// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/bitfield.h>
#include <linux/mtd/spi-nor.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include "core.h"
#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
#define SFDP_PARAM_HEADER_PTP(p) \
(((p)->parameter_table_pointer[2] << 16) | \
((p)->parameter_table_pointer[1] << 8) | \
((p)->parameter_table_pointer[0] << 0))
#define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
#define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
#define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
#define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */
#define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */
#define SFDP_SCCR_MAP_ID 0xff87 /*
* Status, Control and Configuration
* Register Map.
*/
#define SFDP_SCCR_MAP_MC_ID 0xff88 /*
* Status, Control and Configuration
* Register Map Offsets for Multi-Chip
* SPI Memory Devices.
*/
#define SFDP_SIGNATURE 0x50444653U
struct sfdp_header {
u32 signature; /* Ox50444653U <=> "SFDP" */
u8 minor;
u8 major;
u8 nph; /* 0-base number of parameter headers */
u8 unused;
/* Basic Flash Parameter Table. */
struct sfdp_parameter_header bfpt_header;
};
/* Fast Read settings. */
struct sfdp_bfpt_read {
/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
u32 hwcaps;
/*
* The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
* whether the Fast Read x-y-z command is supported.
*/
u32 supported_dword;
u32 supported_bit;
/*
* The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
* encodes the op code, the number of mode clocks and the number of wait
* states to be used by Fast Read x-y-z command.
*/
u32 settings_dword;
u32 settings_shift;
/* The SPI protocol for this Fast Read x-y-z command. */
enum spi_nor_protocol proto;
};
struct sfdp_bfpt_erase {
/*
* The half-word at offset <shift> in DWORD <dword> encodes the
* op code and erase sector size to be used by Sector Erase commands.
*/
u32 dword;
u32 shift;
};
#define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22)
#define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22)
#define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22)
#define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22)
#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22)
#define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16)
#define SMPT_CMD_READ_DUMMY_SHIFT 16
#define SMPT_CMD_READ_DUMMY(_cmd) \
(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
#define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL
#define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24)
#define SMPT_CMD_READ_DATA_SHIFT 24
#define SMPT_CMD_READ_DATA(_cmd) \
(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
#define SMPT_CMD_OPCODE_MASK GENMASK(15, 8)
#define SMPT_CMD_OPCODE_SHIFT 8
#define SMPT_CMD_OPCODE(_cmd) \
(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
#define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16)
#define SMPT_MAP_REGION_COUNT_SHIFT 16
#define SMPT_MAP_REGION_COUNT(_header) \
((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
SMPT_MAP_REGION_COUNT_SHIFT) + 1)
#define SMPT_MAP_ID_MASK GENMASK(15, 8)
#define SMPT_MAP_ID_SHIFT 8
#define SMPT_MAP_ID(_header) \
(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
#define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8)
#define SMPT_MAP_REGION_SIZE_SHIFT 8
#define SMPT_MAP_REGION_SIZE(_region) \
(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
#define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0)
#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
#define SMPT_DESC_TYPE_MAP BIT(1)
#define SMPT_DESC_END BIT(0)
#define SFDP_4BAIT_DWORD_MAX 2
struct sfdp_4bait {
/* The hardware capability. */
u32 hwcaps;
/*
* The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
* the associated 4-byte address op code is supported.
*/
u32 supported_bit;
};
/**
* spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
* addr_nbytes and read_dummy members of the struct spi_nor
* should be previously set.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the serial flash memory
* @len: number of bytes to read
* @buf: buffer where the data is copied into (dma-safe memory)
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
{
ssize_t ret;
while (len) {
ret = spi_nor_read_data(nor, addr, len, buf);
if (ret < 0)
return ret;
if (!ret || ret > len)
return -EIO;
buf += ret;
addr += ret;
len -= ret;
}
return 0;
}
/**
* spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the SFDP area to start reading data from
* @len: number of bytes to read
* @buf: buffer where the SFDP data are copied into (dma-safe memory)
*
* Whatever the actual numbers of bytes for address and dummy cycles are
* for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
* followed by a 3-byte address and 8 dummy clock cycles.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
size_t len, void *buf)
{
u8 addr_nbytes, read_opcode, read_dummy;
int ret;
read_opcode = nor->read_opcode;
addr_nbytes = nor->addr_nbytes;
read_dummy = nor->read_dummy;
nor->read_opcode = SPINOR_OP_RDSFDP;
nor->addr_nbytes = 3;
nor->read_dummy = 8;
ret = spi_nor_read_raw(nor, addr, len, buf);
nor->read_opcode = read_opcode;
nor->addr_nbytes = addr_nbytes;
nor->read_dummy = read_dummy;
return ret;
}
/**
* spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the SFDP area to start reading data from
* @len: number of bytes to read
* @buf: buffer where the SFDP data are copied into
*
* Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
* guaranteed to be dma-safe.
*
* Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
* otherwise.
*/
static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
size_t len, void *buf)
{
void *dma_safe_buf;
int ret;
dma_safe_buf = kmalloc(len, GFP_KERNEL);
if (!dma_safe_buf)
return -ENOMEM;
ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
memcpy(buf, dma_safe_buf, len);
kfree(dma_safe_buf);
return ret;
}
static void
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
u16 half,
enum spi_nor_protocol proto)
{
read->num_mode_clocks = (half >> 5) & 0x07;
read->num_wait_states = (half >> 0) & 0x1f;
read->opcode = (half >> 8) & 0xff;
read->proto = proto;
}
static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
/* Fast Read 1-1-2 */
{
SNOR_HWCAPS_READ_1_1_2,
SFDP_DWORD(1), BIT(16), /* Supported bit */
SFDP_DWORD(4), 0, /* Settings */
SNOR_PROTO_1_1_2,
},
/* Fast Read 1-2-2 */
{
SNOR_HWCAPS_READ_1_2_2,
SFDP_DWORD(1), BIT(20), /* Supported bit */
SFDP_DWORD(4), 16, /* Settings */
SNOR_PROTO_1_2_2,
},
/* Fast Read 2-2-2 */
{
SNOR_HWCAPS_READ_2_2_2,
SFDP_DWORD(5), BIT(0), /* Supported bit */
SFDP_DWORD(6), 16, /* Settings */
SNOR_PROTO_2_2_2,
},
/* Fast Read 1-1-4 */
{
SNOR_HWCAPS_READ_1_1_4,
SFDP_DWORD(1), BIT(22), /* Supported bit */
SFDP_DWORD(3), 16, /* Settings */
SNOR_PROTO_1_1_4,
},
/* Fast Read 1-4-4 */
{
SNOR_HWCAPS_READ_1_4_4,
SFDP_DWORD(1), BIT(21), /* Supported bit */
SFDP_DWORD(3), 0, /* Settings */
SNOR_PROTO_1_4_4,
},
/* Fast Read 4-4-4 */
{
SNOR_HWCAPS_READ_4_4_4,
SFDP_DWORD(5), BIT(4), /* Supported bit */
SFDP_DWORD(7), 16, /* Settings */
SNOR_PROTO_4_4_4,
},
};
static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
/* Erase Type 1 in DWORD8 bits[15:0] */
{SFDP_DWORD(8), 0},
/* Erase Type 2 in DWORD8 bits[31:16] */
{SFDP_DWORD(8), 16},
/* Erase Type 3 in DWORD9 bits[15:0] */
{SFDP_DWORD(9), 0},
/* Erase Type 4 in DWORD9 bits[31:16] */
{SFDP_DWORD(9), 16},
};
/**
* spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
* @erase: pointer to a structure that describes a SPI NOR erase type
* @size: the size of the sector/block erased by the erase type
* @opcode: the SPI command op code to erase the sector/block
* @i: erase type index as sorted in the Basic Flash Parameter Table
*
* The supported Erase Types will be sorted at init in ascending order, with
* the smallest Erase Type size being the first member in the erase_type array
* of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
* the Basic Flash Parameter Table since it will be used later on to
* synchronize with the supported Erase Types defined in SFDP optional tables.
*/
static void
spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
u32 size, u8 opcode, u8 i)
{
erase->idx = i;
spi_nor_set_erase_type(erase, size, opcode);
}
/**
* spi_nor_map_cmp_erase_type() - compare the map's erase types by size
* @l: member in the left half of the map's erase_type array
* @r: member in the right half of the map's erase_type array
*
* Comparison function used in the sort() call to sort in ascending order the
* map's erase types, the smallest erase type size being the first member in the
* sorted erase_type array.
*
* Return: the result of @l->size - @r->size
*/
static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
{
const struct spi_nor_erase_type *left = l, *right = r;
return left->size - right->size;
}
/**
* spi_nor_sort_erase_mask() - sort erase mask
* @map: the erase map of the SPI NOR
* @erase_mask: the erase type mask to be sorted
*
* Replicate the sort done for the map's erase types in BFPT: sort the erase
* mask in ascending order with the smallest erase type size starting from
* BIT(0) in the sorted erase mask.
*
* Return: sorted erase mask.
*/
static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
{
struct spi_nor_erase_type *erase_type = map->erase_type;
int i;
u8 sorted_erase_mask = 0;
if (!erase_mask)
return 0;
/* Replicate the sort done for the map's erase types. */
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
sorted_erase_mask |= BIT(i);
return sorted_erase_mask;
}
/**
* spi_nor_regions_sort_erase_types() - sort erase types in each region
* @map: the erase map of the SPI NOR
*
* Function assumes that the erase types defined in the erase map are already
* sorted in ascending order, with the smallest erase type size being the first
* member in the erase_type array. It replicates the sort done for the map's
* erase types. Each region's erase bitmask will indicate which erase types are
* supported from the sorted erase types defined in the erase map.
* Sort the all region's erase type at init in order to speed up the process of
* finding the best erase command at runtime.
*/
static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
{
struct spi_nor_erase_region *region = map->regions;
u8 sorted_erase_mask;
unsigned int i;
for (i = 0; i < map->n_regions; i++) {
sorted_erase_mask =
spi_nor_sort_erase_mask(map, region[i].erase_mask);
/* Overwrite erase mask. */
region[i].erase_mask = sorted_erase_mask;
}
}
/**
* spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
* @nor: pointer to a 'struct spi_nor'
* @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
* the Basic Flash Parameter Table length and version
*
* The Basic Flash Parameter Table is the main and only mandatory table as
* defined by the SFDP (JESD216) specification.
* It provides us with the total size (memory density) of the data array and
* the number of address bytes for Fast Read, Page Program and Sector Erase
* commands.
* For Fast READ commands, it also gives the number of mode clock cycles and
* wait states (regrouped in the number of dummy clock cycles) for each
* supported instruction op code.
* For Page Program, the page size is now available since JESD216 rev A, however
* the supported instruction op codes are still not provided.
* For Sector Erase commands, this table stores the supported instruction op
* codes and the associated sector sizes.
* Finally, the Quad Enable Requirements (QER) are also available since JESD216
* rev A. The QER bits encode the manufacturer dependent procedure to be
* executed to set the Quad Enable (QE) bit in some internal register of the
* Quad SPI memory. Indeed the QE bit, when it exists, must be set before
* sending any Quad SPI command to the memory. Actually, setting the QE bit
* tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
* and IO3 hence enabling 4 (Quad) I/O lines.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_bfpt(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header)
{
struct spi_nor_flash_parameter *params = nor->params;
struct spi_nor_erase_map *map = ¶ms->erase_map;
struct spi_nor_erase_type *erase_type = map->erase_type;
struct sfdp_bfpt bfpt;
size_t len;
int i, cmd, err;
u32 addr, val;
u32 dword;
u16 half;
u8 erase_mask;
u8 wait_states, mode_clocks, opcode;
/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
return -EINVAL;
/* Read the Basic Flash Parameter Table. */
len = min_t(size_t, sizeof(bfpt),
bfpt_header->length * sizeof(u32));
addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
memset(&bfpt, 0, sizeof(bfpt));
err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt);
if (err < 0)
return err;
/* Fix endianness of the BFPT DWORDs. */
le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
/* Number of address bytes. */
switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
params->addr_nbytes = 3;
params->addr_mode_nbytes = 3;
break;
case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
params->addr_nbytes = 4;
params->addr_mode_nbytes = 4;
break;
default:
break;
}
/* Flash Memory Density (in bits). */
val = bfpt.dwords[SFDP_DWORD(2)];
if (val & BIT(31)) {
val &= ~BIT(31);
/*
* Prevent overflows on params->size. Anyway, a NOR of 2^64
* bits is unlikely to exist so this error probably means
* the BFPT we are reading is corrupted/wrong.
*/
if (val > 63)
return -EINVAL;
params->size = 1ULL << val;
} else {
params->size = val + 1;
}
params->size >>= 3; /* Convert to bytes. */
/* Fast Read settings. */
for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
struct spi_nor_read_command *read;
if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
params->hwcaps.mask &= ~rd->hwcaps;
continue;
}
params->hwcaps.mask |= rd->hwcaps;
cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
read = ¶ms->reads[cmd];
half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
}
/*
* Sector Erase settings. Reinitialize the uniform erase map using the
* Erase Types defined in the bfpt table.
*/
erase_mask = 0;
memset(¶ms->erase_map, 0, sizeof(params->erase_map));
for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
u32 erasesize;
u8 opcode;
half = bfpt.dwords[er->dword] >> er->shift;
erasesize = half & 0xff;
/* erasesize == 0 means this Erase Type is not supported. */
if (!erasesize)
continue;
erasesize = 1U << erasesize;
opcode = (half >> 8) & 0xff;
erase_mask |= BIT(i);
spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
opcode, i);
}
spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
/*
* Sort all the map's Erase Types in ascending order with the smallest
* erase size being the first member in the erase_type array.
*/
sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
spi_nor_map_cmp_erase_type, NULL);
/*
* Sort the erase types in the uniform region in order to update the
* uniform_erase_type bitmask. The bitmask will be used later on when
* selecting the uniform erase.
*/
spi_nor_regions_sort_erase_types(map);
/* Stop here if not JESD216 rev A or later. */
if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
val = bfpt.dwords[SFDP_DWORD(11)];
val &= BFPT_DWORD11_PAGE_SIZE_MASK;
val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
params->page_size = 1U << val;
/* Quad Enable Requirements. */
switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
case BFPT_DWORD15_QER_NONE:
params->quad_enable = NULL;
break;
case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
/*
* Writing only one byte to the Status Register has the
* side-effect of clearing Status Register 2.
*/
case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
/*
* Read Configuration Register (35h) instruction is not
* supported.
*/
nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
params->quad_enable = spi_nor_sr2_bit1_quad_enable;
break;
case BFPT_DWORD15_QER_SR1_BIT6:
nor->flags &= ~SNOR_F_HAS_16BIT_SR;
params->quad_enable = spi_nor_sr1_bit6_quad_enable;
break;
case BFPT_DWORD15_QER_SR2_BIT7:
nor->flags &= ~SNOR_F_HAS_16BIT_SR;
params->quad_enable = spi_nor_sr2_bit7_quad_enable;
break;
case BFPT_DWORD15_QER_SR2_BIT1:
/*
* JESD216 rev B or later does not specify if writing only one
* byte to the Status Register clears or not the Status
* Register 2, so let's be cautious and keep the default
* assumption of a 16-bit Write Status (01h) command.
*/
nor->flags |= SNOR_F_HAS_16BIT_SR;
params->quad_enable = spi_nor_sr2_bit1_quad_enable;
break;
default:
dev_dbg(nor->dev, "BFPT QER reserved value used\n");
break;
}
dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK;
if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR))
params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B))
params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B))
params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b;
else
dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n");
/* Soft Reset support. */
if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
nor->flags |= SNOR_F_SOFT_RESET;
/* Stop here if not JESD216 rev C or later. */
if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
/* Parse 1-1-8 read instruction */
opcode = FIELD_GET(BFPT_DWORD17_RD_1_1_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
if (opcode) {
mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_1_8_MODE_CLOCKS,
bfpt.dwords[SFDP_DWORD(17)]);
wait_states = FIELD_GET(BFPT_DWORD17_RD_1_1_8_WAIT_STATES,
bfpt.dwords[SFDP_DWORD(17)]);
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
mode_clocks, wait_states, opcode,
SNOR_PROTO_1_1_8);
}
/* Parse 1-8-8 read instruction */
opcode = FIELD_GET(BFPT_DWORD17_RD_1_8_8_CMD, bfpt.dwords[SFDP_DWORD(17)]);
if (opcode) {
mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_8_8_MODE_CLOCKS,
bfpt.dwords[SFDP_DWORD(17)]);
wait_states = FIELD_GET(BFPT_DWORD17_RD_1_8_8_WAIT_STATES,
bfpt.dwords[SFDP_DWORD(17)]);
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_8_8;
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_8_8],
mode_clocks, wait_states, opcode,
SNOR_PROTO_1_8_8);
}
/* 8D-8D-8D command extension. */
switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
case BFPT_DWORD18_CMD_EXT_REP:
nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
break;
case BFPT_DWORD18_CMD_EXT_INV:
nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
break;
case BFPT_DWORD18_CMD_EXT_RES:
dev_dbg(nor->dev, "Reserved command extension used\n");
break;
case BFPT_DWORD18_CMD_EXT_16B:
dev_dbg(nor->dev, "16-bit opcodes not supported\n");
return -EOPNOTSUPP;
}
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
}
/**
* spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
* configuration detection command.
* @nor: pointer to a 'struct spi_nor'
* @settings: configuration detection command descriptor, dword1
*/
static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
{
switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
case SMPT_CMD_ADDRESS_LEN_0:
return 0;
case SMPT_CMD_ADDRESS_LEN_3:
return 3;
case SMPT_CMD_ADDRESS_LEN_4:
return 4;
case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
default:
return nor->params->addr_mode_nbytes;
}
}
/**
* spi_nor_smpt_read_dummy() - return the configuration detection command read
* latency, in clock cycles.
* @nor: pointer to a 'struct spi_nor'
* @settings: configuration detection command descriptor, dword1
*
* Return: the number of dummy cycles for an SMPT read
*/
static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
{
u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
return nor->read_dummy;
return read_dummy;
}
/**
* spi_nor_get_map_in_use() - get the configuration map in use
* @nor: pointer to a 'struct spi_nor'
* @smpt: pointer to the sector map parameter table
* @smpt_len: sector map parameter table length
*
* Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
*/
static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
u8 smpt_len)
{
const u32 *ret;
u8 *buf;
u32 addr;
int err;
u8 i;
u8 addr_nbytes, read_opcode, read_dummy;
u8 read_data_mask, map_id;
/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
buf = kmalloc(sizeof(*buf), GFP_KERNEL);
if (!buf)
return ERR_PTR(-ENOMEM);
addr_nbytes = nor->addr_nbytes;
read_dummy = nor->read_dummy;
read_opcode = nor->read_opcode;
map_id = 0;
/* Determine if there are any optional Detection Command Descriptors */
for (i = 0; i < smpt_len; i += 2) {
if (smpt[i] & SMPT_DESC_TYPE_MAP)
break;
read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
addr = smpt[i + 1];
err = spi_nor_read_raw(nor, addr, 1, buf);
if (err) {
ret = ERR_PTR(err);
goto out;
}
/*
* Build an index value that is used to select the Sector Map
* Configuration that is currently in use.
*/
map_id = map_id << 1 | !!(*buf & read_data_mask);
}
/*
* If command descriptors are provided, they always precede map
* descriptors in the table. There is no need to start the iteration
* over smpt array all over again.
*
* Find the matching configuration map.
*/
ret = ERR_PTR(-EINVAL);
while (i < smpt_len) {
if (SMPT_MAP_ID(smpt[i]) == map_id) {
ret = smpt + i;
break;
}
/*
* If there are no more configuration map descriptors and no
* configuration ID matched the configuration identifier, the
* sector address map is unknown.
*/
if (smpt[i] & SMPT_DESC_END)
break;
/* increment the table index to the next map */
i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
}
/* fall through */
out:
kfree(buf);
nor->addr_nbytes = addr_nbytes;
nor->read_dummy = read_dummy;
nor->read_opcode = read_opcode;
return ret;
}
/**
* spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
* @region: pointer to a structure that describes a SPI NOR erase region
* @erase: pointer to a structure that describes a SPI NOR erase type
* @erase_type: erase type bitmask
*/
static void
spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
const struct spi_nor_erase_type *erase,
const u8 erase_type)
{
int i;
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
continue;
if (region->size & erase[i].size_mask) {
region->overlaid = true;
return;
}
}
}
/**
* spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
* @nor: pointer to a 'struct spi_nor'
* @smpt: pointer to the sector map parameter table
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
const u32 *smpt)
{
struct spi_nor_erase_map *map = &nor->params->erase_map;
struct spi_nor_erase_type *erase = map->erase_type;
struct spi_nor_erase_region *region;
u64 offset;
u32 region_count;
int i, j;
u8 uniform_erase_type, save_uniform_erase_type;
u8 erase_type, regions_erase_type;
region_count = SMPT_MAP_REGION_COUNT(*smpt);
/*
* The regions will be freed when the driver detaches from the
* device.
*/
region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
GFP_KERNEL);
if (!region)
return -ENOMEM;
map->regions = region;
map->n_regions = region_count;
uniform_erase_type = 0xff;
regions_erase_type = 0;
offset = 0;
/* Populate regions. */
for (i = 0; i < region_count; i++) {
j = i + 1; /* index for the region dword */
region[i].offset = offset;
region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
region[i].erase_mask = erase_type;
spi_nor_region_check_overlay(®ion[i], erase, erase_type);
/*
* Save the erase types that are supported in all regions and
* can erase the entire flash memory.
*/
uniform_erase_type &= erase_type;
/*
* regions_erase_type mask will indicate all the erase types
* supported in this configuration map.
*/
regions_erase_type |= erase_type;
offset = region[i].offset + region[i].size;
}
save_uniform_erase_type = map->uniform_region.erase_mask;
map->uniform_region.erase_mask =
spi_nor_sort_erase_mask(map,
uniform_erase_type);
if (!regions_erase_type) {
/*
* Roll back to the previous uniform_erase_type mask, SMPT is
* broken.
*/
map->uniform_region.erase_mask = save_uniform_erase_type;
return -EINVAL;
}
/*
* BFPT advertises all the erase types supported by all the possible
* map configurations. Mask out the erase types that are not supported
* by the current map configuration.
*/
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
if (!(regions_erase_type & BIT(erase[i].idx)))
spi_nor_mask_erase_type(&erase[i]);
return 0;
}
/**
* spi_nor_parse_smpt() - parse Sector Map Parameter Table
* @nor: pointer to a 'struct spi_nor'
* @smpt_header: sector map parameter table header
*
* This table is optional, but when available, we parse it to identify the
* location and size of sectors within the main data array of the flash memory
* device and to identify which Erase Types are supported by each sector.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_smpt(struct spi_nor *nor,
const struct sfdp_parameter_header *smpt_header)
{
const u32 *sector_map;
u32 *smpt;
size_t len;
u32 addr;
int ret;
/* Read the Sector Map Parameter Table. */
len = smpt_header->length * sizeof(*smpt);
smpt = kmalloc(len, GFP_KERNEL);
if (!smpt)
return -ENOMEM;
addr = SFDP_PARAM_HEADER_PTP(smpt_header);
ret = spi_nor_read_sfdp(nor, addr, len, smpt);
if (ret)
goto out;
/* Fix endianness of the SMPT DWORDs. */
le32_to_cpu_array(smpt, smpt_header->length);
sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
if (IS_ERR(sector_map)) {
ret = PTR_ERR(sector_map);
goto out;
}
ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
if (ret)
goto out;
spi_nor_regions_sort_erase_types(&nor->params->erase_map);
/* fall through */
out:
kfree(smpt);
return ret;
}
/**
* spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
* @nor: pointer to a 'struct spi_nor'.
* @param_header: pointer to the 'struct sfdp_parameter_header' describing
* the 4-Byte Address Instruction Table length and version.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_4bait(struct spi_nor *nor,
const struct sfdp_parameter_header *param_header)
{
static const struct sfdp_4bait reads[] = {
{ SNOR_HWCAPS_READ, BIT(0) },
{ SNOR_HWCAPS_READ_FAST, BIT(1) },
{ SNOR_HWCAPS_READ_1_1_2, BIT(2) },
{ SNOR_HWCAPS_READ_1_2_2, BIT(3) },
{ SNOR_HWCAPS_READ_1_1_4, BIT(4) },
{ SNOR_HWCAPS_READ_1_4_4, BIT(5) },
{ SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) },
{ SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) },
{ SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) },
{ SNOR_HWCAPS_READ_1_1_8, BIT(20) },
{ SNOR_HWCAPS_READ_1_8_8, BIT(21) },
};
static const struct sfdp_4bait programs[] = {
{ SNOR_HWCAPS_PP, BIT(6) },
{ SNOR_HWCAPS_PP_1_1_4, BIT(7) },
{ SNOR_HWCAPS_PP_1_4_4, BIT(8) },
};
static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
{ 0u /* not used */, BIT(9) },
{ 0u /* not used */, BIT(10) },
{ 0u /* not used */, BIT(11) },
{ 0u /* not used */, BIT(12) },
};
struct spi_nor_flash_parameter *params = nor->params;
struct spi_nor_pp_command *params_pp = params->page_programs;
struct spi_nor_erase_map *map = ¶ms->erase_map;
struct spi_nor_erase_type *erase_type = map->erase_type;
u32 *dwords;
size_t len;
u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
int i, ret;
if (param_header->major != SFDP_JESD216_MAJOR ||
param_header->length < SFDP_4BAIT_DWORD_MAX)
return -EINVAL;
/* Read the 4-byte Address Instruction Table. */
len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
dwords = kmalloc(len, GFP_KERNEL);
if (!dwords)
return -ENOMEM;
addr = SFDP_PARAM_HEADER_PTP(param_header);
ret = spi_nor_read_sfdp(nor, addr, len, dwords);
if (ret)
goto out;
/* Fix endianness of the 4BAIT DWORDs. */
le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
/*
* Compute the subset of (Fast) Read commands for which the 4-byte
* version is supported.
*/
discard_hwcaps = 0;
read_hwcaps = 0;
for (i = 0; i < ARRAY_SIZE(reads); i++) {
const struct sfdp_4bait *read = &reads[i];
discard_hwcaps |= read->hwcaps;
if ((params->hwcaps.mask & read->hwcaps) &&
(dwords[SFDP_DWORD(1)] & read->supported_bit))
read_hwcaps |= read->hwcaps;
}
/*
* Compute the subset of Page Program commands for which the 4-byte
* version is supported.
*/
pp_hwcaps = 0;
for (i = 0; i < ARRAY_SIZE(programs); i++) {
const struct sfdp_4bait *program = &programs[i];
/*
* The 4 Byte Address Instruction (Optional) Table is the only
* SFDP table that indicates support for Page Program Commands.
* Bypass the params->hwcaps.mask and consider 4BAIT the biggest
* authority for specifying Page Program support.
*/
discard_hwcaps |= program->hwcaps;
if (dwords[SFDP_DWORD(1)] & program->supported_bit)
pp_hwcaps |= program->hwcaps;
}
/*
* Compute the subset of Sector Erase commands for which the 4-byte
* version is supported.
*/
erase_mask = 0;
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
const struct sfdp_4bait *erase = &erases[i];
if (dwords[SFDP_DWORD(1)] & erase->supported_bit)
erase_mask |= BIT(i);
}
/* Replicate the sort done for the map's erase types in BFPT. */
erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
/*
* We need at least one 4-byte op code per read, program and erase
* operation; the .read(), .write() and .erase() hooks share the
* nor->addr_nbytes value.
*/
if (!read_hwcaps || !pp_hwcaps || !erase_mask)
goto out;
/*
* Discard all operations from the 4-byte instruction set which are
* not supported by this memory.
*/
params->hwcaps.mask &= ~discard_hwcaps;
params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
/* Use the 4-byte address instruction set. */
for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
struct spi_nor_read_command *read_cmd = ¶ms->reads[i];
read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
}
/* 4BAIT is the only SFDP table that indicates page program support. */
if (pp_hwcaps & SNOR_HWCAPS_PP) {
spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP],
SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
/*
* Since xSPI Page Program opcode is backward compatible with
* Legacy SPI, use Legacy SPI opcode there as well.
*/
spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR],
SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
}
if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4],
SPINOR_OP_PP_1_1_4_4B,
SNOR_PROTO_1_1_4);
if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4],
SPINOR_OP_PP_1_4_4_4B,
SNOR_PROTO_1_4_4);
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
if (erase_mask & BIT(i))
erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >>
erase_type[i].idx * 8) & 0xFF;
else
spi_nor_mask_erase_type(&erase_type[i]);
}
/*
* We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
* later because we already did the conversion to 4byte opcodes. Also,
* this latest function implements a legacy quirk for the erase size of
* Spansion memory. However this quirk is no longer needed with new
* SFDP compliant memories.
*/
params->addr_nbytes = 4;
nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
/* fall through */
out:
kfree(dwords);
return ret;
}
#define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29)
#define PROFILE1_DWORD1_RDSR_DUMMY BIT(28)
#define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8)
#define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7)
#define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27)
#define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17)
#define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7)
/**
* spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
* @nor: pointer to a 'struct spi_nor'
* @profile1_header: pointer to the 'struct sfdp_parameter_header' describing
* the Profile 1.0 Table length and version.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_profile1(struct spi_nor *nor,
const struct sfdp_parameter_header *profile1_header)
{
u32 *dwords, addr;
size_t len;
int ret;
u8 dummy, opcode;
len = profile1_header->length * sizeof(*dwords);
dwords = kmalloc(len, GFP_KERNEL);
if (!dwords)
return -ENOMEM;
addr = SFDP_PARAM_HEADER_PTP(profile1_header);
ret = spi_nor_read_sfdp(nor, addr, len, dwords);
if (ret)
goto out;
le32_to_cpu_array(dwords, profile1_header->length);
/* Get 8D-8D-8D fast read opcode and dummy cycles. */
opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]);
/* Set the Read Status Register dummy cycles and dummy address bytes. */
if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY)
nor->params->rdsr_dummy = 8;
else
nor->params->rdsr_dummy = 4;
if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
nor->params->rdsr_addr_nbytes = 4;
else
nor->params->rdsr_addr_nbytes = 0;
/*
* We don't know what speed the controller is running at. Find the
* dummy cycles for the fastest frequency the flash can run at to be
* sure we are never short of dummy cycles. A value of 0 means the
* frequency is not supported.
*
* Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
* flashes set the correct value if needed in their fixup hooks.
*/
dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]);
if (!dummy)
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ,
dwords[SFDP_DWORD(5)]);
if (!dummy)
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ,
dwords[SFDP_DWORD(5)]);
if (!dummy)
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ,
dwords[SFDP_DWORD(5)]);
if (!dummy)
dev_dbg(nor->dev,
"Can't find dummy cycles from Profile 1.0 table\n");
/* Round up to an even value to avoid tripping controllers up. */
dummy = round_up(dummy, 2);
/* Update the fast read settings. */
nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
0, dummy, opcode,
SNOR_PROTO_8_8_8_DTR);
/*
* Page Program is "Required Command" in the xSPI Profile 1.0. Update
* the params->hwcaps.mask here.
*/
nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
out:
kfree(dwords);
return ret;
}
#define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31)
/**
* spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
* Map.
* @nor: pointer to a 'struct spi_nor'
* @sccr_header: pointer to the 'struct sfdp_parameter_header' describing
* the SCCR Map table length and version.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_sccr(struct spi_nor *nor,
const struct sfdp_parameter_header *sccr_header)
{
struct spi_nor_flash_parameter *params = nor->params;
u32 *dwords, addr;
size_t len;
int ret;
len = sccr_header->length * sizeof(*dwords);
dwords = kmalloc(len, GFP_KERNEL);
if (!dwords)
return -ENOMEM;
addr = SFDP_PARAM_HEADER_PTP(sccr_header);
ret = spi_nor_read_sfdp(nor, addr, len, dwords);
if (ret)
goto out;
le32_to_cpu_array(dwords, sccr_header->length);
/* Address offset for volatile registers (die 0) */
if (!params->vreg_offset) {
params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords),
GFP_KERNEL);
if (!params->vreg_offset) {
ret = -ENOMEM;
goto out;
}
}
params->vreg_offset[0] = dwords[SFDP_DWORD(1)];
params->n_dice = 1;
if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE,
dwords[SFDP_DWORD(22)]))
nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
out:
kfree(dwords);
return ret;
}
/**
* spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration
* Register Map Offsets for Multi-Chip SPI Memory
* Devices.
* @nor: pointer to a 'struct spi_nor'
* @sccr_mc_header: pointer to the 'struct sfdp_parameter_header' describing
* the SCCR Map offsets table length and version.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_sccr_mc(struct spi_nor *nor,
const struct sfdp_parameter_header *sccr_mc_header)
{
struct spi_nor_flash_parameter *params = nor->params;
u32 *dwords, addr;
u8 i, n_dice;
size_t len;
int ret;
len = sccr_mc_header->length * sizeof(*dwords);
dwords = kmalloc(len, GFP_KERNEL);
if (!dwords)
return -ENOMEM;
addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header);
ret = spi_nor_read_sfdp(nor, addr, len, dwords);
if (ret)
goto out;
le32_to_cpu_array(dwords, sccr_mc_header->length);
/*
* Pair of DOWRDs (volatile and non-volatile register offsets) per
* additional die. Hence, length = 2 * (number of additional dice).
*/
n_dice = 1 + sccr_mc_header->length / 2;
/* Address offset for volatile registers of additional dice */
params->vreg_offset =
devm_krealloc(nor->dev, params->vreg_offset,
n_dice * sizeof(*dwords),
GFP_KERNEL);
if (!params->vreg_offset) {
ret = -ENOMEM;
goto out;
}
for (i = 1; i < n_dice; i++)
params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2];
params->n_dice = n_dice;
out:
kfree(dwords);
return ret;
}
/**
* spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
* after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
* tables.
* @nor: pointer to a 'struct spi_nor'
*
* Used to tweak various flash parameters when information provided by the SFDP
* tables are wrong.
*/
static int spi_nor_post_sfdp_fixups(struct spi_nor *nor)
{
int ret;
if (nor->manufacturer && nor->manufacturer->fixups &&
nor->manufacturer->fixups->post_sfdp) {
ret = nor->manufacturer->fixups->post_sfdp(nor);
if (ret)
return ret;
}
if (nor->info->fixups && nor->info->fixups->post_sfdp)
return nor->info->fixups->post_sfdp(nor);
return 0;
}
/**
* spi_nor_check_sfdp_signature() - check for a valid SFDP signature
* @nor: pointer to a 'struct spi_nor'
*
* Used to detect if the flash supports the RDSFDP command as well as the
* presence of a valid SFDP table.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_check_sfdp_signature(struct spi_nor *nor)
{
u32 signature;
int err;
/* Get the SFDP header. */
err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature),
&signature);
if (err < 0)
return err;
/* Check the SFDP signature. */
if (le32_to_cpu(signature) != SFDP_SIGNATURE)
return -EINVAL;
return 0;
}
/**
* spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
*
* The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
* specification. This is a standard which tends to supported by almost all
* (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
* runtime the main parameters needed to perform basic SPI flash operations such
* as Fast Read, Page Program or Sector Erase commands.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_parse_sfdp(struct spi_nor *nor)
{
const struct sfdp_parameter_header *param_header, *bfpt_header;
struct sfdp_parameter_header *param_headers = NULL;
struct sfdp_header header;
struct device *dev = nor->dev;
struct sfdp *sfdp;
size_t sfdp_size;
size_t psize;
int i, err;
/* Get the SFDP header. */
err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
if (err < 0)
return err;
/* Check the SFDP header version. */
if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
header.major != SFDP_JESD216_MAJOR)
return -EINVAL;
/*
* Verify that the first and only mandatory parameter header is a
* Basic Flash Parameter Table header as specified in JESD216.
*/
bfpt_header = &header.bfpt_header;
if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
bfpt_header->major != SFDP_JESD216_MAJOR)
return -EINVAL;
sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
/*
* Allocate memory then read all parameter headers with a single
* Read SFDP command. These parameter headers will actually be parsed
* twice: a first time to get the latest revision of the basic flash
* parameter table, then a second time to handle the supported optional
* tables.
* Hence we read the parameter headers once for all to reduce the
* processing time. Also we use kmalloc() instead of devm_kmalloc()
* because we don't need to keep these parameter headers: the allocated
* memory is always released with kfree() before exiting this function.
*/
if (header.nph) {
psize = header.nph * sizeof(*param_headers);
param_headers = kmalloc(psize, GFP_KERNEL);
if (!param_headers)
return -ENOMEM;
err = spi_nor_read_sfdp(nor, sizeof(header),
psize, param_headers);
if (err < 0) {
dev_dbg(dev, "failed to read SFDP parameter headers\n");
goto exit;
}
}
/*
* Cache the complete SFDP data. It is not (easily) possible to fetch
* SFDP after probe time and we need it for the sysfs access.
*/
for (i = 0; i < header.nph; i++) {
param_header = ¶m_headers[i];
sfdp_size = max_t(size_t, sfdp_size,
SFDP_PARAM_HEADER_PTP(param_header) +
SFDP_PARAM_HEADER_PARAM_LEN(param_header));
}
/*
* Limit the total size to a reasonable value to avoid allocating too
* much memory just of because the flash returned some insane values.
*/
if (sfdp_size > PAGE_SIZE) {
dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
sfdp_size);
sfdp_size = PAGE_SIZE;
}
sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
if (!sfdp) {
err = -ENOMEM;
goto exit;
}
/*
* The SFDP is organized in chunks of DWORDs. Thus, in theory, the
* sfdp_size should be a multiple of DWORDs. But in case a flash
* is not spec compliant, make sure that we have enough space to store
* the complete SFDP data.
*/
sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
sizeof(*sfdp->dwords), GFP_KERNEL);
if (!sfdp->dwords) {
err = -ENOMEM;
devm_kfree(dev, sfdp);
goto exit;
}
err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
if (err < 0) {
dev_dbg(dev, "failed to read SFDP data\n");
devm_kfree(dev, sfdp->dwords);
devm_kfree(dev, sfdp);
goto exit;
}
nor->sfdp = sfdp;
/*
* Check other parameter headers to get the latest revision of
* the basic flash parameter table.
*/
for (i = 0; i < header.nph; i++) {
param_header = ¶m_headers[i];
if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
param_header->major == SFDP_JESD216_MAJOR &&
(param_header->minor > bfpt_header->minor ||
(param_header->minor == bfpt_header->minor &&
param_header->length > bfpt_header->length)))
bfpt_header = param_header;
}
err = spi_nor_parse_bfpt(nor, bfpt_header);
if (err)
goto exit;
/* Parse optional parameter tables. */
for (i = 0; i < header.nph; i++) {
param_header = ¶m_headers[i];
switch (SFDP_PARAM_HEADER_ID(param_header)) {
case SFDP_SECTOR_MAP_ID:
err = spi_nor_parse_smpt(nor, param_header);
break;
case SFDP_4BAIT_ID:
err = spi_nor_parse_4bait(nor, param_header);
break;
case SFDP_PROFILE1_ID:
err = spi_nor_parse_profile1(nor, param_header);
break;
case SFDP_SCCR_MAP_ID:
err = spi_nor_parse_sccr(nor, param_header);
break;
case SFDP_SCCR_MAP_MC_ID:
err = spi_nor_parse_sccr_mc(nor, param_header);
break;
default:
break;
}
if (err) {
dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
SFDP_PARAM_HEADER_ID(param_header));
/*
* Let's not drop all information we extracted so far
* if optional table parsers fail. In case of failing,
* each optional parser is responsible to roll back to
* the previously known spi_nor data.
*/
err = 0;
}
}
err = spi_nor_post_sfdp_fixups(nor);
exit:
kfree(param_headers);
return err;
}