// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for NAND MLC Controller in LPC32xx
*
* Author: Roland Stigge <[email protected]>
*
* Copyright © 2011 WORK Microwave GmbH
* Copyright © 2011, 2012 Roland Stigge
*
* NAND Flash Controller Operation:
* - Read: Auto Decode
* - Write: Auto Encode
* - Tested Page Sizes: 2048, 4096
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/gpio/consumer.h>
#include <linux/mtd/lpc32xx_mlc.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#define DRV_NAME "lpc32xx_mlc"
/**********************************************************************
* MLC NAND controller register offsets
**********************************************************************/
#define MLC_BUFF(x) (x + 0x00000)
#define MLC_DATA(x) (x + 0x08000)
#define MLC_CMD(x) (x + 0x10000)
#define MLC_ADDR(x) (x + 0x10004)
#define MLC_ECC_ENC_REG(x) (x + 0x10008)
#define MLC_ECC_DEC_REG(x) (x + 0x1000C)
#define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010)
#define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014)
#define MLC_RPR(x) (x + 0x10018)
#define MLC_WPR(x) (x + 0x1001C)
#define MLC_RUBP(x) (x + 0x10020)
#define MLC_ROBP(x) (x + 0x10024)
#define MLC_SW_WP_ADD_LOW(x) (x + 0x10028)
#define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C)
#define MLC_ICR(x) (x + 0x10030)
#define MLC_TIME_REG(x) (x + 0x10034)
#define MLC_IRQ_MR(x) (x + 0x10038)
#define MLC_IRQ_SR(x) (x + 0x1003C)
#define MLC_LOCK_PR(x) (x + 0x10044)
#define MLC_ISR(x) (x + 0x10048)
#define MLC_CEH(x) (x + 0x1004C)
/**********************************************************************
* MLC_CMD bit definitions
**********************************************************************/
#define MLCCMD_RESET 0xFF
/**********************************************************************
* MLC_ICR bit definitions
**********************************************************************/
#define MLCICR_WPROT (1 << 3)
#define MLCICR_LARGEBLOCK (1 << 2)
#define MLCICR_LONGADDR (1 << 1)
#define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */
/**********************************************************************
* MLC_TIME_REG bit definitions
**********************************************************************/
#define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24)
#define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19)
#define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16)
#define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12)
#define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8)
#define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4)
#define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0)
/**********************************************************************
* MLC_IRQ_MR and MLC_IRQ_SR bit definitions
**********************************************************************/
#define MLCIRQ_NAND_READY (1 << 5)
#define MLCIRQ_CONTROLLER_READY (1 << 4)
#define MLCIRQ_DECODE_FAILURE (1 << 3)
#define MLCIRQ_DECODE_ERROR (1 << 2)
#define MLCIRQ_ECC_READY (1 << 1)
#define MLCIRQ_WRPROT_FAULT (1 << 0)
/**********************************************************************
* MLC_LOCK_PR bit definitions
**********************************************************************/
#define MLCLOCKPR_MAGIC 0xA25E
/**********************************************************************
* MLC_ISR bit definitions
**********************************************************************/
#define MLCISR_DECODER_FAILURE (1 << 6)
#define MLCISR_ERRORS ((1 << 4) | (1 << 5))
#define MLCISR_ERRORS_DETECTED (1 << 3)
#define MLCISR_ECC_READY (1 << 2)
#define MLCISR_CONTROLLER_READY (1 << 1)
#define MLCISR_NAND_READY (1 << 0)
/**********************************************************************
* MLC_CEH bit definitions
**********************************************************************/
#define MLCCEH_NORMAL (1 << 0)
struct lpc32xx_nand_cfg_mlc {
uint32_t tcea_delay;
uint32_t busy_delay;
uint32_t nand_ta;
uint32_t rd_high;
uint32_t rd_low;
uint32_t wr_high;
uint32_t wr_low;
struct mtd_partition *parts;
unsigned num_parts;
};
static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
if (section >= nand_chip->ecc.steps)
return -ERANGE;
oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
oobregion->length = nand_chip->ecc.bytes;
return 0;
}
static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
if (section >= nand_chip->ecc.steps)
return -ERANGE;
oobregion->offset = 16 * section;
oobregion->length = 16 - nand_chip->ecc.bytes;
return 0;
}
static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
.ecc = lpc32xx_ooblayout_ecc,
.free = lpc32xx_ooblayout_free,
};
static struct nand_bbt_descr lpc32xx_nand_bbt = {
.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
NAND_BBT_WRITE,
.pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
};
static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
NAND_BBT_WRITE,
.pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
};
struct lpc32xx_nand_host {
struct platform_device *pdev;
struct nand_chip nand_chip;
struct lpc32xx_mlc_platform_data *pdata;
struct clk *clk;
struct gpio_desc *wp_gpio;
void __iomem *io_base;
int irq;
struct lpc32xx_nand_cfg_mlc *ncfg;
struct completion comp_nand;
struct completion comp_controller;
uint32_t llptr;
/*
* Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
*/
dma_addr_t oob_buf_phy;
/*
* Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
*/
uint8_t *oob_buf;
/* Physical address of DMA base address */
dma_addr_t io_base_phy;
struct completion comp_dma;
struct dma_chan *dma_chan;
struct dma_slave_config dma_slave_config;
struct scatterlist sgl;
uint8_t *dma_buf;
uint8_t *dummy_buf;
int mlcsubpages; /* number of 512bytes-subpages */
};
/*
* Activate/Deactivate DMA Operation:
*
* Using the PL080 DMA Controller for transferring the 512 byte subpages
* instead of doing readl() / writel() in a loop slows it down significantly.
* Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
*
* - readl() of 128 x 32 bits in a loop: ~20us
* - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
* - DMA read of 512 bytes (32 bit, no bursts): ~100us
*
* This applies to the transfer itself. In the DMA case: only the
* wait_for_completion() (DMA setup _not_ included).
*
* Note that the 512 bytes subpage transfer is done directly from/to a
* FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
* 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
* controller transferring data between its internal buffer to/from the NAND
* chip.)
*
* Therefore, using the PL080 DMA is disabled by default, for now.
*
*/
static int use_dma;
static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
{
uint32_t clkrate, tmp;
/* Reset MLC controller */
writel(MLCCMD_RESET, MLC_CMD(host->io_base));
udelay(1000);
/* Get base clock for MLC block */
clkrate = clk_get_rate(host->clk);
if (clkrate == 0)
clkrate = 104000000;
/* Unlock MLC_ICR
* (among others, will be locked again automatically) */
writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
/* Configure MLC Controller: Large Block, 5 Byte Address */
tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
writel(tmp, MLC_ICR(host->io_base));
/* Unlock MLC_TIME_REG
* (among others, will be locked again automatically) */
writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
/* Compute clock setup values, see LPC and NAND manual */
tmp = 0;
tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
writel(tmp, MLC_TIME_REG(host->io_base));
/* Enable IRQ for CONTROLLER_READY and NAND_READY */
writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
MLC_IRQ_MR(host->io_base));
/* Normal nCE operation: nCE controlled by controller */
writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
}
/*
* Hardware specific access to control lines
*/
static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
unsigned int ctrl)
{
struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
if (cmd != NAND_CMD_NONE) {
if (ctrl & NAND_CLE)
writel(cmd, MLC_CMD(host->io_base));
else
writel(cmd, MLC_ADDR(host->io_base));
}
}
/*
* Read Device Ready (NAND device _and_ controller ready)
*/
static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
{
struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
if ((readb(MLC_ISR(host->io_base)) &
(MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
(MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
return 1;
return 0;
}
static irqreturn_t lpc3xxx_nand_irq(int irq, void *data)
{
struct lpc32xx_nand_host *host = data;
uint8_t sr;
/* Clear interrupt flag by reading status */
sr = readb(MLC_IRQ_SR(host->io_base));
if (sr & MLCIRQ_NAND_READY)
complete(&host->comp_nand);
if (sr & MLCIRQ_CONTROLLER_READY)
complete(&host->comp_controller);
return IRQ_HANDLED;
}
static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
goto exit;
wait_for_completion(&host->comp_nand);
while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
/* Seems to be delayed sometimes by controller */
dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
cpu_relax();
}
exit:
return NAND_STATUS_READY;
}
static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
goto exit;
wait_for_completion(&host->comp_controller);
while (!(readb(MLC_ISR(host->io_base)) &
MLCISR_CONTROLLER_READY)) {
dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
cpu_relax();
}
exit:
return NAND_STATUS_READY;
}
static int lpc32xx_waitfunc(struct nand_chip *chip)
{
lpc32xx_waitfunc_nand(chip);
lpc32xx_waitfunc_controller(chip);
return NAND_STATUS_READY;
}
/*
* Enable NAND write protect
*/
static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
{
if (host->wp_gpio)
gpiod_set_value_cansleep(host->wp_gpio, 1);
}
/*
* Disable NAND write protect
*/
static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
{
if (host->wp_gpio)
gpiod_set_value_cansleep(host->wp_gpio, 0);
}
static void lpc32xx_dma_complete_func(void *completion)
{
complete(completion);
}
static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
enum dma_transfer_direction dir)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
struct dma_async_tx_descriptor *desc;
int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
int res;
sg_init_one(&host->sgl, mem, len);
res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
DMA_BIDIRECTIONAL);
if (res != 1) {
dev_err(mtd->dev.parent, "Failed to map sg list\n");
return -ENXIO;
}
desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
flags);
if (!desc) {
dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
goto out1;
}
init_completion(&host->comp_dma);
desc->callback = lpc32xx_dma_complete_func;
desc->callback_param = &host->comp_dma;
dmaengine_submit(desc);
dma_async_issue_pending(host->dma_chan);
wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
DMA_BIDIRECTIONAL);
return 0;
out1:
dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
DMA_BIDIRECTIONAL);
return -ENXIO;
}
static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
int i, j;
uint8_t *oobbuf = chip->oob_poi;
uint32_t mlc_isr;
int res;
uint8_t *dma_buf;
bool dma_mapped;
if ((void *)buf <= high_memory) {
dma_buf = buf;
dma_mapped = true;
} else {
dma_buf = host->dma_buf;
dma_mapped = false;
}
/* Writing Command and Address */
nand_read_page_op(chip, page, 0, NULL, 0);
/* For all sub-pages */
for (i = 0; i < host->mlcsubpages; i++) {
/* Start Auto Decode Command */
writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
/* Wait for Controller Ready */
lpc32xx_waitfunc_controller(chip);
/* Check ECC Error status */
mlc_isr = readl(MLC_ISR(host->io_base));
if (mlc_isr & MLCISR_DECODER_FAILURE) {
mtd->ecc_stats.failed++;
dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
} else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
}
/* Read 512 + 16 Bytes */
if (use_dma) {
res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
DMA_DEV_TO_MEM);
if (res)
return res;
} else {
for (j = 0; j < (512 >> 2); j++) {
*((uint32_t *)(buf)) =
readl(MLC_BUFF(host->io_base));
buf += 4;
}
}
for (j = 0; j < (16 >> 2); j++) {
*((uint32_t *)(oobbuf)) =
readl(MLC_BUFF(host->io_base));
oobbuf += 4;
}
}
if (use_dma && !dma_mapped)
memcpy(buf, dma_buf, mtd->writesize);
return 0;
}
static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
const uint8_t *oobbuf = chip->oob_poi;
uint8_t *dma_buf = (uint8_t *)buf;
int res;
int i, j;
if (use_dma && (void *)buf >= high_memory) {
dma_buf = host->dma_buf;
memcpy(dma_buf, buf, mtd->writesize);
}
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
for (i = 0; i < host->mlcsubpages; i++) {
/* Start Encode */
writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
/* Write 512 + 6 Bytes to Buffer */
if (use_dma) {
res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
DMA_MEM_TO_DEV);
if (res)
return res;
} else {
for (j = 0; j < (512 >> 2); j++) {
writel(*((uint32_t *)(buf)),
MLC_BUFF(host->io_base));
buf += 4;
}
}
writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
oobbuf += 4;
writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
oobbuf += 12;
/* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
/* Wait for Controller Ready */
lpc32xx_waitfunc_controller(chip);
}
return nand_prog_page_end_op(chip);
}
static int lpc32xx_read_oob(struct nand_chip *chip, int page)
{
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
/* Read whole page - necessary with MLC controller! */
lpc32xx_read_page(chip, host->dummy_buf, 1, page);
return 0;
}
static int lpc32xx_write_oob(struct nand_chip *chip, int page)
{
/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
return 0;
}
/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
{
/* Always enabled! */
}
static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
{
struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
dma_cap_mask_t mask;
host->dma_chan = dma_request_chan(mtd->dev.parent, "rx-tx");
if (IS_ERR(host->dma_chan)) {
/* fallback to request using platform data */
if (!host->pdata || !host->pdata->dma_filter) {
dev_err(mtd->dev.parent, "no DMA platform data\n");
return -ENOENT;
}
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, "nand-mlc");
if (!host->dma_chan) {
dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
return -EBUSY;
}
}
/*
* Set direction to a sensible value even if the dmaengine driver
* should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
* driver criticizes it as "alien transfer direction".
*/
host->dma_slave_config.direction = DMA_DEV_TO_MEM;
host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_slave_config.src_maxburst = 128;
host->dma_slave_config.dst_maxburst = 128;
/* DMA controller does flow control: */
host->dma_slave_config.device_fc = false;
host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
goto out1;
}
return 0;
out1:
dma_release_channel(host->dma_chan);
return -ENXIO;
}
static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
{
struct lpc32xx_nand_cfg_mlc *ncfg;
struct device_node *np = dev->of_node;
ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
if (!ncfg)
return NULL;
of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
!ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
!ncfg->wr_low) {
dev_err(dev, "chip parameters not specified correctly\n");
return NULL;
}
return ncfg;
}
static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
struct device *dev = &host->pdev->dev;
if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
return 0;
host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
if (!host->dma_buf)
return -ENOMEM;
host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
if (!host->dummy_buf)
return -ENOMEM;
chip->ecc.size = 512;
chip->ecc.hwctl = lpc32xx_ecc_enable;
chip->ecc.read_page_raw = lpc32xx_read_page;
chip->ecc.read_page = lpc32xx_read_page;
chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
chip->ecc.write_page = lpc32xx_write_page_lowlevel;
chip->ecc.write_oob = lpc32xx_write_oob;
chip->ecc.read_oob = lpc32xx_read_oob;
chip->ecc.strength = 4;
chip->ecc.bytes = 10;
mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
host->mlcsubpages = mtd->writesize / 512;
return 0;
}
static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
.attach_chip = lpc32xx_nand_attach_chip,
};
/*
* Probe for NAND controller
*/
static int lpc32xx_nand_probe(struct platform_device *pdev)
{
struct lpc32xx_nand_host *host;
struct mtd_info *mtd;
struct nand_chip *nand_chip;
struct resource *rc;
int res;
/* Allocate memory for the device structure (and zero it) */
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->pdev = pdev;
host->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &rc);
if (IS_ERR(host->io_base))
return PTR_ERR(host->io_base);
host->io_base_phy = rc->start;
nand_chip = &host->nand_chip;
mtd = nand_to_mtd(nand_chip);
if (pdev->dev.of_node)
host->ncfg = lpc32xx_parse_dt(&pdev->dev);
if (!host->ncfg) {
dev_err(&pdev->dev,
"Missing or bad NAND config from device tree\n");
return -ENOENT;
}
/* Start with WP disabled, if available */
host->wp_gpio = gpiod_get_optional(&pdev->dev, NULL, GPIOD_OUT_LOW);
res = PTR_ERR_OR_ZERO(host->wp_gpio);
if (res) {
if (res != -EPROBE_DEFER)
dev_err(&pdev->dev, "WP GPIO is not available: %d\n",
res);
return res;
}
gpiod_set_consumer_name(host->wp_gpio, "NAND WP");
host->pdata = dev_get_platdata(&pdev->dev);
/* link the private data structures */
nand_set_controller_data(nand_chip, host);
nand_set_flash_node(nand_chip, pdev->dev.of_node);
mtd->dev.parent = &pdev->dev;
/* Get NAND clock */
host->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk)) {
dev_err(&pdev->dev, "Clock initialization failure\n");
res = -ENOENT;
goto free_gpio;
}
res = clk_prepare_enable(host->clk);
if (res)
goto put_clk;
nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
nand_chip->legacy.chip_delay = 25; /* us */
nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
/* Init NAND controller */
lpc32xx_nand_setup(host);
platform_set_drvdata(pdev, host);
/* Initialize function pointers */
nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
nand_chip->options = NAND_NO_SUBPAGE_WRITE;
nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
nand_chip->bbt_td = &lpc32xx_nand_bbt;
nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
if (use_dma) {
res = lpc32xx_dma_setup(host);
if (res) {
res = -EIO;
goto unprepare_clk;
}
}
/* initially clear interrupt status */
readb(MLC_IRQ_SR(host->io_base));
init_completion(&host->comp_nand);
init_completion(&host->comp_controller);
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0) {
res = -EINVAL;
goto release_dma_chan;
}
if (request_irq(host->irq, &lpc3xxx_nand_irq,
IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
res = -ENXIO;
goto release_dma_chan;
}
/*
* Scan to find existence of the device and get the type of NAND device:
* SMALL block or LARGE block.
*/
nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
res = nand_scan(nand_chip, 1);
if (res)
goto free_irq;
mtd->name = DRV_NAME;
res = mtd_device_register(mtd, host->ncfg->parts,
host->ncfg->num_parts);
if (res)
goto cleanup_nand;
return 0;
cleanup_nand:
nand_cleanup(nand_chip);
free_irq:
free_irq(host->irq, host);
release_dma_chan:
if (use_dma)
dma_release_channel(host->dma_chan);
unprepare_clk:
clk_disable_unprepare(host->clk);
put_clk:
clk_put(host->clk);
free_gpio:
lpc32xx_wp_enable(host);
gpiod_put(host->wp_gpio);
return res;
}
/*
* Remove NAND device
*/
static void lpc32xx_nand_remove(struct platform_device *pdev)
{
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
struct nand_chip *chip = &host->nand_chip;
int ret;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
free_irq(host->irq, host);
if (use_dma)
dma_release_channel(host->dma_chan);
clk_disable_unprepare(host->clk);
clk_put(host->clk);
lpc32xx_wp_enable(host);
gpiod_put(host->wp_gpio);
}
static int lpc32xx_nand_resume(struct platform_device *pdev)
{
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
int ret;
/* Re-enable NAND clock */
ret = clk_prepare_enable(host->clk);
if (ret)
return ret;
/* Fresh init of NAND controller */
lpc32xx_nand_setup(host);
/* Disable write protect */
lpc32xx_wp_disable(host);
return 0;
}
static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
{
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
/* Enable write protect for safety */
lpc32xx_wp_enable(host);
/* Disable clock */
clk_disable_unprepare(host->clk);
return 0;
}
static const struct of_device_id lpc32xx_nand_match[] = {
{ .compatible = "nxp,lpc3220-mlc" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
static struct platform_driver lpc32xx_nand_driver = {
.probe = lpc32xx_nand_probe,
.remove_new = lpc32xx_nand_remove,
.resume = pm_ptr(lpc32xx_nand_resume),
.suspend = pm_ptr(lpc32xx_nand_suspend),
.driver = {
.name = DRV_NAME,
.of_match_table = lpc32xx_nand_match,
},
};
module_platform_driver(lpc32xx_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Roland Stigge <[email protected]>");
MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");