/*
* Disk Array driver for HP Smart Array SAS controllers
* Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
* Copyright 2016 Microsemi Corporation
* Copyright 2014-2015 PMC-Sierra, Inc.
* Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more details.
*
* Questions/Comments/Bugfixes to [email protected]
*
*/
#ifndef HPSA_H
#define HPSA_H
#include <scsi/scsicam.h>
#define IO_OK 0
#define IO_ERROR 1
struct ctlr_info;
struct access_method {
void (*submit_command)(struct ctlr_info *h,
struct CommandList *c);
void (*set_intr_mask)(struct ctlr_info *h, unsigned long val);
bool (*intr_pending)(struct ctlr_info *h);
unsigned long (*command_completed)(struct ctlr_info *h, u8 q);
};
/* for SAS hosts and SAS expanders */
struct hpsa_sas_node {
struct device *parent_dev;
struct list_head port_list_head;
};
struct hpsa_sas_port {
struct list_head port_list_entry;
u64 sas_address;
struct sas_port *port;
int next_phy_index;
struct list_head phy_list_head;
struct hpsa_sas_node *parent_node;
struct sas_rphy *rphy;
};
struct hpsa_sas_phy {
struct list_head phy_list_entry;
struct sas_phy *phy;
struct hpsa_sas_port *parent_port;
bool added_to_port;
};
#define EXTERNAL_QD 128
struct hpsa_scsi_dev_t {
unsigned int devtype;
int bus, target, lun; /* as presented to the OS */
unsigned char scsi3addr[8]; /* as presented to the HW */
u8 physical_device : 1;
u8 expose_device;
u8 removed : 1; /* device is marked for death */
u8 was_removed : 1; /* device actually removed */
#define RAID_CTLR_LUNID "\0\0\0\0\0\0\0\0"
unsigned char device_id[16]; /* from inquiry pg. 0x83 */
u64 sas_address;
u64 eli; /* from report diags. */
unsigned char vendor[8]; /* bytes 8-15 of inquiry data */
unsigned char model[16]; /* bytes 16-31 of inquiry data */
unsigned char rev; /* byte 2 of inquiry data */
unsigned char raid_level; /* from inquiry page 0xC1 */
unsigned char volume_offline; /* discovered via TUR or VPD */
u16 queue_depth; /* max queue_depth for this device */
atomic_t commands_outstanding; /* track commands sent to device */
atomic_t ioaccel_cmds_out; /* Only used for physical devices
* counts commands sent to physical
* device via "ioaccel" path.
*/
bool in_reset;
u32 ioaccel_handle;
u8 active_path_index;
u8 path_map;
u8 bay;
u8 box[8];
u16 phys_connector[8];
int offload_config; /* I/O accel RAID offload configured */
int offload_enabled; /* I/O accel RAID offload enabled */
int offload_to_be_enabled;
int hba_ioaccel_enabled;
int offload_to_mirror; /* Send next I/O accelerator RAID
* offload request to mirror drive
*/
struct raid_map_data raid_map; /* I/O accelerator RAID map */
/*
* Pointers from logical drive map indices to the phys drives that
* make those logical drives. Note, multiple logical drives may
* share physical drives. You can have for instance 5 physical
* drives with 3 logical drives each using those same 5 physical
* disks. We need these pointers for counting i/o's out to physical
* devices in order to honor physical device queue depth limits.
*/
struct hpsa_scsi_dev_t *phys_disk[RAID_MAP_MAX_ENTRIES];
int nphysical_disks;
int supports_aborts;
struct hpsa_sas_port *sas_port;
int external; /* 1-from external array 0-not <0-unknown */
};
struct reply_queue_buffer {
u64 *head;
size_t size;
u8 wraparound;
u32 current_entry;
dma_addr_t busaddr;
};
#pragma pack(1)
struct bmic_controller_parameters {
u8 led_flags;
u8 enable_command_list_verification;
u8 backed_out_write_drives;
u16 stripes_for_parity;
u8 parity_distribution_mode_flags;
u16 max_driver_requests;
u16 elevator_trend_count;
u8 disable_elevator;
u8 force_scan_complete;
u8 scsi_transfer_mode;
u8 force_narrow;
u8 rebuild_priority;
u8 expand_priority;
u8 host_sdb_asic_fix;
u8 pdpi_burst_from_host_disabled;
char software_name[64];
char hardware_name[32];
u8 bridge_revision;
u8 snapshot_priority;
u32 os_specific;
u8 post_prompt_timeout;
u8 automatic_drive_slamming;
u8 reserved1;
u8 nvram_flags;
u8 cache_nvram_flags;
u8 drive_config_flags;
u16 reserved2;
u8 temp_warning_level;
u8 temp_shutdown_level;
u8 temp_condition_reset;
u8 max_coalesce_commands;
u32 max_coalesce_delay;
u8 orca_password[4];
u8 access_id[16];
u8 reserved[356];
};
#pragma pack()
struct ctlr_info {
unsigned int *reply_map;
int ctlr;
char devname[8];
char *product_name;
struct pci_dev *pdev;
u32 board_id;
u64 sas_address;
void __iomem *vaddr;
unsigned long paddr;
int nr_cmds; /* Number of commands allowed on this controller */
#define HPSA_CMDS_RESERVED_FOR_ABORTS 2
#define HPSA_CMDS_RESERVED_FOR_DRIVER 1
struct CfgTable __iomem *cfgtable;
int interrupts_enabled;
int max_commands;
int last_collision_tag; /* tags are global */
atomic_t commands_outstanding;
# define PERF_MODE_INT 0
# define DOORBELL_INT 1
# define SIMPLE_MODE_INT 2
# define MEMQ_MODE_INT 3
unsigned int msix_vectors;
int intr_mode; /* either PERF_MODE_INT or SIMPLE_MODE_INT */
struct access_method access;
/* queue and queue Info */
unsigned int Qdepth;
unsigned int maxSG;
spinlock_t lock;
int maxsgentries;
u8 max_cmd_sg_entries;
int chainsize;
struct SGDescriptor **cmd_sg_list;
struct ioaccel2_sg_element **ioaccel2_cmd_sg_list;
/* pointers to command and error info pool */
struct CommandList *cmd_pool;
dma_addr_t cmd_pool_dhandle;
struct io_accel1_cmd *ioaccel_cmd_pool;
dma_addr_t ioaccel_cmd_pool_dhandle;
struct io_accel2_cmd *ioaccel2_cmd_pool;
dma_addr_t ioaccel2_cmd_pool_dhandle;
struct ErrorInfo *errinfo_pool;
dma_addr_t errinfo_pool_dhandle;
unsigned long *cmd_pool_bits;
int scan_finished;
u8 scan_waiting : 1;
spinlock_t scan_lock;
wait_queue_head_t scan_wait_queue;
struct Scsi_Host *scsi_host;
spinlock_t devlock; /* to protect hba[ctlr]->dev[]; */
int ndevices; /* number of used elements in .dev[] array. */
struct hpsa_scsi_dev_t *dev[HPSA_MAX_DEVICES];
/*
* Performant mode tables.
*/
u32 trans_support;
u32 trans_offset;
struct TransTable_struct __iomem *transtable;
unsigned long transMethod;
/* cap concurrent passthrus at some reasonable maximum */
#define HPSA_MAX_CONCURRENT_PASSTHRUS (10)
atomic_t passthru_cmds_avail;
/*
* Performant mode completion buffers
*/
size_t reply_queue_size;
struct reply_queue_buffer reply_queue[MAX_REPLY_QUEUES];
u8 nreply_queues;
u32 *blockFetchTable;
u32 *ioaccel1_blockFetchTable;
u32 *ioaccel2_blockFetchTable;
u32 __iomem *ioaccel2_bft2_regs;
unsigned char *hba_inquiry_data;
u32 driver_support;
u32 fw_support;
int ioaccel_support;
int ioaccel_maxsg;
u64 last_intr_timestamp;
u32 last_heartbeat;
u64 last_heartbeat_timestamp;
u32 heartbeat_sample_interval;
atomic_t firmware_flash_in_progress;
u32 __percpu *lockup_detected;
struct delayed_work monitor_ctlr_work;
struct delayed_work rescan_ctlr_work;
struct delayed_work event_monitor_work;
int remove_in_progress;
/* Address of h->q[x] is passed to intr handler to know which queue */
u8 q[MAX_REPLY_QUEUES];
char intrname[MAX_REPLY_QUEUES][16]; /* "hpsa0-msix00" names */
u32 TMFSupportFlags; /* cache what task mgmt funcs are supported. */
#define HPSATMF_BITS_SUPPORTED (1 << 0)
#define HPSATMF_PHYS_LUN_RESET (1 << 1)
#define HPSATMF_PHYS_NEX_RESET (1 << 2)
#define HPSATMF_PHYS_TASK_ABORT (1 << 3)
#define HPSATMF_PHYS_TSET_ABORT (1 << 4)
#define HPSATMF_PHYS_CLEAR_ACA (1 << 5)
#define HPSATMF_PHYS_CLEAR_TSET (1 << 6)
#define HPSATMF_PHYS_QRY_TASK (1 << 7)
#define HPSATMF_PHYS_QRY_TSET (1 << 8)
#define HPSATMF_PHYS_QRY_ASYNC (1 << 9)
#define HPSATMF_IOACCEL_ENABLED (1 << 15)
#define HPSATMF_MASK_SUPPORTED (1 << 16)
#define HPSATMF_LOG_LUN_RESET (1 << 17)
#define HPSATMF_LOG_NEX_RESET (1 << 18)
#define HPSATMF_LOG_TASK_ABORT (1 << 19)
#define HPSATMF_LOG_TSET_ABORT (1 << 20)
#define HPSATMF_LOG_CLEAR_ACA (1 << 21)
#define HPSATMF_LOG_CLEAR_TSET (1 << 22)
#define HPSATMF_LOG_QRY_TASK (1 << 23)
#define HPSATMF_LOG_QRY_TSET (1 << 24)
#define HPSATMF_LOG_QRY_ASYNC (1 << 25)
u32 events;
#define CTLR_STATE_CHANGE_EVENT (1 << 0)
#define CTLR_ENCLOSURE_HOT_PLUG_EVENT (1 << 1)
#define CTLR_STATE_CHANGE_EVENT_PHYSICAL_DRV (1 << 4)
#define CTLR_STATE_CHANGE_EVENT_LOGICAL_DRV (1 << 5)
#define CTLR_STATE_CHANGE_EVENT_REDUNDANT_CNTRL (1 << 6)
#define CTLR_STATE_CHANGE_EVENT_AIO_ENABLED_DISABLED (1 << 30)
#define CTLR_STATE_CHANGE_EVENT_AIO_CONFIG_CHANGE (1 << 31)
#define RESCAN_REQUIRED_EVENT_BITS \
(CTLR_ENCLOSURE_HOT_PLUG_EVENT | \
CTLR_STATE_CHANGE_EVENT_PHYSICAL_DRV | \
CTLR_STATE_CHANGE_EVENT_LOGICAL_DRV | \
CTLR_STATE_CHANGE_EVENT_AIO_ENABLED_DISABLED | \
CTLR_STATE_CHANGE_EVENT_AIO_CONFIG_CHANGE)
spinlock_t offline_device_lock;
struct list_head offline_device_list;
int acciopath_status;
int drv_req_rescan;
int raid_offload_debug;
int discovery_polling;
int legacy_board;
struct ReportLUNdata *lastlogicals;
int needs_abort_tags_swizzled;
struct workqueue_struct *resubmit_wq;
struct workqueue_struct *rescan_ctlr_wq;
struct workqueue_struct *monitor_ctlr_wq;
atomic_t abort_cmds_available;
wait_queue_head_t event_sync_wait_queue;
struct mutex reset_mutex;
u8 reset_in_progress;
struct hpsa_sas_node *sas_host;
spinlock_t reset_lock;
};
struct offline_device_entry {
unsigned char scsi3addr[8];
struct list_head offline_list;
};
#define HPSA_ABORT_MSG 0
#define HPSA_DEVICE_RESET_MSG 1
#define HPSA_RESET_TYPE_CONTROLLER 0x00
#define HPSA_RESET_TYPE_BUS 0x01
#define HPSA_RESET_TYPE_LUN 0x04
#define HPSA_PHYS_TARGET_RESET 0x99 /* not defined by cciss spec */
#define HPSA_MSG_SEND_RETRY_LIMIT 10
#define HPSA_MSG_SEND_RETRY_INTERVAL_MSECS (10000)
/* Maximum time in seconds driver will wait for command completions
* when polling before giving up.
*/
#define HPSA_MAX_POLL_TIME_SECS (20)
/* During SCSI error recovery, HPSA_TUR_RETRY_LIMIT defines
* how many times to retry TEST UNIT READY on a device
* while waiting for it to become ready before giving up.
* HPSA_MAX_WAIT_INTERVAL_SECS is the max wait interval
* between sending TURs while waiting for a device
* to become ready.
*/
#define HPSA_TUR_RETRY_LIMIT (20)
#define HPSA_MAX_WAIT_INTERVAL_SECS (30)
/* HPSA_BOARD_READY_WAIT_SECS is how long to wait for a board
* to become ready, in seconds, before giving up on it.
* HPSA_BOARD_READY_POLL_INTERVAL_MSECS * is how long to wait
* between polling the board to see if it is ready, in
* milliseconds. HPSA_BOARD_READY_POLL_INTERVAL and
* HPSA_BOARD_READY_ITERATIONS are derived from those.
*/
#define HPSA_BOARD_READY_WAIT_SECS (120)
#define HPSA_BOARD_NOT_READY_WAIT_SECS (100)
#define HPSA_BOARD_READY_POLL_INTERVAL_MSECS (100)
#define HPSA_BOARD_READY_POLL_INTERVAL \
((HPSA_BOARD_READY_POLL_INTERVAL_MSECS * HZ) / 1000)
#define HPSA_BOARD_READY_ITERATIONS \
((HPSA_BOARD_READY_WAIT_SECS * 1000) / \
HPSA_BOARD_READY_POLL_INTERVAL_MSECS)
#define HPSA_BOARD_NOT_READY_ITERATIONS \
((HPSA_BOARD_NOT_READY_WAIT_SECS * 1000) / \
HPSA_BOARD_READY_POLL_INTERVAL_MSECS)
#define HPSA_POST_RESET_PAUSE_MSECS (3000)
#define HPSA_POST_RESET_NOOP_RETRIES (12)
/* Defining the diffent access_menthods */
/*
* Memory mapped FIFO interface (SMART 53xx cards)
*/
#define SA5_DOORBELL 0x20
#define SA5_REQUEST_PORT_OFFSET 0x40
#define SA5_REQUEST_PORT64_LO_OFFSET 0xC0
#define SA5_REQUEST_PORT64_HI_OFFSET 0xC4
#define SA5_REPLY_INTR_MASK_OFFSET 0x34
#define SA5_REPLY_PORT_OFFSET 0x44
#define SA5_INTR_STATUS 0x30
#define SA5_SCRATCHPAD_OFFSET 0xB0
#define SA5_CTCFG_OFFSET 0xB4
#define SA5_CTMEM_OFFSET 0xB8
#define SA5_INTR_OFF 0x08
#define SA5B_INTR_OFF 0x04
#define SA5_INTR_PENDING 0x08
#define SA5B_INTR_PENDING 0x04
#define FIFO_EMPTY 0xffffffff
#define HPSA_FIRMWARE_READY 0xffff0000 /* value in scratchpad register */
#define HPSA_ERROR_BIT 0x02
/* Performant mode flags */
#define SA5_PERF_INTR_PENDING 0x04
#define SA5_PERF_INTR_OFF 0x05
#define SA5_OUTDB_STATUS_PERF_BIT 0x01
#define SA5_OUTDB_CLEAR_PERF_BIT 0x01
#define SA5_OUTDB_CLEAR 0xA0
#define SA5_OUTDB_CLEAR_PERF_BIT 0x01
#define SA5_OUTDB_STATUS 0x9C
#define HPSA_INTR_ON 1
#define HPSA_INTR_OFF 0
/*
* Inbound Post Queue offsets for IO Accelerator Mode 2
*/
#define IOACCEL2_INBOUND_POSTQ_32 0x48
#define IOACCEL2_INBOUND_POSTQ_64_LOW 0xd0
#define IOACCEL2_INBOUND_POSTQ_64_HI 0xd4
#define HPSA_PHYSICAL_DEVICE_BUS 0
#define HPSA_RAID_VOLUME_BUS 1
#define HPSA_EXTERNAL_RAID_VOLUME_BUS 2
#define HPSA_HBA_BUS 0
#define HPSA_LEGACY_HBA_BUS 3
/*
Send the command to the hardware
*/
static void SA5_submit_command(struct ctlr_info *h,
struct CommandList *c)
{
writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
(void) readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
}
static void SA5_submit_command_no_read(struct ctlr_info *h,
struct CommandList *c)
{
writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
}
static void SA5_submit_command_ioaccel2(struct ctlr_info *h,
struct CommandList *c)
{
writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
}
/*
* This card is the opposite of the other cards.
* 0 turns interrupts on...
* 0x08 turns them off...
*/
static void SA5_intr_mask(struct ctlr_info *h, unsigned long val)
{
if (val) { /* Turn interrupts on */
h->interrupts_enabled = 1;
writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
} else { /* Turn them off */
h->interrupts_enabled = 0;
writel(SA5_INTR_OFF,
h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
}
}
/*
* Variant of the above; 0x04 turns interrupts off...
*/
static void SA5B_intr_mask(struct ctlr_info *h, unsigned long val)
{
if (val) { /* Turn interrupts on */
h->interrupts_enabled = 1;
writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
} else { /* Turn them off */
h->interrupts_enabled = 0;
writel(SA5B_INTR_OFF,
h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
}
}
static void SA5_performant_intr_mask(struct ctlr_info *h, unsigned long val)
{
if (val) { /* turn on interrupts */
h->interrupts_enabled = 1;
writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
} else {
h->interrupts_enabled = 0;
writel(SA5_PERF_INTR_OFF,
h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
}
}
static unsigned long SA5_performant_completed(struct ctlr_info *h, u8 q)
{
struct reply_queue_buffer *rq = &h->reply_queue[q];
unsigned long register_value = FIFO_EMPTY;
/* msi auto clears the interrupt pending bit. */
if (unlikely(!(h->pdev->msi_enabled || h->msix_vectors))) {
/* flush the controller write of the reply queue by reading
* outbound doorbell status register.
*/
(void) readl(h->vaddr + SA5_OUTDB_STATUS);
writel(SA5_OUTDB_CLEAR_PERF_BIT, h->vaddr + SA5_OUTDB_CLEAR);
/* Do a read in order to flush the write to the controller
* (as per spec.)
*/
(void) readl(h->vaddr + SA5_OUTDB_STATUS);
}
if ((((u32) rq->head[rq->current_entry]) & 1) == rq->wraparound) {
register_value = rq->head[rq->current_entry];
rq->current_entry++;
atomic_dec(&h->commands_outstanding);
} else {
register_value = FIFO_EMPTY;
}
/* Check for wraparound */
if (rq->current_entry == h->max_commands) {
rq->current_entry = 0;
rq->wraparound ^= 1;
}
return register_value;
}
/*
* returns value read from hardware.
* returns FIFO_EMPTY if there is nothing to read
*/
static unsigned long SA5_completed(struct ctlr_info *h,
__attribute__((unused)) u8 q)
{
unsigned long register_value
= readl(h->vaddr + SA5_REPLY_PORT_OFFSET);
if (register_value != FIFO_EMPTY)
atomic_dec(&h->commands_outstanding);
#ifdef HPSA_DEBUG
if (register_value != FIFO_EMPTY)
dev_dbg(&h->pdev->dev, "Read %lx back from board\n",
register_value);
else
dev_dbg(&h->pdev->dev, "FIFO Empty read\n");
#endif
return register_value;
}
/*
* Returns true if an interrupt is pending..
*/
static bool SA5_intr_pending(struct ctlr_info *h)
{
unsigned long register_value =
readl(h->vaddr + SA5_INTR_STATUS);
return register_value & SA5_INTR_PENDING;
}
static bool SA5_performant_intr_pending(struct ctlr_info *h)
{
unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS);
if (!register_value)
return false;
/* Read outbound doorbell to flush */
register_value = readl(h->vaddr + SA5_OUTDB_STATUS);
return register_value & SA5_OUTDB_STATUS_PERF_BIT;
}
#define SA5_IOACCEL_MODE1_INTR_STATUS_CMP_BIT 0x100
static bool SA5_ioaccel_mode1_intr_pending(struct ctlr_info *h)
{
unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS);
return (register_value & SA5_IOACCEL_MODE1_INTR_STATUS_CMP_BIT) ?
true : false;
}
/*
* Returns true if an interrupt is pending..
*/
static bool SA5B_intr_pending(struct ctlr_info *h)
{
return readl(h->vaddr + SA5_INTR_STATUS) & SA5B_INTR_PENDING;
}
#define IOACCEL_MODE1_REPLY_QUEUE_INDEX 0x1A0
#define IOACCEL_MODE1_PRODUCER_INDEX 0x1B8
#define IOACCEL_MODE1_CONSUMER_INDEX 0x1BC
#define IOACCEL_MODE1_REPLY_UNUSED 0xFFFFFFFFFFFFFFFFULL
static unsigned long SA5_ioaccel_mode1_completed(struct ctlr_info *h, u8 q)
{
u64 register_value;
struct reply_queue_buffer *rq = &h->reply_queue[q];
BUG_ON(q >= h->nreply_queues);
register_value = rq->head[rq->current_entry];
if (register_value != IOACCEL_MODE1_REPLY_UNUSED) {
rq->head[rq->current_entry] = IOACCEL_MODE1_REPLY_UNUSED;
if (++rq->current_entry == rq->size)
rq->current_entry = 0;
/*
* @todo
*
* Don't really need to write the new index after each command,
* but with current driver design this is easiest.
*/
wmb();
writel((q << 24) | rq->current_entry, h->vaddr +
IOACCEL_MODE1_CONSUMER_INDEX);
atomic_dec(&h->commands_outstanding);
}
return (unsigned long) register_value;
}
static struct access_method SA5_access = {
.submit_command = SA5_submit_command,
.set_intr_mask = SA5_intr_mask,
.intr_pending = SA5_intr_pending,
.command_completed = SA5_completed,
};
/* Duplicate entry of the above to mark unsupported boards */
static struct access_method SA5A_access = {
.submit_command = SA5_submit_command,
.set_intr_mask = SA5_intr_mask,
.intr_pending = SA5_intr_pending,
.command_completed = SA5_completed,
};
static struct access_method SA5B_access = {
.submit_command = SA5_submit_command,
.set_intr_mask = SA5B_intr_mask,
.intr_pending = SA5B_intr_pending,
.command_completed = SA5_completed,
};
static struct access_method SA5_ioaccel_mode1_access = {
.submit_command = SA5_submit_command,
.set_intr_mask = SA5_performant_intr_mask,
.intr_pending = SA5_ioaccel_mode1_intr_pending,
.command_completed = SA5_ioaccel_mode1_completed,
};
static struct access_method SA5_ioaccel_mode2_access = {
.submit_command = SA5_submit_command_ioaccel2,
.set_intr_mask = SA5_performant_intr_mask,
.intr_pending = SA5_performant_intr_pending,
.command_completed = SA5_performant_completed,
};
static struct access_method SA5_performant_access = {
.submit_command = SA5_submit_command,
.set_intr_mask = SA5_performant_intr_mask,
.intr_pending = SA5_performant_intr_pending,
.command_completed = SA5_performant_completed,
};
static struct access_method SA5_performant_access_no_read = {
.submit_command = SA5_submit_command_no_read,
.set_intr_mask = SA5_performant_intr_mask,
.intr_pending = SA5_performant_intr_pending,
.command_completed = SA5_performant_completed,
};
struct board_type {
u32 board_id;
char *product_name;
struct access_method *access;
};
#endif /* HPSA_H */