mrioc: Adapter instance reference
*
* Check whether the new DMA mask requested through IOCFacts by
* firmware needs to be set, if so set it .
*
* Return: 0 on success, non-zero on failure.
*/
static inline int mpi3mr_check_reset_dma_mask(struct mpi3mr_ioc *mrioc)
{
struct pci_dev *pdev = mrioc->pdev;
int r;
u64 facts_dma_mask = DMA_BIT_MASK(mrioc->facts.dma_mask);
if (!mrioc->facts.dma_mask || (mrioc->dma_mask <= facts_dma_mask))
return 0;
ioc_info(mrioc, "Changing DMA mask from 0x%016llx to 0x%016llx\n",
mrioc->dma_mask, facts_dma_mask);
r = dma_set_mask_and_coherent(&pdev->dev, facts_dma_mask);
if (r) {
ioc_err(mrioc, "Setting DMA mask to 0x%016llx failed: %d\n",
facts_dma_mask, r);
return r;
}
mrioc->dma_mask = facts_dma_mask;
return r;
}
/**
* mpi3mr_process_factsdata - Process IOC facts data
* @mrioc: Adapter instance reference
* @facts_data: Cached IOC facts data
*
* Convert IOC facts data into cpu endianness and cache it in
* the driver .
*
* Return: Nothing.
*/
static void mpi3mr_process_factsdata(struct mpi3mr_ioc *mrioc,
struct mpi3_ioc_facts_data *facts_data)
{
u32 ioc_config, req_sz, facts_flags;
if ((le16_to_cpu(facts_data->ioc_facts_data_length)) !=
(sizeof(*facts_data) / 4)) {
ioc_warn(mrioc,
"IOCFactsdata length mismatch driver_sz(%zu) firmware_sz(%d)\n",
sizeof(*facts_data),
le16_to_cpu(facts_data->ioc_facts_data_length) * 4);
}
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
req_sz = 1 << ((ioc_config & MPI3_SYSIF_IOC_CONFIG_OPER_REQ_ENT_SZ) >>
MPI3_SYSIF_IOC_CONFIG_OPER_REQ_ENT_SZ_SHIFT);
if (le16_to_cpu(facts_data->ioc_request_frame_size) != (req_sz / 4)) {
ioc_err(mrioc,
"IOCFacts data reqFrameSize mismatch hw_size(%d) firmware_sz(%d)\n",
req_sz / 4, le16_to_cpu(facts_data->ioc_request_frame_size));
}
memset(&mrioc->facts, 0, sizeof(mrioc->facts));
facts_flags = le32_to_cpu(facts_data->flags);
mrioc->facts.op_req_sz = req_sz;
mrioc->op_reply_desc_sz = 1 << ((ioc_config &
MPI3_SYSIF_IOC_CONFIG_OPER_RPY_ENT_SZ) >>
MPI3_SYSIF_IOC_CONFIG_OPER_RPY_ENT_SZ_SHIFT);
mrioc->facts.ioc_num = facts_data->ioc_number;
mrioc->facts.who_init = facts_data->who_init;
mrioc->facts.max_msix_vectors = le16_to_cpu(facts_data->max_msix_vectors);
mrioc->facts.personality = (facts_flags &
MPI3_IOCFACTS_FLAGS_PERSONALITY_MASK);
mrioc->facts.dma_mask = (facts_flags &
MPI3_IOCFACTS_FLAGS_DMA_ADDRESS_WIDTH_MASK) >>
MPI3_IOCFACTS_FLAGS_DMA_ADDRESS_WIDTH_SHIFT;
mrioc->facts.protocol_flags = facts_data->protocol_flags;
mrioc->facts.mpi_version = le32_to_cpu(facts_data->mpi_version.word);
mrioc->facts.max_reqs = le16_to_cpu(facts_data->max_outstanding_requests);
mrioc->facts.product_id = le16_to_cpu(facts_data->product_id);
mrioc->facts.reply_sz = le16_to_cpu(facts_data->reply_frame_size) * 4;
mrioc->facts.exceptions = le16_to_cpu(facts_data->ioc_exceptions);
mrioc->facts.max_perids = le16_to_cpu(facts_data->max_persistent_id);
mrioc->facts.max_vds = le16_to_cpu(facts_data->max_vds);
mrioc->facts.max_hpds = le16_to_cpu(facts_data->max_host_pds);
mrioc->facts.max_advhpds = le16_to_cpu(facts_data->max_adv_host_pds);
mrioc->facts.max_raid_pds = le16_to_cpu(facts_data->max_raid_pds);
mrioc->facts.max_nvme = le16_to_cpu(facts_data->max_nvme);
mrioc->facts.max_pcie_switches =
le16_to_cpu(facts_data->max_pcie_switches);
mrioc->facts.max_sasexpanders =
le16_to_cpu(facts_data->max_sas_expanders);
mrioc->facts.max_data_length = le16_to_cpu(facts_data->max_data_length);
mrioc->facts.max_sasinitiators =
le16_to_cpu(facts_data->max_sas_initiators);
mrioc->facts.max_enclosures = le16_to_cpu(facts_data->max_enclosures);
mrioc->facts.min_devhandle = le16_to_cpu(facts_data->min_dev_handle);
mrioc->facts.max_devhandle = le16_to_cpu(facts_data->max_dev_handle);
mrioc->facts.max_op_req_q =
le16_to_cpu(facts_data->max_operational_request_queues);
mrioc->facts.max_op_reply_q =
le16_to_cpu(facts_data->max_operational_reply_queues);
mrioc->facts.ioc_capabilities =
le32_to_cpu(facts_data->ioc_capabilities);
mrioc->facts.fw_ver.build_num =
le16_to_cpu(facts_data->fw_version.build_num);
mrioc->facts.fw_ver.cust_id =
le16_to_cpu(facts_data->fw_version.customer_id);
mrioc->facts.fw_ver.ph_minor = facts_data->fw_version.phase_minor;
mrioc->facts.fw_ver.ph_major = facts_data->fw_version.phase_major;
mrioc->facts.fw_ver.gen_minor = facts_data->fw_version.gen_minor;
mrioc->facts.fw_ver.gen_major = facts_data->fw_version.gen_major;
mrioc->msix_count = min_t(int, mrioc->msix_count,
mrioc->facts.max_msix_vectors);
mrioc->facts.sge_mod_mask = facts_data->sge_modifier_mask;
mrioc->facts.sge_mod_value = facts_data->sge_modifier_value;
mrioc->facts.sge_mod_shift = facts_data->sge_modifier_shift;
mrioc->facts.shutdown_timeout =
le16_to_cpu(facts_data->shutdown_timeout);
mrioc->facts.diag_trace_sz =
le32_to_cpu(facts_data->diag_trace_size);
mrioc->facts.diag_fw_sz =
le32_to_cpu(facts_data->diag_fw_size);
mrioc->facts.diag_drvr_sz = le32_to_cpu(facts_data->diag_driver_size);
mrioc->facts.max_dev_per_tg =
facts_data->max_devices_per_throttle_group;
mrioc->facts.io_throttle_data_length =
le16_to_cpu(facts_data->io_throttle_data_length);
mrioc->facts.max_io_throttle_group =
le16_to_cpu(facts_data->max_io_throttle_group);
mrioc->facts.io_throttle_low = le16_to_cpu(facts_data->io_throttle_low);
mrioc->facts.io_throttle_high =
le16_to_cpu(facts_data->io_throttle_high);
if (mrioc->facts.max_data_length ==
MPI3_IOCFACTS_MAX_DATA_LENGTH_NOT_REPORTED)
mrioc->facts.max_data_length = MPI3MR_DEFAULT_MAX_IO_SIZE;
else
mrioc->facts.max_data_length *= MPI3MR_PAGE_SIZE_4K;
/* Store in 512b block count */
if (mrioc->facts.io_throttle_data_length)
mrioc->io_throttle_data_length =
(mrioc->facts.io_throttle_data_length * 2 * 4);
else
/* set the length to 1MB + 1K to disable throttle */
mrioc->io_throttle_data_length = (mrioc->facts.max_data_length / 512) + 2;
mrioc->io_throttle_high = (mrioc->facts.io_throttle_high * 2 * 1024);
mrioc->io_throttle_low = (mrioc->facts.io_throttle_low * 2 * 1024);
ioc_info(mrioc, "ioc_num(%d), maxopQ(%d), maxopRepQ(%d), maxdh(%d),",
mrioc->facts.ioc_num, mrioc->facts.max_op_req_q,
mrioc->facts.max_op_reply_q, mrioc->facts.max_devhandle);
ioc_info(mrioc,
"maxreqs(%d), mindh(%d) maxvectors(%d) maxperids(%d)\n",
mrioc->facts.max_reqs, mrioc->facts.min_devhandle,
mrioc->facts.max_msix_vectors, mrioc->facts.max_perids);
ioc_info(mrioc, "SGEModMask 0x%x SGEModVal 0x%x SGEModShift 0x%x ",
mrioc->facts.sge_mod_mask, mrioc->facts.sge_mod_value,
mrioc->facts.sge_mod_shift);
ioc_info(mrioc, "DMA mask %d InitialPE status 0x%x max_data_len (%d)\n",
mrioc->facts.dma_mask, (facts_flags &
MPI3_IOCFACTS_FLAGS_INITIAL_PORT_ENABLE_MASK), mrioc->facts.max_data_length);
ioc_info(mrioc,
"max_dev_per_throttle_group(%d), max_throttle_groups(%d)\n",
mrioc->facts.max_dev_per_tg, mrioc->facts.max_io_throttle_group);
ioc_info(mrioc,
"io_throttle_data_len(%dKiB), io_throttle_high(%dMiB), io_throttle_low(%dMiB)\n",
mrioc->facts.io_throttle_data_length * 4,
mrioc->facts.io_throttle_high, mrioc->facts.io_throttle_low);
}
/**
* mpi3mr_alloc_reply_sense_bufs - Send IOC Init
* @mrioc: Adapter instance reference
*
* Allocate and initialize the reply free buffers, sense
* buffers, reply free queue and sense buffer queue.
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_alloc_reply_sense_bufs(struct mpi3mr_ioc *mrioc)
{
int retval = 0;
u32 sz, i;
if (mrioc->init_cmds.reply)
return retval;
mrioc->init_cmds.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL);
if (!mrioc->init_cmds.reply)
goto out_failed;
mrioc->bsg_cmds.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL);
if (!mrioc->bsg_cmds.reply)
goto out_failed;
mrioc->transport_cmds.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL);
if (!mrioc->transport_cmds.reply)
goto out_failed;
for (i = 0; i < MPI3MR_NUM_DEVRMCMD; i++) {
mrioc->dev_rmhs_cmds[i].reply = kzalloc(mrioc->reply_sz,
GFP_KERNEL);
if (!mrioc->dev_rmhs_cmds[i].reply)
goto out_failed;
}
for (i = 0; i < MPI3MR_NUM_EVTACKCMD; i++) {
mrioc->evtack_cmds[i].reply = kzalloc(mrioc->reply_sz,
GFP_KERNEL);
if (!mrioc->evtack_cmds[i].reply)
goto out_failed;
}
mrioc->host_tm_cmds.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL);
if (!mrioc->host_tm_cmds.reply)
goto out_failed;
mrioc->pel_cmds.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL);
if (!mrioc->pel_cmds.reply)
goto out_failed;
mrioc->pel_abort_cmd.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL);
if (!mrioc->pel_abort_cmd.reply)
goto out_failed;
mrioc->dev_handle_bitmap_bits = mrioc->facts.max_devhandle;
mrioc->removepend_bitmap = bitmap_zalloc(mrioc->dev_handle_bitmap_bits,
GFP_KERNEL);
if (!mrioc->removepend_bitmap)
goto out_failed;
mrioc->devrem_bitmap = bitmap_zalloc(MPI3MR_NUM_DEVRMCMD, GFP_KERNEL);
if (!mrioc->devrem_bitmap)
goto out_failed;
mrioc->evtack_cmds_bitmap = bitmap_zalloc(MPI3MR_NUM_EVTACKCMD,
GFP_KERNEL);
if (!mrioc->evtack_cmds_bitmap)
goto out_failed;
mrioc->num_reply_bufs = mrioc->facts.max_reqs + MPI3MR_NUM_EVT_REPLIES;
mrioc->reply_free_qsz = mrioc->num_reply_bufs + 1;
mrioc->num_sense_bufs = mrioc->facts.max_reqs / MPI3MR_SENSEBUF_FACTOR;
mrioc->sense_buf_q_sz = mrioc->num_sense_bufs + 1;
/* reply buffer pool, 16 byte align */
sz = mrioc->num_reply_bufs * mrioc->reply_sz;
mrioc->reply_buf_pool = dma_pool_create("reply_buf pool",
&mrioc->pdev->dev, sz, 16, 0);
if (!mrioc->reply_buf_pool) {
ioc_err(mrioc, "reply buf pool: dma_pool_create failed\n");
goto out_failed;
}
mrioc->reply_buf = dma_pool_zalloc(mrioc->reply_buf_pool, GFP_KERNEL,
&mrioc->reply_buf_dma);
if (!mrioc->reply_buf)
goto out_failed;
mrioc->reply_buf_dma_max_address = mrioc->reply_buf_dma + sz;
/* reply free queue, 8 byte align */
sz = mrioc->reply_free_qsz * 8;
mrioc->reply_free_q_pool = dma_pool_create("reply_free_q pool",
&mrioc->pdev->dev, sz, 8, 0);
if (!mrioc->reply_free_q_pool) {
ioc_err(mrioc, "reply_free_q pool: dma_pool_create failed\n");
goto out_failed;
}
mrioc->reply_free_q = dma_pool_zalloc(mrioc->reply_free_q_pool,
GFP_KERNEL, &mrioc->reply_free_q_dma);
if (!mrioc->reply_free_q)
goto out_failed;
/* sense buffer pool, 4 byte align */
sz = mrioc->num_sense_bufs * MPI3MR_SENSE_BUF_SZ;
mrioc->sense_buf_pool = dma_pool_create("sense_buf pool",
&mrioc->pdev->dev, sz, 4, 0);
if (!mrioc->sense_buf_pool) {
ioc_err(mrioc, "sense_buf pool: dma_pool_create failed\n");
goto out_failed;
}
mrioc->sense_buf = dma_pool_zalloc(mrioc->sense_buf_pool, GFP_KERNEL,
&mrioc->sense_buf_dma);
if (!mrioc->sense_buf)
goto out_failed;
/* sense buffer queue, 8 byte align */
sz = mrioc->sense_buf_q_sz * 8;
mrioc->sense_buf_q_pool = dma_pool_create("sense_buf_q pool",
&mrioc->pdev->dev, sz, 8, 0);
if (!mrioc->sense_buf_q_pool) {
ioc_err(mrioc, "sense_buf_q pool: dma_pool_create failed\n");
goto out_failed;
}
mrioc->sense_buf_q = dma_pool_zalloc(mrioc->sense_buf_q_pool,
GFP_KERNEL, &mrioc->sense_buf_q_dma);
if (!mrioc->sense_buf_q)
goto out_failed;
return retval;
out_failed:
retval = -1;
return retval;
}
/**
* mpimr_initialize_reply_sbuf_queues - initialize reply sense
* buffers
* @mrioc: Adapter instance reference
*
* Helper function to initialize reply and sense buffers along
* with some debug prints.
*
* Return: None.
*/
static void mpimr_initialize_reply_sbuf_queues(struct mpi3mr_ioc *mrioc)
{
u32 sz, i;
dma_addr_t phy_addr;
sz = mrioc->num_reply_bufs * mrioc->reply_sz;
ioc_info(mrioc,
"reply buf pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), reply_dma(0x%llx)\n",
mrioc->reply_buf, mrioc->num_reply_bufs, mrioc->reply_sz,
(sz / 1024), (unsigned long long)mrioc->reply_buf_dma);
sz = mrioc->reply_free_qsz * 8;
ioc_info(mrioc,
"reply_free_q pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), reply_dma(0x%llx)\n",
mrioc->reply_free_q, mrioc->reply_free_qsz, 8, (sz / 1024),
(unsigned long long)mrioc->reply_free_q_dma);
sz = mrioc->num_sense_bufs * MPI3MR_SENSE_BUF_SZ;
ioc_info(mrioc,
"sense_buf pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), sense_dma(0x%llx)\n",
mrioc->sense_buf, mrioc->num_sense_bufs, MPI3MR_SENSE_BUF_SZ,
(sz / 1024), (unsigned long long)mrioc->sense_buf_dma);
sz = mrioc->sense_buf_q_sz * 8;
ioc_info(mrioc,
"sense_buf_q pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), sense_dma(0x%llx)\n",
mrioc->sense_buf_q, mrioc->sense_buf_q_sz, 8, (sz / 1024),
(unsigned long long)mrioc->sense_buf_q_dma);
/* initialize Reply buffer Queue */
for (i = 0, phy_addr = mrioc->reply_buf_dma;
i < mrioc->num_reply_bufs; i++, phy_addr += mrioc->reply_sz)
mrioc->reply_free_q[i] = cpu_to_le64(phy_addr);
mrioc->reply_free_q[i] = cpu_to_le64(0);
/* initialize Sense Buffer Queue */
for (i = 0, phy_addr = mrioc->sense_buf_dma;
i < mrioc->num_sense_bufs; i++, phy_addr += MPI3MR_SENSE_BUF_SZ)
mrioc->sense_buf_q[i] = cpu_to_le64(phy_addr);
mrioc->sense_buf_q[i] = cpu_to_le64(0);
}
/**
* mpi3mr_issue_iocinit - Send IOC Init
* @mrioc: Adapter instance reference
*
* Issue IOC Init MPI request through admin queue and wait for
* the completion of it or time out.
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_issue_iocinit(struct mpi3mr_ioc *mrioc)
{
struct mpi3_ioc_init_request iocinit_req;
struct mpi3_driver_info_layout *drv_info;
dma_addr_t data_dma;
u32 data_len = sizeof(*drv_info);
int retval = 0;
ktime_t current_time;
drv_info = dma_alloc_coherent(&mrioc->pdev->dev, data_len, &data_dma,
GFP_KERNEL);
if (!drv_info) {
retval = -1;
goto out;
}
mpimr_initialize_reply_sbuf_queues(mrioc);
drv_info->information_length = cpu_to_le32(data_len);
strscpy(drv_info->driver_signature, "Broadcom", sizeof(drv_info->driver_signature));
strscpy(drv_info->os_name, utsname()->sysname, sizeof(drv_info->os_name));
strscpy(drv_info->os_version, utsname()->release, sizeof(drv_info->os_version));
strscpy(drv_info->driver_name, MPI3MR_DRIVER_NAME, sizeof(drv_info->driver_name));
strscpy(drv_info->driver_version, MPI3MR_DRIVER_VERSION, sizeof(drv_info->driver_version));
strscpy(drv_info->driver_release_date, MPI3MR_DRIVER_RELDATE,
sizeof(drv_info->driver_release_date));
drv_info->driver_capabilities = 0;
memcpy((u8 *)&mrioc->driver_info, (u8 *)drv_info,
sizeof(mrioc->driver_info));
memset(&iocinit_req, 0, sizeof(iocinit_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "Issue IOCInit: Init command is in use\n");
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
iocinit_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
iocinit_req.function = MPI3_FUNCTION_IOC_INIT;
iocinit_req.mpi_version.mpi3_version.dev = MPI3_VERSION_DEV;
iocinit_req.mpi_version.mpi3_version.unit = MPI3_VERSION_UNIT;
iocinit_req.mpi_version.mpi3_version.major = MPI3_VERSION_MAJOR;
iocinit_req.mpi_version.mpi3_version.minor = MPI3_VERSION_MINOR;
iocinit_req.who_init = MPI3_WHOINIT_HOST_DRIVER;
iocinit_req.reply_free_queue_depth = cpu_to_le16(mrioc->reply_free_qsz);
iocinit_req.reply_free_queue_address =
cpu_to_le64(mrioc->reply_free_q_dma);
iocinit_req.sense_buffer_length = cpu_to_le16(MPI3MR_SENSE_BUF_SZ);
iocinit_req.sense_buffer_free_queue_depth =
cpu_to_le16(mrioc->sense_buf_q_sz);
iocinit_req.sense_buffer_free_queue_address =
cpu_to_le64(mrioc->sense_buf_q_dma);
iocinit_req.driver_information_address = cpu_to_le64(data_dma);
current_time = ktime_get_real();
iocinit_req.time_stamp = cpu_to_le64(ktime_to_ms(current_time));
iocinit_req.msg_flags |=
MPI3_IOCINIT_MSGFLAGS_SCSIIOSTATUSREPLY_SUPPORTED;
iocinit_req.msg_flags |=
MPI3_IOCINIT_MSGFLAGS_WRITESAMEDIVERT_SUPPORTED;
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &iocinit_req,
sizeof(iocinit_req), 1);
if (retval) {
ioc_err(mrioc, "Issue IOCInit: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
mpi3mr_check_rh_fault_ioc(mrioc,
MPI3MR_RESET_FROM_IOCINIT_TIMEOUT);
ioc_err(mrioc, "ioc_init timed out\n");
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"Issue IOCInit: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
mrioc->reply_free_queue_host_index = mrioc->num_reply_bufs;
writel(mrioc->reply_free_queue_host_index,
&mrioc->sysif_regs->reply_free_host_index);
mrioc->sbq_host_index = mrioc->num_sense_bufs;
writel(mrioc->sbq_host_index,
&mrioc->sysif_regs->sense_buffer_free_host_index);
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
if (drv_info)
dma_free_coherent(&mrioc->pdev->dev, data_len, drv_info,
data_dma);
return retval;
}
/**
* mpi3mr_unmask_events - Unmask events in event mask bitmap
* @mrioc: Adapter instance reference
* @event: MPI event ID
*
* Un mask the specific event by resetting the event_mask
* bitmap.
*
* Return: 0 on success, non-zero on failures.
*/
static void mpi3mr_unmask_events(struct mpi3mr_ioc *mrioc, u16 event)
{
u32 desired_event;
u8 word;
if (event >= 128)
return;
desired_event = (1 << (event % 32));
word = event / 32;
mrioc->event_masks[word] &= ~desired_event;
}
/**
* mpi3mr_issue_event_notification - Send event notification
* @mrioc: Adapter instance reference
*
* Issue event notification MPI request through admin queue and
* wait for the completion of it or time out.
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_issue_event_notification(struct mpi3mr_ioc *mrioc)
{
struct mpi3_event_notification_request evtnotify_req;
int retval = 0;
u8 i;
memset(&evtnotify_req, 0, sizeof(evtnotify_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "Issue EvtNotify: Init command is in use\n");
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
evtnotify_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
evtnotify_req.function = MPI3_FUNCTION_EVENT_NOTIFICATION;
for (i = 0; i < MPI3_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
evtnotify_req.event_masks[i] =
cpu_to_le32(mrioc->event_masks[i]);
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &evtnotify_req,
sizeof(evtnotify_req), 1);
if (retval) {
ioc_err(mrioc, "Issue EvtNotify: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "event notification timed out\n");
mpi3mr_check_rh_fault_ioc(mrioc,
MPI3MR_RESET_FROM_EVTNOTIFY_TIMEOUT);
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"Issue EvtNotify: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
return retval;
}
/**
* mpi3mr_process_event_ack - Process event acknowledgment
* @mrioc: Adapter instance reference
* @event: MPI3 event ID
* @event_ctx: event context
*
* Send event acknowledgment through admin queue and wait for
* it to complete.
*
* Return: 0 on success, non-zero on failures.
*/
int mpi3mr_process_event_ack(struct mpi3mr_ioc *mrioc, u8 event,
u32 event_ctx)
{
struct mpi3_event_ack_request evtack_req;
int retval = 0;
memset(&evtack_req, 0, sizeof(evtack_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "Send EvtAck: Init command is in use\n");
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
evtack_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
evtack_req.function = MPI3_FUNCTION_EVENT_ACK;
evtack_req.event = event;
evtack_req.event_context = cpu_to_le32(event_ctx);
init_completion(&mrioc->init_cmds.done);
retval = mpi3mr_admin_request_post(mrioc, &evtack_req,
sizeof(evtack_req), 1);
if (retval) {
ioc_err(mrioc, "Send EvtAck: Admin Post failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->init_cmds.done,
(MPI3MR_INTADMCMD_TIMEOUT * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "Issue EvtNotify: command timed out\n");
if (!(mrioc->init_cmds.state & MPI3MR_CMD_RESET))
mpi3mr_check_rh_fault_ioc(mrioc,
MPI3MR_RESET_FROM_EVTACK_TIMEOUT);
retval = -1;
goto out_unlock;
}
if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
!= MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc,
"Send EvtAck: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
(mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
mrioc->init_cmds.ioc_loginfo);
retval = -1;
goto out_unlock;
}
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
return retval;
}
/**
* mpi3mr_alloc_chain_bufs - Allocate chain buffers
* @mrioc: Adapter instance reference
*
* Allocate chain buffers and set a bitmap to indicate free
* chain buffers. Chain buffers are used to pass the SGE
* information along with MPI3 SCSI IO requests for host I/O.
*
* Return: 0 on success, non-zero on failure
*/
static int mpi3mr_alloc_chain_bufs(struct mpi3mr_ioc *mrioc)
{
int retval = 0;
u32 sz, i;
u16 num_chains;
if (mrioc->chain_sgl_list)
return retval;
num_chains = mrioc->max_host_ios / MPI3MR_CHAINBUF_FACTOR;
if (prot_mask & (SHOST_DIX_TYPE0_PROTECTION
| SHOST_DIX_TYPE1_PROTECTION
| SHOST_DIX_TYPE2_PROTECTION
| SHOST_DIX_TYPE3_PROTECTION))
num_chains += (num_chains / MPI3MR_CHAINBUFDIX_FACTOR);
mrioc->chain_buf_count = num_chains;
sz = sizeof(struct chain_element) * num_chains;
mrioc->chain_sgl_list = kzalloc(sz, GFP_KERNEL);
if (!mrioc->chain_sgl_list)
goto out_failed;
if (mrioc->max_sgl_entries > (mrioc->facts.max_data_length /
MPI3MR_PAGE_SIZE_4K))
mrioc->max_sgl_entries = mrioc->facts.max_data_length /
MPI3MR_PAGE_SIZE_4K;
sz = mrioc->max_sgl_entries * sizeof(struct mpi3_sge_common);
ioc_info(mrioc, "number of sgl entries=%d chain buffer size=%dKB\n",
mrioc->max_sgl_entries, sz/1024);
mrioc->chain_buf_pool = dma_pool_create("chain_buf pool",
&mrioc->pdev->dev, sz, 16, 0);
if (!mrioc->chain_buf_pool) {
ioc_err(mrioc, "chain buf pool: dma_pool_create failed\n");
goto out_failed;
}
for (i = 0; i < num_chains; i++) {
mrioc->chain_sgl_list[i].addr =
dma_pool_zalloc(mrioc->chain_buf_pool, GFP_KERNEL,
&mrioc->chain_sgl_list[i].dma_addr);
if (!mrioc->chain_sgl_list[i].addr)
goto out_failed;
}
mrioc->chain_bitmap = bitmap_zalloc(num_chains, GFP_KERNEL);
if (!mrioc->chain_bitmap)
goto out_failed;
return retval;
out_failed:
retval = -1;
return retval;
}
/**
* mpi3mr_port_enable_complete - Mark port enable complete
* @mrioc: Adapter instance reference
* @drv_cmd: Internal command tracker
*
* Call back for asynchronous port enable request sets the
* driver command to indicate port enable request is complete.
*
* Return: Nothing
*/
static void mpi3mr_port_enable_complete(struct mpi3mr_ioc *mrioc,
struct mpi3mr_drv_cmd *drv_cmd)
{
drv_cmd->callback = NULL;
mrioc->scan_started = 0;
if (drv_cmd->state & MPI3MR_CMD_RESET)
mrioc->scan_failed = MPI3_IOCSTATUS_INTERNAL_ERROR;
else
mrioc->scan_failed = drv_cmd->ioc_status;
drv_cmd->state = MPI3MR_CMD_NOTUSED;
}
/**
* mpi3mr_issue_port_enable - Issue Port Enable
* @mrioc: Adapter instance reference
* @async: Flag to wait for completion or not
*
* Issue Port Enable MPI request through admin queue and if the
* async flag is not set wait for the completion of the port
* enable or time out.
*
* Return: 0 on success, non-zero on failures.
*/
int mpi3mr_issue_port_enable(struct mpi3mr_ioc *mrioc, u8 async)
{
struct mpi3_port_enable_request pe_req;
int retval = 0;
u32 pe_timeout = MPI3MR_PORTENABLE_TIMEOUT;
memset(&pe_req, 0, sizeof(pe_req));
mutex_lock(&mrioc->init_cmds.mutex);
if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "Issue PortEnable: Init command is in use\n");
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
if (async) {
mrioc->init_cmds.is_waiting = 0;
mrioc->init_cmds.callback = mpi3mr_port_enable_complete;
} else {
mrioc->init_cmds.is_waiting = 1;
mrioc->init_cmds.callback = NULL;
init_completion(&mrioc->init_cmds.done);
}
pe_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
pe_req.function = MPI3_FUNCTION_PORT_ENABLE;
retval = mpi3mr_admin_request_post(mrioc, &pe_req, sizeof(pe_req), 1);
if (retval) {
ioc_err(mrioc, "Issue PortEnable: Admin Post failed\n");
goto out_unlock;
}
if (async) {
mutex_unlock(&mrioc->init_cmds.mutex);
goto out;
}
wait_for_completion_timeout(&mrioc->init_cmds.done, (pe_timeout * HZ));
if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
ioc_err(mrioc, "port enable timed out\n");
retval = -1;
mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_PE_TIMEOUT);
goto out_unlock;
}
mpi3mr_port_enable_complete(mrioc, &mrioc->init_cmds);
out_unlock:
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->init_cmds.mutex);
out:
return retval;
}
/* Protocol type to name mapper structure */
static const struct {
u8 protocol;
char *name;
} mpi3mr_protocols[] = {
{ MPI3_IOCFACTS_PROTOCOL_SCSI_INITIATOR, "Initiator" },
{ MPI3_IOCFACTS_PROTOCOL_SCSI_TARGET, "Target" },
{ MPI3_IOCFACTS_PROTOCOL_NVME, "NVMe attachment" },
};
/* Capability to name mapper structure*/
static const struct {
u32 capability;
char *name;
} mpi3mr_capabilities[] = {
{ MPI3_IOCFACTS_CAPABILITY_RAID_SUPPORTED, "RAID" },
{ MPI3_IOCFACTS_CAPABILITY_MULTIPATH_SUPPORTED, "MultiPath" },
};
/**
* mpi3mr_repost_diag_bufs - repost host diag buffers
* @mrioc: Adapter instance reference
*
* repost firmware and trace diag buffers based on global
* trigger flag from driver page 2
*
* Return: 0 on success, non-zero on failures.
*/
static int mpi3mr_repost_diag_bufs(struct mpi3mr_ioc *mrioc)
{
u64 global_trigger;
union mpi3mr_trigger_data prev_trigger_data;
struct diag_buffer_desc *trace_hdb = NULL;
struct diag_buffer_desc *fw_hdb = NULL;
int retval = 0;
bool trace_repost_needed = false;
bool fw_repost_needed = false;
u8 prev_trigger_type;
retval = mpi3mr_refresh_trigger(mrioc, MPI3_CONFIG_ACTION_READ_CURRENT);
if (retval)
return -1;
trace_hdb = mpi3mr_diag_buffer_for_type(mrioc,
MPI3_DIAG_BUFFER_TYPE_TRACE);
if (trace_hdb &&
trace_hdb->status != MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED &&
trace_hdb->trigger_type != MPI3MR_HDB_TRIGGER_TYPE_GLOBAL &&
trace_hdb->trigger_type != MPI3MR_HDB_TRIGGER_TYPE_ELEMENT)
trace_repost_needed = true;
fw_hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW);
if (fw_hdb && fw_hdb->status != MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED &&
fw_hdb->trigger_type != MPI3MR_HDB_TRIGGER_TYPE_GLOBAL &&
fw_hdb->trigger_type != MPI3MR_HDB_TRIGGER_TYPE_ELEMENT)
fw_repost_needed = true;
if (trace_repost_needed || fw_repost_needed) {
global_trigger = le64_to_cpu(mrioc->driver_pg2->global_trigger);
if (global_trigger &
MPI3_DRIVER2_GLOBALTRIGGER_POST_DIAG_TRACE_DISABLED)
trace_repost_needed = false;
if (global_trigger &
MPI3_DRIVER2_GLOBALTRIGGER_POST_DIAG_FW_DISABLED)
fw_repost_needed = false;
}
if (trace_repost_needed) {
prev_trigger_type = trace_hdb->trigger_type;
memcpy(&prev_trigger_data, &trace_hdb->trigger_data,
sizeof(trace_hdb->trigger_data));
retval = mpi3mr_issue_diag_buf_post(mrioc, trace_hdb);
if (!retval) {
dprint_init(mrioc, "trace diag buffer reposted");
mpi3mr_set_trigger_data_in_hdb(trace_hdb,
MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
} else {
trace_hdb->trigger_type = prev_trigger_type;
memcpy(&trace_hdb->trigger_data, &prev_trigger_data,
sizeof(prev_trigger_data));
ioc_err(mrioc, "trace diag buffer repost failed");
return -1;
}
}
if (fw_repost_needed) {
prev_trigger_type = fw_hdb->trigger_type;
memcpy(&prev_trigger_data, &fw_hdb->trigger_data,
sizeof(fw_hdb->trigger_data));
retval = mpi3mr_issue_diag_buf_post(mrioc, fw_hdb);
if (!retval) {
dprint_init(mrioc, "firmware diag buffer reposted");
mpi3mr_set_trigger_data_in_hdb(fw_hdb,
MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
} else {
fw_hdb->trigger_type = prev_trigger_type;
memcpy(&fw_hdb->trigger_data, &prev_trigger_data,
sizeof(prev_trigger_data));
ioc_err(mrioc, "firmware diag buffer repost failed");
return -1;
}
}
return retval;
}
/**
* mpi3mr_read_tsu_interval - Update time stamp interval
* @mrioc: Adapter instance reference
*
* Update time stamp interval if its defined in driver page 1,
* otherwise use default value.
*
* Return: Nothing
*/
static void
mpi3mr_read_tsu_interval(struct mpi3mr_ioc *mrioc)
{
struct mpi3_driver_page1 driver_pg1;
u16 pg_sz = sizeof(driver_pg1);
int retval = 0;
mrioc->ts_update_interval = MPI3MR_TSUPDATE_INTERVAL;
retval = mpi3mr_cfg_get_driver_pg1(mrioc, &driver_pg1, pg_sz);
if (!retval && driver_pg1.time_stamp_update)
mrioc->ts_update_interval = (driver_pg1.time_stamp_update * 60);
}
/**
* mpi3mr_print_ioc_info - Display controller information
* @mrioc: Adapter instance reference
*
* Display controller personality, capability, supported
* protocols etc.
*
* Return: Nothing
*/
static void
mpi3mr_print_ioc_info(struct mpi3mr_ioc *mrioc)
{
int i = 0, bytes_written = 0;
const char *personality;
char protocol[50] = {0};
char capabilities[100] = {0};
struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
switch (mrioc->facts.personality) {
case MPI3_IOCFACTS_FLAGS_PERSONALITY_EHBA:
personality = "Enhanced HBA";
break;
case MPI3_IOCFACTS_FLAGS_PERSONALITY_RAID_DDR:
personality = "RAID";
break;
default:
personality = "Unknown";
break;
}
ioc_info(mrioc, "Running in %s Personality", personality);
ioc_info(mrioc, "FW version(%d.%d.%d.%d.%d.%d)\n",
fwver->gen_major, fwver->gen_minor, fwver->ph_major,
fwver->ph_minor, fwver->cust_id, fwver->build_num);
for (i = 0; i < ARRAY_SIZE(mpi3mr_protocols); i++) {
if (mrioc->facts.protocol_flags &
mpi3mr_protocols[i].protocol) {
bytes_written += scnprintf(protocol + bytes_written,
sizeof(protocol) - bytes_written, "%s%s",
bytes_written ? "," : "",
mpi3mr_protocols[i].name);
}
}
bytes_written = 0;
for (i = 0; i < ARRAY_SIZE(mpi3mr_capabilities); i++) {
if (mrioc->facts.protocol_flags &
mpi3mr_capabilities[i].capability) {
bytes_written += scnprintf(capabilities + bytes_written,
sizeof(capabilities) - bytes_written, "%s%s",
bytes_written ? "," : "",
mpi3mr_capabilities[i].name);
}
}
ioc_info(mrioc, "Protocol=(%s), Capabilities=(%s)\n",
protocol, capabilities);
}
/**
* mpi3mr_cleanup_resources - Free PCI resources
* @mrioc: Adapter instance reference
*
* Unmap PCI device memory and disable PCI device.
*
* Return: 0 on success and non-zero on failure.
*/
void mpi3mr_cleanup_resources(struct mpi3mr_ioc *mrioc)
{
struct pci_dev *pdev = mrioc->pdev;
mpi3mr_cleanup_isr(mrioc);
if (mrioc->sysif_regs) {
iounmap((void __iomem *)mrioc->sysif_regs);
mrioc->sysif_regs = NULL;
}
if (pci_is_enabled(pdev)) {
if (mrioc->bars)
pci_release_selected_regions(pdev, mrioc->bars);
pci_disable_device(pdev);
}
}
/**
* mpi3mr_setup_resources - Enable PCI resources
* @mrioc: Adapter instance reference
*
* Enable PCI device memory, MSI-x registers and set DMA mask.
*
* Return: 0 on success and non-zero on failure.
*/
int mpi3mr_setup_resources(struct mpi3mr_ioc *mrioc)
{
struct pci_dev *pdev = mrioc->pdev;
u32 memap_sz = 0;
int i, retval = 0, capb = 0;
u16 message_control;
u64 dma_mask = mrioc->dma_mask ? mrioc->dma_mask :
((sizeof(dma_addr_t) > 4) ? DMA_BIT_MASK(64) : DMA_BIT_MASK(32));
if (pci_enable_device_mem(pdev)) {
ioc_err(mrioc, "pci_enable_device_mem: failed\n");
retval = -ENODEV;
goto out_failed;
}
capb = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
if (!capb) {
ioc_err(mrioc, "Unable to find MSI-X Capabilities\n");
retval = -ENODEV;
goto out_failed;
}
mrioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
if (pci_request_selected_regions(pdev, mrioc->bars,
mrioc->driver_name)) {
ioc_err(mrioc, "pci_request_selected_regions: failed\n");
retval = -ENODEV;
goto out_failed;
}
for (i = 0; (i < DEVICE_COUNT_RESOURCE); i++) {
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
mrioc->sysif_regs_phys = pci_resource_start(pdev, i);
memap_sz = pci_resource_len(pdev, i);
mrioc->sysif_regs =
ioremap(mrioc->sysif_regs_phys, memap_sz);
break;
}
}
pci_set_master(pdev);
retval = dma_set_mask_and_coherent(&pdev->dev, dma_mask);
if (retval) {
if (dma_mask != DMA_BIT_MASK(32)) {
ioc_warn(mrioc, "Setting 64 bit DMA mask failed\n");
dma_mask = DMA_BIT_MASK(32);
retval = dma_set_mask_and_coherent(&pdev->dev,
dma_mask);
}
if (retval) {
mrioc->dma_mask = 0;
ioc_err(mrioc, "Setting 32 bit DMA mask also failed\n");
goto out_failed;
}
}
mrioc->dma_mask = dma_mask;
if (!mrioc->sysif_regs) {
ioc_err(mrioc,
"Unable to map adapter memory or resource not found\n");
retval = -EINVAL;
goto out_failed;
}
pci_read_config_word(pdev, capb + 2, &message_control);
mrioc->msix_count = (message_control & 0x3FF) + 1;
pci_save_state(pdev);
pci_set_drvdata(pdev, mrioc->shost);
mpi3mr_ioc_disable_intr(mrioc);
ioc_info(mrioc, "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
(unsigned long long)mrioc->sysif_regs_phys,
mrioc->sysif_regs, memap_sz);
ioc_info(mrioc, "Number of MSI-X vectors found in capabilities: (%d)\n",
mrioc->msix_count);
if (!reset_devices && poll_queues > 0)
mrioc->requested_poll_qcount = min_t(int, poll_queues,
mrioc->msix_count - 2);
return retval;
out_failed:
mpi3mr_cleanup_resources(mrioc);
return retval;
}
/**
* mpi3mr_enable_events - Enable required events
* @mrioc: Adapter instance reference
*
* This routine unmasks the events required by the driver by
* sennding appropriate event mask bitmapt through an event
* notification request.
*
* Return: 0 on success and non-zero on failure.
*/
static int mpi3mr_enable_events(struct mpi3mr_ioc *mrioc)
{
int retval = 0;
u32 i;
for (i = 0; i < MPI3_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
mrioc->event_masks[i] = -1;
mpi3mr_unmask_events(mrioc, MPI3_EVENT_DEVICE_ADDED);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_DEVICE_INFO_CHANGED);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_DEVICE_STATUS_CHANGE);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_ENCL_DEVICE_STATUS_CHANGE);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_ENCL_DEVICE_ADDED);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_SAS_DISCOVERY);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_SAS_BROADCAST_PRIMITIVE);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_PCIE_ENUMERATION);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_PREPARE_FOR_RESET);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_CABLE_MGMT);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_ENERGY_PACK_CHANGE);
mpi3mr_unmask_events(mrioc, MPI3_EVENT_DIAGNOSTIC_BUFFER_STATUS_CHANGE);
retval = mpi3mr_issue_event_notification(mrioc);
if (retval)
ioc_err(mrioc, "failed to issue event notification %d\n",
retval);
return retval;
}
/**
* mpi3mr_init_ioc - Initialize the controller
* @mrioc: Adapter instance reference
*
* This the controller initialization routine, executed either
* after soft reset or from pci probe callback.
* Setup the required resources, memory map the controller
* registers, create admin and operational reply queue pairs,
* allocate required memory for reply pool, sense buffer pool,
* issue IOC init request to the firmware, unmask the events and
* issue port enable to discover SAS/SATA/NVMe devies and RAID
* volumes.
*
* Return: 0 on success and non-zero on failure.
*/
int mpi3mr_init_ioc(struct mpi3mr_ioc *mrioc)
{
int retval = 0;
u8 retry = 0;
struct mpi3_ioc_facts_data facts_data;
u32 sz;
retry_init:
retval = mpi3mr_bring_ioc_ready(mrioc);
if (retval) {
ioc_err(mrioc, "Failed to bring ioc ready: error %d\n",
retval);
goto out_failed_noretry;
}
retval = mpi3mr_setup_isr(mrioc, 1);
if (retval) {
ioc_err(mrioc, "Failed to setup ISR error %d\n",
retval);
goto out_failed_noretry;
}
retval = mpi3mr_issue_iocfacts(mrioc, &facts_data);
if (retval) {
ioc_err(mrioc, "Failed to Issue IOC Facts %d\n",
retval);
goto out_failed;
}
mrioc->max_host_ios = mrioc->facts.max_reqs - MPI3MR_INTERNAL_CMDS_RESVD;
mrioc->shost->max_sectors = mrioc->facts.max_data_length / 512;
mrioc->num_io_throttle_group = mrioc->facts.max_io_throttle_group;
atomic_set(&mrioc->pend_large_data_sz, 0);
if (reset_devices)
mrioc->max_host_ios = min_t(int, mrioc->max_host_ios,
MPI3MR_HOST_IOS_KDUMP);
if (!(mrioc->facts.ioc_capabilities &
MPI3_IOCFACTS_CAPABILITY_MULTIPATH_SUPPORTED)) {
mrioc->sas_transport_enabled = 1;
mrioc->scsi_device_channel = 1;
mrioc->shost->max_channel = 1;
mrioc->shost->transportt = mpi3mr_transport_template;
}
mrioc->reply_sz = mrioc->facts.reply_sz;
retval = mpi3mr_check_reset_dma_mask(mrioc);
if (retval) {
ioc_err(mrioc, "Resetting dma mask failed %d\n",
retval);
goto out_failed_noretry;
}
mpi3mr_read_tsu_interval(mrioc);
mpi3mr_print_ioc_info(mrioc);
if (!mrioc->cfg_page) {
dprint_init(mrioc, "allocating config page buffers\n");
mrioc->cfg_page_sz = MPI3MR_DEFAULT_CFG_PAGE_SZ;
mrioc->cfg_page = dma_alloc_coherent(&mrioc->pdev->dev,
mrioc->cfg_page_sz, &mrioc->cfg_page_dma, GFP_KERNEL);
if (!mrioc->cfg_page) {
retval = -1;
goto out_failed_noretry;
}
}
dprint_init(mrioc, "allocating host diag buffers\n");
mpi3mr_alloc_diag_bufs(mrioc);
dprint_init(mrioc, "allocating ioctl dma buffers\n");
mpi3mr_alloc_ioctl_dma_memory(mrioc);
dprint_init(mrioc, "posting host diag buffers\n");
retval = mpi3mr_post_diag_bufs(mrioc);
if (retval)
ioc_warn(mrioc, "failed to post host diag buffers\n");
if (!mrioc->init_cmds.reply) {
retval = mpi3mr_alloc_reply_sense_bufs(mrioc);
if (retval) {
ioc_err(mrioc,
"%s :Failed to allocated reply sense buffers %d\n",
__func__, retval);
goto out_failed_noretry;
}
}
if (!mrioc->chain_sgl_list) {
retval = mpi3mr_alloc_chain_bufs(mrioc);
if (retval) {
ioc_err(mrioc, "Failed to allocated chain buffers %d\n",
retval);
goto out_failed_noretry;
}
}
retval = mpi3mr_issue_iocinit(mrioc);
if (retval) {
ioc_err(mrioc, "Failed to Issue IOC Init %d\n",
retval);
goto out_failed;
}
retval = mpi3mr_print_pkg_ver(mrioc);
if (retval) {
ioc_err(mrioc, "failed to get package version\n");
goto out_failed;
}
retval = mpi3mr_setup_isr(mrioc, 0);
if (retval) {
ioc_err(mrioc, "Failed to re-setup ISR, error %d\n",
retval);
goto out_failed_noretry;
}
retval = mpi3mr_create_op_queues(mrioc);
if (retval) {
ioc_err(mrioc, "Failed to create OpQueues error %d\n",
retval);
goto out_failed;
}
if (!mrioc->pel_seqnum_virt) {
dprint_init(mrioc, "allocating memory for pel_seqnum_virt\n");
mrioc->pel_seqnum_sz = sizeof(struct mpi3_pel_seq);
mrioc->pel_seqnum_virt = dma_alloc_coherent(&mrioc->pdev->dev,
mrioc->pel_seqnum_sz, &mrioc->pel_seqnum_dma,
GFP_KERNEL);
if (!mrioc->pel_seqnum_virt) {
retval = -ENOMEM;
goto out_failed_noretry;
}
}
if (!mrioc->throttle_groups && mrioc->num_io_throttle_group) {
dprint_init(mrioc, "allocating memory for throttle groups\n");
sz = sizeof(struct mpi3mr_throttle_group_info);
mrioc->throttle_groups = kcalloc(mrioc->num_io_throttle_group, sz, GFP_KERNEL);
if (!mrioc->throttle_groups) {
retval = -1;
goto out_failed_noretry;
}
}
retval = mpi3mr_enable_events(mrioc);
if (retval) {
ioc_err(mrioc, "failed to enable events %d\n",
retval);
goto out_failed;
}
retval = mpi3mr_refresh_trigger(mrioc, MPI3_CONFIG_ACTION_READ_CURRENT);
if (retval) {
ioc_err(mrioc, "failed to refresh triggers\n");
goto out_failed;
}
ioc_info(mrioc, "controller initialization completed successfully\n");
return retval;
out_failed:
if (retry < 2) {
retry++;
ioc_warn(mrioc, "retrying controller initialization, retry_count:%d\n",
retry);
mpi3mr_memset_buffers(mrioc);
goto retry_init;
}
retval = -1;
out_failed_noretry:
ioc_err(mrioc, "controller initialization failed\n");
mpi3mr_issue_reset(mrioc, MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT,
MPI3MR_RESET_FROM_CTLR_CLEANUP);
mrioc->unrecoverable = 1;
return retval;
}
/**
* mpi3mr_reinit_ioc - Re-Initialize the controller
* @mrioc: Adapter instance reference
* @is_resume: Called from resume or reset path
*
* This the controller re-initialization routine, executed from
* the soft reset handler or resume callback. Creates
* operational reply queue pairs, allocate required memory for
* reply pool, sense buffer pool, issue IOC init request to the
* firmware, unmask the events and issue port enable to discover
* SAS/SATA/NVMe devices and RAID volumes.
*
* Return: 0 on success and non-zero on failure.
*/
int mpi3mr_reinit_ioc(struct mpi3mr_ioc *mrioc, u8 is_resume)
{
int retval = 0;
u8 retry = 0;
struct mpi3_ioc_facts_data facts_data;
u32 pe_timeout, ioc_status;
retry_init:
pe_timeout =
(MPI3MR_PORTENABLE_TIMEOUT / MPI3MR_PORTENABLE_POLL_INTERVAL);
dprint_reset(mrioc, "bringing up the controller to ready state\n");
retval = mpi3mr_bring_ioc_ready(mrioc);
if (retval) {
ioc_err(mrioc, "failed to bring to ready state\n");
goto out_failed_noretry;
}
if (is_resume || mrioc->block_on_pci_err) {
dprint_reset(mrioc, "setting up single ISR\n");
retval = mpi3mr_setup_isr(mrioc, 1);
if (retval) {
ioc_err(mrioc, "failed to setup ISR\n");
goto out_failed_noretry;
}
} else
mpi3mr_ioc_enable_intr(mrioc);
dprint_reset(mrioc, "getting ioc_facts\n");
retval = mpi3mr_issue_iocfacts(mrioc, &facts_data);
if (retval) {
ioc_err(mrioc, "failed to get ioc_facts\n");
goto out_failed;
}
dprint_reset(mrioc, "validating ioc_facts\n");
retval = mpi3mr_revalidate_factsdata(mrioc);
if (retval) {
ioc_err(mrioc, "failed to revalidate ioc_facts data\n");
goto out_failed_noretry;
}
mpi3mr_read_tsu_interval(mrioc);
mpi3mr_print_ioc_info(mrioc);
if (is_resume) {
dprint_reset(mrioc, "posting host diag buffers\n");
retval = mpi3mr_post_diag_bufs(mrioc);
if (retval)
ioc_warn(mrioc, "failed to post host diag buffers\n");
} else {
retval = mpi3mr_repost_diag_bufs(mrioc);
if (retval)
ioc_warn(mrioc, "failed to re post host diag buffers\n");
}
dprint_reset(mrioc, "sending ioc_init\n");
retval = mpi3mr_issue_iocinit(mrioc);
if (retval) {
ioc_err(mrioc, "failed to send ioc_init\n");
goto out_failed;
}
dprint_reset(mrioc, "getting package version\n");
retval = mpi3mr_print_pkg_ver(mrioc);
if (retval) {
ioc_err(mrioc, "failed to get package version\n");
goto out_failed;
}
if (is_resume || mrioc->block_on_pci_err) {
dprint_reset(mrioc, "setting up multiple ISR\n");
retval = mpi3mr_setup_isr(mrioc, 0);
if (retval) {
ioc_err(mrioc, "failed to re-setup ISR\n");
goto out_failed_noretry;
}
}
dprint_reset(mrioc, "creating operational queue pairs\n");
retval = mpi3mr_create_op_queues(mrioc);
if (retval) {
ioc_err(mrioc, "failed to create operational queue pairs\n");
goto out_failed;
}
if (!mrioc->pel_seqnum_virt) {
dprint_reset(mrioc, "allocating memory for pel_seqnum_virt\n");
mrioc->pel_seqnum_sz = sizeof(struct mpi3_pel_seq);
mrioc->pel_seqnum_virt = dma_alloc_coherent(&mrioc->pdev->dev,
mrioc->pel_seqnum_sz, &mrioc->pel_seqnum_dma,
GFP_KERNEL);
if (!mrioc->pel_seqnum_virt) {
retval = -ENOMEM;
goto out_failed_noretry;
}
}
if (mrioc->shost->nr_hw_queues > mrioc->num_op_reply_q) {
ioc_err(mrioc,
"cannot create minimum number of operational queues expected:%d created:%d\n",
mrioc->shost->nr_hw_queues, mrioc->num_op_reply_q);
retval = -1;
goto out_failed_noretry;
}
dprint_reset(mrioc, "enabling events\n");
retval = mpi3mr_enable_events(mrioc);
if (retval) {
ioc_err(mrioc, "failed to enable events\n");
goto out_failed;
}
mrioc->device_refresh_on = 1;
mpi3mr_add_event_wait_for_device_refresh(mrioc);
ioc_info(mrioc, "sending port enable\n");
retval = mpi3mr_issue_port_enable(mrioc, 1);
if (retval) {
ioc_err(mrioc, "failed to issue port enable\n");
goto out_failed;
}
do {
ssleep(MPI3MR_PORTENABLE_POLL_INTERVAL);
if (mrioc->init_cmds.state == MPI3MR_CMD_NOTUSED)
break;
if (!pci_device_is_present(mrioc->pdev))
mrioc->unrecoverable = 1;
if (mrioc->unrecoverable) {
retval = -1;
goto out_failed_noretry;
}
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if ((ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY) ||
(ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT)) {
mpi3mr_print_fault_info(mrioc);
mrioc->init_cmds.is_waiting = 0;
mrioc->init_cmds.callback = NULL;
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
goto out_failed;
}
} while (--pe_timeout);
if (!pe_timeout) {
ioc_err(mrioc, "port enable timed out\n");
mpi3mr_check_rh_fault_ioc(mrioc,
MPI3MR_RESET_FROM_PE_TIMEOUT);
mrioc->init_cmds.is_waiting = 0;
mrioc->init_cmds.callback = NULL;
mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
goto out_failed;
} else if (mrioc->scan_failed) {
ioc_err(mrioc,
"port enable failed with status=0x%04x\n",
mrioc->scan_failed);
} else
ioc_info(mrioc, "port enable completed successfully\n");
ioc_info(mrioc, "controller %s completed successfully\n",
(is_resume)?"resume":"re-initialization");
return retval;
out_failed:
if (retry < 2) {
retry++;
ioc_warn(mrioc, "retrying controller %s, retry_count:%d\n",
(is_resume)?"resume":"re-initialization", retry);
mpi3mr_memset_buffers(mrioc);
goto retry_init;
}
retval = -1;
out_failed_noretry:
ioc_err(mrioc, "controller %s is failed\n",
(is_resume)?"resume":"re-initialization");
mpi3mr_issue_reset(mrioc, MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT,
MPI3MR_RESET_FROM_CTLR_CLEANUP);
mrioc->unrecoverable = 1;
return retval;
}
/**
* mpi3mr_memset_op_reply_q_buffers - memset the operational reply queue's
* segments
* @mrioc: Adapter instance reference
* @qidx: Operational reply queue index
*
* Return: Nothing.
*/
static void mpi3mr_memset_op_reply_q_buffers(struct mpi3mr_ioc *mrioc, u16 qidx)
{
struct op_reply_qinfo *op_reply_q = mrioc->op_reply_qinfo + qidx;
struct segments *segments;
int i, size;
if (!op_reply_q->q_segments)
return;
size = op_reply_q->segment_qd * mrioc->op_reply_desc_sz;
segments = op_reply_q->q_segments;
for (i = 0; i < op_reply_q->num_segments; i++)
memset(segments[i].segment, 0, size);
}
/**
* mpi3mr_memset_op_req_q_buffers - memset the operational request queue's
* segments
* @mrioc: Adapter instance reference
* @qidx: Operational request queue index
*
* Return: Nothing.
*/
static void mpi3mr_memset_op_req_q_buffers(struct mpi3mr_ioc *mrioc, u16 qidx)
{
struct op_req_qinfo *op_req_q = mrioc->req_qinfo + qidx;
struct segments *segments;
int i, size;
if (!op_req_q->q_segments)
return;
size = op_req_q->segment_qd * mrioc->facts.op_req_sz;
segments = op_req_q->q_segments;
for (i = 0; i < op_req_q->num_segments; i++)
memset(segments[i].segment, 0, size);
}
/**
* mpi3mr_memset_buffers - memset memory for a controller
* @mrioc: Adapter instance reference
*
* clear all the memory allocated for a controller, typically
* called post reset to reuse the memory allocated during the
* controller init.
*
* Return: Nothing.
*/
void mpi3mr_memset_buffers(struct mpi3mr_ioc *mrioc)
{
u16 i;
struct mpi3mr_throttle_group_info *tg;
mrioc->change_count = 0;
mrioc->active_poll_qcount = 0;
mrioc->default_qcount = 0;
if (mrioc->admin_req_base)
memset(mrioc->admin_req_base, 0, mrioc->admin_req_q_sz);
if (mrioc->admin_reply_base)
memset(mrioc->admin_reply_base, 0, mrioc->admin_reply_q_sz);
atomic_set(&mrioc->admin_reply_q_in_use, 0);
if (mrioc->init_cmds.reply) {
memset(mrioc->init_cmds.reply, 0, sizeof(*mrioc->init_cmds.reply));
memset(mrioc->bsg_cmds.reply, 0,
sizeof(*mrioc->bsg_cmds.reply));
memset(mrioc->host_tm_cmds.reply, 0,
sizeof(*mrioc->host_tm_cmds.reply));
memset(mrioc->pel_cmds.reply, 0,
sizeof(*mrioc->pel_cmds.reply));
memset(mrioc->pel_abort_cmd.reply, 0,
sizeof(*mrioc->pel_abort_cmd.reply));
memset(mrioc->transport_cmds.reply, 0,
sizeof(*mrioc->transport_cmds.reply));
for (i = 0; i < MPI3MR_NUM_DEVRMCMD; i++)
memset(mrioc->dev_rmhs_cmds[i].reply, 0,
sizeof(*mrioc->dev_rmhs_cmds[i].reply));
for (i = 0; i < MPI3MR_NUM_EVTACKCMD; i++)
memset(mrioc->evtack_cmds[i].reply, 0,
sizeof(*mrioc->evtack_cmds[i].reply));
bitmap_clear(mrioc->removepend_bitmap, 0,
mrioc->dev_handle_bitmap_bits);
bitmap_clear(mrioc->devrem_bitmap, 0, MPI3MR_NUM_DEVRMCMD);
bitmap_clear(mrioc->evtack_cmds_bitmap, 0,
MPI3MR_NUM_EVTACKCMD);
}
for (i = 0; i < mrioc->num_queues; i++) {
mrioc->op_reply_qinfo[i].qid = 0;
mrioc->op_reply_qinfo[i].ci = 0;
mrioc->op_reply_qinfo[i].num_replies = 0;
mrioc->op_reply_qinfo[i].ephase = 0;
atomic_set(&mrioc->op_reply_qinfo[i].pend_ios, 0);
atomic_set(&mrioc->op_reply_qinfo[i].in_use, 0);
mpi3mr_memset_op_reply_q_buffers(mrioc, i);
mrioc->req_qinfo[i].ci = 0;
mrioc->req_qinfo[i].pi = 0;
mrioc->req_qinfo[i].num_requests = 0;
mrioc->req_qinfo[i].qid = 0;
mrioc->req_qinfo[i].reply_qid = 0;
spin_lock_init(&mrioc->req_qinfo[i].q_lock);
mpi3mr_memset_op_req_q_buffers(mrioc, i);
}
atomic_set(&mrioc->pend_large_data_sz, 0);
if (mrioc->throttle_groups) {
tg = mrioc->throttle_groups;
for (i = 0; i < mrioc->num_io_throttle_group; i++, tg++) {
tg->id = 0;
tg->fw_qd = 0;
tg->modified_qd = 0;
tg->io_divert = 0;
tg->need_qd_reduction = 0;
tg->high = 0;
tg->low = 0;
tg->qd_reduction = 0;
atomic_set(&tg->pend_large_data_sz, 0);
}
}
}
/**
* mpi3mr_free_mem - Free memory allocated for a controller
* @mrioc: Adapter instance reference
*
* Free all the memory allocated for a controller.
*
* Return: Nothing.
*/
void mpi3mr_free_mem(struct mpi3mr_ioc *mrioc)
{
u16 i;
struct mpi3mr_intr_info *intr_info;
struct diag_buffer_desc *diag_buffer;
mpi3mr_free_enclosure_list(mrioc);
mpi3mr_free_ioctl_dma_memory(mrioc);
if (mrioc->sense_buf_pool) {
if (mrioc->sense_buf)
dma_pool_free(mrioc->sense_buf_pool, mrioc->sense_buf,
mrioc->sense_buf_dma);
dma_pool_destroy(mrioc->sense_buf_pool);
mrioc->sense_buf = NULL;
mrioc->sense_buf_pool = NULL;
}
if (mrioc->sense_buf_q_pool) {
if (mrioc->sense_buf_q)
dma_pool_free(mrioc->sense_buf_q_pool,
mrioc->sense_buf_q, mrioc->sense_buf_q_dma);
dma_pool_destroy(mrioc->sense_buf_q_pool);
mrioc->sense_buf_q = NULL;
mrioc->sense_buf_q_pool = NULL;
}
if (mrioc->reply_buf_pool) {
if (mrioc->reply_buf)
dma_pool_free(mrioc->reply_buf_pool, mrioc->reply_buf,
mrioc->reply_buf_dma);
dma_pool_destroy(mrioc->reply_buf_pool);
mrioc->reply_buf = NULL;
mrioc->reply_buf_pool = NULL;
}
if (mrioc->reply_free_q_pool) {
if (mrioc->reply_free_q)
dma_pool_free(mrioc->reply_free_q_pool,
mrioc->reply_free_q, mrioc->reply_free_q_dma);
dma_pool_destroy(mrioc->reply_free_q_pool);
mrioc->reply_free_q = NULL;
mrioc->reply_free_q_pool = NULL;
}
for (i = 0; i < mrioc->num_op_req_q; i++)
mpi3mr_free_op_req_q_segments(mrioc, i);
for (i = 0; i < mrioc->num_op_reply_q; i++)
mpi3mr_free_op_reply_q_segments(mrioc, i);
for (i = 0; i < mrioc->intr_info_count; i++) {
intr_info = mrioc->intr_info + i;
intr_info->op_reply_q = NULL;
}
kfree(mrioc->req_qinfo);
mrioc->req_qinfo = NULL;
mrioc->num_op_req_q = 0;
kfree(mrioc->op_reply_qinfo);
mrioc->op_reply_qinfo = NULL;
mrioc->num_op_reply_q = 0;
kfree(mrioc->init_cmds.reply);
mrioc->init_cmds.reply = NULL;
kfree(mrioc->bsg_cmds.reply);
mrioc->bsg_cmds.reply = NULL;
kfree(mrioc->host_tm_cmds.reply);
mrioc->host_tm_cmds.reply = NULL;
kfree(mrioc->pel_cmds.reply);
mrioc->pel_cmds.reply = NULL;
kfree(mrioc->pel_abort_cmd.reply);
mrioc->pel_abort_cmd.reply = NULL;
for (i = 0; i < MPI3MR_NUM_EVTACKCMD; i++) {
kfree(mrioc->evtack_cmds[i].reply);
mrioc->evtack_cmds[i].reply = NULL;
}
bitmap_free(mrioc->removepend_bitmap);
mrioc->removepend_bitmap = NULL;
bitmap_free(mrioc->devrem_bitmap);
mrioc->devrem_bitmap = NULL;
bitmap_free(mrioc->evtack_cmds_bitmap);
mrioc->evtack_cmds_bitmap = NULL;
bitmap_free(mrioc->chain_bitmap);
mrioc->chain_bitmap = NULL;
kfree(mrioc->transport_cmds.reply);
mrioc->transport_cmds.reply = NULL;
for (i = 0; i < MPI3MR_NUM_DEVRMCMD; i++) {
kfree(mrioc->dev_rmhs_cmds[i].reply);
mrioc->dev_rmhs_cmds[i].reply = NULL;
}
if (mrioc->chain_buf_pool) {
for (i = 0; i < mrioc->chain_buf_count; i++) {
if (mrioc->chain_sgl_list[i].addr) {
dma_pool_free(mrioc->chain_buf_pool,
mrioc->chain_sgl_list[i].addr,
mrioc->chain_sgl_list[i].dma_addr);
mrioc->chain_sgl_list[i].addr = NULL;
}
}
dma_pool_destroy(mrioc->chain_buf_pool);
mrioc->chain_buf_pool = NULL;
}
kfree(mrioc->chain_sgl_list);
mrioc->chain_sgl_list = NULL;
if (mrioc->admin_reply_base) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_reply_q_sz,
mrioc->admin_reply_base, mrioc->admin_reply_dma);
mrioc->admin_reply_base = NULL;
}
if (mrioc->admin_req_base) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_req_q_sz,
mrioc->admin_req_base, mrioc->admin_req_dma);
mrioc->admin_req_base = NULL;
}
if (mrioc->cfg_page) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->cfg_page_sz,
mrioc->cfg_page, mrioc->cfg_page_dma);
mrioc->cfg_page = NULL;
}
if (mrioc->pel_seqnum_virt) {
dma_free_coherent(&mrioc->pdev->dev, mrioc->pel_seqnum_sz,
mrioc->pel_seqnum_virt, mrioc->pel_seqnum_dma);
mrioc->pel_seqnum_virt = NULL;
}
for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
diag_buffer = &mrioc->diag_buffers[i];
if (diag_buffer->addr) {
dma_free_coherent(&mrioc->pdev->dev,
diag_buffer->size, diag_buffer->addr,
diag_buffer->dma_addr);
diag_buffer->addr = NULL;
diag_buffer->size = 0;
diag_buffer->type = 0;
diag_buffer->status = 0;
}
}
kfree(mrioc->throttle_groups);
mrioc->throttle_groups = NULL;
kfree(mrioc->logdata_buf);
mrioc->logdata_buf = NULL;
}
/**
* mpi3mr_issue_ioc_shutdown - shutdown controller
* @mrioc: Adapter instance reference
*
* Send shutodwn notification to the controller and wait for the
* shutdown_timeout for it to be completed.
*
* Return: Nothing.
*/
static void mpi3mr_issue_ioc_shutdown(struct mpi3mr_ioc *mrioc)
{
u32 ioc_config, ioc_status;
u8 retval = 1;
u32 timeout = MPI3MR_DEFAULT_SHUTDOWN_TIME * 10;
ioc_info(mrioc, "Issuing shutdown Notification\n");
if (mrioc->unrecoverable) {
ioc_warn(mrioc,
"IOC is unrecoverable shutdown is not issued\n");
return;
}
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if ((ioc_status & MPI3_SYSIF_IOC_STATUS_SHUTDOWN_MASK)
== MPI3_SYSIF_IOC_STATUS_SHUTDOWN_IN_PROGRESS) {
ioc_info(mrioc, "shutdown already in progress\n");
return;
}
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
ioc_config |= MPI3_SYSIF_IOC_CONFIG_SHUTDOWN_NORMAL;
ioc_config |= MPI3_SYSIF_IOC_CONFIG_DEVICE_SHUTDOWN_SEND_REQ;
writel(ioc_config, &mrioc->sysif_regs->ioc_configuration);
if (mrioc->facts.shutdown_timeout)
timeout = mrioc->facts.shutdown_timeout * 10;
do {
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
if ((ioc_status & MPI3_SYSIF_IOC_STATUS_SHUTDOWN_MASK)
== MPI3_SYSIF_IOC_STATUS_SHUTDOWN_COMPLETE) {
retval = 0;
break;
}
msleep(100);
} while (--timeout);
ioc_status = readl(&mrioc->sysif_regs->ioc_status);
ioc_config = readl(&mrioc->sysif_regs->ioc_configuration);
if (retval) {
if ((ioc_status & MPI3_SYSIF_IOC_STATUS_SHUTDOWN_MASK)
== MPI3_SYSIF_IOC_STATUS_SHUTDOWN_IN_PROGRESS)
ioc_warn(mrioc,
"shutdown still in progress after timeout\n");
}
ioc_info(mrioc,
"Base IOC Sts/Config after %s shutdown is (0x%x)/(0x%x)\n",
(!retval) ? "successful" : "failed", ioc_status,
ioc_config);
}
/**
* mpi3mr_cleanup_ioc - Cleanup controller
* @mrioc: Adapter instance reference
*
* controller cleanup handler, Message unit reset or soft reset
* and shutdown notification is issued to the controller.
*
* Return: Nothing.
*/
void mpi3mr_cleanup_ioc(struct mpi3mr_ioc *mrioc)
{
enum mpi3mr_iocstate ioc_state;
dprint_exit(mrioc, "cleaning up the controller\n");
mpi3mr_ioc_disable_intr(mrioc);
ioc_state = mpi3mr_get_iocstate(mrioc);
if (!mrioc->unrecoverable && !mrioc->reset_in_progress &&
!mrioc->pci_err_recovery &&
(ioc_state == MRIOC_STATE_READY)) {
if (mpi3mr_issue_and_process_mur(mrioc,
MPI3MR_RESET_FROM_CTLR_CLEANUP))
mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET,
MPI3MR_RESET_FROM_MUR_FAILURE);
mpi3mr_issue_ioc_shutdown(mrioc);
}
dprint_exit(mrioc, "controller cleanup completed\n");
}
/**
* mpi3mr_drv_cmd_comp_reset - Flush a internal driver command
* @mrioc: Adapter instance reference
* @cmdptr: Internal command tracker
*
* Complete an internal driver commands with state indicating it
* is completed due to reset.
*
* Return: Nothing.
*/
static inline void mpi3mr_drv_cmd_comp_reset(struct mpi3mr_ioc *mrioc,
struct mpi3mr_drv_cmd *cmdptr)
{
if (cmdptr->state & MPI3MR_CMD_PENDING) {
cmdptr->state |= MPI3MR_CMD_RESET;
cmdptr->state &= ~MPI3MR_CMD_PENDING;
if (cmdptr->is_waiting) {
complete(&cmdptr->done);
cmdptr->is_waiting = 0;
} else if (cmdptr->callback)
cmdptr->callback(mrioc, cmdptr);
}
}
/**
* mpi3mr_flush_drv_cmds - Flush internaldriver commands
* @mrioc: Adapter instance reference
*
* Flush all internal driver commands post reset
*
* Return: Nothing.
*/
void mpi3mr_flush_drv_cmds(struct mpi3mr_ioc *mrioc)
{
struct mpi3mr_drv_cmd *cmdptr;
u8 i;
cmdptr = &mrioc->init_cmds;
mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr);
cmdptr = &mrioc->cfg_cmds;
mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr);
cmdptr = &mrioc->bsg_cmds;
mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr);
cmdptr = &mrioc->host_tm_cmds;
mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr);
for (i = 0; i < MPI3MR_NUM_DEVRMCMD; i++) {
cmdptr = &mrioc->dev_rmhs_cmds[i];
mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr);
}
for (i = 0; i < MPI3MR_NUM_EVTACKCMD; i++) {
cmdptr = &mrioc->evtack_cmds[i];
mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr);
}
cmdptr = &mrioc->pel_cmds;
mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr);
cmdptr = &mrioc->pel_abort_cmd;
mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr);
cmdptr = &mrioc->transport_cmds;
mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr);
}
/**
* mpi3mr_pel_wait_post - Issue PEL Wait
* @mrioc: Adapter instance reference
* @drv_cmd: Internal command tracker
*
* Issue PEL Wait MPI request through admin queue and return.
*
* Return: Nothing.
*/
static void mpi3mr_pel_wait_post(struct mpi3mr_ioc *mrioc,
struct mpi3mr_drv_cmd *drv_cmd)
{
struct mpi3_pel_req_action_wait pel_wait;
mrioc->pel_abort_requested = false;
memset(&pel_wait, 0, sizeof(pel_wait));
drv_cmd->state = MPI3MR_CMD_PENDING;
drv_cmd->is_waiting = 0;
drv_cmd->callback = mpi3mr_pel_wait_complete;
drv_cmd->ioc_status = 0;
drv_cmd->ioc_loginfo = 0;
pel_wait.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
pel_wait.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
pel_wait.action = MPI3_PEL_ACTION_WAIT;
pel_wait.starting_sequence_number = cpu_to_le32(mrioc->pel_newest_seqnum);
pel_wait.locale = cpu_to_le16(mrioc->pel_locale);
pel_wait.class = cpu_to_le16(mrioc->pel_class);
pel_wait.wait_time = MPI3_PEL_WAITTIME_INFINITE_WAIT;
dprint_bsg_info(mrioc, "sending pel_wait seqnum(%d), class(%d), locale(0x%08x)\n",
mrioc->pel_newest_seqnum, mrioc->pel_class, mrioc->pel_locale);
if (mpi3mr_admin_request_post(mrioc, &pel_wait, sizeof(pel_wait), 0)) {
dprint_bsg_err(mrioc,
"Issuing PELWait: Admin post failed\n");
drv_cmd->state = MPI3MR_CMD_NOTUSED;
drv_cmd->callback = NULL;
drv_cmd->retry_count = 0;
mrioc->pel_enabled = false;
}
}
/**
* mpi3mr_pel_get_seqnum_post - Issue PEL Get Sequence number
* @mrioc: Adapter instance reference
* @drv_cmd: Internal command tracker
*
* Issue PEL get sequence number MPI request through admin queue
* and return.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_pel_get_seqnum_post(struct mpi3mr_ioc *mrioc,
struct mpi3mr_drv_cmd *drv_cmd)
{
struct mpi3_pel_req_action_get_sequence_numbers pel_getseq_req;
u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST;
int retval = 0;
memset(&pel_getseq_req, 0, sizeof(pel_getseq_req));
mrioc->pel_cmds.state = MPI3MR_CMD_PENDING;
mrioc->pel_cmds.is_waiting = 0;
mrioc->pel_cmds.ioc_status = 0;
mrioc->pel_cmds.ioc_loginfo = 0;
mrioc->pel_cmds.callback = mpi3mr_pel_get_seqnum_complete;
pel_getseq_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
pel_getseq_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
pel_getseq_req.action = MPI3_PEL_ACTION_GET_SEQNUM;
mpi3mr_add_sg_single(&pel_getseq_req.sgl, sgl_flags,
mrioc->pel_seqnum_sz, mrioc->pel_seqnum_dma);
retval = mpi3mr_admin_request_post(mrioc, &pel_getseq_req,
sizeof(pel_getseq_req), 0);
if (retval) {
if (drv_cmd) {
drv_cmd->state = MPI3MR_CMD_NOTUSED;
drv_cmd->callback = NULL;
drv_cmd->retry_count = 0;
}
mrioc->pel_enabled = false;
}
return retval;
}
/**
* mpi3mr_pel_wait_complete - PELWait Completion callback
* @mrioc: Adapter instance reference
* @drv_cmd: Internal command tracker
*
* This is a callback handler for the PELWait request and
* firmware completes a PELWait request when it is aborted or a
* new PEL entry is available. This sends AEN to the application
* and if the PELwait completion is not due to PELAbort then
* this will send a request for new PEL Sequence number
*
* Return: Nothing.
*/
static void mpi3mr_pel_wait_complete(struct mpi3mr_ioc *mrioc,
struct mpi3mr_drv_cmd *drv_cmd)
{
struct mpi3_pel_reply *pel_reply = NULL;
u16 ioc_status, pe_log_status;
bool do_retry = false;
if (drv_cmd->state & MPI3MR_CMD_RESET)
goto cleanup_drv_cmd;
ioc_status = drv_cmd->ioc_status & MPI3_IOCSTATUS_STATUS_MASK;
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "%s: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n",
__func__, ioc_status, drv_cmd->ioc_loginfo);
dprint_bsg_err(mrioc,
"pel_wait: failed with ioc_status(0x%04x), log_info(0x%08x)\n",
ioc_status, drv_cmd->ioc_loginfo);
do_retry = true;
}
if (drv_cmd->state & MPI3MR_CMD_REPLY_VALID)
pel_reply = (struct mpi3_pel_reply *)drv_cmd->reply;
if (!pel_reply) {
dprint_bsg_err(mrioc,
"pel_wait: failed due to no reply\n");
goto out_failed;
}
pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
if ((pe_log_status != MPI3_PEL_STATUS_SUCCESS) &&
(pe_log_status != MPI3_PEL_STATUS_ABORTED)) {
ioc_err(mrioc, "%s: Failed pe_log_status(0x%04x)\n",
__func__, pe_log_status);
dprint_bsg_err(mrioc,
"pel_wait: failed due to pel_log_status(0x%04x)\n",
pe_log_status);
do_retry = true;
}
if (do_retry) {
if (drv_cmd->retry_count < MPI3MR_PEL_RETRY_COUNT) {
drv_cmd->retry_count++;
dprint_bsg_err(mrioc, "pel_wait: retrying(%d)\n",
drv_cmd->retry_count);
mpi3mr_pel_wait_post(mrioc, drv_cmd);
return;
}
dprint_bsg_err(mrioc,
"pel_wait: failed after all retries(%d)\n",
drv_cmd->retry_count);
goto out_failed;
}
atomic64_inc(&event_counter);
if (!mrioc->pel_abort_requested) {
mrioc->pel_cmds.retry_count = 0;
mpi3mr_pel_get_seqnum_post(mrioc, &mrioc->pel_cmds);
}
return;
out_failed:
mrioc->pel_enabled = false;
cleanup_drv_cmd:
drv_cmd->state = MPI3MR_CMD_NOTUSED;
drv_cmd->callback = NULL;
drv_cmd->retry_count = 0;
}
/**
* mpi3mr_pel_get_seqnum_complete - PELGetSeqNum Completion callback
* @mrioc: Adapter instance reference
* @drv_cmd: Internal command tracker
*
* This is a callback handler for the PEL get sequence number
* request and a new PEL wait request will be issued to the
* firmware from this
*
* Return: Nothing.
*/
void mpi3mr_pel_get_seqnum_complete(struct mpi3mr_ioc *mrioc,
struct mpi3mr_drv_cmd *drv_cmd)
{
struct mpi3_pel_reply *pel_reply = NULL;
struct mpi3_pel_seq *pel_seqnum_virt;
u16 ioc_status;
bool do_retry = false;
pel_seqnum_virt = (struct mpi3_pel_seq *)mrioc->pel_seqnum_virt;
if (drv_cmd->state & MPI3MR_CMD_RESET)
goto cleanup_drv_cmd;
ioc_status = drv_cmd->ioc_status & MPI3_IOCSTATUS_STATUS_MASK;
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
dprint_bsg_err(mrioc,
"pel_get_seqnum: failed with ioc_status(0x%04x), log_info(0x%08x)\n",
ioc_status, drv_cmd->ioc_loginfo);
do_retry = true;
}
if (drv_cmd->state & MPI3MR_CMD_REPLY_VALID)
pel_reply = (struct mpi3_pel_reply *)drv_cmd->reply;
if (!pel_reply) {
dprint_bsg_err(mrioc,
"pel_get_seqnum: failed due to no reply\n");
goto out_failed;
}
if (le16_to_cpu(pel_reply->pe_log_status) != MPI3_PEL_STATUS_SUCCESS) {
dprint_bsg_err(mrioc,
"pel_get_seqnum: failed due to pel_log_status(0x%04x)\n",
le16_to_cpu(pel_reply->pe_log_status));
do_retry = true;
}
if (do_retry) {
if (drv_cmd->retry_count < MPI3MR_PEL_RETRY_COUNT) {
drv_cmd->retry_count++;
dprint_bsg_err(mrioc,
"pel_get_seqnum: retrying(%d)\n",
drv_cmd->retry_count);
mpi3mr_pel_get_seqnum_post(mrioc, drv_cmd);
return;
}
dprint_bsg_err(mrioc,
"pel_get_seqnum: failed after all retries(%d)\n",
drv_cmd->retry_count);
goto out_failed;
}
mrioc->pel_newest_seqnum = le32_to_cpu(pel_seqnum_virt->newest) + 1;
drv_cmd->retry_count = 0;
mpi3mr_pel_wait_post(mrioc, drv_cmd);
return;
out_failed:
mrioc->pel_enabled = false;
cleanup_drv_cmd:
drv_cmd->state = MPI3MR_CMD_NOTUSED;
drv_cmd->callback = NULL;
drv_cmd->retry_count = 0;
}
/**
* mpi3mr_soft_reset_handler - Reset the controller
* @mrioc: Adapter instance reference
* @reset_reason: Reset reason code
* @snapdump: Flag to generate snapdump in firmware or not
*
* This is an handler for recovering controller by issuing soft
* reset are diag fault reset. This is a blocking function and
* when one reset is executed if any other resets they will be
* blocked. All BSG requests will be blocked during the reset. If
* controller reset is successful then the controller will be
* reinitalized, otherwise the controller will be marked as not
* recoverable
*
* In snapdump bit is set, the controller is issued with diag
* fault reset so that the firmware can create a snap dump and
* post that the firmware will result in F000 fault and the
* driver will issue soft reset to recover from that.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_soft_reset_handler(struct mpi3mr_ioc *mrioc,
u16 reset_reason, u8 snapdump)
{
int retval = 0, i;
unsigned long flags;
u32 host_diagnostic, timeout = MPI3_SYSIF_DIAG_SAVE_TIMEOUT * 10;
union mpi3mr_trigger_data trigger_data;
/* Block the reset handler until diag save in progress*/
dprint_reset(mrioc,
"soft_reset_handler: check and block on diagsave_timeout(%d)\n",
mrioc->diagsave_timeout);
while (mrioc->diagsave_timeout)
ssleep(1);
/*
* Block new resets until the currently executing one is finished and
* return the status of the existing reset for all blocked resets
*/
dprint_reset(mrioc, "soft_reset_handler: acquiring reset_mutex\n");
if (!mutex_trylock(&mrioc->reset_mutex)) {
ioc_info(mrioc,
"controller reset triggered by %s is blocked due to another reset in progress\n",
mpi3mr_reset_rc_name(reset_reason));
do {
ssleep(1);
} while (mrioc->reset_in_progress == 1);
ioc_info(mrioc,
"returning previous reset result(%d) for the reset triggered by %s\n",
mrioc->prev_reset_result,
mpi3mr_reset_rc_name(reset_reason));
return mrioc->prev_reset_result;
}
ioc_info(mrioc, "controller reset is triggered by %s\n",
mpi3mr_reset_rc_name(reset_reason));
mrioc->device_refresh_on = 0;
mrioc->reset_in_progress = 1;
mrioc->stop_bsgs = 1;
mrioc->prev_reset_result = -1;
memset(&trigger_data, 0, sizeof(trigger_data));
if ((!snapdump) && (reset_reason != MPI3MR_RESET_FROM_FAULT_WATCH) &&
(reset_reason != MPI3MR_RESET_FROM_FIRMWARE) &&
(reset_reason != MPI3MR_RESET_FROM_CIACTIV_FAULT)) {
mpi3mr_set_trigger_data_in_all_hdb(mrioc,
MPI3MR_HDB_TRIGGER_TYPE_SOFT_RESET, NULL, 0);
dprint_reset(mrioc,
"soft_reset_handler: releasing host diagnostic buffers\n");
mpi3mr_release_diag_bufs(mrioc, 0);
for (i = 0; i < MPI3_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
mrioc->event_masks[i] = -1;
dprint_reset(mrioc, "soft_reset_handler: masking events\n");
mpi3mr_issue_event_notification(mrioc);
}
mpi3mr_wait_for_host_io(mrioc, MPI3MR_RESET_HOST_IOWAIT_TIMEOUT);
mpi3mr_ioc_disable_intr(mrioc);
if (snapdump) {
mpi3mr_set_diagsave(mrioc);
retval = mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT, reset_reason);
if (!retval) {
trigger_data.fault = (readl(&mrioc->sysif_regs->fault) &
MPI3_SYSIF_FAULT_CODE_MASK);
do {
host_diagnostic =
readl(&mrioc->sysif_regs->host_diagnostic);
if (!(host_diagnostic &
MPI3_SYSIF_HOST_DIAG_SAVE_IN_PROGRESS))
break;
msleep(100);
} while (--timeout);
mpi3mr_set_trigger_data_in_all_hdb(mrioc,
MPI3MR_HDB_TRIGGER_TYPE_FAULT, &trigger_data, 0);
}
}
retval = mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET, reset_reason);
if (retval) {
ioc_err(mrioc, "Failed to issue soft reset to the ioc\n");
goto out;
}
if (mrioc->num_io_throttle_group !=
mrioc->facts.max_io_throttle_group) {
ioc_err(mrioc,
"max io throttle group doesn't match old(%d), new(%d)\n",
mrioc->num_io_throttle_group,
mrioc->facts.max_io_throttle_group);
retval = -EPERM;
goto out;
}
mpi3mr_flush_delayed_cmd_lists(mrioc);
mpi3mr_flush_drv_cmds(mrioc);
bitmap_clear(mrioc->devrem_bitmap, 0, MPI3MR_NUM_DEVRMCMD);
bitmap_clear(mrioc->removepend_bitmap, 0,
mrioc->dev_handle_bitmap_bits);
bitmap_clear(mrioc->evtack_cmds_bitmap, 0, MPI3MR_NUM_EVTACKCMD);
mpi3mr_flush_host_io(mrioc);
mpi3mr_cleanup_fwevt_list(mrioc);
mpi3mr_invalidate_devhandles(mrioc);
mpi3mr_free_enclosure_list(mrioc);
if (mrioc->prepare_for_reset) {
mrioc->prepare_for_reset = 0;
mrioc->prepare_for_reset_timeout_counter = 0;
}
mpi3mr_memset_buffers(mrioc);
mpi3mr_release_diag_bufs(mrioc, 1);
mrioc->fw_release_trigger_active = false;
mrioc->trace_release_trigger_active = false;
mrioc->snapdump_trigger_active = false;
mpi3mr_set_trigger_data_in_all_hdb(mrioc,
MPI3MR_HDB_TRIGGER_TYPE_SOFT_RESET, NULL, 0);
dprint_reset(mrioc,
"soft_reset_handler: reinitializing the controller\n");
retval = mpi3mr_reinit_ioc(mrioc, 0);
if (retval) {
pr_err(IOCNAME "reinit after soft reset failed: reason %d\n",
mrioc->name, reset_reason);
goto out;
}
ssleep(MPI3MR_RESET_TOPOLOGY_SETTLE_TIME);
out:
if (!retval) {
mrioc->diagsave_timeout = 0;
mrioc->reset_in_progress = 0;
mrioc->pel_abort_requested = 0;
if (mrioc->pel_enabled) {
mrioc->pel_cmds.retry_count = 0;
mpi3mr_pel_wait_post(mrioc, &mrioc->pel_cmds);
}
mrioc->device_refresh_on = 0;
mrioc->ts_update_counter = 0;
spin_lock_irqsave(&mrioc->watchdog_lock, flags);
if (mrioc->watchdog_work_q)
queue_delayed_work(mrioc->watchdog_work_q,
&mrioc->watchdog_work,
msecs_to_jiffies(MPI3MR_WATCHDOG_INTERVAL));
spin_unlock_irqrestore(&mrioc->watchdog_lock, flags);
mrioc->stop_bsgs = 0;
if (mrioc->pel_enabled)
atomic64_inc(&event_counter);
} else {
mpi3mr_issue_reset(mrioc,
MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT, reset_reason);
mrioc->device_refresh_on = 0;
mrioc->unrecoverable = 1;
mrioc->reset_in_progress = 0;
mrioc->stop_bsgs = 0;
retval = -1;
mpi3mr_flush_cmds_for_unrecovered_controller(mrioc);
}
mrioc->prev_reset_result = retval;
mutex_unlock(&mrioc->reset_mutex);
ioc_info(mrioc, "controller reset is %s\n",
((retval == 0) ? "successful" : "failed"));
return retval;
}
/**
* mpi3mr_free_config_dma_memory - free memory for config page
* @mrioc: Adapter instance reference
* @mem_desc: memory descriptor structure
*
* Check whether the size of the buffer specified by the memory
* descriptor is greater than the default page size if so then
* free the memory pointed by the descriptor.
*
* Return: Nothing.
*/
static void mpi3mr_free_config_dma_memory(struct mpi3mr_ioc *mrioc,
struct dma_memory_desc *mem_desc)
{
if ((mem_desc->size > mrioc->cfg_page_sz) && mem_desc->addr) {
dma_free_coherent(&mrioc->pdev->dev, mem_desc->size,
mem_desc->addr, mem_desc->dma_addr);
mem_desc->addr = NULL;
}
}
/**
* mpi3mr_alloc_config_dma_memory - Alloc memory for config page
* @mrioc: Adapter instance reference
* @mem_desc: Memory descriptor to hold dma memory info
*
* This function allocates new dmaable memory or provides the
* default config page dmaable memory based on the memory size
* described by the descriptor.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_alloc_config_dma_memory(struct mpi3mr_ioc *mrioc,
struct dma_memory_desc *mem_desc)
{
if (mem_desc->size > mrioc->cfg_page_sz) {
mem_desc->addr = dma_alloc_coherent(&mrioc->pdev->dev,
mem_desc->size, &mem_desc->dma_addr, GFP_KERNEL);
if (!mem_desc->addr)
return -ENOMEM;
} else {
mem_desc->addr = mrioc->cfg_page;
mem_desc->dma_addr = mrioc->cfg_page_dma;
memset(mem_desc->addr, 0, mrioc->cfg_page_sz);
}
return 0;
}
/**
* mpi3mr_post_cfg_req - Issue config requests and wait
* @mrioc: Adapter instance reference
* @cfg_req: Configuration request
* @timeout: Timeout in seconds
* @ioc_status: Pointer to return ioc status
*
* A generic function for posting MPI3 configuration request to
* the firmware. This blocks for the completion of request for
* timeout seconds and if the request times out this function
* faults the controller with proper reason code.
*
* On successful completion of the request this function returns
* appropriate ioc status from the firmware back to the caller.
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_post_cfg_req(struct mpi3mr_ioc *mrioc,
struct mpi3_config_request *cfg_req, int timeout, u16 *ioc_status)
{
int retval = 0;
mutex_lock(&mrioc->cfg_cmds.mutex);
if (mrioc->cfg_cmds.state & MPI3MR_CMD_PENDING) {
retval = -1;
ioc_err(mrioc, "sending config request failed due to command in use\n");
mutex_unlock(&mrioc->cfg_cmds.mutex);
goto out;
}
mrioc->cfg_cmds.state = MPI3MR_CMD_PENDING;
mrioc->cfg_cmds.is_waiting = 1;
mrioc->cfg_cmds.callback = NULL;
mrioc->cfg_cmds.ioc_status = 0;
mrioc->cfg_cmds.ioc_loginfo = 0;
cfg_req->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_CFG_CMDS);
cfg_req->function = MPI3_FUNCTION_CONFIG;
init_completion(&mrioc->cfg_cmds.done);
dprint_cfg_info(mrioc, "posting config request\n");
if (mrioc->logging_level & MPI3_DEBUG_CFG_INFO)
dprint_dump(cfg_req, sizeof(struct mpi3_config_request),
"mpi3_cfg_req");
retval = mpi3mr_admin_request_post(mrioc, cfg_req, sizeof(*cfg_req), 1);
if (retval) {
ioc_err(mrioc, "posting config request failed\n");
goto out_unlock;
}
wait_for_completion_timeout(&mrioc->cfg_cmds.done, (timeout * HZ));
if (!(mrioc->cfg_cmds.state & MPI3MR_CMD_COMPLETE)) {
mpi3mr_check_rh_fault_ioc(mrioc,
MPI3MR_RESET_FROM_CFG_REQ_TIMEOUT);
ioc_err(mrioc, "config request timed out\n");
retval = -1;
goto out_unlock;
}
*ioc_status = mrioc->cfg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK;
if ((*ioc_status) != MPI3_IOCSTATUS_SUCCESS)
dprint_cfg_err(mrioc,
"cfg_page request returned with ioc_status(0x%04x), log_info(0x%08x)\n",
*ioc_status, mrioc->cfg_cmds.ioc_loginfo);
out_unlock:
mrioc->cfg_cmds.state = MPI3MR_CMD_NOTUSED;
mutex_unlock(&mrioc->cfg_cmds.mutex);
out:
return retval;
}
/**
* mpi3mr_process_cfg_req - config page request processor
* @mrioc: Adapter instance reference
* @cfg_req: Configuration request
* @cfg_hdr: Configuration page header
* @timeout: Timeout in seconds
* @ioc_status: Pointer to return ioc status
* @cfg_buf: Memory pointer to copy config page or header
* @cfg_buf_sz: Size of the memory to get config page or header
*
* This is handler for config page read, write and config page
* header read operations.
*
* This function expects the cfg_req to be populated with page
* type, page number, action for the header read and with page
* address for all other operations.
*
* The cfg_hdr can be passed as null for reading required header
* details for read/write pages the cfg_hdr should point valid
* configuration page header.
*
* This allocates dmaable memory based on the size of the config
* buffer and set the SGE of the cfg_req.
*
* For write actions, the config page data has to be passed in
* the cfg_buf and size of the data has to be mentioned in the
* cfg_buf_sz.
*
* For read/header actions, on successful completion of the
* request with successful ioc_status the data will be copied
* into the cfg_buf limited to a minimum of actual page size and
* cfg_buf_sz
*
*
* Return: 0 on success, non-zero on failure.
*/
static int mpi3mr_process_cfg_req(struct mpi3mr_ioc *mrioc,
struct mpi3_config_request *cfg_req,
struct mpi3_config_page_header *cfg_hdr, int timeout, u16 *ioc_status,
void *cfg_buf, u32 cfg_buf_sz)
{
struct dma_memory_desc mem_desc;
int retval = -1;
u8 invalid_action = 0;
u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST;
memset(&mem_desc, 0, sizeof(struct dma_memory_desc));
if (cfg_req->action == MPI3_CONFIG_ACTION_PAGE_HEADER)
mem_desc.size = sizeof(struct mpi3_config_page_header);
else {
if (!cfg_hdr) {
ioc_err(mrioc, "null config header passed for config action(%d), page_type(0x%02x), page_num(%d)\n",
cfg_req->action, cfg_req->page_type,
cfg_req->page_number);
goto out;
}
switch (cfg_hdr->page_attribute & MPI3_CONFIG_PAGEATTR_MASK) {
case MPI3_CONFIG_PAGEATTR_READ_ONLY:
if (cfg_req->action
!= MPI3_CONFIG_ACTION_READ_CURRENT)
invalid_action = 1;
break;
case MPI3_CONFIG_PAGEATTR_CHANGEABLE:
if ((cfg_req->action ==
MPI3_CONFIG_ACTION_READ_PERSISTENT) ||
(cfg_req->action ==
MPI3_CONFIG_ACTION_WRITE_PERSISTENT))
invalid_action = 1;
break;
case MPI3_CONFIG_PAGEATTR_PERSISTENT:
default:
break;
}
if (invalid_action) {
ioc_err(mrioc,
"config action(%d) is not allowed for page_type(0x%02x), page_num(%d) with page_attribute(0x%02x)\n",
cfg_req->action, cfg_req->page_type,
cfg_req->page_number, cfg_hdr->page_attribute);
goto out;
}
mem_desc.size = le16_to_cpu(cfg_hdr->page_length) * 4;
cfg_req->page_length = cfg_hdr->page_length;
cfg_req->page_version = cfg_hdr->page_version;
}
if (mpi3mr_alloc_config_dma_memory(mrioc, &mem_desc))
goto out;
mpi3mr_add_sg_single(&cfg_req->sgl, sgl_flags, mem_desc.size,
mem_desc.dma_addr);
if ((cfg_req->action == MPI3_CONFIG_ACTION_WRITE_PERSISTENT) ||
(cfg_req->action == MPI3_CONFIG_ACTION_WRITE_CURRENT)) {
memcpy(mem_desc.addr, cfg_buf, min_t(u16, mem_desc.size,
cfg_buf_sz));
dprint_cfg_info(mrioc, "config buffer to be written\n");
if (mrioc->logging_level & MPI3_DEBUG_CFG_INFO)
dprint_dump(mem_desc.addr, mem_desc.size, "cfg_buf");
}
if (mpi3mr_post_cfg_req(mrioc, cfg_req, timeout, ioc_status))
goto out;
retval = 0;
if ((*ioc_status == MPI3_IOCSTATUS_SUCCESS) &&
(cfg_req->action != MPI3_CONFIG_ACTION_WRITE_PERSISTENT) &&
(cfg_req->action != MPI3_CONFIG_ACTION_WRITE_CURRENT)) {
memcpy(cfg_buf, mem_desc.addr, min_t(u16, mem_desc.size,
cfg_buf_sz));
dprint_cfg_info(mrioc, "config buffer read\n");
if (mrioc->logging_level & MPI3_DEBUG_CFG_INFO)
dprint_dump(mem_desc.addr, mem_desc.size, "cfg_buf");
}
out:
mpi3mr_free_config_dma_memory(mrioc, &mem_desc);
return retval;
}
/**
* mpi3mr_cfg_get_dev_pg0 - Read current device page0
* @mrioc: Adapter instance reference
* @ioc_status: Pointer to return ioc status
* @dev_pg0: Pointer to return device page 0
* @pg_sz: Size of the memory allocated to the page pointer
* @form: The form to be used for addressing the page
* @form_spec: Form specific information like device handle
*
* This is handler for config page read for a specific device
* page0. The ioc_status has the controller returned ioc_status.
* This routine doesn't check ioc_status to decide whether the
* page read is success or not and it is the callers
* responsibility.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_cfg_get_dev_pg0(struct mpi3mr_ioc *mrioc, u16 *ioc_status,
struct mpi3_device_page0 *dev_pg0, u16 pg_sz, u32 form, u32 form_spec)
{
struct mpi3_config_page_header cfg_hdr;
struct mpi3_config_request cfg_req;
u32 page_address;
memset(dev_pg0, 0, pg_sz);
memset(&cfg_hdr, 0, sizeof(cfg_hdr));
memset(&cfg_req, 0, sizeof(cfg_req));
cfg_req.function = MPI3_FUNCTION_CONFIG;
cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER;
cfg_req.page_type = MPI3_CONFIG_PAGETYPE_DEVICE;
cfg_req.page_number = 0;
cfg_req.page_address = 0;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) {
ioc_err(mrioc, "device page0 header read failed\n");
goto out_failed;
}
if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "device page0 header read failed with ioc_status(0x%04x)\n",
*ioc_status);
goto out_failed;
}
cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT;
page_address = ((form & MPI3_DEVICE_PGAD_FORM_MASK) |
(form_spec & MPI3_DEVICE_PGAD_HANDLE_MASK));
cfg_req.page_address = cpu_to_le32(page_address);
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, dev_pg0, pg_sz)) {
ioc_err(mrioc, "device page0 read failed\n");
goto out_failed;
}
return 0;
out_failed:
return -1;
}
/**
* mpi3mr_cfg_get_sas_phy_pg0 - Read current SAS Phy page0
* @mrioc: Adapter instance reference
* @ioc_status: Pointer to return ioc status
* @phy_pg0: Pointer to return SAS Phy page 0
* @pg_sz: Size of the memory allocated to the page pointer
* @form: The form to be used for addressing the page
* @form_spec: Form specific information like phy number
*
* This is handler for config page read for a specific SAS Phy
* page0. The ioc_status has the controller returned ioc_status.
* This routine doesn't check ioc_status to decide whether the
* page read is success or not and it is the callers
* responsibility.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_cfg_get_sas_phy_pg0(struct mpi3mr_ioc *mrioc, u16 *ioc_status,
struct mpi3_sas_phy_page0 *phy_pg0, u16 pg_sz, u32 form,
u32 form_spec)
{
struct mpi3_config_page_header cfg_hdr;
struct mpi3_config_request cfg_req;
u32 page_address;
memset(phy_pg0, 0, pg_sz);
memset(&cfg_hdr, 0, sizeof(cfg_hdr));
memset(&cfg_req, 0, sizeof(cfg_req));
cfg_req.function = MPI3_FUNCTION_CONFIG;
cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER;
cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_PHY;
cfg_req.page_number = 0;
cfg_req.page_address = 0;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) {
ioc_err(mrioc, "sas phy page0 header read failed\n");
goto out_failed;
}
if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "sas phy page0 header read failed with ioc_status(0x%04x)\n",
*ioc_status);
goto out_failed;
}
cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT;
page_address = ((form & MPI3_SAS_PHY_PGAD_FORM_MASK) |
(form_spec & MPI3_SAS_PHY_PGAD_PHY_NUMBER_MASK));
cfg_req.page_address = cpu_to_le32(page_address);
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, phy_pg0, pg_sz)) {
ioc_err(mrioc, "sas phy page0 read failed\n");
goto out_failed;
}
return 0;
out_failed:
return -1;
}
/**
* mpi3mr_cfg_get_sas_phy_pg1 - Read current SAS Phy page1
* @mrioc: Adapter instance reference
* @ioc_status: Pointer to return ioc status
* @phy_pg1: Pointer to return SAS Phy page 1
* @pg_sz: Size of the memory allocated to the page pointer
* @form: The form to be used for addressing the page
* @form_spec: Form specific information like phy number
*
* This is handler for config page read for a specific SAS Phy
* page1. The ioc_status has the controller returned ioc_status.
* This routine doesn't check ioc_status to decide whether the
* page read is success or not and it is the callers
* responsibility.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_cfg_get_sas_phy_pg1(struct mpi3mr_ioc *mrioc, u16 *ioc_status,
struct mpi3_sas_phy_page1 *phy_pg1, u16 pg_sz, u32 form,
u32 form_spec)
{
struct mpi3_config_page_header cfg_hdr;
struct mpi3_config_request cfg_req;
u32 page_address;
memset(phy_pg1, 0, pg_sz);
memset(&cfg_hdr, 0, sizeof(cfg_hdr));
memset(&cfg_req, 0, sizeof(cfg_req));
cfg_req.function = MPI3_FUNCTION_CONFIG;
cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER;
cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_PHY;
cfg_req.page_number = 1;
cfg_req.page_address = 0;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) {
ioc_err(mrioc, "sas phy page1 header read failed\n");
goto out_failed;
}
if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "sas phy page1 header read failed with ioc_status(0x%04x)\n",
*ioc_status);
goto out_failed;
}
cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT;
page_address = ((form & MPI3_SAS_PHY_PGAD_FORM_MASK) |
(form_spec & MPI3_SAS_PHY_PGAD_PHY_NUMBER_MASK));
cfg_req.page_address = cpu_to_le32(page_address);
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, phy_pg1, pg_sz)) {
ioc_err(mrioc, "sas phy page1 read failed\n");
goto out_failed;
}
return 0;
out_failed:
return -1;
}
/**
* mpi3mr_cfg_get_sas_exp_pg0 - Read current SAS Expander page0
* @mrioc: Adapter instance reference
* @ioc_status: Pointer to return ioc status
* @exp_pg0: Pointer to return SAS Expander page 0
* @pg_sz: Size of the memory allocated to the page pointer
* @form: The form to be used for addressing the page
* @form_spec: Form specific information like device handle
*
* This is handler for config page read for a specific SAS
* Expander page0. The ioc_status has the controller returned
* ioc_status. This routine doesn't check ioc_status to decide
* whether the page read is success or not and it is the callers
* responsibility.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_cfg_get_sas_exp_pg0(struct mpi3mr_ioc *mrioc, u16 *ioc_status,
struct mpi3_sas_expander_page0 *exp_pg0, u16 pg_sz, u32 form,
u32 form_spec)
{
struct mpi3_config_page_header cfg_hdr;
struct mpi3_config_request cfg_req;
u32 page_address;
memset(exp_pg0, 0, pg_sz);
memset(&cfg_hdr, 0, sizeof(cfg_hdr));
memset(&cfg_req, 0, sizeof(cfg_req));
cfg_req.function = MPI3_FUNCTION_CONFIG;
cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER;
cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_EXPANDER;
cfg_req.page_number = 0;
cfg_req.page_address = 0;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) {
ioc_err(mrioc, "expander page0 header read failed\n");
goto out_failed;
}
if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "expander page0 header read failed with ioc_status(0x%04x)\n",
*ioc_status);
goto out_failed;
}
cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT;
page_address = ((form & MPI3_SAS_EXPAND_PGAD_FORM_MASK) |
(form_spec & (MPI3_SAS_EXPAND_PGAD_PHYNUM_MASK |
MPI3_SAS_EXPAND_PGAD_HANDLE_MASK)));
cfg_req.page_address = cpu_to_le32(page_address);
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, exp_pg0, pg_sz)) {
ioc_err(mrioc, "expander page0 read failed\n");
goto out_failed;
}
return 0;
out_failed:
return -1;
}
/**
* mpi3mr_cfg_get_sas_exp_pg1 - Read current SAS Expander page1
* @mrioc: Adapter instance reference
* @ioc_status: Pointer to return ioc status
* @exp_pg1: Pointer to return SAS Expander page 1
* @pg_sz: Size of the memory allocated to the page pointer
* @form: The form to be used for addressing the page
* @form_spec: Form specific information like phy number
*
* This is handler for config page read for a specific SAS
* Expander page1. The ioc_status has the controller returned
* ioc_status. This routine doesn't check ioc_status to decide
* whether the page read is success or not and it is the callers
* responsibility.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_cfg_get_sas_exp_pg1(struct mpi3mr_ioc *mrioc, u16 *ioc_status,
struct mpi3_sas_expander_page1 *exp_pg1, u16 pg_sz, u32 form,
u32 form_spec)
{
struct mpi3_config_page_header cfg_hdr;
struct mpi3_config_request cfg_req;
u32 page_address;
memset(exp_pg1, 0, pg_sz);
memset(&cfg_hdr, 0, sizeof(cfg_hdr));
memset(&cfg_req, 0, sizeof(cfg_req));
cfg_req.function = MPI3_FUNCTION_CONFIG;
cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER;
cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_EXPANDER;
cfg_req.page_number = 1;
cfg_req.page_address = 0;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) {
ioc_err(mrioc, "expander page1 header read failed\n");
goto out_failed;
}
if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "expander page1 header read failed with ioc_status(0x%04x)\n",
*ioc_status);
goto out_failed;
}
cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT;
page_address = ((form & MPI3_SAS_EXPAND_PGAD_FORM_MASK) |
(form_spec & (MPI3_SAS_EXPAND_PGAD_PHYNUM_MASK |
MPI3_SAS_EXPAND_PGAD_HANDLE_MASK)));
cfg_req.page_address = cpu_to_le32(page_address);
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, exp_pg1, pg_sz)) {
ioc_err(mrioc, "expander page1 read failed\n");
goto out_failed;
}
return 0;
out_failed:
return -1;
}
/**
* mpi3mr_cfg_get_enclosure_pg0 - Read current Enclosure page0
* @mrioc: Adapter instance reference
* @ioc_status: Pointer to return ioc status
* @encl_pg0: Pointer to return Enclosure page 0
* @pg_sz: Size of the memory allocated to the page pointer
* @form: The form to be used for addressing the page
* @form_spec: Form specific information like device handle
*
* This is handler for config page read for a specific Enclosure
* page0. The ioc_status has the controller returned ioc_status.
* This routine doesn't check ioc_status to decide whether the
* page read is success or not and it is the callers
* responsibility.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_cfg_get_enclosure_pg0(struct mpi3mr_ioc *mrioc, u16 *ioc_status,
struct mpi3_enclosure_page0 *encl_pg0, u16 pg_sz, u32 form,
u32 form_spec)
{
struct mpi3_config_page_header cfg_hdr;
struct mpi3_config_request cfg_req;
u32 page_address;
memset(encl_pg0, 0, pg_sz);
memset(&cfg_hdr, 0, sizeof(cfg_hdr));
memset(&cfg_req, 0, sizeof(cfg_req));
cfg_req.function = MPI3_FUNCTION_CONFIG;
cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER;
cfg_req.page_type = MPI3_CONFIG_PAGETYPE_ENCLOSURE;
cfg_req.page_number = 0;
cfg_req.page_address = 0;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) {
ioc_err(mrioc, "enclosure page0 header read failed\n");
goto out_failed;
}
if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "enclosure page0 header read failed with ioc_status(0x%04x)\n",
*ioc_status);
goto out_failed;
}
cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT;
page_address = ((form & MPI3_ENCLOS_PGAD_FORM_MASK) |
(form_spec & MPI3_ENCLOS_PGAD_HANDLE_MASK));
cfg_req.page_address = cpu_to_le32(page_address);
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, ioc_status, encl_pg0, pg_sz)) {
ioc_err(mrioc, "enclosure page0 read failed\n");
goto out_failed;
}
return 0;
out_failed:
return -1;
}
/**
* mpi3mr_cfg_get_sas_io_unit_pg0 - Read current SASIOUnit page0
* @mrioc: Adapter instance reference
* @sas_io_unit_pg0: Pointer to return SAS IO Unit page 0
* @pg_sz: Size of the memory allocated to the page pointer
*
* This is handler for config page read for the SAS IO Unit
* page0. This routine checks ioc_status to decide whether the
* page read is success or not.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_cfg_get_sas_io_unit_pg0(struct mpi3mr_ioc *mrioc,
struct mpi3_sas_io_unit_page0 *sas_io_unit_pg0, u16 pg_sz)
{
struct mpi3_config_page_header cfg_hdr;
struct mpi3_config_request cfg_req;
u16 ioc_status = 0;
memset(sas_io_unit_pg0, 0, pg_sz);
memset(&cfg_hdr, 0, sizeof(cfg_hdr));
memset(&cfg_req, 0, sizeof(cfg_req));
cfg_req.function = MPI3_FUNCTION_CONFIG;
cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER;
cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_IO_UNIT;
cfg_req.page_number = 0;
cfg_req.page_address = 0;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL,
MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, &cfg_hdr, sizeof(cfg_hdr))) {
ioc_err(mrioc, "sas io unit page0 header read failed\n");
goto out_failed;
}
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "sas io unit page0 header read failed with ioc_status(0x%04x)\n",
ioc_status);
goto out_failed;
}
cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, sas_io_unit_pg0, pg_sz)) {
ioc_err(mrioc, "sas io unit page0 read failed\n");
goto out_failed;
}
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "sas io unit page0 read failed with ioc_status(0x%04x)\n",
ioc_status);
goto out_failed;
}
return 0;
out_failed:
return -1;
}
/**
* mpi3mr_cfg_get_sas_io_unit_pg1 - Read current SASIOUnit page1
* @mrioc: Adapter instance reference
* @sas_io_unit_pg1: Pointer to return SAS IO Unit page 1
* @pg_sz: Size of the memory allocated to the page pointer
*
* This is handler for config page read for the SAS IO Unit
* page1. This routine checks ioc_status to decide whether the
* page read is success or not.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_cfg_get_sas_io_unit_pg1(struct mpi3mr_ioc *mrioc,
struct mpi3_sas_io_unit_page1 *sas_io_unit_pg1, u16 pg_sz)
{
struct mpi3_config_page_header cfg_hdr;
struct mpi3_config_request cfg_req;
u16 ioc_status = 0;
memset(sas_io_unit_pg1, 0, pg_sz);
memset(&cfg_hdr, 0, sizeof(cfg_hdr));
memset(&cfg_req, 0, sizeof(cfg_req));
cfg_req.function = MPI3_FUNCTION_CONFIG;
cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER;
cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_IO_UNIT;
cfg_req.page_number = 1;
cfg_req.page_address = 0;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL,
MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, &cfg_hdr, sizeof(cfg_hdr))) {
ioc_err(mrioc, "sas io unit page1 header read failed\n");
goto out_failed;
}
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "sas io unit page1 header read failed with ioc_status(0x%04x)\n",
ioc_status);
goto out_failed;
}
cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, sas_io_unit_pg1, pg_sz)) {
ioc_err(mrioc, "sas io unit page1 read failed\n");
goto out_failed;
}
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "sas io unit page1 read failed with ioc_status(0x%04x)\n",
ioc_status);
goto out_failed;
}
return 0;
out_failed:
return -1;
}
/**
* mpi3mr_cfg_set_sas_io_unit_pg1 - Write SASIOUnit page1
* @mrioc: Adapter instance reference
* @sas_io_unit_pg1: Pointer to the SAS IO Unit page 1 to write
* @pg_sz: Size of the memory allocated to the page pointer
*
* This is handler for config page write for the SAS IO Unit
* page1. This routine checks ioc_status to decide whether the
* page read is success or not. This will modify both current
* and persistent page.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_cfg_set_sas_io_unit_pg1(struct mpi3mr_ioc *mrioc,
struct mpi3_sas_io_unit_page1 *sas_io_unit_pg1, u16 pg_sz)
{
struct mpi3_config_page_header cfg_hdr;
struct mpi3_config_request cfg_req;
u16 ioc_status = 0;
memset(&cfg_hdr, 0, sizeof(cfg_hdr));
memset(&cfg_req, 0, sizeof(cfg_req));
cfg_req.function = MPI3_FUNCTION_CONFIG;
cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER;
cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_IO_UNIT;
cfg_req.page_number = 1;
cfg_req.page_address = 0;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL,
MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, &cfg_hdr, sizeof(cfg_hdr))) {
ioc_err(mrioc, "sas io unit page1 header read failed\n");
goto out_failed;
}
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "sas io unit page1 header read failed with ioc_status(0x%04x)\n",
ioc_status);
goto out_failed;
}
cfg_req.action = MPI3_CONFIG_ACTION_WRITE_CURRENT;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, sas_io_unit_pg1, pg_sz)) {
ioc_err(mrioc, "sas io unit page1 write current failed\n");
goto out_failed;
}
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "sas io unit page1 write current failed with ioc_status(0x%04x)\n",
ioc_status);
goto out_failed;
}
cfg_req.action = MPI3_CONFIG_ACTION_WRITE_PERSISTENT;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, sas_io_unit_pg1, pg_sz)) {
ioc_err(mrioc, "sas io unit page1 write persistent failed\n");
goto out_failed;
}
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "sas io unit page1 write persistent failed with ioc_status(0x%04x)\n",
ioc_status);
goto out_failed;
}
return 0;
out_failed:
return -1;
}
/**
* mpi3mr_cfg_get_driver_pg1 - Read current Driver page1
* @mrioc: Adapter instance reference
* @driver_pg1: Pointer to return Driver page 1
* @pg_sz: Size of the memory allocated to the page pointer
*
* This is handler for config page read for the Driver page1.
* This routine checks ioc_status to decide whether the page
* read is success or not.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_cfg_get_driver_pg1(struct mpi3mr_ioc *mrioc,
struct mpi3_driver_page1 *driver_pg1, u16 pg_sz)
{
struct mpi3_config_page_header cfg_hdr;
struct mpi3_config_request cfg_req;
u16 ioc_status = 0;
memset(driver_pg1, 0, pg_sz);
memset(&cfg_hdr, 0, sizeof(cfg_hdr));
memset(&cfg_req, 0, sizeof(cfg_req));
cfg_req.function = MPI3_FUNCTION_CONFIG;
cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER;
cfg_req.page_type = MPI3_CONFIG_PAGETYPE_DRIVER;
cfg_req.page_number = 1;
cfg_req.page_address = 0;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL,
MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, &cfg_hdr, sizeof(cfg_hdr))) {
ioc_err(mrioc, "driver page1 header read failed\n");
goto out_failed;
}
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "driver page1 header read failed with ioc_status(0x%04x)\n",
ioc_status);
goto out_failed;
}
cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, driver_pg1, pg_sz)) {
ioc_err(mrioc, "driver page1 read failed\n");
goto out_failed;
}
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "driver page1 read failed with ioc_status(0x%04x)\n",
ioc_status);
goto out_failed;
}
return 0;
out_failed:
return -1;
}
/**
* mpi3mr_cfg_get_driver_pg2 - Read current driver page2
* @mrioc: Adapter instance reference
* @driver_pg2: Pointer to return driver page 2
* @pg_sz: Size of the memory allocated to the page pointer
* @page_action: Page action
*
* This is handler for config page read for the driver page2.
* This routine checks ioc_status to decide whether the page
* read is success or not.
*
* Return: 0 on success, non-zero on failure.
*/
int mpi3mr_cfg_get_driver_pg2(struct mpi3mr_ioc *mrioc,
struct mpi3_driver_page2 *driver_pg2, u16 pg_sz, u8 page_action)
{
struct mpi3_config_page_header cfg_hdr;
struct mpi3_config_request cfg_req;
u16 ioc_status = 0;
memset(driver_pg2, 0, pg_sz);
memset(&cfg_hdr, 0, sizeof(cfg_hdr));
memset(&cfg_req, 0, sizeof(cfg_req));
cfg_req.function = MPI3_FUNCTION_CONFIG;
cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER;
cfg_req.page_type = MPI3_CONFIG_PAGETYPE_DRIVER;
cfg_req.page_number = 2;
cfg_req.page_address = 0;
cfg_req.page_version = MPI3_DRIVER2_PAGEVERSION;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL,
MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, &cfg_hdr, sizeof(cfg_hdr))) {
ioc_err(mrioc, "driver page2 header read failed\n");
goto out_failed;
}
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "driver page2 header read failed with\n"
"ioc_status(0x%04x)\n",
ioc_status);
goto out_failed;
}
cfg_req.action = page_action;
if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr,
MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, driver_pg2, pg_sz)) {
ioc_err(mrioc, "driver page2 read failed\n");
goto out_failed;
}
if (ioc_status != MPI3_IOCSTATUS_SUCCESS) {
ioc_err(mrioc, "driver page2 read failed with\n"
"ioc_status(0x%04x)\n",
ioc_status);
goto out_failed;
}
return 0;
out_failed:
return -1;
}