linux/drivers/net/phy/broadcom.c

// SPDX-License-Identifier: GPL-2.0+
/*
 *	drivers/net/phy/broadcom.c
 *
 *	Broadcom BCM5411, BCM5421 and BCM5461 Gigabit Ethernet
 *	transceivers.
 *
 *	Broadcom BCM54810, BCM54811 BroadR-Reach transceivers.
 *
 *	Copyright (c) 2006  Maciej W. Rozycki
 *
 *	Inspired by code written by Amy Fong.
 */

#include "bcm-phy-lib.h"
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/pm_wakeup.h>
#include <linux/brcmphy.h>
#include <linux/of.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/gpio/consumer.h>

#define BRCM_PHY_MODEL(phydev) \
	((phydev)->drv->phy_id & (phydev)->drv->phy_id_mask)

#define BRCM_PHY_REV(phydev) \
	((phydev)->drv->phy_id & ~((phydev)->drv->phy_id_mask))

MODULE_DESCRIPTION("Broadcom PHY driver");
MODULE_AUTHOR("Maciej W. Rozycki");
MODULE_LICENSE("GPL");

struct bcm54xx_phy_priv {
	u64	*stats;
	struct bcm_ptp_private *ptp;
	int	wake_irq;
	bool	wake_irq_enabled;
	bool	brr_mode;
};

/* Link modes for BCM58411 PHY */
static const int bcm54811_linkmodes[] = {
	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
	ETHTOOL_LINK_MODE_10baseT1BRR_Full_BIT,
	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
	ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
	ETHTOOL_LINK_MODE_10baseT_Half_BIT
};

/* Long-Distance Signaling (BroadR-Reach mode aneg) relevant linkmode bits */
static const int lds_br_bits[] = {
	ETHTOOL_LINK_MODE_Autoneg_BIT,
	ETHTOOL_LINK_MODE_Pause_BIT,
	ETHTOOL_LINK_MODE_Asym_Pause_BIT,
	ETHTOOL_LINK_MODE_10baseT1BRR_Full_BIT,
	ETHTOOL_LINK_MODE_100baseT1_Full_BIT
};

static bool bcm54xx_phy_can_wakeup(struct phy_device *phydev)
{
	struct bcm54xx_phy_priv *priv = phydev->priv;

	return phy_interrupt_is_valid(phydev) || priv->wake_irq >= 0;
}

static int bcm54xx_config_clock_delay(struct phy_device *phydev)
{
	int rc, val;

	/* handling PHY's internal RX clock delay */
	val = bcm54xx_auxctl_read(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_MISC);
	val |= MII_BCM54XX_AUXCTL_MISC_WREN;
	if (phydev->interface == PHY_INTERFACE_MODE_RGMII ||
	    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) {
		/* Disable RGMII RXC-RXD skew */
		val &= ~MII_BCM54XX_AUXCTL_SHDWSEL_MISC_RGMII_SKEW_EN;
	}
	if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
	    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) {
		/* Enable RGMII RXC-RXD skew */
		val |= MII_BCM54XX_AUXCTL_SHDWSEL_MISC_RGMII_SKEW_EN;
	}
	rc = bcm54xx_auxctl_write(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_MISC,
				  val);
	if (rc < 0)
		return rc;

	/* handling PHY's internal TX clock delay */
	val = bcm_phy_read_shadow(phydev, BCM54810_SHD_CLK_CTL);
	if (phydev->interface == PHY_INTERFACE_MODE_RGMII ||
	    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) {
		/* Disable internal TX clock delay */
		val &= ~BCM54810_SHD_CLK_CTL_GTXCLK_EN;
	}
	if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
	    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) {
		/* Enable internal TX clock delay */
		val |= BCM54810_SHD_CLK_CTL_GTXCLK_EN;
	}
	rc = bcm_phy_write_shadow(phydev, BCM54810_SHD_CLK_CTL, val);
	if (rc < 0)
		return rc;

	return 0;
}

static int bcm54210e_config_init(struct phy_device *phydev)
{
	int val;

	bcm54xx_config_clock_delay(phydev);

	if (phydev->dev_flags & PHY_BRCM_EN_MASTER_MODE) {
		val = phy_read(phydev, MII_CTRL1000);
		val |= CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER;
		phy_write(phydev, MII_CTRL1000, val);
	}

	return 0;
}

static int bcm54612e_config_init(struct phy_device *phydev)
{
	int reg;

	bcm54xx_config_clock_delay(phydev);

	/* Enable CLK125 MUX on LED4 if ref clock is enabled. */
	if (!(phydev->dev_flags & PHY_BRCM_RX_REFCLK_UNUSED)) {
		int err;

		reg = bcm_phy_read_exp(phydev, BCM54612E_EXP_SPARE0);
		err = bcm_phy_write_exp(phydev, BCM54612E_EXP_SPARE0,
					BCM54612E_LED4_CLK125OUT_EN | reg);

		if (err < 0)
			return err;
	}

	return 0;
}

static int bcm54616s_config_init(struct phy_device *phydev)
{
	int rc, val;

	if (phydev->interface != PHY_INTERFACE_MODE_SGMII &&
	    phydev->interface != PHY_INTERFACE_MODE_1000BASEX)
		return 0;

	/* Ensure proper interface mode is selected. */
	/* Disable RGMII mode */
	val = bcm54xx_auxctl_read(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_MISC);
	if (val < 0)
		return val;
	val &= ~MII_BCM54XX_AUXCTL_SHDWSEL_MISC_RGMII_EN;
	val |= MII_BCM54XX_AUXCTL_MISC_WREN;
	rc = bcm54xx_auxctl_write(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_MISC,
				  val);
	if (rc < 0)
		return rc;

	/* Select 1000BASE-X register set (primary SerDes) */
	val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_MODE);
	if (val < 0)
		return val;
	val |= BCM54XX_SHD_MODE_1000BX;
	rc = bcm_phy_write_shadow(phydev, BCM54XX_SHD_MODE, val);
	if (rc < 0)
		return rc;

	/* Power down SerDes interface */
	rc = phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
	if (rc < 0)
		return rc;

	/* Select proper interface mode */
	val &= ~BCM54XX_SHD_INTF_SEL_MASK;
	val |= phydev->interface == PHY_INTERFACE_MODE_SGMII ?
		BCM54XX_SHD_INTF_SEL_SGMII :
		BCM54XX_SHD_INTF_SEL_GBIC;
	rc = bcm_phy_write_shadow(phydev, BCM54XX_SHD_MODE, val);
	if (rc < 0)
		return rc;

	/* Power up SerDes interface */
	rc = phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
	if (rc < 0)
		return rc;

	/* Select copper register set */
	val &= ~BCM54XX_SHD_MODE_1000BX;
	rc = bcm_phy_write_shadow(phydev, BCM54XX_SHD_MODE, val);
	if (rc < 0)
		return rc;

	/* Power up copper interface */
	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
}

/* Needs SMDSP clock enabled via bcm54xx_phydsp_config() */
static int bcm50610_a0_workaround(struct phy_device *phydev)
{
	int err;

	err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_AADJ1CH0,
				MII_BCM54XX_EXP_AADJ1CH0_SWP_ABCD_OEN |
				MII_BCM54XX_EXP_AADJ1CH0_SWSEL_THPF);
	if (err < 0)
		return err;

	err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_AADJ1CH3,
				MII_BCM54XX_EXP_AADJ1CH3_ADCCKADJ);
	if (err < 0)
		return err;

	err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP75,
				MII_BCM54XX_EXP_EXP75_VDACCTRL);
	if (err < 0)
		return err;

	err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP96,
				MII_BCM54XX_EXP_EXP96_MYST);
	if (err < 0)
		return err;

	err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP97,
				MII_BCM54XX_EXP_EXP97_MYST);

	return err;
}

static int bcm54xx_phydsp_config(struct phy_device *phydev)
{
	int err, err2;

	/* Enable the SMDSP clock */
	err = bcm54xx_auxctl_write(phydev,
				   MII_BCM54XX_AUXCTL_SHDWSEL_AUXCTL,
				   MII_BCM54XX_AUXCTL_ACTL_SMDSP_ENA |
				   MII_BCM54XX_AUXCTL_ACTL_TX_6DB);
	if (err < 0)
		return err;

	if (BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610 ||
	    BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610M) {
		/* Clear bit 9 to fix a phy interop issue. */
		err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP08,
					MII_BCM54XX_EXP_EXP08_RJCT_2MHZ);
		if (err < 0)
			goto error;

		if (phydev->drv->phy_id == PHY_ID_BCM50610) {
			err = bcm50610_a0_workaround(phydev);
			if (err < 0)
				goto error;
		}
	}

	if (BRCM_PHY_MODEL(phydev) == PHY_ID_BCM57780) {
		int val;

		val = bcm_phy_read_exp(phydev, MII_BCM54XX_EXP_EXP75);
		if (val < 0)
			goto error;

		val |= MII_BCM54XX_EXP_EXP75_CM_OSC;
		err = bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP75, val);
	}

error:
	/* Disable the SMDSP clock */
	err2 = bcm54xx_auxctl_write(phydev,
				    MII_BCM54XX_AUXCTL_SHDWSEL_AUXCTL,
				    MII_BCM54XX_AUXCTL_ACTL_TX_6DB);

	/* Return the first error reported. */
	return err ? err : err2;
}

static void bcm54xx_adjust_rxrefclk(struct phy_device *phydev)
{
	u32 orig;
	int val;
	bool clk125en = true;

	/* Abort if we are using an untested phy. */
	if (BRCM_PHY_MODEL(phydev) != PHY_ID_BCM57780 &&
	    BRCM_PHY_MODEL(phydev) != PHY_ID_BCM50610 &&
	    BRCM_PHY_MODEL(phydev) != PHY_ID_BCM50610M &&
	    BRCM_PHY_MODEL(phydev) != PHY_ID_BCM54210E &&
	    BRCM_PHY_MODEL(phydev) != PHY_ID_BCM54810 &&
	    BRCM_PHY_MODEL(phydev) != PHY_ID_BCM54811)
		return;

	val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_SCR3);
	if (val < 0)
		return;

	orig = val;

	if ((BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610 ||
	     BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610M) &&
	    BRCM_PHY_REV(phydev) >= 0x3) {
		/*
		 * Here, bit 0 _disables_ CLK125 when set.
		 * This bit is set by default.
		 */
		clk125en = false;
	} else {
		if (phydev->dev_flags & PHY_BRCM_RX_REFCLK_UNUSED) {
			if (BRCM_PHY_MODEL(phydev) != PHY_ID_BCM54811) {
				/* Here, bit 0 _enables_ CLK125 when set */
				val &= ~BCM54XX_SHD_SCR3_DEF_CLK125;
			}
			clk125en = false;
		}
	}

	if (!clk125en || (phydev->dev_flags & PHY_BRCM_AUTO_PWRDWN_ENABLE))
		val &= ~BCM54XX_SHD_SCR3_DLLAPD_DIS;
	else
		val |= BCM54XX_SHD_SCR3_DLLAPD_DIS;

	if (phydev->dev_flags & PHY_BRCM_DIS_TXCRXC_NOENRGY) {
		if (BRCM_PHY_MODEL(phydev) == PHY_ID_BCM54210E ||
		    BRCM_PHY_MODEL(phydev) == PHY_ID_BCM54810 ||
		    BRCM_PHY_MODEL(phydev) == PHY_ID_BCM54811)
			val |= BCM54XX_SHD_SCR3_RXCTXC_DIS;
		else
			val |= BCM54XX_SHD_SCR3_TRDDAPD;
	}

	if (orig != val)
		bcm_phy_write_shadow(phydev, BCM54XX_SHD_SCR3, val);

	val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_APD);
	if (val < 0)
		return;

	orig = val;

	if (!clk125en || (phydev->dev_flags & PHY_BRCM_AUTO_PWRDWN_ENABLE))
		val |= BCM54XX_SHD_APD_EN;
	else
		val &= ~BCM54XX_SHD_APD_EN;

	if (orig != val)
		bcm_phy_write_shadow(phydev, BCM54XX_SHD_APD, val);
}

static void bcm54xx_ptp_stop(struct phy_device *phydev)
{
	struct bcm54xx_phy_priv *priv = phydev->priv;

	if (priv->ptp)
		bcm_ptp_stop(priv->ptp);
}

static void bcm54xx_ptp_config_init(struct phy_device *phydev)
{
	struct bcm54xx_phy_priv *priv = phydev->priv;

	if (priv->ptp)
		bcm_ptp_config_init(phydev);
}

static int bcm5481x_set_brrmode(struct phy_device *phydev, bool on)
{
	int reg;
	int err;
	u16 val;

	reg = bcm_phy_read_exp(phydev, BCM54810_EXP_BROADREACH_LRE_MISC_CTL);

	if (reg < 0)
		return reg;

	if (on)
		reg |= BCM54810_EXP_BROADREACH_LRE_MISC_CTL_EN;
	else
		reg &= ~BCM54810_EXP_BROADREACH_LRE_MISC_CTL_EN;

	err = bcm_phy_write_exp(phydev,
				BCM54810_EXP_BROADREACH_LRE_MISC_CTL, reg);
	if (err)
		return err;

	/* Ensure LRE or IEEE register set is accessed according to the brr
	 *  on/off, thus set the override
	 */
	val = BCM54811_EXP_BROADREACH_LRE_OVERLAY_CTL_EN;
	if (!on)
		val |= BCM54811_EXP_BROADREACH_LRE_OVERLAY_CTL_OVERRIDE_VAL;

	return bcm_phy_write_exp(phydev,
				 BCM54811_EXP_BROADREACH_LRE_OVERLAY_CTL, val);
}

static int bcm54811_config_init(struct phy_device *phydev)
{
	struct bcm54xx_phy_priv *priv = phydev->priv;
	int err, reg;

	/* Enable CLK125 MUX on LED4 if ref clock is enabled. */
	if (!(phydev->dev_flags & PHY_BRCM_RX_REFCLK_UNUSED)) {
		reg = bcm_phy_read_exp(phydev, BCM54612E_EXP_SPARE0);
		if (reg < 0)
			return reg;
		err = bcm_phy_write_exp(phydev, BCM54612E_EXP_SPARE0,
					BCM54612E_LED4_CLK125OUT_EN | reg);
		if (err < 0)
			return err;
	}

	/* With BCM54811, BroadR-Reach implies no autoneg */
	if (priv->brr_mode)
		phydev->autoneg = 0;

	return bcm5481x_set_brrmode(phydev, priv->brr_mode);
}

static int bcm54xx_config_init(struct phy_device *phydev)
{
	int reg, err, val;

	reg = phy_read(phydev, MII_BCM54XX_ECR);
	if (reg < 0)
		return reg;

	/* Mask interrupts globally.  */
	reg |= MII_BCM54XX_ECR_IM;
	err = phy_write(phydev, MII_BCM54XX_ECR, reg);
	if (err < 0)
		return err;

	/* Unmask events we are interested in.  */
	reg = ~(MII_BCM54XX_INT_DUPLEX |
		MII_BCM54XX_INT_SPEED |
		MII_BCM54XX_INT_LINK);
	err = phy_write(phydev, MII_BCM54XX_IMR, reg);
	if (err < 0)
		return err;

	if ((BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610 ||
	     BRCM_PHY_MODEL(phydev) == PHY_ID_BCM50610M) &&
	    (phydev->dev_flags & PHY_BRCM_CLEAR_RGMII_MODE))
		bcm_phy_write_shadow(phydev, BCM54XX_SHD_RGMII_MODE, 0);

	bcm54xx_adjust_rxrefclk(phydev);

	switch (BRCM_PHY_MODEL(phydev)) {
	case PHY_ID_BCM50610:
	case PHY_ID_BCM50610M:
		err = bcm54xx_config_clock_delay(phydev);
		break;
	case PHY_ID_BCM54210E:
		err = bcm54210e_config_init(phydev);
		break;
	case PHY_ID_BCM54612E:
		err = bcm54612e_config_init(phydev);
		break;
	case PHY_ID_BCM54616S:
		err = bcm54616s_config_init(phydev);
		break;
	case PHY_ID_BCM54810:
		/* For BCM54810, we need to disable BroadR-Reach function */
		val = bcm_phy_read_exp(phydev,
				       BCM54810_EXP_BROADREACH_LRE_MISC_CTL);
		val &= ~BCM54810_EXP_BROADREACH_LRE_MISC_CTL_EN;
		err = bcm_phy_write_exp(phydev,
					BCM54810_EXP_BROADREACH_LRE_MISC_CTL,
					val);
		break;
	case PHY_ID_BCM54811:
		err = bcm54811_config_init(phydev);
		break;
	}
	if (err)
		return err;

	bcm54xx_phydsp_config(phydev);

	/* For non-SFP setups, encode link speed into LED1 and LED3 pair
	 * (green/amber).
	 * Also flash these two LEDs on activity. This means configuring
	 * them for MULTICOLOR and encoding link/activity into them.
	 * Don't do this for devices on an SFP module, since some of these
	 * use the LED outputs to control the SFP LOS signal, and changing
	 * these settings will cause LOS to malfunction.
	 */
	if (!phy_on_sfp(phydev)) {
		val = BCM54XX_SHD_LEDS1_LED1(BCM_LED_SRC_MULTICOLOR1) |
			BCM54XX_SHD_LEDS1_LED3(BCM_LED_SRC_MULTICOLOR1);
		bcm_phy_write_shadow(phydev, BCM54XX_SHD_LEDS1, val);

		val = BCM_LED_MULTICOLOR_IN_PHASE |
			BCM54XX_SHD_LEDS1_LED1(BCM_LED_MULTICOLOR_LINK_ACT) |
			BCM54XX_SHD_LEDS1_LED3(BCM_LED_MULTICOLOR_LINK_ACT);
		bcm_phy_write_exp(phydev, BCM_EXP_MULTICOLOR, val);
	}

	bcm54xx_ptp_config_init(phydev);

	/* Acknowledge any left over interrupt and charge the device for
	 * wake-up.
	 */
	err = bcm_phy_read_exp(phydev, BCM54XX_WOL_INT_STATUS);
	if (err < 0)
		return err;

	if (err)
		pm_wakeup_event(&phydev->mdio.dev, 0);

	return 0;
}

static int bcm54xx_iddq_set(struct phy_device *phydev, bool enable)
{
	int ret = 0;

	if (!(phydev->dev_flags & PHY_BRCM_IDDQ_SUSPEND))
		return ret;

	ret = bcm_phy_read_exp(phydev, BCM54XX_TOP_MISC_IDDQ_CTRL);
	if (ret < 0)
		goto out;

	if (enable)
		ret |= BCM54XX_TOP_MISC_IDDQ_SR | BCM54XX_TOP_MISC_IDDQ_LP;
	else
		ret &= ~(BCM54XX_TOP_MISC_IDDQ_SR | BCM54XX_TOP_MISC_IDDQ_LP);

	ret = bcm_phy_write_exp(phydev, BCM54XX_TOP_MISC_IDDQ_CTRL, ret);
out:
	return ret;
}

static int bcm54xx_set_wakeup_irq(struct phy_device *phydev, bool state)
{
	struct bcm54xx_phy_priv *priv = phydev->priv;
	int ret = 0;

	if (!bcm54xx_phy_can_wakeup(phydev))
		return ret;

	if (priv->wake_irq_enabled != state) {
		if (state)
			ret = enable_irq_wake(priv->wake_irq);
		else
			ret = disable_irq_wake(priv->wake_irq);
		priv->wake_irq_enabled = state;
	}

	return ret;
}

static int bcm54xx_suspend(struct phy_device *phydev)
{
	int ret = 0;

	bcm54xx_ptp_stop(phydev);

	/* Acknowledge any Wake-on-LAN interrupt prior to suspend */
	ret = bcm_phy_read_exp(phydev, BCM54XX_WOL_INT_STATUS);
	if (ret < 0)
		return ret;

	if (phydev->wol_enabled)
		return bcm54xx_set_wakeup_irq(phydev, true);

	/* We cannot use a read/modify/write here otherwise the PHY gets into
	 * a bad state where its LEDs keep flashing, thus defeating the purpose
	 * of low power mode.
	 */
	ret = phy_write(phydev, MII_BMCR, BMCR_PDOWN);
	if (ret < 0)
		return ret;

	return bcm54xx_iddq_set(phydev, true);
}

static int bcm54xx_resume(struct phy_device *phydev)
{
	int ret = 0;

	if (phydev->wol_enabled) {
		ret = bcm54xx_set_wakeup_irq(phydev, false);
		if (ret)
			return ret;
	}

	ret = bcm54xx_iddq_set(phydev, false);
	if (ret < 0)
		return ret;

	/* Writes to register other than BMCR would be ignored
	 * unless we clear the PDOWN bit first
	 */
	ret = genphy_resume(phydev);
	if (ret < 0)
		return ret;

	/* Upon exiting power down, the PHY remains in an internal reset state
	 * for 40us
	 */
	fsleep(40);

	/* Issue a soft reset after clearing the power down bit
	 * and before doing any other configuration.
	 */
	if (phydev->dev_flags & PHY_BRCM_IDDQ_SUSPEND) {
		ret = genphy_soft_reset(phydev);
		if (ret < 0)
			return ret;
	}

	return bcm54xx_config_init(phydev);
}

static int bcm54810_read_mmd(struct phy_device *phydev, int devnum, u16 regnum)
{
	return -EOPNOTSUPP;
}

static int bcm54810_write_mmd(struct phy_device *phydev, int devnum, u16 regnum,
			      u16 val)
{
	return -EOPNOTSUPP;
}


/**
 * bcm5481x_read_abilities - read PHY abilities from LRESR or Clause 22
 * (BMSR) registers, based on whether the PHY is in BroadR-Reach or IEEE mode
 * @phydev: target phy_device struct
 *
 * Description: Reads the PHY's abilities and populates phydev->supported
 * accordingly. The register to read the abilities from is determined by
 * the brr mode setting of the PHY as read from the device tree.
 * Note that the LRE and IEEE sets of abilities are disjunct, in other words,
 * not only the link modes differ, but also the auto-negotiation and
 * master-slave setup is controlled differently.
 *
 * Returns: 0 on success, < 0 on failure
 */
static int bcm5481x_read_abilities(struct phy_device *phydev)
{
	struct device_node *np = phydev->mdio.dev.of_node;
	struct bcm54xx_phy_priv *priv = phydev->priv;
	int i, val, err;

	for (i = 0; i < ARRAY_SIZE(bcm54811_linkmodes); i++)
		linkmode_clear_bit(bcm54811_linkmodes[i], phydev->supported);

	priv->brr_mode = of_property_read_bool(np, "brr-mode");

	/* Set BroadR-Reach mode as configured in the DT. */
	err = bcm5481x_set_brrmode(phydev, priv->brr_mode);
	if (err)
		return err;

	if (priv->brr_mode) {
		linkmode_set_bit_array(phy_basic_ports_array,
				       ARRAY_SIZE(phy_basic_ports_array),
				       phydev->supported);

		val = phy_read(phydev, MII_BCM54XX_LRESR);
		if (val < 0)
			return val;

		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
				 phydev->supported,
				 val & LRESR_LDSABILITY);
		linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
				 phydev->supported,
				 val & LRESR_100_1PAIR);
		linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT1BRR_Full_BIT,
				 phydev->supported,
				 val & LRESR_10_1PAIR);
		return 0;
	}

	return genphy_read_abilities(phydev);
}

static int bcm5481x_config_delay_swap(struct phy_device *phydev)
{
	struct device_node *np = phydev->mdio.dev.of_node;

	/* Set up the delay. */
	bcm54xx_config_clock_delay(phydev);

	if (of_property_read_bool(np, "enet-phy-lane-swap")) {
		/* Lane Swap - Undocumented register...magic! */
		int ret = bcm_phy_write_exp(phydev,
					    MII_BCM54XX_EXP_SEL_ER + 0x9,
					    0x11B);
		if (ret < 0)
			return ret;
	}

	return 0;
}

static int bcm5481_config_aneg(struct phy_device *phydev)
{
	struct bcm54xx_phy_priv *priv = phydev->priv;
	int ret;

	/* Aneg firstly. */
	if (priv->brr_mode)
		ret = bcm_config_lre_aneg(phydev, false);
	else
		ret = genphy_config_aneg(phydev);

	if (ret)
		return ret;

	/* Then we can set up the delay and swap. */
	return bcm5481x_config_delay_swap(phydev);
}

static int bcm54811_config_aneg(struct phy_device *phydev)
{
	struct bcm54xx_phy_priv *priv = phydev->priv;
	int ret;

	/* Aneg firstly. */
	if (priv->brr_mode) {
		/* BCM54811 is only capable of autonegotiation in IEEE mode */
		phydev->autoneg = 0;
		ret = bcm_config_lre_aneg(phydev, false);
	} else {
		ret = genphy_config_aneg(phydev);
	}

	if (ret)
		return ret;

	/* Then we can set up the delay and swap. */
	return bcm5481x_config_delay_swap(phydev);
}

struct bcm54616s_phy_priv {
	bool mode_1000bx_en;
};

static int bcm54616s_probe(struct phy_device *phydev)
{
	struct bcm54616s_phy_priv *priv;
	int val;

	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	phydev->priv = priv;

	val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_MODE);
	if (val < 0)
		return val;

	/* The PHY is strapped in RGMII-fiber mode when INTERF_SEL[1:0]
	 * is 01b, and the link between PHY and its link partner can be
	 * either 1000Base-X or 100Base-FX.
	 * RGMII-1000Base-X is properly supported, but RGMII-100Base-FX
	 * support is still missing as of now.
	 */
	if ((val & BCM54XX_SHD_INTF_SEL_MASK) == BCM54XX_SHD_INTF_SEL_RGMII) {
		val = bcm_phy_read_shadow(phydev, BCM54616S_SHD_100FX_CTRL);
		if (val < 0)
			return val;

		/* Bit 0 of the SerDes 100-FX Control register, when set
		 * to 1, sets the MII/RGMII -> 100BASE-FX configuration.
		 * When this bit is set to 0, it sets the GMII/RGMII ->
		 * 1000BASE-X configuration.
		 */
		if (!(val & BCM54616S_100FX_MODE))
			priv->mode_1000bx_en = true;

		phydev->port = PORT_FIBRE;
	}

	return 0;
}

static int bcm54616s_config_aneg(struct phy_device *phydev)
{
	struct bcm54616s_phy_priv *priv = phydev->priv;
	int ret;

	/* Aneg firstly. */
	if (priv->mode_1000bx_en)
		ret = genphy_c37_config_aneg(phydev);
	else
		ret = genphy_config_aneg(phydev);

	/* Then we can set up the delay. */
	bcm54xx_config_clock_delay(phydev);

	return ret;
}

static int bcm54616s_read_status(struct phy_device *phydev)
{
	struct bcm54616s_phy_priv *priv = phydev->priv;
	bool changed;
	int err;

	if (priv->mode_1000bx_en)
		err = genphy_c37_read_status(phydev, &changed);
	else
		err = genphy_read_status(phydev);

	return err;
}

static int brcm_fet_config_init(struct phy_device *phydev)
{
	int reg, err, err2, brcmtest;

	/* Reset the PHY to bring it to a known state. */
	err = phy_write(phydev, MII_BMCR, BMCR_RESET);
	if (err < 0)
		return err;

	/* The datasheet indicates the PHY needs up to 1us to complete a reset,
	 * build some slack here.
	 */
	usleep_range(1000, 2000);

	/* The PHY requires 65 MDC clock cycles to complete a write operation
	 * and turnaround the line properly.
	 *
	 * We ignore -EIO here as the MDIO controller (e.g.: mdio-bcm-unimac)
	 * may flag the lack of turn-around as a read failure. This is
	 * particularly true with this combination since the MDIO controller
	 * only used 64 MDC cycles. This is not a critical failure in this
	 * specific case and it has no functional impact otherwise, so we let
	 * that one go through. If there is a genuine bus error, the next read
	 * of MII_BRCM_FET_INTREG will error out.
	 */
	err = phy_read(phydev, MII_BMCR);
	if (err < 0 && err != -EIO)
		return err;

	/* Read to clear status bits */
	reg = phy_read(phydev, MII_BRCM_FET_INTREG);
	if (reg < 0)
		return reg;

	/* Unmask events we are interested in and mask interrupts globally. */
	if (phydev->phy_id == PHY_ID_BCM5221)
		reg = MII_BRCM_FET_IR_ENABLE |
		      MII_BRCM_FET_IR_MASK;
	else
		reg = MII_BRCM_FET_IR_DUPLEX_EN |
		      MII_BRCM_FET_IR_SPEED_EN |
		      MII_BRCM_FET_IR_LINK_EN |
		      MII_BRCM_FET_IR_ENABLE |
		      MII_BRCM_FET_IR_MASK;

	err = phy_write(phydev, MII_BRCM_FET_INTREG, reg);
	if (err < 0)
		return err;

	/* Enable shadow register access */
	brcmtest = phy_read(phydev, MII_BRCM_FET_BRCMTEST);
	if (brcmtest < 0)
		return brcmtest;

	reg = brcmtest | MII_BRCM_FET_BT_SRE;

	phy_lock_mdio_bus(phydev);

	err = __phy_write(phydev, MII_BRCM_FET_BRCMTEST, reg);
	if (err < 0) {
		phy_unlock_mdio_bus(phydev);
		return err;
	}

	if (phydev->phy_id != PHY_ID_BCM5221) {
		/* Set the LED mode */
		reg = __phy_read(phydev, MII_BRCM_FET_SHDW_AUXMODE4);
		if (reg < 0) {
			err = reg;
			goto done;
		}

		err = __phy_modify(phydev, MII_BRCM_FET_SHDW_AUXMODE4,
				   MII_BRCM_FET_SHDW_AM4_LED_MASK,
				   MII_BRCM_FET_SHDW_AM4_LED_MODE1);
		if (err < 0)
			goto done;

		/* Enable auto MDIX */
		err = __phy_set_bits(phydev, MII_BRCM_FET_SHDW_MISCCTRL,
				     MII_BRCM_FET_SHDW_MC_FAME);
		if (err < 0)
			goto done;
	}

	if (phydev->dev_flags & PHY_BRCM_AUTO_PWRDWN_ENABLE) {
		/* Enable auto power down */
		err = __phy_set_bits(phydev, MII_BRCM_FET_SHDW_AUXSTAT2,
				     MII_BRCM_FET_SHDW_AS2_APDE);
	}

done:
	/* Disable shadow register access */
	err2 = __phy_write(phydev, MII_BRCM_FET_BRCMTEST, brcmtest);
	if (!err)
		err = err2;

	phy_unlock_mdio_bus(phydev);

	return err;
}

static int brcm_fet_ack_interrupt(struct phy_device *phydev)
{
	int reg;

	/* Clear pending interrupts.  */
	reg = phy_read(phydev, MII_BRCM_FET_INTREG);
	if (reg < 0)
		return reg;

	return 0;
}

static int brcm_fet_config_intr(struct phy_device *phydev)
{
	int reg, err;

	reg = phy_read(phydev, MII_BRCM_FET_INTREG);
	if (reg < 0)
		return reg;

	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
		err = brcm_fet_ack_interrupt(phydev);
		if (err)
			return err;

		reg &= ~MII_BRCM_FET_IR_MASK;
		err = phy_write(phydev, MII_BRCM_FET_INTREG, reg);
	} else {
		reg |= MII_BRCM_FET_IR_MASK;
		err = phy_write(phydev, MII_BRCM_FET_INTREG, reg);
		if (err)
			return err;

		err = brcm_fet_ack_interrupt(phydev);
	}

	return err;
}

static irqreturn_t brcm_fet_handle_interrupt(struct phy_device *phydev)
{
	int irq_status;

	irq_status = phy_read(phydev, MII_BRCM_FET_INTREG);
	if (irq_status < 0) {
		phy_error(phydev);
		return IRQ_NONE;
	}

	if (irq_status == 0)
		return IRQ_NONE;

	phy_trigger_machine(phydev);

	return IRQ_HANDLED;
}

static int brcm_fet_suspend(struct phy_device *phydev)
{
	int reg, err, err2, brcmtest;

	/* We cannot use a read/modify/write here otherwise the PHY continues
	 * to drive LEDs which defeats the purpose of low power mode.
	 */
	err = phy_write(phydev, MII_BMCR, BMCR_PDOWN);
	if (err < 0)
		return err;

	/* Enable shadow register access */
	brcmtest = phy_read(phydev, MII_BRCM_FET_BRCMTEST);
	if (brcmtest < 0)
		return brcmtest;

	reg = brcmtest | MII_BRCM_FET_BT_SRE;

	phy_lock_mdio_bus(phydev);

	err = __phy_write(phydev, MII_BRCM_FET_BRCMTEST, reg);
	if (err < 0) {
		phy_unlock_mdio_bus(phydev);
		return err;
	}

	if (phydev->phy_id == PHY_ID_BCM5221)
		/* Force Low Power Mode with clock enabled */
		reg = BCM5221_SHDW_AM4_EN_CLK_LPM | BCM5221_SHDW_AM4_FORCE_LPM;
	else
		/* Set standby mode */
		reg = MII_BRCM_FET_SHDW_AM4_STANDBY;

	err = __phy_set_bits(phydev, MII_BRCM_FET_SHDW_AUXMODE4, reg);

	/* Disable shadow register access */
	err2 = __phy_write(phydev, MII_BRCM_FET_BRCMTEST, brcmtest);
	if (!err)
		err = err2;

	phy_unlock_mdio_bus(phydev);

	return err;
}

static int bcm5221_config_aneg(struct phy_device *phydev)
{
	int ret, val;

	ret = genphy_config_aneg(phydev);
	if (ret)
		return ret;

	switch (phydev->mdix_ctrl) {
	case ETH_TP_MDI:
		val = BCM5221_AEGSR_MDIX_DIS;
		break;
	case ETH_TP_MDI_X:
		val = BCM5221_AEGSR_MDIX_DIS | BCM5221_AEGSR_MDIX_MAN_SWAP;
		break;
	case ETH_TP_MDI_AUTO:
		val = 0;
		break;
	default:
		return 0;
	}

	return phy_modify(phydev, BCM5221_AEGSR, BCM5221_AEGSR_MDIX_MAN_SWAP |
						 BCM5221_AEGSR_MDIX_DIS,
						 val);
}

static int bcm5221_read_status(struct phy_device *phydev)
{
	int ret;

	/* Read MDIX status */
	ret = phy_read(phydev, BCM5221_AEGSR);
	if (ret < 0)
		return ret;

	if (ret & BCM5221_AEGSR_MDIX_DIS) {
		if (ret & BCM5221_AEGSR_MDIX_MAN_SWAP)
			phydev->mdix_ctrl = ETH_TP_MDI_X;
		else
			phydev->mdix_ctrl = ETH_TP_MDI;
	} else {
		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
	}

	if (ret & BCM5221_AEGSR_MDIX_STATUS)
		phydev->mdix = ETH_TP_MDI_X;
	else
		phydev->mdix = ETH_TP_MDI;

	return genphy_read_status(phydev);
}

static void bcm54xx_phy_get_wol(struct phy_device *phydev,
				struct ethtool_wolinfo *wol)
{
	/* We cannot wake-up if we do not have a dedicated PHY interrupt line
	 * or an out of band GPIO descriptor for wake-up. Zeroing
	 * wol->supported allows the caller (MAC driver) to play through and
	 * offer its own Wake-on-LAN scheme if available.
	 */
	if (!bcm54xx_phy_can_wakeup(phydev)) {
		wol->supported = 0;
		return;
	}

	bcm_phy_get_wol(phydev, wol);
}

static int bcm54xx_phy_set_wol(struct phy_device *phydev,
			       struct ethtool_wolinfo *wol)
{
	int ret;

	/* We cannot wake-up if we do not have a dedicated PHY interrupt line
	 * or an out of band GPIO descriptor for wake-up. Returning -EOPNOTSUPP
	 * allows the caller (MAC driver) to play through and offer its own
	 * Wake-on-LAN scheme if available.
	 */
	if (!bcm54xx_phy_can_wakeup(phydev))
		return -EOPNOTSUPP;

	ret = bcm_phy_set_wol(phydev, wol);
	if (ret < 0)
		return ret;

	return 0;
}

static int bcm54xx_phy_probe(struct phy_device *phydev)
{
	struct bcm54xx_phy_priv *priv;
	struct gpio_desc *wakeup_gpio;
	int ret = 0;

	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->wake_irq = -ENXIO;

	phydev->priv = priv;

	priv->stats = devm_kcalloc(&phydev->mdio.dev,
				   bcm_phy_get_sset_count(phydev), sizeof(u64),
				   GFP_KERNEL);
	if (!priv->stats)
		return -ENOMEM;

	priv->ptp = bcm_ptp_probe(phydev);
	if (IS_ERR(priv->ptp))
		return PTR_ERR(priv->ptp);

	/* We cannot utilize the _optional variant here since we want to know
	 * whether the GPIO descriptor exists or not to advertise Wake-on-LAN
	 * support or not.
	 */
	wakeup_gpio = devm_gpiod_get(&phydev->mdio.dev, "wakeup", GPIOD_IN);
	if (PTR_ERR(wakeup_gpio) == -EPROBE_DEFER)
		return PTR_ERR(wakeup_gpio);

	if (!IS_ERR(wakeup_gpio)) {
		priv->wake_irq = gpiod_to_irq(wakeup_gpio);

		/* Dummy interrupt handler which is not enabled but is provided
		 * in order for the interrupt descriptor to be fully set-up.
		 */
		ret = devm_request_irq(&phydev->mdio.dev, priv->wake_irq,
				       bcm_phy_wol_isr,
				       IRQF_TRIGGER_LOW | IRQF_NO_AUTOEN,
				       dev_name(&phydev->mdio.dev), phydev);
		if (ret)
			return ret;
	}

	/* If we do not have a main interrupt or a side-band wake-up interrupt,
	 * then the device cannot be marked as wake-up capable.
	 */
	if (!bcm54xx_phy_can_wakeup(phydev))
		return 0;

	return device_init_wakeup(&phydev->mdio.dev, true);
}

static void bcm54xx_get_stats(struct phy_device *phydev,
			      struct ethtool_stats *stats, u64 *data)
{
	struct bcm54xx_phy_priv *priv = phydev->priv;

	bcm_phy_get_stats(phydev, priv->stats, stats, data);
}

static void bcm54xx_link_change_notify(struct phy_device *phydev)
{
	u16 mask = MII_BCM54XX_EXP_EXP08_EARLY_DAC_WAKE |
		   MII_BCM54XX_EXP_EXP08_FORCE_DAC_WAKE;
	int ret;

	if (phydev->state != PHY_RUNNING)
		return;

	/* Don't change the DAC wake settings if auto power down
	 * is not requested.
	 */
	if (!(phydev->dev_flags & PHY_BRCM_AUTO_PWRDWN_ENABLE))
		return;

	ret = bcm_phy_read_exp(phydev, MII_BCM54XX_EXP_EXP08);
	if (ret < 0)
		return;

	/* Enable/disable 10BaseT auto and forced early DAC wake depending
	 * on the negotiated speed, those settings should only be done
	 * for 10Mbits/sec.
	 */
	if (phydev->speed == SPEED_10)
		ret |= mask;
	else
		ret &= ~mask;
	bcm_phy_write_exp(phydev, MII_BCM54XX_EXP_EXP08, ret);
}

static int lre_read_master_slave(struct phy_device *phydev)
{
	int cfg = MASTER_SLAVE_CFG_UNKNOWN, state;
	int val;

	/* In BroadR-Reach mode we are always capable of master-slave
	 *  and there is no preferred master or slave configuration
	 */
	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;

	val = phy_read(phydev, MII_BCM54XX_LRECR);
	if (val < 0)
		return val;

	if ((val & LRECR_LDSEN) == 0) {
		if (val & LRECR_MASTER)
			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
		else
			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
	}

	val = phy_read(phydev, MII_BCM54XX_LRELDSE);
	if (val < 0)
		return val;

	if (val & LDSE_MASTER)
		state = MASTER_SLAVE_STATE_MASTER;
	else
		state = MASTER_SLAVE_STATE_SLAVE;

	phydev->master_slave_get = cfg;
	phydev->master_slave_state = state;

	return 0;
}

/* Read LDS Link Partner Ability in BroadR-Reach mode */
static int lre_read_lpa(struct phy_device *phydev)
{
	int i, lrelpa;

	if (phydev->autoneg != AUTONEG_ENABLE) {
		if (!phydev->autoneg_complete) {
			/* aneg not yet done, reset all relevant bits */
			for (i = 0; i < ARRAY_SIZE(lds_br_bits); i++)
				linkmode_clear_bit(lds_br_bits[i],
						   phydev->lp_advertising);

			return 0;
		}

		/* Long-Distance Signaling Link Partner Ability */
		lrelpa = phy_read(phydev, MII_BCM54XX_LRELPA);
		if (lrelpa < 0)
			return lrelpa;

		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
				 phydev->lp_advertising,
				 lrelpa & LRELPA_PAUSE_ASYM);
		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
				 phydev->lp_advertising,
				 lrelpa & LRELPA_PAUSE);
		linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
				 phydev->lp_advertising,
				 lrelpa & LRELPA_100_1PAIR);
		linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT1BRR_Full_BIT,
				 phydev->lp_advertising,
				 lrelpa & LRELPA_10_1PAIR);
	} else {
		linkmode_zero(phydev->lp_advertising);
	}

	return 0;
}

static int lre_read_status_fixed(struct phy_device *phydev)
{
	int lrecr = phy_read(phydev, MII_BCM54XX_LRECR);

	if (lrecr < 0)
		return lrecr;

	phydev->duplex = DUPLEX_FULL;

	if (lrecr & LRECR_SPEED100)
		phydev->speed = SPEED_100;
	else
		phydev->speed = SPEED_10;

	return 0;
}

/**
 * lre_update_link - update link status in @phydev
 * @phydev: target phy_device struct
 * Return:  0 on success, < 0 on error
 *
 * Description: Update the value in phydev->link to reflect the
 *   current link value.  In order to do this, we need to read
 *   the status register twice, keeping the second value.
 *   This is a genphy_update_link modified to work on LRE registers
 *   of BroadR-Reach PHY
 */
static int lre_update_link(struct phy_device *phydev)
{
	int status = 0, lrecr;

	lrecr = phy_read(phydev, MII_BCM54XX_LRECR);
	if (lrecr < 0)
		return lrecr;

	/* Autoneg is being started, therefore disregard BMSR value and
	 * report link as down.
	 */
	if (lrecr & BMCR_ANRESTART)
		goto done;

	/* The link state is latched low so that momentary link
	 * drops can be detected. Do not double-read the status
	 * in polling mode to detect such short link drops except
	 * the link was already down.
	 */
	if (!phy_polling_mode(phydev) || !phydev->link) {
		status = phy_read(phydev, MII_BCM54XX_LRESR);
		if (status < 0)
			return status;
		else if (status & LRESR_LSTATUS)
			goto done;
	}

	/* Read link and autonegotiation status */
	status = phy_read(phydev, MII_BCM54XX_LRESR);
	if (status < 0)
		return status;
done:
	phydev->link = status & LRESR_LSTATUS ? 1 : 0;
	phydev->autoneg_complete = status & LRESR_LDSCOMPLETE ? 1 : 0;

	/* Consider the case that autoneg was started and "aneg complete"
	 * bit has been reset, but "link up" bit not yet.
	 */
	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
		phydev->link = 0;

	return 0;
}

/* Get the status in BroadRReach mode just like genphy_read_status does
*   in normal mode
*/
static int bcm54811_lre_read_status(struct phy_device *phydev)
{
	int err, old_link = phydev->link;

	/* Update the link, but return if there was an error */
	err = lre_update_link(phydev);
	if (err)
		return err;

	/* why bother the PHY if nothing can have changed */
	if (phydev->autoneg ==
		AUTONEG_ENABLE && old_link && phydev->link)
		return 0;

	phydev->speed = SPEED_UNKNOWN;
	phydev->duplex = DUPLEX_UNKNOWN;
	phydev->pause = 0;
	phydev->asym_pause = 0;

	err = lre_read_master_slave(phydev);
	if (err < 0)
		return err;

	/* Read LDS Link Partner Ability */
	err = lre_read_lpa(phydev);
	if (err < 0)
		return err;

	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete)
		phy_resolve_aneg_linkmode(phydev);
	else if (phydev->autoneg == AUTONEG_DISABLE)
		err = lre_read_status_fixed(phydev);

	return err;
}

static int bcm54811_read_status(struct phy_device *phydev)
{
	struct bcm54xx_phy_priv *priv = phydev->priv;

	if (priv->brr_mode)
		return  bcm54811_lre_read_status(phydev);

	return genphy_read_status(phydev);
}

static struct phy_driver broadcom_drivers[] = {
{
	.phy_id		= PHY_ID_BCM5411,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM5411",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
}, {
	.phy_id		= PHY_ID_BCM5421,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM5421",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
}, {
	.phy_id		= PHY_ID_BCM54210E,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM54210E",
	/* PHY_GBIT_FEATURES */
	.flags		= PHY_ALWAYS_CALL_SUSPEND,
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
	.suspend	= bcm54xx_suspend,
	.resume		= bcm54xx_resume,
	.get_wol	= bcm54xx_phy_get_wol,
	.set_wol	= bcm54xx_phy_set_wol,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id		= PHY_ID_BCM5461,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM5461",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id		= PHY_ID_BCM54612E,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM54612E",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
	.suspend	= bcm54xx_suspend,
	.resume		= bcm54xx_resume,
}, {
	.phy_id		= PHY_ID_BCM54616S,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM54616S",
	/* PHY_GBIT_FEATURES */
	.soft_reset     = genphy_soft_reset,
	.config_init	= bcm54xx_config_init,
	.config_aneg	= bcm54616s_config_aneg,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.read_status	= bcm54616s_read_status,
	.probe		= bcm54616s_probe,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id		= PHY_ID_BCM5464,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM5464",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.suspend	= genphy_suspend,
	.resume		= genphy_resume,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id		= PHY_ID_BCM5481,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM5481",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_aneg	= bcm5481_config_aneg,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id         = PHY_ID_BCM54810,
	.phy_id_mask    = 0xfffffff0,
	.name           = "Broadcom BCM54810",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.read_mmd	= bcm54810_read_mmd,
	.write_mmd	= bcm54810_write_mmd,
	.config_init    = bcm54xx_config_init,
	.config_aneg    = bcm5481_config_aneg,
	.config_intr    = bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.suspend	= bcm54xx_suspend,
	.resume		= bcm54xx_resume,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id         = PHY_ID_BCM54811,
	.phy_id_mask    = 0xfffffff0,
	.name           = "Broadcom BCM54811",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init    = bcm54xx_config_init,
	.config_aneg    = bcm54811_config_aneg,
	.config_intr    = bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.read_status	= bcm54811_read_status,
	.get_features	= bcm5481x_read_abilities,
	.suspend	= bcm54xx_suspend,
	.resume		= bcm54xx_resume,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id		= PHY_ID_BCM5482,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM5482",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id		= PHY_ID_BCM50610,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM50610",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
	.suspend	= bcm54xx_suspend,
	.resume		= bcm54xx_resume,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id		= PHY_ID_BCM50610M,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM50610M",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
	.suspend	= bcm54xx_suspend,
	.resume		= bcm54xx_resume,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id		= PHY_ID_BCM57780,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM57780",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id		= PHY_ID_BCMAC131,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCMAC131",
	/* PHY_BASIC_FEATURES */
	.config_init	= brcm_fet_config_init,
	.config_intr	= brcm_fet_config_intr,
	.handle_interrupt = brcm_fet_handle_interrupt,
	.suspend	= brcm_fet_suspend,
	.resume		= brcm_fet_config_init,
}, {
	.phy_id		= PHY_ID_BCM5241,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM5241",
	/* PHY_BASIC_FEATURES */
	.config_init	= brcm_fet_config_init,
	.config_intr	= brcm_fet_config_intr,
	.handle_interrupt = brcm_fet_handle_interrupt,
	.suspend	= brcm_fet_suspend,
	.resume		= brcm_fet_config_init,
}, {
	.phy_id		= PHY_ID_BCM5221,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM5221",
	/* PHY_BASIC_FEATURES */
	.config_init	= brcm_fet_config_init,
	.config_intr	= brcm_fet_config_intr,
	.handle_interrupt = brcm_fet_handle_interrupt,
	.suspend	= brcm_fet_suspend,
	.resume		= brcm_fet_config_init,
	.config_aneg	= bcm5221_config_aneg,
	.read_status	= bcm5221_read_status,
}, {
	.phy_id		= PHY_ID_BCM5395,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM5395",
	.flags		= PHY_IS_INTERNAL,
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id		= PHY_ID_BCM53125,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM53125",
	.flags		= PHY_IS_INTERNAL,
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id		= PHY_ID_BCM53128,
	.phy_id_mask	= 0xfffffff0,
	.name		= "Broadcom BCM53128",
	.flags		= PHY_IS_INTERNAL,
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init	= bcm54xx_config_init,
	.config_intr	= bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
	.led_brightness_set	= bcm_phy_led_brightness_set,
}, {
	.phy_id         = PHY_ID_BCM89610,
	.phy_id_mask    = 0xfffffff0,
	.name           = "Broadcom BCM89610",
	/* PHY_GBIT_FEATURES */
	.get_sset_count	= bcm_phy_get_sset_count,
	.get_strings	= bcm_phy_get_strings,
	.get_stats	= bcm54xx_get_stats,
	.probe		= bcm54xx_phy_probe,
	.config_init    = bcm54xx_config_init,
	.config_intr    = bcm_phy_config_intr,
	.handle_interrupt = bcm_phy_handle_interrupt,
	.link_change_notify	= bcm54xx_link_change_notify,
} };

module_phy_driver(broadcom_drivers);

static struct mdio_device_id __maybe_unused broadcom_tbl[] = {
	{ PHY_ID_BCM5411, 0xfffffff0 },
	{ PHY_ID_BCM5421, 0xfffffff0 },
	{ PHY_ID_BCM54210E, 0xfffffff0 },
	{ PHY_ID_BCM5461, 0xfffffff0 },
	{ PHY_ID_BCM54612E, 0xfffffff0 },
	{ PHY_ID_BCM54616S, 0xfffffff0 },
	{ PHY_ID_BCM5464, 0xfffffff0 },
	{ PHY_ID_BCM5481, 0xfffffff0 },
	{ PHY_ID_BCM54810, 0xfffffff0 },
	{ PHY_ID_BCM54811, 0xfffffff0 },
	{ PHY_ID_BCM5482, 0xfffffff0 },
	{ PHY_ID_BCM50610, 0xfffffff0 },
	{ PHY_ID_BCM50610M, 0xfffffff0 },
	{ PHY_ID_BCM57780, 0xfffffff0 },
	{ PHY_ID_BCMAC131, 0xfffffff0 },
	{ PHY_ID_BCM5221, 0xfffffff0 },
	{ PHY_ID_BCM5241, 0xfffffff0 },
	{ PHY_ID_BCM5395, 0xfffffff0 },
	{ PHY_ID_BCM53125, 0xfffffff0 },
	{ PHY_ID_BCM53128, 0xfffffff0 },
	{ PHY_ID_BCM89610, 0xfffffff0 },
	{ }
};

MODULE_DEVICE_TABLE(mdio, broadcom_tbl);