/*
* Copyright (C) 2017 Spreadtrum Communications Inc.
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <linux/delay.h>
#include <linux/hwspinlock.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reboot.h>
#include <linux/spi/spi.h>
#include <linux/sizes.h>
/* Registers definitions for ADI controller */
#define REG_ADI_CTRL0 0x4
#define REG_ADI_CHN_PRIL 0x8
#define REG_ADI_CHN_PRIH 0xc
#define REG_ADI_INT_EN 0x10
#define REG_ADI_INT_RAW 0x14
#define REG_ADI_INT_MASK 0x18
#define REG_ADI_INT_CLR 0x1c
#define REG_ADI_GSSI_CFG0 0x20
#define REG_ADI_GSSI_CFG1 0x24
#define REG_ADI_RD_CMD 0x28
#define REG_ADI_RD_DATA 0x2c
#define REG_ADI_ARM_FIFO_STS 0x30
#define REG_ADI_STS 0x34
#define REG_ADI_EVT_FIFO_STS 0x38
#define REG_ADI_ARM_CMD_STS 0x3c
#define REG_ADI_CHN_EN 0x40
#define REG_ADI_CHN_ADDR(id) (0x44 + (id - 2) * 4)
#define REG_ADI_CHN_EN1 0x20c
/* Bits definitions for register REG_ADI_GSSI_CFG0 */
#define BIT_CLK_ALL_ON BIT(30)
/* Bits definitions for register REG_ADI_RD_DATA */
#define BIT_RD_CMD_BUSY BIT(31)
#define RD_ADDR_SHIFT 16
#define RD_VALUE_MASK GENMASK(15, 0)
#define RD_ADDR_MASK GENMASK(30, 16)
/* Bits definitions for register REG_ADI_ARM_FIFO_STS */
#define BIT_FIFO_FULL BIT(11)
#define BIT_FIFO_EMPTY BIT(10)
/*
* ADI slave devices include RTC, ADC, regulator, charger, thermal and so on.
* ADI supports 12/14bit address for r2p0, and additional 17bit for r3p0 or
* later versions. Since bit[1:0] are zero, so the spec describe them as
* 10/12/15bit address mode.
* The 10bit mode supports sigle slave, 12/15bit mode supports 3 slave, the
* high two bits is slave_id.
* The slave devices address offset is 0x8000 for 10/12bit address mode,
* and 0x20000 for 15bit mode.
*/
#define ADI_10BIT_SLAVE_ADDR_SIZE SZ_4K
#define ADI_10BIT_SLAVE_OFFSET 0x8000
#define ADI_12BIT_SLAVE_ADDR_SIZE SZ_16K
#define ADI_12BIT_SLAVE_OFFSET 0x8000
#define ADI_15BIT_SLAVE_ADDR_SIZE SZ_128K
#define ADI_15BIT_SLAVE_OFFSET 0x20000
/* Timeout (ms) for the trylock of hardware spinlocks */
#define ADI_HWSPINLOCK_TIMEOUT 5000
/*
* ADI controller has 50 channels including 2 software channels
* and 48 hardware channels.
*/
#define ADI_HW_CHNS 50
#define ADI_FIFO_DRAIN_TIMEOUT 1000
#define ADI_READ_TIMEOUT 2000
/*
* Read back address from REG_ADI_RD_DATA bit[30:16] which maps to:
* REG_ADI_RD_CMD bit[14:0] for r2p0
* REG_ADI_RD_CMD bit[16:2] for r3p0
*/
#define RDBACK_ADDR_MASK_R2 GENMASK(14, 0)
#define RDBACK_ADDR_MASK_R3 GENMASK(16, 2)
#define RDBACK_ADDR_SHIFT_R3 2
/* Registers definitions for PMIC watchdog controller */
#define REG_WDG_LOAD_LOW 0x0
#define REG_WDG_LOAD_HIGH 0x4
#define REG_WDG_CTRL 0x8
#define REG_WDG_LOCK 0x20
/* Bits definitions for register REG_WDG_CTRL */
#define BIT_WDG_RUN BIT(1)
#define BIT_WDG_NEW BIT(2)
#define BIT_WDG_RST BIT(3)
/* Bits definitions for register REG_MODULE_EN */
#define BIT_WDG_EN BIT(2)
/* Registers definitions for PMIC */
#define PMIC_RST_STATUS 0xee8
#define PMIC_MODULE_EN 0xc08
#define PMIC_CLK_EN 0xc18
#define PMIC_WDG_BASE 0x80
/* Definition of PMIC reset status register */
#define HWRST_STATUS_SECURITY 0x02
#define HWRST_STATUS_RECOVERY 0x20
#define HWRST_STATUS_NORMAL 0x40
#define HWRST_STATUS_ALARM 0x50
#define HWRST_STATUS_SLEEP 0x60
#define HWRST_STATUS_FASTBOOT 0x30
#define HWRST_STATUS_SPECIAL 0x70
#define HWRST_STATUS_PANIC 0x80
#define HWRST_STATUS_CFTREBOOT 0x90
#define HWRST_STATUS_AUTODLOADER 0xa0
#define HWRST_STATUS_IQMODE 0xb0
#define HWRST_STATUS_SPRDISK 0xc0
#define HWRST_STATUS_FACTORYTEST 0xe0
#define HWRST_STATUS_WATCHDOG 0xf0
/* Use default timeout 50 ms that converts to watchdog values */
#define WDG_LOAD_VAL ((50 * 32768) / 1000)
#define WDG_LOAD_MASK GENMASK(15, 0)
#define WDG_UNLOCK_KEY 0xe551
struct sprd_adi_wdg {
u32 base;
u32 rst_sts;
u32 wdg_en;
u32 wdg_clk;
};
struct sprd_adi_data {
u32 slave_offset;
u32 slave_addr_size;
int (*read_check)(u32 val, u32 reg);
int (*restart)(struct sys_off_data *data);
void (*wdg_rst)(void *p);
};
struct sprd_adi {
struct spi_controller *ctlr;
struct device *dev;
void __iomem *base;
struct hwspinlock *hwlock;
unsigned long slave_vbase;
unsigned long slave_pbase;
const struct sprd_adi_data *data;
};
static int sprd_adi_check_addr(struct sprd_adi *sadi, u32 reg)
{
if (reg >= sadi->data->slave_addr_size) {
dev_err(sadi->dev,
"slave address offset is incorrect, reg = 0x%x\n",
reg);
return -EINVAL;
}
return 0;
}
static int sprd_adi_drain_fifo(struct sprd_adi *sadi)
{
u32 timeout = ADI_FIFO_DRAIN_TIMEOUT;
u32 sts;
do {
sts = readl_relaxed(sadi->base + REG_ADI_ARM_FIFO_STS);
if (sts & BIT_FIFO_EMPTY)
break;
cpu_relax();
} while (--timeout);
if (timeout == 0) {
dev_err(sadi->dev, "drain write fifo timeout\n");
return -EBUSY;
}
return 0;
}
static int sprd_adi_fifo_is_full(struct sprd_adi *sadi)
{
return readl_relaxed(sadi->base + REG_ADI_ARM_FIFO_STS) & BIT_FIFO_FULL;
}
static int sprd_adi_read_check(u32 val, u32 addr)
{
u32 rd_addr;
rd_addr = (val & RD_ADDR_MASK) >> RD_ADDR_SHIFT;
if (rd_addr != addr) {
pr_err("ADI read error, addr = 0x%x, val = 0x%x\n", addr, val);
return -EIO;
}
return 0;
}
static int sprd_adi_read_check_r2(u32 val, u32 reg)
{
return sprd_adi_read_check(val, reg & RDBACK_ADDR_MASK_R2);
}
static int sprd_adi_read_check_r3(u32 val, u32 reg)
{
return sprd_adi_read_check(val, (reg & RDBACK_ADDR_MASK_R3) >> RDBACK_ADDR_SHIFT_R3);
}
static int sprd_adi_read(struct sprd_adi *sadi, u32 reg, u32 *read_val)
{
int read_timeout = ADI_READ_TIMEOUT;
unsigned long flags;
u32 val;
int ret = 0;
if (sadi->hwlock) {
ret = hwspin_lock_timeout_irqsave(sadi->hwlock,
ADI_HWSPINLOCK_TIMEOUT,
&flags);
if (ret) {
dev_err(sadi->dev, "get the hw lock failed\n");
return ret;
}
}
ret = sprd_adi_check_addr(sadi, reg);
if (ret)
goto out;
/*
* Set the slave address offset need to read into RD_CMD register,
* then ADI controller will start to transfer automatically.
*/
writel_relaxed(reg, sadi->base + REG_ADI_RD_CMD);
/*
* Wait read operation complete, the BIT_RD_CMD_BUSY will be set
* simultaneously when writing read command to register, and the
* BIT_RD_CMD_BUSY will be cleared after the read operation is
* completed.
*/
do {
val = readl_relaxed(sadi->base + REG_ADI_RD_DATA);
if (!(val & BIT_RD_CMD_BUSY))
break;
cpu_relax();
} while (--read_timeout);
if (read_timeout == 0) {
dev_err(sadi->dev, "ADI read timeout\n");
ret = -EBUSY;
goto out;
}
/*
* The return value before adi r5p0 includes data and read register
* address, from bit 0to bit 15 are data, and from bit 16 to bit 30
* are read register address. Then we can check the returned register
* address to validate data.
*/
if (sadi->data->read_check) {
ret = sadi->data->read_check(val, reg);
if (ret < 0)
goto out;
}
*read_val = val & RD_VALUE_MASK;
out:
if (sadi->hwlock)
hwspin_unlock_irqrestore(sadi->hwlock, &flags);
return ret;
}
static int sprd_adi_write(struct sprd_adi *sadi, u32 reg, u32 val)
{
u32 timeout = ADI_FIFO_DRAIN_TIMEOUT;
unsigned long flags;
int ret;
if (sadi->hwlock) {
ret = hwspin_lock_timeout_irqsave(sadi->hwlock,
ADI_HWSPINLOCK_TIMEOUT,
&flags);
if (ret) {
dev_err(sadi->dev, "get the hw lock failed\n");
return ret;
}
}
ret = sprd_adi_check_addr(sadi, reg);
if (ret)
goto out;
ret = sprd_adi_drain_fifo(sadi);
if (ret < 0)
goto out;
/*
* we should wait for write fifo is empty before writing data to PMIC
* registers.
*/
do {
if (!sprd_adi_fifo_is_full(sadi)) {
/* we need virtual register address to write. */
writel_relaxed(val, (void __iomem *)(sadi->slave_vbase + reg));
break;
}
cpu_relax();
} while (--timeout);
if (timeout == 0) {
dev_err(sadi->dev, "write fifo is full\n");
ret = -EBUSY;
}
out:
if (sadi->hwlock)
hwspin_unlock_irqrestore(sadi->hwlock, &flags);
return ret;
}
static int sprd_adi_transfer_one(struct spi_controller *ctlr,
struct spi_device *spi_dev,
struct spi_transfer *t)
{
struct sprd_adi *sadi = spi_controller_get_devdata(ctlr);
u32 reg, val;
int ret;
if (t->rx_buf) {
reg = *(u32 *)t->rx_buf;
ret = sprd_adi_read(sadi, reg, &val);
*(u32 *)t->rx_buf = val;
} else if (t->tx_buf) {
u32 *p = (u32 *)t->tx_buf;
reg = *p++;
val = *p;
ret = sprd_adi_write(sadi, reg, val);
} else {
dev_err(sadi->dev, "no buffer for transfer\n");
ret = -EINVAL;
}
return ret;
}
static void sprd_adi_set_wdt_rst_mode(void *p)
{
#if IS_ENABLED(CONFIG_SPRD_WATCHDOG)
u32 val;
struct sprd_adi *sadi = (struct sprd_adi *)p;
/* Init watchdog reset mode */
sprd_adi_read(sadi, PMIC_RST_STATUS, &val);
val |= HWRST_STATUS_WATCHDOG;
sprd_adi_write(sadi, PMIC_RST_STATUS, val);
#endif
}
static int sprd_adi_restart(struct sprd_adi *sadi, unsigned long mode,
const char *cmd, struct sprd_adi_wdg *wdg)
{
u32 val, reboot_mode = 0;
if (!cmd)
reboot_mode = HWRST_STATUS_NORMAL;
else if (!strncmp(cmd, "recovery", 8))
reboot_mode = HWRST_STATUS_RECOVERY;
else if (!strncmp(cmd, "alarm", 5))
reboot_mode = HWRST_STATUS_ALARM;
else if (!strncmp(cmd, "fastsleep", 9))
reboot_mode = HWRST_STATUS_SLEEP;
else if (!strncmp(cmd, "bootloader", 10))
reboot_mode = HWRST_STATUS_FASTBOOT;
else if (!strncmp(cmd, "panic", 5))
reboot_mode = HWRST_STATUS_PANIC;
else if (!strncmp(cmd, "special", 7))
reboot_mode = HWRST_STATUS_SPECIAL;
else if (!strncmp(cmd, "cftreboot", 9))
reboot_mode = HWRST_STATUS_CFTREBOOT;
else if (!strncmp(cmd, "autodloader", 11))
reboot_mode = HWRST_STATUS_AUTODLOADER;
else if (!strncmp(cmd, "iqmode", 6))
reboot_mode = HWRST_STATUS_IQMODE;
else if (!strncmp(cmd, "sprdisk", 7))
reboot_mode = HWRST_STATUS_SPRDISK;
else if (!strncmp(cmd, "tospanic", 8))
reboot_mode = HWRST_STATUS_SECURITY;
else if (!strncmp(cmd, "factorytest", 11))
reboot_mode = HWRST_STATUS_FACTORYTEST;
else
reboot_mode = HWRST_STATUS_NORMAL;
/* Record the reboot mode */
sprd_adi_read(sadi, wdg->rst_sts, &val);
val &= ~HWRST_STATUS_WATCHDOG;
val |= reboot_mode;
sprd_adi_write(sadi, wdg->rst_sts, val);
/* Enable the interface clock of the watchdog */
sprd_adi_read(sadi, wdg->wdg_en, &val);
val |= BIT_WDG_EN;
sprd_adi_write(sadi, wdg->wdg_en, val);
/* Enable the work clock of the watchdog */
sprd_adi_read(sadi, wdg->wdg_clk, &val);
val |= BIT_WDG_EN;
sprd_adi_write(sadi, wdg->wdg_clk, val);
/* Unlock the watchdog */
sprd_adi_write(sadi, wdg->base + REG_WDG_LOCK, WDG_UNLOCK_KEY);
sprd_adi_read(sadi, wdg->base + REG_WDG_CTRL, &val);
val |= BIT_WDG_NEW;
sprd_adi_write(sadi, wdg->base + REG_WDG_CTRL, val);
/* Load the watchdog timeout value, 50ms is always enough. */
sprd_adi_write(sadi, wdg->base + REG_WDG_LOAD_HIGH, 0);
sprd_adi_write(sadi, wdg->base + REG_WDG_LOAD_LOW,
WDG_LOAD_VAL & WDG_LOAD_MASK);
/* Start the watchdog to reset system */
sprd_adi_read(sadi, wdg->base + REG_WDG_CTRL, &val);
val |= BIT_WDG_RUN | BIT_WDG_RST;
sprd_adi_write(sadi, wdg->base + REG_WDG_CTRL, val);
/* Lock the watchdog */
sprd_adi_write(sadi, wdg->base + REG_WDG_LOCK, ~WDG_UNLOCK_KEY);
mdelay(1000);
dev_emerg(sadi->dev, "Unable to restart system\n");
return NOTIFY_DONE;
}
static int sprd_adi_restart_sc9860(struct sys_off_data *data)
{
struct sprd_adi_wdg wdg = {
.base = PMIC_WDG_BASE,
.rst_sts = PMIC_RST_STATUS,
.wdg_en = PMIC_MODULE_EN,
.wdg_clk = PMIC_CLK_EN,
};
return sprd_adi_restart(data->cb_data, data->mode, data->cmd, &wdg);
}
static void sprd_adi_hw_init(struct sprd_adi *sadi)
{
struct device_node *np = sadi->dev->of_node;
int i, size, chn_cnt;
const __be32 *list;
u32 tmp;
/* Set all channels as default priority */
writel_relaxed(0, sadi->base + REG_ADI_CHN_PRIL);
writel_relaxed(0, sadi->base + REG_ADI_CHN_PRIH);
/* Set clock auto gate mode */
tmp = readl_relaxed(sadi->base + REG_ADI_GSSI_CFG0);
tmp &= ~BIT_CLK_ALL_ON;
writel_relaxed(tmp, sadi->base + REG_ADI_GSSI_CFG0);
/* Set hardware channels setting */
list = of_get_property(np, "sprd,hw-channels", &size);
if (!list || !size) {
dev_info(sadi->dev, "no hw channels setting in node\n");
return;
}
chn_cnt = size / 8;
for (i = 0; i < chn_cnt; i++) {
u32 value;
u32 chn_id = be32_to_cpu(*list++);
u32 chn_config = be32_to_cpu(*list++);
/* Channel 0 and 1 are software channels */
if (chn_id < 2)
continue;
writel_relaxed(chn_config, sadi->base +
REG_ADI_CHN_ADDR(chn_id));
if (chn_id < 32) {
value = readl_relaxed(sadi->base + REG_ADI_CHN_EN);
value |= BIT(chn_id);
writel_relaxed(value, sadi->base + REG_ADI_CHN_EN);
} else if (chn_id < ADI_HW_CHNS) {
value = readl_relaxed(sadi->base + REG_ADI_CHN_EN1);
value |= BIT(chn_id - 32);
writel_relaxed(value, sadi->base + REG_ADI_CHN_EN1);
}
}
}
static int sprd_adi_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct sprd_adi_data *data;
struct spi_controller *ctlr;
struct sprd_adi *sadi;
struct resource *res;
u16 num_chipselect;
int ret;
if (!np) {
dev_err(&pdev->dev, "can not find the adi bus node\n");
return -ENODEV;
}
data = of_device_get_match_data(&pdev->dev);
if (!data) {
dev_err(&pdev->dev, "no matching driver data found\n");
return -EINVAL;
}
pdev->id = of_alias_get_id(np, "spi");
num_chipselect = of_get_child_count(np);
ctlr = spi_alloc_host(&pdev->dev, sizeof(struct sprd_adi));
if (!ctlr)
return -ENOMEM;
dev_set_drvdata(&pdev->dev, ctlr);
sadi = spi_controller_get_devdata(ctlr);
sadi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(sadi->base)) {
ret = PTR_ERR(sadi->base);
goto put_ctlr;
}
sadi->slave_vbase = (unsigned long)sadi->base +
data->slave_offset;
sadi->slave_pbase = res->start + data->slave_offset;
sadi->ctlr = ctlr;
sadi->dev = &pdev->dev;
sadi->data = data;
ret = of_hwspin_lock_get_id(np, 0);
if (ret > 0 || (IS_ENABLED(CONFIG_HWSPINLOCK) && ret == 0)) {
sadi->hwlock =
devm_hwspin_lock_request_specific(&pdev->dev, ret);
if (!sadi->hwlock) {
ret = -ENXIO;
goto put_ctlr;
}
} else {
switch (ret) {
case -ENOENT:
dev_info(&pdev->dev, "no hardware spinlock supplied\n");
break;
default:
dev_err_probe(&pdev->dev, ret, "failed to find hwlock id\n");
goto put_ctlr;
}
}
sprd_adi_hw_init(sadi);
if (sadi->data->wdg_rst)
sadi->data->wdg_rst(sadi);
ctlr->dev.of_node = pdev->dev.of_node;
ctlr->bus_num = pdev->id;
ctlr->num_chipselect = num_chipselect;
ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
ctlr->bits_per_word_mask = 0;
ctlr->transfer_one = sprd_adi_transfer_one;
ret = devm_spi_register_controller(&pdev->dev, ctlr);
if (ret) {
dev_err(&pdev->dev, "failed to register SPI controller\n");
goto put_ctlr;
}
if (sadi->data->restart) {
ret = devm_register_restart_handler(&pdev->dev,
sadi->data->restart,
sadi);
if (ret) {
dev_err(&pdev->dev, "can not register restart handler\n");
goto put_ctlr;
}
}
return 0;
put_ctlr:
spi_controller_put(ctlr);
return ret;
}
static struct sprd_adi_data sc9860_data = {
.slave_offset = ADI_10BIT_SLAVE_OFFSET,
.slave_addr_size = ADI_10BIT_SLAVE_ADDR_SIZE,
.read_check = sprd_adi_read_check_r2,
.restart = sprd_adi_restart_sc9860,
.wdg_rst = sprd_adi_set_wdt_rst_mode,
};
static struct sprd_adi_data sc9863_data = {
.slave_offset = ADI_12BIT_SLAVE_OFFSET,
.slave_addr_size = ADI_12BIT_SLAVE_ADDR_SIZE,
.read_check = sprd_adi_read_check_r3,
};
static struct sprd_adi_data ums512_data = {
.slave_offset = ADI_15BIT_SLAVE_OFFSET,
.slave_addr_size = ADI_15BIT_SLAVE_ADDR_SIZE,
.read_check = sprd_adi_read_check_r3,
};
static const struct of_device_id sprd_adi_of_match[] = {
{
.compatible = "sprd,sc9860-adi",
.data = &sc9860_data,
},
{
.compatible = "sprd,sc9863-adi",
.data = &sc9863_data,
},
{
.compatible = "sprd,ums512-adi",
.data = &ums512_data,
},
{ },
};
MODULE_DEVICE_TABLE(of, sprd_adi_of_match);
static struct platform_driver sprd_adi_driver = {
.driver = {
.name = "sprd-adi",
.of_match_table = sprd_adi_of_match,
},
.probe = sprd_adi_probe,
};
module_platform_driver(sprd_adi_driver);
MODULE_DESCRIPTION("Spreadtrum ADI Controller Driver");
MODULE_AUTHOR("Baolin Wang <[email protected]>");
MODULE_LICENSE("GPL v2");