// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
/* flash_info mfr_flag. Used to read proprietary FSR register. */
#define USE_FSR BIT(0)
#define SPINOR_OP_MT_DIE_ERASE 0xc4 /* Chip (die) erase opcode */
#define SPINOR_OP_RDFSR 0x70 /* Read flag status register */
#define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */
#define SPINOR_OP_MT_DTR_RD 0xfd /* Fast Read opcode in DTR mode */
#define SPINOR_OP_MT_RD_ANY_REG 0x85 /* Read volatile register */
#define SPINOR_OP_MT_WR_ANY_REG 0x81 /* Write volatile register */
#define SPINOR_REG_MT_CFR0V 0x00 /* For setting octal DTR mode */
#define SPINOR_REG_MT_CFR1V 0x01 /* For setting dummy cycles */
#define SPINOR_REG_MT_CFR1V_DEF 0x1f /* Default dummy cycles */
#define SPINOR_MT_OCT_DTR 0xe7 /* Enable Octal DTR. */
#define SPINOR_MT_EXSPI 0xff /* Enable Extended SPI (default) */
/* Flag Status Register bits */
#define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */
#define FSR_E_ERR BIT(5) /* Erase operation status */
#define FSR_P_ERR BIT(4) /* Program operation status */
#define FSR_PT_ERR BIT(1) /* Protection error bit */
/* Micron ST SPI NOR flash operations. */
#define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0), \
SPI_MEM_OP_ADDR(naddr, addr, 0), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
#define MICRON_ST_RDFSR_OP(buf) \
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_IN(1, buf, 0))
#define MICRON_ST_CLFSR_OP \
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
static int micron_st_nor_octal_dtr_en(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 *buf = nor->bouncebuf;
int ret;
u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
/* Use 20 dummy cycles for memory array reads. */
*buf = 20;
op = (struct spi_mem_op)
MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
SPINOR_REG_MT_CFR1V, 1, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
buf[0] = SPINOR_MT_OCT_DTR;
op = (struct spi_mem_op)
MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
SPINOR_REG_MT_CFR0V, 1, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
/* Read flash ID to make sure the switch was successful. */
ret = spi_nor_read_id(nor, 0, 8, buf, SNOR_PROTO_8_8_8_DTR);
if (ret) {
dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
return ret;
}
if (memcmp(buf, nor->info->id->bytes, nor->info->id->len))
return -EINVAL;
return 0;
}
static int micron_st_nor_octal_dtr_dis(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 *buf = nor->bouncebuf;
int ret;
/*
* The register is 1-byte wide, but 1-byte transactions are not allowed
* in 8D-8D-8D mode. The next register is the dummy cycle configuration
* register. Since the transaction needs to be at least 2 bytes wide,
* set the next register to its default value. This also makes sense
* because the value was changed when enabling 8D-8D-8D mode, it should
* be reset when disabling.
*/
buf[0] = SPINOR_MT_EXSPI;
buf[1] = SPINOR_REG_MT_CFR1V_DEF;
op = (struct spi_mem_op)
MICRON_ST_NOR_WR_ANY_REG_OP(nor->addr_nbytes,
SPINOR_REG_MT_CFR0V, 2, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
if (ret)
return ret;
/* Read flash ID to make sure the switch was successful. */
ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
if (ret) {
dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
return ret;
}
if (memcmp(buf, nor->info->id->bytes, nor->info->id->len))
return -EINVAL;
return 0;
}
static int micron_st_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
{
return enable ? micron_st_nor_octal_dtr_en(nor) :
micron_st_nor_octal_dtr_dis(nor);
}
static void mt35xu512aba_default_init(struct spi_nor *nor)
{
nor->params->set_octal_dtr = micron_st_nor_set_octal_dtr;
}
static int mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)
{
/* Set the Fast Read settings. */
nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
0, 20, SPINOR_OP_MT_DTR_RD,
SNOR_PROTO_8_8_8_DTR);
nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
nor->params->rdsr_dummy = 8;
nor->params->rdsr_addr_nbytes = 0;
/*
* The BFPT quad enable field is set to a reserved value so the quad
* enable function is ignored by spi_nor_parse_bfpt(). Make sure we
* disable it.
*/
nor->params->quad_enable = NULL;
return 0;
}
static const struct spi_nor_fixups mt35xu512aba_fixups = {
.default_init = mt35xu512aba_default_init,
.post_sfdp = mt35xu512aba_post_sfdp_fixup,
};
static const struct flash_info micron_nor_parts[] = {
{
.id = SNOR_ID(0x2c, 0x5b, 0x1a),
.name = "mt35xu512aba",
.sector_size = SZ_128K,
.size = SZ_64M,
.no_sfdp_flags = SECT_4K | SPI_NOR_OCTAL_READ |
SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP,
.mfr_flags = USE_FSR,
.fixup_flags = SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE,
.fixups = &mt35xu512aba_fixups,
}, {
.id = SNOR_ID(0x2c, 0x5b, 0x1c),
.name = "mt35xu02g",
.sector_size = SZ_128K,
.size = SZ_256M,
.no_sfdp_flags = SECT_4K | SPI_NOR_OCTAL_READ,
.mfr_flags = USE_FSR,
.fixup_flags = SPI_NOR_4B_OPCODES,
},
};
static int mt25qu512a_post_bfpt_fixup(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt)
{
nor->flags &= ~SNOR_F_HAS_16BIT_SR;
return 0;
}
static struct spi_nor_fixups mt25qu512a_fixups = {
.post_bfpt = mt25qu512a_post_bfpt_fixup,
};
static int st_nor_four_die_late_init(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
params->die_erase_opcode = SPINOR_OP_MT_DIE_ERASE;
params->n_dice = 4;
/*
* Unfortunately the die erase opcode does not have a 4-byte opcode
* correspondent for these flashes. The SFDP 4BAIT table fails to
* consider the die erase too. We're forced to enter in the 4 byte
* address mode in order to benefit of the die erase.
*/
return spi_nor_set_4byte_addr_mode(nor, true);
}
static int st_nor_two_die_late_init(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
params->die_erase_opcode = SPINOR_OP_MT_DIE_ERASE;
params->n_dice = 2;
/*
* Unfortunately the die erase opcode does not have a 4-byte opcode
* correspondent for these flashes. The SFDP 4BAIT table fails to
* consider the die erase too. We're forced to enter in the 4 byte
* address mode in order to benefit of the die erase.
*/
return spi_nor_set_4byte_addr_mode(nor, true);
}
static struct spi_nor_fixups n25q00_fixups = {
.late_init = st_nor_four_die_late_init,
};
static struct spi_nor_fixups mt25q01_fixups = {
.late_init = st_nor_two_die_late_init,
};
static struct spi_nor_fixups mt25q02_fixups = {
.late_init = st_nor_four_die_late_init,
};
static const struct flash_info st_nor_parts[] = {
{
.name = "m25p05-nonjedec",
.sector_size = SZ_32K,
.size = SZ_64K,
}, {
.name = "m25p10-nonjedec",
.sector_size = SZ_32K,
.size = SZ_128K,
}, {
.name = "m25p20-nonjedec",
.size = SZ_256K,
}, {
.name = "m25p40-nonjedec",
.size = SZ_512K,
}, {
.name = "m25p80-nonjedec",
.size = SZ_1M,
}, {
.name = "m25p16-nonjedec",
.size = SZ_2M,
}, {
.name = "m25p32-nonjedec",
.size = SZ_4M,
}, {
.name = "m25p64-nonjedec",
.size = SZ_8M,
}, {
.name = "m25p128-nonjedec",
.sector_size = SZ_256K,
.size = SZ_16M,
}, {
.id = SNOR_ID(0x20, 0x20, 0x10),
.name = "m25p05",
.sector_size = SZ_32K,
.size = SZ_64K,
}, {
.id = SNOR_ID(0x20, 0x20, 0x11),
.name = "m25p10",
.sector_size = SZ_32K,
.size = SZ_128K,
}, {
.id = SNOR_ID(0x20, 0x20, 0x12),
.name = "m25p20",
.size = SZ_256K,
}, {
.id = SNOR_ID(0x20, 0x20, 0x13),
.name = "m25p40",
.size = SZ_512K,
}, {
.id = SNOR_ID(0x20, 0x20, 0x14),
.name = "m25p80",
.size = SZ_1M,
}, {
.id = SNOR_ID(0x20, 0x20, 0x15),
.name = "m25p16",
.size = SZ_2M,
}, {
.id = SNOR_ID(0x20, 0x20, 0x16),
.name = "m25p32",
.size = SZ_4M,
}, {
.id = SNOR_ID(0x20, 0x20, 0x17),
.name = "m25p64",
.size = SZ_8M,
}, {
.id = SNOR_ID(0x20, 0x20, 0x18),
.name = "m25p128",
.sector_size = SZ_256K,
.size = SZ_16M,
}, {
.id = SNOR_ID(0x20, 0x40, 0x11),
.name = "m45pe10",
.size = SZ_128K,
}, {
.id = SNOR_ID(0x20, 0x40, 0x14),
.name = "m45pe80",
.size = SZ_1M,
}, {
.id = SNOR_ID(0x20, 0x40, 0x15),
.name = "m45pe16",
.size = SZ_2M,
}, {
.id = SNOR_ID(0x20, 0x63, 0x16),
.name = "m25px32-s1",
.size = SZ_4M,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0x20, 0x71, 0x14),
.name = "m25px80",
.size = SZ_1M,
}, {
.id = SNOR_ID(0x20, 0x71, 0x15),
.name = "m25px16",
.size = SZ_2M,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0x20, 0x71, 0x16),
.name = "m25px32",
.size = SZ_4M,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0x20, 0x71, 0x17),
.name = "m25px64",
.size = SZ_8M,
}, {
.id = SNOR_ID(0x20, 0x73, 0x16),
.name = "m25px32-s0",
.size = SZ_4M,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0x20, 0x80, 0x12),
.name = "m25pe20",
.size = SZ_256K,
}, {
.id = SNOR_ID(0x20, 0x80, 0x14),
.name = "m25pe80",
.size = SZ_1M,
}, {
.id = SNOR_ID(0x20, 0x80, 0x15),
.name = "m25pe16",
.size = SZ_2M,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0x20, 0xba, 0x16),
.name = "n25q032",
.size = SZ_4M,
.no_sfdp_flags = SPI_NOR_QUAD_READ,
}, {
.id = SNOR_ID(0x20, 0xba, 0x17),
.name = "n25q064",
.size = SZ_8M,
.no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
}, {
.id = SNOR_ID(0x20, 0xba, 0x18),
.name = "n25q128a13",
.size = SZ_16M,
.flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6,
.no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
.mfr_flags = USE_FSR,
}, {
.id = SNOR_ID(0x20, 0xba, 0x19, 0x10, 0x44, 0x00),
.name = "mt25ql256a",
.size = SZ_32M,
.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
.fixup_flags = SPI_NOR_4B_OPCODES,
.mfr_flags = USE_FSR,
}, {
.id = SNOR_ID(0x20, 0xba, 0x19),
.name = "n25q256a",
.size = SZ_32M,
.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
.mfr_flags = USE_FSR,
}, {
.id = SNOR_ID(0x20, 0xba, 0x20, 0x10, 0x44, 0x00),
.name = "mt25ql512a",
.size = SZ_64M,
.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
.fixup_flags = SPI_NOR_4B_OPCODES,
.mfr_flags = USE_FSR,
}, {
.id = SNOR_ID(0x20, 0xba, 0x20),
.name = "n25q512ax3",
.size = SZ_64M,
.flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6,
.no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
.mfr_flags = USE_FSR,
}, {
.id = SNOR_ID(0x20, 0xba, 0x21),
.name = "n25q00",
.size = SZ_128M,
.flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6,
.no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
.mfr_flags = USE_FSR,
.fixups = &n25q00_fixups,
}, {
.id = SNOR_ID(0x20, 0xba, 0x22),
.name = "mt25ql02g",
.size = SZ_256M,
.no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
.mfr_flags = USE_FSR,
.fixups = &mt25q02_fixups,
}, {
.id = SNOR_ID(0x20, 0xbb, 0x15),
.name = "n25q016a",
.size = SZ_2M,
.no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
}, {
.id = SNOR_ID(0x20, 0xbb, 0x16),
.name = "n25q032a",
.size = SZ_4M,
.no_sfdp_flags = SPI_NOR_QUAD_READ,
}, {
.id = SNOR_ID(0x20, 0xbb, 0x17),
.name = "n25q064a",
.size = SZ_8M,
.flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6,
.no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
}, {
.id = SNOR_ID(0x20, 0xbb, 0x18),
.name = "n25q128a11",
.size = SZ_16M,
.flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6,
.no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
.mfr_flags = USE_FSR,
}, {
.id = SNOR_ID(0x20, 0xbb, 0x19, 0x10, 0x44, 0x00),
.name = "mt25qu256a",
.size = SZ_32M,
.flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6,
.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
.fixup_flags = SPI_NOR_4B_OPCODES,
.mfr_flags = USE_FSR,
}, {
.id = SNOR_ID(0x20, 0xbb, 0x19),
.name = "n25q256ax1",
.size = SZ_32M,
.no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
.mfr_flags = USE_FSR,
}, {
.id = SNOR_ID(0x20, 0xbb, 0x20, 0x10, 0x44, 0x00),
.name = "mt25qu512a",
.flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6,
.mfr_flags = USE_FSR,
.fixups = &mt25qu512a_fixups,
}, {
.id = SNOR_ID(0x20, 0xbb, 0x20),
.name = "n25q512a",
.size = SZ_64M,
.flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6,
.no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
.mfr_flags = USE_FSR,
}, {
.id = SNOR_ID(0x20, 0xbb, 0x21, 0x10, 0x44, 0x00),
.name = "mt25qu01g",
.mfr_flags = USE_FSR,
.fixups = &mt25q01_fixups,
}, {
.id = SNOR_ID(0x20, 0xbb, 0x21),
.name = "n25q00a",
.size = SZ_128M,
.no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ,
.mfr_flags = USE_FSR,
.fixups = &n25q00_fixups,
}, {
.id = SNOR_ID(0x20, 0xbb, 0x22),
.name = "mt25qu02g",
.size = SZ_256M,
.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
.mfr_flags = USE_FSR,
.fixups = &mt25q02_fixups,
}
};
/**
* micron_st_nor_read_fsr() - Read the Flag Status Register.
* @nor: pointer to 'struct spi_nor'
* @fsr: pointer to a DMA-able buffer where the value of the
* Flag Status Register will be written. Should be at least 2
* bytes.
*
* Return: 0 on success, -errno otherwise.
*/
static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op = MICRON_ST_RDFSR_OP(fsr);
if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
op.addr.nbytes = nor->params->rdsr_addr_nbytes;
op.dummy.nbytes = nor->params->rdsr_dummy;
/*
* We don't want to read only one byte in DTR mode. So,
* read 2 and then discard the second byte.
*/
op.data.nbytes = 2;
}
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
1);
}
if (ret)
dev_dbg(nor->dev, "error %d reading FSR\n", ret);
return ret;
}
/**
* micron_st_nor_clear_fsr() - Clear the Flag Status Register.
* @nor: pointer to 'struct spi_nor'.
*/
static void micron_st_nor_clear_fsr(struct spi_nor *nor)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op = MICRON_ST_CLFSR_OP;
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
}
/**
* micron_st_nor_ready() - Query the Status Register as well as the Flag Status
* Register to see if the flash is ready for new commands. If there are any
* errors in the FSR clear them.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
static int micron_st_nor_ready(struct spi_nor *nor)
{
int sr_ready, ret;
sr_ready = spi_nor_sr_ready(nor);
if (sr_ready < 0)
return sr_ready;
ret = micron_st_nor_read_fsr(nor, nor->bouncebuf);
if (ret) {
/*
* Some controllers, such as Intel SPI, do not support low
* level operations such as reading the flag status
* register. They only expose small amount of high level
* operations to the software. If this is the case we use
* only the status register value.
*/
return ret == -EOPNOTSUPP ? sr_ready : ret;
}
if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
if (nor->bouncebuf[0] & FSR_E_ERR)
dev_err(nor->dev, "Erase operation failed.\n");
else
dev_err(nor->dev, "Program operation failed.\n");
if (nor->bouncebuf[0] & FSR_PT_ERR)
dev_err(nor->dev,
"Attempted to modify a protected sector.\n");
micron_st_nor_clear_fsr(nor);
/*
* WEL bit remains set to one when an erase or page program
* error occurs. Issue a Write Disable command to protect
* against inadvertent writes that can possibly corrupt the
* contents of the memory.
*/
ret = spi_nor_write_disable(nor);
if (ret)
return ret;
return -EIO;
}
return sr_ready && !!(nor->bouncebuf[0] & FSR_READY);
}
static void micron_st_nor_default_init(struct spi_nor *nor)
{
nor->flags |= SNOR_F_HAS_LOCK;
nor->flags &= ~SNOR_F_HAS_16BIT_SR;
nor->params->quad_enable = NULL;
}
static int micron_st_nor_late_init(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
if (nor->info->mfr_flags & USE_FSR)
params->ready = micron_st_nor_ready;
if (!params->set_4byte_addr_mode)
params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
return 0;
}
static const struct spi_nor_fixups micron_st_nor_fixups = {
.default_init = micron_st_nor_default_init,
.late_init = micron_st_nor_late_init,
};
const struct spi_nor_manufacturer spi_nor_micron = {
.name = "micron",
.parts = micron_nor_parts,
.nparts = ARRAY_SIZE(micron_nor_parts),
.fixups = µn_st_nor_fixups,
};
const struct spi_nor_manufacturer spi_nor_st = {
.name = "st",
.parts = st_nor_parts,
.nparts = ARRAY_SIZE(st_nor_parts),
.fixups = µn_st_nor_fixups,
};