// SPDX-License-Identifier: GPL-2.0+
/*
* drivers/net/phy/micrel.c
*
* Driver for Micrel PHYs
*
* Author: David J. Choi
*
* Copyright (c) 2010-2013 Micrel, Inc.
* Copyright (c) 2014 Johan Hovold <[email protected]>
*
* Support : Micrel Phys:
* Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
* 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
* ksz8021, ksz8031, ksz8051,
* ksz8081, ksz8091,
* ksz8061,
* Switch : ksz8873, ksz886x
* ksz9477, lan8804
*/
#include <linux/bitfield.h>
#include <linux/ethtool_netlink.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/micrel_phy.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/ptp_clock.h>
#include <linux/ptp_classify.h>
#include <linux/net_tstamp.h>
#include <linux/gpio/consumer.h>
/* Operation Mode Strap Override */
#define MII_KSZPHY_OMSO 0x16
#define KSZPHY_OMSO_FACTORY_TEST BIT(15)
#define KSZPHY_OMSO_B_CAST_OFF BIT(9)
#define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
#define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
#define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
/* general Interrupt control/status reg in vendor specific block. */
#define MII_KSZPHY_INTCS 0x1B
#define KSZPHY_INTCS_JABBER BIT(15)
#define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
#define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
#define KSZPHY_INTCS_PARELLEL BIT(12)
#define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
#define KSZPHY_INTCS_LINK_DOWN BIT(10)
#define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
#define KSZPHY_INTCS_LINK_UP BIT(8)
#define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
KSZPHY_INTCS_LINK_DOWN)
#define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2)
#define KSZPHY_INTCS_LINK_UP_STATUS BIT(0)
#define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\
KSZPHY_INTCS_LINK_UP_STATUS)
/* LinkMD Control/Status */
#define KSZ8081_LMD 0x1d
#define KSZ8081_LMD_ENABLE_TEST BIT(15)
#define KSZ8081_LMD_STAT_NORMAL 0
#define KSZ8081_LMD_STAT_OPEN 1
#define KSZ8081_LMD_STAT_SHORT 2
#define KSZ8081_LMD_STAT_FAIL 3
#define KSZ8081_LMD_STAT_MASK GENMASK(14, 13)
/* Short cable (<10 meter) has been detected by LinkMD */
#define KSZ8081_LMD_SHORT_INDICATOR BIT(12)
#define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0)
#define KSZ9x31_LMD 0x12
#define KSZ9x31_LMD_VCT_EN BIT(15)
#define KSZ9x31_LMD_VCT_DIS_TX BIT(14)
#define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12)
#define KSZ9x31_LMD_VCT_SEL_RESULT 0
#define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10)
#define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11)
#define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10)
#define KSZ9x31_LMD_VCT_ST_NORMAL 0
#define KSZ9x31_LMD_VCT_ST_OPEN 1
#define KSZ9x31_LMD_VCT_ST_SHORT 2
#define KSZ9x31_LMD_VCT_ST_FAIL 3
#define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8)
#define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7)
#define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6)
#define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5)
#define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4)
#define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2)
#define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0)
#define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0)
#define KSZPHY_WIRE_PAIR_MASK 0x3
#define LAN8814_CABLE_DIAG 0x12
#define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8)
#define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0)
#define LAN8814_PAIR_BIT_SHIFT 12
#define LAN8814_WIRE_PAIR_MASK 0xF
/* Lan8814 general Interrupt control/status reg in GPHY specific block. */
#define LAN8814_INTC 0x18
#define LAN8814_INTS 0x1B
#define LAN8814_INT_LINK_DOWN BIT(2)
#define LAN8814_INT_LINK_UP BIT(0)
#define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\
LAN8814_INT_LINK_DOWN)
#define LAN8814_INTR_CTRL_REG 0x34
#define LAN8814_INTR_CTRL_REG_POLARITY BIT(1)
#define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0)
#define LAN8814_EEE_STATE 0x38
#define LAN8814_EEE_STATE_MASK2P5P BIT(10)
#define LAN8814_PD_CONTROLS 0x9d
#define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0)
#define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb
/* Represents 1ppm adjustment in 2^32 format with
* each nsec contains 4 clock cycles.
* The value is calculated as following: (1/1000000)/((2^-32)/4)
*/
#define LAN8814_1PPM_FORMAT 17179
/* Represents 1ppm adjustment in 2^32 format with
* each nsec contains 8 clock cycles.
* The value is calculated as following: (1/1000000)/((2^-32)/8)
*/
#define LAN8841_1PPM_FORMAT 34360
#define PTP_RX_VERSION 0x0248
#define PTP_TX_VERSION 0x0288
#define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8)
#define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0))
#define PTP_RX_MOD 0x024F
#define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
#define PTP_RX_TIMESTAMP_EN 0x024D
#define PTP_TX_TIMESTAMP_EN 0x028D
#define PTP_TIMESTAMP_EN_SYNC_ BIT(0)
#define PTP_TIMESTAMP_EN_DREQ_ BIT(1)
#define PTP_TIMESTAMP_EN_PDREQ_ BIT(2)
#define PTP_TIMESTAMP_EN_PDRES_ BIT(3)
#define PTP_TX_PARSE_L2_ADDR_EN 0x0284
#define PTP_RX_PARSE_L2_ADDR_EN 0x0244
#define PTP_TX_PARSE_IP_ADDR_EN 0x0285
#define PTP_RX_PARSE_IP_ADDR_EN 0x0245
#define LTC_HARD_RESET 0x023F
#define LTC_HARD_RESET_ BIT(0)
#define TSU_HARD_RESET 0x02C1
#define TSU_HARD_RESET_ BIT(0)
#define PTP_CMD_CTL 0x0200
#define PTP_CMD_CTL_PTP_DISABLE_ BIT(0)
#define PTP_CMD_CTL_PTP_ENABLE_ BIT(1)
#define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3)
#define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4)
#define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5)
#define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6)
#define PTP_COMMON_INT_ENA 0x0204
#define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2)
#define PTP_CLOCK_SET_SEC_HI 0x0205
#define PTP_CLOCK_SET_SEC_MID 0x0206
#define PTP_CLOCK_SET_SEC_LO 0x0207
#define PTP_CLOCK_SET_NS_HI 0x0208
#define PTP_CLOCK_SET_NS_LO 0x0209
#define PTP_CLOCK_READ_SEC_HI 0x0229
#define PTP_CLOCK_READ_SEC_MID 0x022A
#define PTP_CLOCK_READ_SEC_LO 0x022B
#define PTP_CLOCK_READ_NS_HI 0x022C
#define PTP_CLOCK_READ_NS_LO 0x022D
#define PTP_GPIO_SEL 0x0230
#define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8)
#define PTP_GPIO_CAP_MAP_LO 0x0232
#define PTP_GPIO_CAP_EN 0x0233
#define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio)
#define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
#define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235
#define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236
#define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237
#define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238
#define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239
#define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A
#define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B
#define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C
#define PTP_GPIO_CAP_STS 0x023D
#define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio)
#define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8)
#define PTP_OPERATING_MODE 0x0241
#define PTP_OPERATING_MODE_STANDALONE_ BIT(0)
#define PTP_TX_MOD 0x028F
#define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12)
#define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
#define PTP_RX_PARSE_CONFIG 0x0242
#define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
#define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1)
#define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2)
#define PTP_TX_PARSE_CONFIG 0x0282
#define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
#define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1)
#define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2)
#define PTP_CLOCK_RATE_ADJ_HI 0x020C
#define PTP_CLOCK_RATE_ADJ_LO 0x020D
#define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15)
#define PTP_LTC_STEP_ADJ_HI 0x0212
#define PTP_LTC_STEP_ADJ_LO 0x0213
#define PTP_LTC_STEP_ADJ_DIR_ BIT(15)
#define LAN8814_INTR_STS_REG 0x0033
#define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0)
#define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1)
#define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2)
#define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3)
#define PTP_CAP_INFO 0x022A
#define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8)
#define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f)
#define PTP_TX_EGRESS_SEC_HI 0x0296
#define PTP_TX_EGRESS_SEC_LO 0x0297
#define PTP_TX_EGRESS_NS_HI 0x0294
#define PTP_TX_EGRESS_NS_LO 0x0295
#define PTP_TX_MSG_HEADER2 0x0299
#define PTP_RX_INGRESS_SEC_HI 0x0256
#define PTP_RX_INGRESS_SEC_LO 0x0257
#define PTP_RX_INGRESS_NS_HI 0x0254
#define PTP_RX_INGRESS_NS_LO 0x0255
#define PTP_RX_MSG_HEADER2 0x0259
#define PTP_TSU_INT_EN 0x0200
#define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3)
#define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2)
#define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1)
#define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0)
#define PTP_TSU_INT_STS 0x0201
#define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3)
#define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2)
#define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1)
#define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0)
#define LAN8814_LED_CTRL_1 0x0
#define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6)
/* PHY Control 1 */
#define MII_KSZPHY_CTRL_1 0x1e
#define KSZ8081_CTRL1_MDIX_STAT BIT(4)
/* PHY Control 2 / PHY Control (if no PHY Control 1) */
#define MII_KSZPHY_CTRL_2 0x1f
#define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
/* bitmap of PHY register to set interrupt mode */
#define KSZ8081_CTRL2_HP_MDIX BIT(15)
#define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14)
#define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13)
#define KSZ8081_CTRL2_FORCE_LINK BIT(11)
#define KSZ8081_CTRL2_POWER_SAVING BIT(10)
#define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
#define KSZPHY_RMII_REF_CLK_SEL BIT(7)
/* Write/read to/from extended registers */
#define MII_KSZPHY_EXTREG 0x0b
#define KSZPHY_EXTREG_WRITE 0x8000
#define MII_KSZPHY_EXTREG_WRITE 0x0c
#define MII_KSZPHY_EXTREG_READ 0x0d
/* Extended registers */
#define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
#define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
#define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
#define PS_TO_REG 200
#define FIFO_SIZE 8
#define LAN8814_PTP_GPIO_NUM 24
#define LAN8814_PTP_PEROUT_NUM 2
#define LAN8814_PTP_EXTTS_NUM 3
#define LAN8814_BUFFER_TIME 2
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
#define LAN8814_GPIO_EN1 0x20
#define LAN8814_GPIO_EN2 0x21
#define LAN8814_GPIO_DIR1 0x22
#define LAN8814_GPIO_DIR2 0x23
#define LAN8814_GPIO_BUF1 0x24
#define LAN8814_GPIO_BUF2 0x25
#define LAN8814_GPIO_EN_ADDR(pin) \
((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
#define LAN8814_GPIO_EN_BIT(pin) BIT(pin)
#define LAN8814_GPIO_DIR_ADDR(pin) \
((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
#define LAN8814_GPIO_DIR_BIT(pin) BIT(pin)
#define LAN8814_GPIO_BUF_ADDR(pin) \
((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
#define LAN8814_GPIO_BUF_BIT(pin) BIT(pin)
#define LAN8814_EVENT_A 0
#define LAN8814_EVENT_B 1
#define LAN8814_PTP_GENERAL_CONFIG 0x0201
#define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
((event) ? GENMASK(11, 8) : GENMASK(7, 4))
#define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
(((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
#define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
((event) ? BIT(2) : BIT(0))
#define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
((event) ? BIT(3) : BIT(1))
#define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215)
#define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216)
#define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217)
#define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218)
#define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219)
#define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A)
#define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B)
#define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C)
/* Delay used to get the second part from the LTC */
#define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC)
struct kszphy_hw_stat {
const char *string;
u8 reg;
u8 bits;
};
static struct kszphy_hw_stat kszphy_hw_stats[] = {
{ "phy_receive_errors", 21, 16},
{ "phy_idle_errors", 10, 8 },
};
struct kszphy_type {
u32 led_mode_reg;
u16 interrupt_level_mask;
u16 cable_diag_reg;
unsigned long pair_mask;
u16 disable_dll_tx_bit;
u16 disable_dll_rx_bit;
u16 disable_dll_mask;
bool has_broadcast_disable;
bool has_nand_tree_disable;
bool has_rmii_ref_clk_sel;
};
/* Shared structure between the PHYs of the same package. */
struct lan8814_shared_priv {
struct phy_device *phydev;
struct ptp_clock *ptp_clock;
struct ptp_clock_info ptp_clock_info;
struct ptp_pin_desc *pin_config;
/* Lock for ptp_clock */
struct mutex shared_lock;
};
struct lan8814_ptp_rx_ts {
struct list_head list;
u32 seconds;
u32 nsec;
u16 seq_id;
};
struct kszphy_ptp_priv {
struct mii_timestamper mii_ts;
struct phy_device *phydev;
struct sk_buff_head tx_queue;
struct sk_buff_head rx_queue;
struct list_head rx_ts_list;
/* Lock for Rx ts fifo */
spinlock_t rx_ts_lock;
int hwts_tx_type;
enum hwtstamp_rx_filters rx_filter;
int layer;
int version;
struct ptp_clock *ptp_clock;
struct ptp_clock_info ptp_clock_info;
/* Lock for ptp_clock */
struct mutex ptp_lock;
struct ptp_pin_desc *pin_config;
s64 seconds;
/* Lock for accessing seconds */
spinlock_t seconds_lock;
};
struct kszphy_priv {
struct kszphy_ptp_priv ptp_priv;
const struct kszphy_type *type;
int led_mode;
u16 vct_ctrl1000;
bool rmii_ref_clk_sel;
bool rmii_ref_clk_sel_val;
u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
};
static const struct kszphy_type lan8814_type = {
.led_mode_reg = ~LAN8814_LED_CTRL_1,
.cable_diag_reg = LAN8814_CABLE_DIAG,
.pair_mask = LAN8814_WIRE_PAIR_MASK,
};
static const struct kszphy_type ksz886x_type = {
.cable_diag_reg = KSZ8081_LMD,
.pair_mask = KSZPHY_WIRE_PAIR_MASK,
};
static const struct kszphy_type ksz8021_type = {
.led_mode_reg = MII_KSZPHY_CTRL_2,
.has_broadcast_disable = true,
.has_nand_tree_disable = true,
.has_rmii_ref_clk_sel = true,
};
static const struct kszphy_type ksz8041_type = {
.led_mode_reg = MII_KSZPHY_CTRL_1,
};
static const struct kszphy_type ksz8051_type = {
.led_mode_reg = MII_KSZPHY_CTRL_2,
.has_nand_tree_disable = true,
};
static const struct kszphy_type ksz8081_type = {
.led_mode_reg = MII_KSZPHY_CTRL_2,
.has_broadcast_disable = true,
.has_nand_tree_disable = true,
.has_rmii_ref_clk_sel = true,
};
static const struct kszphy_type ks8737_type = {
.interrupt_level_mask = BIT(14),
};
static const struct kszphy_type ksz9021_type = {
.interrupt_level_mask = BIT(14),
};
static const struct kszphy_type ksz9131_type = {
.interrupt_level_mask = BIT(14),
.disable_dll_tx_bit = BIT(12),
.disable_dll_rx_bit = BIT(12),
.disable_dll_mask = BIT_MASK(12),
};
static const struct kszphy_type lan8841_type = {
.disable_dll_tx_bit = BIT(14),
.disable_dll_rx_bit = BIT(14),
.disable_dll_mask = BIT_MASK(14),
.cable_diag_reg = LAN8814_CABLE_DIAG,
.pair_mask = LAN8814_WIRE_PAIR_MASK,
};
static int kszphy_extended_write(struct phy_device *phydev,
u32 regnum, u16 val)
{
phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
}
static int kszphy_extended_read(struct phy_device *phydev,
u32 regnum)
{
phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
}
static int kszphy_ack_interrupt(struct phy_device *phydev)
{
/* bit[7..0] int status, which is a read and clear register. */
int rc;
rc = phy_read(phydev, MII_KSZPHY_INTCS);
return (rc < 0) ? rc : 0;
}
static int kszphy_config_intr(struct phy_device *phydev)
{
const struct kszphy_type *type = phydev->drv->driver_data;
int temp, err;
u16 mask;
if (type && type->interrupt_level_mask)
mask = type->interrupt_level_mask;
else
mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
/* set the interrupt pin active low */
temp = phy_read(phydev, MII_KSZPHY_CTRL);
if (temp < 0)
return temp;
temp &= ~mask;
phy_write(phydev, MII_KSZPHY_CTRL, temp);
/* enable / disable interrupts */
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
err = kszphy_ack_interrupt(phydev);
if (err)
return err;
err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
} else {
err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
if (err)
return err;
err = kszphy_ack_interrupt(phydev);
}
return err;
}
static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
{
int irq_status;
irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
if (!(irq_status & KSZPHY_INTCS_STATUS))
return IRQ_NONE;
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
{
int ctrl;
ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
if (ctrl < 0)
return ctrl;
if (val)
ctrl |= KSZPHY_RMII_REF_CLK_SEL;
else
ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
}
static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
{
int rc, temp, shift;
switch (reg) {
case MII_KSZPHY_CTRL_1:
shift = 14;
break;
case MII_KSZPHY_CTRL_2:
shift = 4;
break;
default:
return -EINVAL;
}
temp = phy_read(phydev, reg);
if (temp < 0) {
rc = temp;
goto out;
}
temp &= ~(3 << shift);
temp |= val << shift;
rc = phy_write(phydev, reg, temp);
out:
if (rc < 0)
phydev_err(phydev, "failed to set led mode\n");
return rc;
}
/* Disable PHY address 0 as the broadcast address, so that it can be used as a
* unique (non-broadcast) address on a shared bus.
*/
static int kszphy_broadcast_disable(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, MII_KSZPHY_OMSO);
if (ret < 0)
goto out;
ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
out:
if (ret)
phydev_err(phydev, "failed to disable broadcast address\n");
return ret;
}
static int kszphy_nand_tree_disable(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, MII_KSZPHY_OMSO);
if (ret < 0)
goto out;
if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
return 0;
ret = phy_write(phydev, MII_KSZPHY_OMSO,
ret & ~KSZPHY_OMSO_NAND_TREE_ON);
out:
if (ret)
phydev_err(phydev, "failed to disable NAND tree mode\n");
return ret;
}
/* Some config bits need to be set again on resume, handle them here. */
static int kszphy_config_reset(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
int ret;
if (priv->rmii_ref_clk_sel) {
ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
if (ret) {
phydev_err(phydev,
"failed to set rmii reference clock\n");
return ret;
}
}
if (priv->type && priv->led_mode >= 0)
kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
return 0;
}
static int kszphy_config_init(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
const struct kszphy_type *type;
if (!priv)
return 0;
type = priv->type;
if (type && type->has_broadcast_disable)
kszphy_broadcast_disable(phydev);
if (type && type->has_nand_tree_disable)
kszphy_nand_tree_disable(phydev);
return kszphy_config_reset(phydev);
}
static int ksz8041_fiber_mode(struct phy_device *phydev)
{
struct device_node *of_node = phydev->mdio.dev.of_node;
return of_property_read_bool(of_node, "micrel,fiber-mode");
}
static int ksz8041_config_init(struct phy_device *phydev)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
/* Limit supported and advertised modes in fiber mode */
if (ksz8041_fiber_mode(phydev)) {
phydev->dev_flags |= MICREL_PHY_FXEN;
linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
linkmode_and(phydev->supported, phydev->supported, mask);
linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
phydev->supported);
linkmode_and(phydev->advertising, phydev->advertising, mask);
linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
phydev->advertising);
phydev->autoneg = AUTONEG_DISABLE;
}
return kszphy_config_init(phydev);
}
static int ksz8041_config_aneg(struct phy_device *phydev)
{
/* Skip auto-negotiation in fiber mode */
if (phydev->dev_flags & MICREL_PHY_FXEN) {
phydev->speed = SPEED_100;
return 0;
}
return genphy_config_aneg(phydev);
}
static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
const bool ksz_8051)
{
int ret;
if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
return 0;
ret = phy_read(phydev, MII_BMSR);
if (ret < 0)
return ret;
/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
* exact PHY ID. However, they can be told apart by the extended
* capability registers presence. The KSZ8051 PHY has them while
* the switch does not.
*/
ret &= BMSR_ERCAP;
if (ksz_8051)
return ret;
else
return !ret;
}
static int ksz8051_match_phy_device(struct phy_device *phydev)
{
return ksz8051_ksz8795_match_phy_device(phydev, true);
}
static int ksz8081_config_init(struct phy_device *phydev)
{
/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
* based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
* pull-down is missing, the factory test mode should be cleared by
* manually writing a 0.
*/
phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
return kszphy_config_init(phydev);
}
static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
{
u16 val;
switch (ctrl) {
case ETH_TP_MDI:
val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
break;
case ETH_TP_MDI_X:
val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
KSZ8081_CTRL2_MDI_MDI_X_SELECT;
break;
case ETH_TP_MDI_AUTO:
val = 0;
break;
default:
return 0;
}
return phy_modify(phydev, MII_KSZPHY_CTRL_2,
KSZ8081_CTRL2_HP_MDIX |
KSZ8081_CTRL2_MDI_MDI_X_SELECT |
KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
KSZ8081_CTRL2_HP_MDIX | val);
}
static int ksz8081_config_aneg(struct phy_device *phydev)
{
int ret;
ret = genphy_config_aneg(phydev);
if (ret)
return ret;
/* The MDI-X configuration is automatically changed by the PHY after
* switching from autoneg off to on. So, take MDI-X configuration under
* own control and set it after autoneg configuration was done.
*/
return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
}
static int ksz8081_mdix_update(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
if (ret < 0)
return ret;
if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
phydev->mdix_ctrl = ETH_TP_MDI_X;
else
phydev->mdix_ctrl = ETH_TP_MDI;
} else {
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
}
ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
if (ret < 0)
return ret;
if (ret & KSZ8081_CTRL1_MDIX_STAT)
phydev->mdix = ETH_TP_MDI;
else
phydev->mdix = ETH_TP_MDI_X;
return 0;
}
static int ksz8081_read_status(struct phy_device *phydev)
{
int ret;
ret = ksz8081_mdix_update(phydev);
if (ret < 0)
return ret;
return genphy_read_status(phydev);
}
static int ksz8061_config_init(struct phy_device *phydev)
{
int ret;
/* Chip can be powered down by the bootstrap code. */
ret = phy_read(phydev, MII_BMCR);
if (ret < 0)
return ret;
if (ret & BMCR_PDOWN) {
ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
if (ret < 0)
return ret;
usleep_range(1000, 2000);
}
ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
if (ret)
return ret;
return kszphy_config_init(phydev);
}
static int ksz8795_match_phy_device(struct phy_device *phydev)
{
return ksz8051_ksz8795_match_phy_device(phydev, false);
}
static int ksz9021_load_values_from_of(struct phy_device *phydev,
const struct device_node *of_node,
u16 reg,
const char *field1, const char *field2,
const char *field3, const char *field4)
{
int val1 = -1;
int val2 = -2;
int val3 = -3;
int val4 = -4;
int newval;
int matches = 0;
if (!of_property_read_u32(of_node, field1, &val1))
matches++;
if (!of_property_read_u32(of_node, field2, &val2))
matches++;
if (!of_property_read_u32(of_node, field3, &val3))
matches++;
if (!of_property_read_u32(of_node, field4, &val4))
matches++;
if (!matches)
return 0;
if (matches < 4)
newval = kszphy_extended_read(phydev, reg);
else
newval = 0;
if (val1 != -1)
newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
if (val2 != -2)
newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
if (val3 != -3)
newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
if (val4 != -4)
newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
return kszphy_extended_write(phydev, reg, newval);
}
static int ksz9021_config_init(struct phy_device *phydev)
{
const struct device_node *of_node;
const struct device *dev_walker;
/* The Micrel driver has a deprecated option to place phy OF
* properties in the MAC node. Walk up the tree of devices to
* find a device with an OF node.
*/
dev_walker = &phydev->mdio.dev;
do {
of_node = dev_walker->of_node;
dev_walker = dev_walker->parent;
} while (!of_node && dev_walker);
if (of_node) {
ksz9021_load_values_from_of(phydev, of_node,
MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
"txen-skew-ps", "txc-skew-ps",
"rxdv-skew-ps", "rxc-skew-ps");
ksz9021_load_values_from_of(phydev, of_node,
MII_KSZPHY_RX_DATA_PAD_SKEW,
"rxd0-skew-ps", "rxd1-skew-ps",
"rxd2-skew-ps", "rxd3-skew-ps");
ksz9021_load_values_from_of(phydev, of_node,
MII_KSZPHY_TX_DATA_PAD_SKEW,
"txd0-skew-ps", "txd1-skew-ps",
"txd2-skew-ps", "txd3-skew-ps");
}
return 0;
}
#define KSZ9031_PS_TO_REG 60
/* Extended registers */
/* MMD Address 0x0 */
#define MII_KSZ9031RN_FLP_BURST_TX_LO 3
#define MII_KSZ9031RN_FLP_BURST_TX_HI 4
/* MMD Address 0x2 */
#define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
#define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4)
#define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0)
#define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
#define MII_KSZ9031RN_RXD3 GENMASK(15, 12)
#define MII_KSZ9031RN_RXD2 GENMASK(11, 8)
#define MII_KSZ9031RN_RXD1 GENMASK(7, 4)
#define MII_KSZ9031RN_RXD0 GENMASK(3, 0)
#define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
#define MII_KSZ9031RN_TXD3 GENMASK(15, 12)
#define MII_KSZ9031RN_TXD2 GENMASK(11, 8)
#define MII_KSZ9031RN_TXD1 GENMASK(7, 4)
#define MII_KSZ9031RN_TXD0 GENMASK(3, 0)
#define MII_KSZ9031RN_CLK_PAD_SKEW 8
#define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5)
#define MII_KSZ9031RN_RX_CLK GENMASK(4, 0)
/* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
* provide different RGMII options we need to configure delay offset
* for each pad relative to build in delay.
*/
/* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
* 1.80ns
*/
#define RX_ID 0x7
#define RX_CLK_ID 0x19
/* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
* internal 1.2ns delay.
*/
#define RX_ND 0xc
#define RX_CLK_ND 0x0
/* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
#define TX_ID 0x0
#define TX_CLK_ID 0x1f
/* set tx and tx_clk to "No delay adjustment" to keep 0ns
* dealy
*/
#define TX_ND 0x7
#define TX_CLK_ND 0xf
/* MMD Address 0x1C */
#define MII_KSZ9031RN_EDPD 0x23
#define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
static int ksz9031_of_load_skew_values(struct phy_device *phydev,
const struct device_node *of_node,
u16 reg, size_t field_sz,
const char *field[], u8 numfields,
bool *update)
{
int val[4] = {-1, -2, -3, -4};
int matches = 0;
u16 mask;
u16 maxval;
u16 newval;
int i;
for (i = 0; i < numfields; i++)
if (!of_property_read_u32(of_node, field[i], val + i))
matches++;
if (!matches)
return 0;
*update |= true;
if (matches < numfields)
newval = phy_read_mmd(phydev, 2, reg);
else
newval = 0;
maxval = (field_sz == 4) ? 0xf : 0x1f;
for (i = 0; i < numfields; i++)
if (val[i] != -(i + 1)) {
mask = 0xffff;
mask ^= maxval << (field_sz * i);
newval = (newval & mask) |
(((val[i] / KSZ9031_PS_TO_REG) & maxval)
<< (field_sz * i));
}
return phy_write_mmd(phydev, 2, reg, newval);
}
/* Center KSZ9031RNX FLP timing at 16ms. */
static int ksz9031_center_flp_timing(struct phy_device *phydev)
{
int result;
result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
0x0006);
if (result)
return result;
result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
0x1A80);
if (result)
return result;
return genphy_restart_aneg(phydev);
}
/* Enable energy-detect power-down mode */
static int ksz9031_enable_edpd(struct phy_device *phydev)
{
int reg;
reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
if (reg < 0)
return reg;
return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
reg | MII_KSZ9031RN_EDPD_ENABLE);
}
static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
{
u16 rx, tx, rx_clk, tx_clk;
int ret;
switch (phydev->interface) {
case PHY_INTERFACE_MODE_RGMII:
tx = TX_ND;
tx_clk = TX_CLK_ND;
rx = RX_ND;
rx_clk = RX_CLK_ND;
break;
case PHY_INTERFACE_MODE_RGMII_ID:
tx = TX_ID;
tx_clk = TX_CLK_ID;
rx = RX_ID;
rx_clk = RX_CLK_ID;
break;
case PHY_INTERFACE_MODE_RGMII_RXID:
tx = TX_ND;
tx_clk = TX_CLK_ND;
rx = RX_ID;
rx_clk = RX_CLK_ID;
break;
case PHY_INTERFACE_MODE_RGMII_TXID:
tx = TX_ID;
tx_clk = TX_CLK_ID;
rx = RX_ND;
rx_clk = RX_CLK_ND;
break;
default:
return 0;
}
ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
if (ret < 0)
return ret;
ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
if (ret < 0)
return ret;
ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
if (ret < 0)
return ret;
return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
}
static int ksz9031_config_init(struct phy_device *phydev)
{
const struct device_node *of_node;
static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
static const char *rx_data_skews[4] = {
"rxd0-skew-ps", "rxd1-skew-ps",
"rxd2-skew-ps", "rxd3-skew-ps"
};
static const char *tx_data_skews[4] = {
"txd0-skew-ps", "txd1-skew-ps",
"txd2-skew-ps", "txd3-skew-ps"
};
static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
const struct device *dev_walker;
int result;
result = ksz9031_enable_edpd(phydev);
if (result < 0)
return result;
/* The Micrel driver has a deprecated option to place phy OF
* properties in the MAC node. Walk up the tree of devices to
* find a device with an OF node.
*/
dev_walker = &phydev->mdio.dev;
do {
of_node = dev_walker->of_node;
dev_walker = dev_walker->parent;
} while (!of_node && dev_walker);
if (of_node) {
bool update = false;
if (phy_interface_is_rgmii(phydev)) {
result = ksz9031_config_rgmii_delay(phydev);
if (result < 0)
return result;
}
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_CLK_PAD_SKEW, 5,
clk_skews, 2, &update);
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
control_skews, 2, &update);
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
rx_data_skews, 4, &update);
ksz9031_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
tx_data_skews, 4, &update);
if (update && !phy_interface_is_rgmii(phydev))
phydev_warn(phydev,
"*-skew-ps values should be used only with RGMII PHY modes\n");
/* Silicon Errata Sheet (DS80000691D or DS80000692D):
* When the device links in the 1000BASE-T slave mode only,
* the optional 125MHz reference output clock (CLK125_NDO)
* has wide duty cycle variation.
*
* The optional CLK125_NDO clock does not meet the RGMII
* 45/55 percent (min/max) duty cycle requirement and therefore
* cannot be used directly by the MAC side for clocking
* applications that have setup/hold time requirements on
* rising and falling clock edges.
*
* Workaround:
* Force the phy to be the master to receive a stable clock
* which meets the duty cycle requirement.
*/
if (of_property_read_bool(of_node, "micrel,force-master")) {
result = phy_read(phydev, MII_CTRL1000);
if (result < 0)
goto err_force_master;
/* enable master mode, config & prefer master */
result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
result = phy_write(phydev, MII_CTRL1000, result);
if (result < 0)
goto err_force_master;
}
}
return ksz9031_center_flp_timing(phydev);
err_force_master:
phydev_err(phydev, "failed to force the phy to master mode\n");
return result;
}
#define KSZ9131_SKEW_5BIT_MAX 2400
#define KSZ9131_SKEW_4BIT_MAX 800
#define KSZ9131_OFFSET 700
#define KSZ9131_STEP 100
static int ksz9131_of_load_skew_values(struct phy_device *phydev,
struct device_node *of_node,
u16 reg, size_t field_sz,
char *field[], u8 numfields)
{
int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
-(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
int skewval, skewmax = 0;
int matches = 0;
u16 maxval;
u16 newval;
u16 mask;
int i;
/* psec properties in dts should mean x pico seconds */
if (field_sz == 5)
skewmax = KSZ9131_SKEW_5BIT_MAX;
else
skewmax = KSZ9131_SKEW_4BIT_MAX;
for (i = 0; i < numfields; i++)
if (!of_property_read_s32(of_node, field[i], &skewval)) {
if (skewval < -KSZ9131_OFFSET)
skewval = -KSZ9131_OFFSET;
else if (skewval > skewmax)
skewval = skewmax;
val[i] = skewval + KSZ9131_OFFSET;
matches++;
}
if (!matches)
return 0;
if (matches < numfields)
newval = phy_read_mmd(phydev, 2, reg);
else
newval = 0;
maxval = (field_sz == 4) ? 0xf : 0x1f;
for (i = 0; i < numfields; i++)
if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
mask = 0xffff;
mask ^= maxval << (field_sz * i);
newval = (newval & mask) |
(((val[i] / KSZ9131_STEP) & maxval)
<< (field_sz * i));
}
return phy_write_mmd(phydev, 2, reg, newval);
}
#define KSZ9131RN_MMD_COMMON_CTRL_REG 2
#define KSZ9131RN_RXC_DLL_CTRL 76
#define KSZ9131RN_TXC_DLL_CTRL 77
#define KSZ9131RN_DLL_ENABLE_DELAY 0
static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
{
const struct kszphy_type *type = phydev->drv->driver_data;
u16 rxcdll_val, txcdll_val;
int ret;
switch (phydev->interface) {
case PHY_INTERFACE_MODE_RGMII:
rxcdll_val = type->disable_dll_rx_bit;
txcdll_val = type->disable_dll_tx_bit;
break;
case PHY_INTERFACE_MODE_RGMII_ID:
rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
break;
case PHY_INTERFACE_MODE_RGMII_RXID:
rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
txcdll_val = type->disable_dll_tx_bit;
break;
case PHY_INTERFACE_MODE_RGMII_TXID:
rxcdll_val = type->disable_dll_rx_bit;
txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
break;
default:
return 0;
}
ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
rxcdll_val);
if (ret < 0)
return ret;
return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
txcdll_val);
}
/* Silicon Errata DS80000693B
*
* When LEDs are configured in Individual Mode, LED1 is ON in a no-link
* condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
* according to the datasheet (off if there is no link).
*/
static int ksz9131_led_errata(struct phy_device *phydev)
{
int reg;
reg = phy_read_mmd(phydev, 2, 0);
if (reg < 0)
return reg;
if (!(reg & BIT(4)))
return 0;
return phy_set_bits(phydev, 0x1e, BIT(9));
}
static int ksz9131_config_init(struct phy_device *phydev)
{
struct device_node *of_node;
char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
char *rx_data_skews[4] = {
"rxd0-skew-psec", "rxd1-skew-psec",
"rxd2-skew-psec", "rxd3-skew-psec"
};
char *tx_data_skews[4] = {
"txd0-skew-psec", "txd1-skew-psec",
"txd2-skew-psec", "txd3-skew-psec"
};
char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
const struct device *dev_walker;
int ret;
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
dev_walker = &phydev->mdio.dev;
do {
of_node = dev_walker->of_node;
dev_walker = dev_walker->parent;
} while (!of_node && dev_walker);
if (!of_node)
return 0;
if (phy_interface_is_rgmii(phydev)) {
ret = ksz9131_config_rgmii_delay(phydev);
if (ret < 0)
return ret;
}
ret = ksz9131_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_CLK_PAD_SKEW, 5,
clk_skews, 2);
if (ret < 0)
return ret;
ret = ksz9131_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
control_skews, 2);
if (ret < 0)
return ret;
ret = ksz9131_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
rx_data_skews, 4);
if (ret < 0)
return ret;
ret = ksz9131_of_load_skew_values(phydev, of_node,
MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
tx_data_skews, 4);
if (ret < 0)
return ret;
ret = ksz9131_led_errata(phydev);
if (ret < 0)
return ret;
return 0;
}
#define MII_KSZ9131_AUTO_MDIX 0x1C
#define MII_KSZ9131_AUTO_MDI_SET BIT(7)
#define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6)
#define MII_KSZ9131_DIG_AXAN_STS 0x14
#define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14)
#define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12)
static int ksz9131_mdix_update(struct phy_device *phydev)
{
int ret;
if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
phydev->mdix = phydev->mdix_ctrl;
} else {
ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
if (ret < 0)
return ret;
if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
phydev->mdix = ETH_TP_MDI;
else
phydev->mdix = ETH_TP_MDI_X;
} else {
phydev->mdix = ETH_TP_MDI_INVALID;
}
}
return 0;
}
static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
{
u16 val;
switch (ctrl) {
case ETH_TP_MDI:
val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
MII_KSZ9131_AUTO_MDI_SET;
break;
case ETH_TP_MDI_X:
val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
break;
case ETH_TP_MDI_AUTO:
val = 0;
break;
default:
return 0;
}
return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
MII_KSZ9131_AUTO_MDI_SET, val);
}
static int ksz9131_read_status(struct phy_device *phydev)
{
int ret;
ret = ksz9131_mdix_update(phydev);
if (ret < 0)
return ret;
return genphy_read_status(phydev);
}
static int ksz9131_config_aneg(struct phy_device *phydev)
{
int ret;
ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
if (ret)
return ret;
return genphy_config_aneg(phydev);
}
static int ksz9477_get_features(struct phy_device *phydev)
{
int ret;
ret = genphy_read_abilities(phydev);
if (ret)
return ret;
/* The "EEE control and capability 1" (Register 3.20) seems to be
* influenced by the "EEE advertisement 1" (Register 7.60). Changes
* on the 7.60 will affect 3.20. So, we need to construct our own list
* of caps.
* KSZ8563R should have 100BaseTX/Full only.
*/
linkmode_and(phydev->supported_eee, phydev->supported,
PHY_EEE_CAP1_FEATURES);
return 0;
}
#define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
#define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
#define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
static int ksz8873mll_read_status(struct phy_device *phydev)
{
int regval;
/* dummy read */
regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
phydev->duplex = DUPLEX_HALF;
else
phydev->duplex = DUPLEX_FULL;
if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
phydev->speed = SPEED_10;
else
phydev->speed = SPEED_100;
phydev->link = 1;
phydev->pause = phydev->asym_pause = 0;
return 0;
}
static int ksz9031_get_features(struct phy_device *phydev)
{
int ret;
ret = genphy_read_abilities(phydev);
if (ret < 0)
return ret;
/* Silicon Errata Sheet (DS80000691D or DS80000692D):
* Whenever the device's Asymmetric Pause capability is set to 1,
* link-up may fail after a link-up to link-down transition.
*
* The Errata Sheet is for ksz9031, but ksz9021 has the same issue
*
* Workaround:
* Do not enable the Asymmetric Pause capability bit.
*/
linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
/* We force setting the Pause capability as the core will force the
* Asymmetric Pause capability to 1 otherwise.
*/
linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
return 0;
}
static int ksz9031_read_status(struct phy_device *phydev)
{
int err;
int regval;
err = genphy_read_status(phydev);
if (err)
return err;
/* Make sure the PHY is not broken. Read idle error count,
* and reset the PHY if it is maxed out.
*/
regval = phy_read(phydev, MII_STAT1000);
if ((regval & 0xFF) == 0xFF) {
phy_init_hw(phydev);
phydev->link = 0;
if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
phydev->drv->config_intr(phydev);
return genphy_config_aneg(phydev);
}
return 0;
}
static int ksz9x31_cable_test_start(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
int ret;
/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
* Prior to running the cable diagnostics, Auto-negotiation should
* be disabled, full duplex set and the link speed set to 1000Mbps
* via the Basic Control Register.
*/
ret = phy_modify(phydev, MII_BMCR,
BMCR_SPEED1000 | BMCR_FULLDPLX |
BMCR_ANENABLE | BMCR_SPEED100,
BMCR_SPEED1000 | BMCR_FULLDPLX);
if (ret)
return ret;
/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
* The Master-Slave configuration should be set to Slave by writing
* a value of 0x1000 to the Auto-Negotiation Master Slave Control
* Register.
*/
ret = phy_read(phydev, MII_CTRL1000);
if (ret < 0)
return ret;
/* Cache these bits, they need to be restored once LinkMD finishes. */
priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
ret |= CTL1000_ENABLE_MASTER;
return phy_write(phydev, MII_CTRL1000, ret);
}
static int ksz9x31_cable_test_result_trans(u16 status)
{
switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
case KSZ9x31_LMD_VCT_ST_NORMAL:
return ETHTOOL_A_CABLE_RESULT_CODE_OK;
case KSZ9x31_LMD_VCT_ST_OPEN:
return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
case KSZ9x31_LMD_VCT_ST_SHORT:
return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
case KSZ9x31_LMD_VCT_ST_FAIL:
fallthrough;
default:
return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
}
}
static bool ksz9x31_cable_test_failed(u16 status)
{
int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
return stat == KSZ9x31_LMD_VCT_ST_FAIL;
}
static bool ksz9x31_cable_test_fault_length_valid(u16 status)
{
switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
case KSZ9x31_LMD_VCT_ST_OPEN:
fallthrough;
case KSZ9x31_LMD_VCT_ST_SHORT:
return true;
}
return false;
}
static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
{
int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
*
* distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
*/
if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
dt = clamp(dt - 22, 0, 255);
return (dt * 400) / 10;
}
static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
{
int val, ret;
ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
!(val & KSZ9x31_LMD_VCT_EN),
30000, 100000, true);
return ret < 0 ? ret : 0;
}
static int ksz9x31_cable_test_get_pair(int pair)
{
static const int ethtool_pair[] = {
ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_PAIR_B,
ETHTOOL_A_CABLE_PAIR_C,
ETHTOOL_A_CABLE_PAIR_D,
};
return ethtool_pair[pair];
}
static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
{
int ret, val;
/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
* To test each individual cable pair, set the cable pair in the Cable
* Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
* Diagnostic Register, along with setting the Cable Diagnostics Test
* Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
* will self clear when the test is concluded.
*/
ret = phy_write(phydev, KSZ9x31_LMD,
KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
if (ret)
return ret;
ret = ksz9x31_cable_test_wait_for_completion(phydev);
if (ret)
return ret;
val = phy_read(phydev, KSZ9x31_LMD);
if (val < 0)
return val;
if (ksz9x31_cable_test_failed(val))
return -EAGAIN;
ret = ethnl_cable_test_result(phydev,
ksz9x31_cable_test_get_pair(pair),
ksz9x31_cable_test_result_trans(val));
if (ret)
return ret;
if (!ksz9x31_cable_test_fault_length_valid(val))
return 0;
return ethnl_cable_test_fault_length(phydev,
ksz9x31_cable_test_get_pair(pair),
ksz9x31_cable_test_fault_length(phydev, val));
}
static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
bool *finished)
{
struct kszphy_priv *priv = phydev->priv;
unsigned long pair_mask = 0xf;
int retries = 20;
int pair, ret, rv;
*finished = false;
/* Try harder if link partner is active */
while (pair_mask && retries--) {
for_each_set_bit(pair, &pair_mask, 4) {
ret = ksz9x31_cable_test_one_pair(phydev, pair);
if (ret == -EAGAIN)
continue;
if (ret < 0)
return ret;
clear_bit(pair, &pair_mask);
}
/* If link partner is in autonegotiation mode it will send 2ms
* of FLPs with at least 6ms of silence.
* Add 2ms sleep to have better chances to hit this silence.
*/
if (pair_mask)
usleep_range(2000, 3000);
}
/* Report remaining unfinished pair result as unknown. */
for_each_set_bit(pair, &pair_mask, 4) {
ret = ethnl_cable_test_result(phydev,
ksz9x31_cable_test_get_pair(pair),
ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
}
*finished = true;
/* Restore cached bits from before LinkMD got started. */
rv = phy_modify(phydev, MII_CTRL1000,
CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
priv->vct_ctrl1000);
if (rv)
return rv;
return ret;
}
static int ksz8873mll_config_aneg(struct phy_device *phydev)
{
return 0;
}
static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
{
u16 val;
switch (ctrl) {
case ETH_TP_MDI:
val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
break;
case ETH_TP_MDI_X:
/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
* counter intuitive, the "-X" in "1 = Force MDI" in the data
* sheet seems to be missing:
* 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
* 0 = Normal operation (transmit on TX+/TX- pins)
*/
val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
break;
case ETH_TP_MDI_AUTO:
val = 0;
break;
default:
return 0;
}
return phy_modify(phydev, MII_BMCR,
KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
KSZ886X_BMCR_DISABLE_AUTO_MDIX,
KSZ886X_BMCR_HP_MDIX | val);
}
static int ksz886x_config_aneg(struct phy_device *phydev)
{
int ret;
ret = genphy_config_aneg(phydev);
if (ret)
return ret;
if (phydev->autoneg != AUTONEG_ENABLE) {
/* When autonegotation is disabled, we need to manually force
* the link state. If we don't do this, the PHY will keep
* sending Fast Link Pulses (FLPs) which are part of the
* autonegotiation process. This is not desired when
* autonegotiation is off.
*/
ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
KSZ886X_CTRL_FORCE_LINK);
if (ret)
return ret;
} else {
/* If we had previously forced the link state, we need to
* clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
* will not perform autonegotiation.
*/
ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
KSZ886X_CTRL_FORCE_LINK);
if (ret)
return ret;
}
/* The MDI-X configuration is automatically changed by the PHY after
* switching from autoneg off to on. So, take MDI-X configuration under
* own control and set it after autoneg configuration was done.
*/
return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
}
static int ksz886x_mdix_update(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, MII_BMCR);
if (ret < 0)
return ret;
if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
if (ret & KSZ886X_BMCR_FORCE_MDI)
phydev->mdix_ctrl = ETH_TP_MDI_X;
else
phydev->mdix_ctrl = ETH_TP_MDI;
} else {
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
}
ret = phy_read(phydev, MII_KSZPHY_CTRL);
if (ret < 0)
return ret;
/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
if (ret & KSZ886X_CTRL_MDIX_STAT)
phydev->mdix = ETH_TP_MDI_X;
else
phydev->mdix = ETH_TP_MDI;
return 0;
}
static int ksz886x_read_status(struct phy_device *phydev)
{
int ret;
ret = ksz886x_mdix_update(phydev);
if (ret < 0)
return ret;
return genphy_read_status(phydev);
}
struct ksz9477_errata_write {
u8 dev_addr;
u8 reg_addr;
u16 val;
};
static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
/* Register settings are needed to improve PHY receive performance */
{0x01, 0x6f, 0xdd0b},
{0x01, 0x8f, 0x6032},
{0x01, 0x9d, 0x248c},
{0x01, 0x75, 0x0060},
{0x01, 0xd3, 0x7777},
{0x1c, 0x06, 0x3008},
{0x1c, 0x08, 0x2000},
/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
{0x1c, 0x04, 0x00d0},
/* Register settings are required to meet data sheet supply current specifications */
{0x1c, 0x13, 0x6eff},
{0x1c, 0x14, 0xe6ff},
{0x1c, 0x15, 0x6eff},
{0x1c, 0x16, 0xe6ff},
{0x1c, 0x17, 0x00ff},
{0x1c, 0x18, 0x43ff},
{0x1c, 0x19, 0xc3ff},
{0x1c, 0x1a, 0x6fff},
{0x1c, 0x1b, 0x07ff},
{0x1c, 0x1c, 0x0fff},
{0x1c, 0x1d, 0xe7ff},
{0x1c, 0x1e, 0xefff},
{0x1c, 0x20, 0xeeee},
};
static int ksz9477_phy_errata(struct phy_device *phydev)
{
int err;
int i;
/* Apply PHY settings to address errata listed in
* KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
* Silicon Errata and Data Sheet Clarification documents.
*
* Document notes: Before configuring the PHY MMD registers, it is
* necessary to set the PHY to 100 Mbps speed with auto-negotiation
* disabled by writing to register 0xN100-0xN101. After writing the
* MMD registers, and after all errata workarounds that involve PHY
* register settings, write register 0xN100-0xN101 again to enable
* and restart auto-negotiation.
*/
err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
if (err)
return err;
for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
if (err)
return err;
}
err = genphy_restart_aneg(phydev);
if (err)
return err;
return err;
}
static int ksz9477_config_init(struct phy_device *phydev)
{
int err;
/* Only KSZ9897 family of switches needs this fix. */
if ((phydev->phy_id & 0xf) == 1) {
err = ksz9477_phy_errata(phydev);
if (err)
return err;
}
/* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
* in this switch shall be regarded as broken.
*/
if (phydev->dev_flags & MICREL_NO_EEE)
phydev->eee_broken_modes = -1;
return kszphy_config_init(phydev);
}
static int kszphy_get_sset_count(struct phy_device *phydev)
{
return ARRAY_SIZE(kszphy_hw_stats);
}
static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
strscpy(data + i * ETH_GSTRING_LEN,
kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
}
}
static u64 kszphy_get_stat(struct phy_device *phydev, int i)
{
struct kszphy_hw_stat stat = kszphy_hw_stats[i];
struct kszphy_priv *priv = phydev->priv;
int val;
u64 ret;
val = phy_read(phydev, stat.reg);
if (val < 0) {
ret = U64_MAX;
} else {
val = val & ((1 << stat.bits) - 1);
priv->stats[i] += val;
ret = priv->stats[i];
}
return ret;
}
static void kszphy_get_stats(struct phy_device *phydev,
struct ethtool_stats *stats, u64 *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
data[i] = kszphy_get_stat(phydev, i);
}
static int kszphy_suspend(struct phy_device *phydev)
{
/* Disable PHY Interrupts */
if (phy_interrupt_is_valid(phydev)) {
phydev->interrupts = PHY_INTERRUPT_DISABLED;
if (phydev->drv->config_intr)
phydev->drv->config_intr(phydev);
}
return genphy_suspend(phydev);
}
static void kszphy_parse_led_mode(struct phy_device *phydev)
{
const struct kszphy_type *type = phydev->drv->driver_data;
const struct device_node *np = phydev->mdio.dev.of_node;
struct kszphy_priv *priv = phydev->priv;
int ret;
if (type && type->led_mode_reg) {
ret = of_property_read_u32(np, "micrel,led-mode",
&priv->led_mode);
if (ret)
priv->led_mode = -1;
if (priv->led_mode > 3) {
phydev_err(phydev, "invalid led mode: 0x%02x\n",
priv->led_mode);
priv->led_mode = -1;
}
} else {
priv->led_mode = -1;
}
}
static int kszphy_resume(struct phy_device *phydev)
{
int ret;
genphy_resume(phydev);
/* After switching from power-down to normal mode, an internal global
* reset is automatically generated. Wait a minimum of 1 ms before
* read/write access to the PHY registers.
*/
usleep_range(1000, 2000);
ret = kszphy_config_reset(phydev);
if (ret)
return ret;
/* Enable PHY Interrupts */
if (phy_interrupt_is_valid(phydev)) {
phydev->interrupts = PHY_INTERRUPT_ENABLED;
if (phydev->drv->config_intr)
phydev->drv->config_intr(phydev);
}
return 0;
}
static int ksz9477_resume(struct phy_device *phydev)
{
int ret;
/* No need to initialize registers if not powered down. */
ret = phy_read(phydev, MII_BMCR);
if (ret < 0)
return ret;
if (!(ret & BMCR_PDOWN))
return 0;
genphy_resume(phydev);
/* After switching from power-down to normal mode, an internal global
* reset is automatically generated. Wait a minimum of 1 ms before
* read/write access to the PHY registers.
*/
usleep_range(1000, 2000);
/* Only KSZ9897 family of switches needs this fix. */
if ((phydev->phy_id & 0xf) == 1) {
ret = ksz9477_phy_errata(phydev);
if (ret)
return ret;
}
/* Enable PHY Interrupts */
if (phy_interrupt_is_valid(phydev)) {
phydev->interrupts = PHY_INTERRUPT_ENABLED;
if (phydev->drv->config_intr)
phydev->drv->config_intr(phydev);
}
return 0;
}
static int ksz8061_resume(struct phy_device *phydev)
{
int ret;
/* This function can be called twice when the Ethernet device is on. */
ret = phy_read(phydev, MII_BMCR);
if (ret < 0)
return ret;
if (!(ret & BMCR_PDOWN))
return 0;
genphy_resume(phydev);
usleep_range(1000, 2000);
/* Re-program the value after chip is reset. */
ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
if (ret)
return ret;
/* Enable PHY Interrupts */
if (phy_interrupt_is_valid(phydev)) {
phydev->interrupts = PHY_INTERRUPT_ENABLED;
if (phydev->drv->config_intr)
phydev->drv->config_intr(phydev);
}
return 0;
}
static int kszphy_probe(struct phy_device *phydev)
{
const struct kszphy_type *type = phydev->drv->driver_data;
const struct device_node *np = phydev->mdio.dev.of_node;
struct kszphy_priv *priv;
struct clk *clk;
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
priv->type = type;
kszphy_parse_led_mode(phydev);
clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
if (!IS_ERR_OR_NULL(clk)) {
unsigned long rate = clk_get_rate(clk);
bool rmii_ref_clk_sel_25_mhz;
if (type)
priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
"micrel,rmii-reference-clock-select-25-mhz");
if (rate > 24500000 && rate < 25500000) {
priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
} else if (rate > 49500000 && rate < 50500000) {
priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
} else {
phydev_err(phydev, "Clock rate out of range: %ld\n",
rate);
return -EINVAL;
}
} else if (!clk) {
/* unnamed clock from the generic ethernet-phy binding */
clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
if (IS_ERR(clk))
return PTR_ERR(clk);
}
if (ksz8041_fiber_mode(phydev))
phydev->port = PORT_FIBRE;
/* Support legacy board-file configuration */
if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
priv->rmii_ref_clk_sel = true;
priv->rmii_ref_clk_sel_val = true;
}
return 0;
}
static int lan8814_cable_test_start(struct phy_device *phydev)
{
/* If autoneg is enabled, we won't be able to test cross pair
* short. In this case, the PHY will "detect" a link and
* confuse the internal state machine - disable auto neg here.
* Set the speed to 1000mbit and full duplex.
*/
return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
BMCR_SPEED1000 | BMCR_FULLDPLX);
}
static int ksz886x_cable_test_start(struct phy_device *phydev)
{
if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
return -EOPNOTSUPP;
/* If autoneg is enabled, we won't be able to test cross pair
* short. In this case, the PHY will "detect" a link and
* confuse the internal state machine - disable auto neg here.
* If autoneg is disabled, we should set the speed to 10mbit.
*/
return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
}
static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
{
switch (FIELD_GET(mask, status)) {
case KSZ8081_LMD_STAT_NORMAL:
return ETHTOOL_A_CABLE_RESULT_CODE_OK;
case KSZ8081_LMD_STAT_SHORT:
return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
case KSZ8081_LMD_STAT_OPEN:
return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
case KSZ8081_LMD_STAT_FAIL:
fallthrough;
default:
return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
}
}
static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
{
return FIELD_GET(mask, status) ==
KSZ8081_LMD_STAT_FAIL;
}
static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
{
switch (FIELD_GET(mask, status)) {
case KSZ8081_LMD_STAT_OPEN:
fallthrough;
case KSZ8081_LMD_STAT_SHORT:
return true;
}
return false;
}
static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
u16 status, u16 data_mask)
{
int dt;
/* According to the data sheet the distance to the fault is
* DELTA_TIME * 0.4 meters for ksz phys.
* (DELTA_TIME - 22) * 0.8 for lan8814 phy.
*/
dt = FIELD_GET(data_mask, status);
if (phydev_id_compare(phydev, PHY_ID_LAN8814))
return ((dt - 22) * 800) / 10;
else
return (dt * 400) / 10;
}
static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
{
const struct kszphy_type *type = phydev->drv->driver_data;
int val, ret;
ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
!(val & KSZ8081_LMD_ENABLE_TEST),
30000, 100000, true);
return ret < 0 ? ret : 0;
}
static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
{
static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_PAIR_B,
ETHTOOL_A_CABLE_PAIR_C,
ETHTOOL_A_CABLE_PAIR_D,
};
u32 fault_length;
int ret;
int val;
val = KSZ8081_LMD_ENABLE_TEST;
val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
if (ret < 0)
return ret;
ret = ksz886x_cable_test_wait_for_completion(phydev);
if (ret)
return ret;
val = phy_read(phydev, LAN8814_CABLE_DIAG);
if (val < 0)
return val;
if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
return -EAGAIN;
ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
ksz886x_cable_test_result_trans(val,
LAN8814_CABLE_DIAG_STAT_MASK
));
if (ret)
return ret;
if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
return 0;
fault_length = ksz886x_cable_test_fault_length(phydev, val,
LAN8814_CABLE_DIAG_VCT_DATA_MASK);
return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
}
static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
{
static const int ethtool_pair[] = {
ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_PAIR_B,
};
int ret, val, mdix;
u32 fault_length;
/* There is no way to choice the pair, like we do one ksz9031.
* We can workaround this limitation by using the MDI-X functionality.
*/
if (pair == 0)
mdix = ETH_TP_MDI;
else
mdix = ETH_TP_MDI_X;
switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
case PHY_ID_KSZ8081:
ret = ksz8081_config_mdix(phydev, mdix);
break;
case PHY_ID_KSZ886X:
ret = ksz886x_config_mdix(phydev, mdix);
break;
default:
ret = -ENODEV;
}
if (ret)
return ret;
/* Now we are ready to fire. This command will send a 100ns pulse
* to the pair.
*/
ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
if (ret)
return ret;
ret = ksz886x_cable_test_wait_for_completion(phydev);
if (ret)
return ret;
val = phy_read(phydev, KSZ8081_LMD);
if (val < 0)
return val;
if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
return -EAGAIN;
ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
if (ret)
return ret;
if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
return 0;
fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
}
static int ksz886x_cable_test_get_status(struct phy_device *phydev,
bool *finished)
{
const struct kszphy_type *type = phydev->drv->driver_data;
unsigned long pair_mask = type->pair_mask;
int retries = 20;
int ret = 0;
int pair;
*finished = false;
/* Try harder if link partner is active */
while (pair_mask && retries--) {
for_each_set_bit(pair, &pair_mask, 4) {
if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
ret = lan8814_cable_test_one_pair(phydev, pair);
else
ret = ksz886x_cable_test_one_pair(phydev, pair);
if (ret == -EAGAIN)
continue;
if (ret < 0)
return ret;
clear_bit(pair, &pair_mask);
}
/* If link partner is in autonegotiation mode it will send 2ms
* of FLPs with at least 6ms of silence.
* Add 2ms sleep to have better chances to hit this silence.
*/
if (pair_mask)
msleep(2);
}
*finished = true;
return ret;
}
#define LAN_EXT_PAGE_ACCESS_CONTROL 0x16
#define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17
#define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000
#define LAN8814_QSGMII_SOFT_RESET 0x43
#define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0)
#define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13
#define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3)
#define LAN8814_ALIGN_SWAP 0x4a
#define LAN8814_ALIGN_TX_A_B_SWAP 0x1
#define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
#define LAN8804_ALIGN_SWAP 0x4a
#define LAN8804_ALIGN_TX_A_B_SWAP 0x1
#define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
#define LAN8814_CLOCK_MANAGEMENT 0xd
#define LAN8814_LINK_QUALITY 0x8e
static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
{
int data;
phy_lock_mdio_bus(phydev);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
(page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
phy_unlock_mdio_bus(phydev);
return data;
}
static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
u16 val)
{
phy_lock_mdio_bus(phydev);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
if (val != 0)
phydev_err(phydev, "Error: phy_write has returned error %d\n",
val);
phy_unlock_mdio_bus(phydev);
return val;
}
static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
{
u16 val = 0;
if (enable)
val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
}
static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
u32 *seconds, u32 *nano_seconds, u16 *seq_id)
{
*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
*seconds = (*seconds << 16) |
lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
}
static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
u32 *seconds, u32 *nano_seconds, u16 *seq_id)
{
*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
*seconds = *seconds << 16 |
lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
}
static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
{
struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
struct phy_device *phydev = ptp_priv->phydev;
struct lan8814_shared_priv *shared = phydev->shared->priv;
info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->phc_index = ptp_clock_index(shared->ptp_clock);
info->tx_types =
(1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON) |
(1 << HWTSTAMP_TX_ONESTEP_SYNC);
info->rx_filters =
(1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
return 0;
}
static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
{
int i;
for (i = 0; i < FIFO_SIZE; ++i)
lanphy_read_page_reg(phydev, 5,
egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
/* Read to clear overflow status bit */
lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
}
static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
struct kernel_hwtstamp_config *config,
struct netlink_ext_ack *extack)
{
struct kszphy_ptp_priv *ptp_priv =
container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
struct lan8814_ptp_rx_ts *rx_ts, *tmp;
int txcfg = 0, rxcfg = 0;
int pkt_ts_enable;
int tx_mod;
ptp_priv->hwts_tx_type = config->tx_type;
ptp_priv->rx_filter = config->rx_filter;
switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
ptp_priv->layer = 0;
ptp_priv->version = 0;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
ptp_priv->layer = PTP_CLASS_L4;
ptp_priv->version = PTP_CLASS_V2;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
ptp_priv->layer = PTP_CLASS_L2;
ptp_priv->version = PTP_CLASS_V2;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
ptp_priv->version = PTP_CLASS_V2;
break;
default:
return -ERANGE;
}
if (ptp_priv->layer & PTP_CLASS_L2) {
rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
} else if (ptp_priv->layer & PTP_CLASS_L4) {
rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
}
lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
} else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
}
if (config->rx_filter != HWTSTAMP_FILTER_NONE)
lan8814_config_ts_intr(ptp_priv->phydev, true);
else
lan8814_config_ts_intr(ptp_priv->phydev, false);
/* In case of multiple starts and stops, these needs to be cleared */
list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
list_del(&rx_ts->list);
kfree(rx_ts);
}
skb_queue_purge(&ptp_priv->rx_queue);
skb_queue_purge(&ptp_priv->tx_queue);
lan8814_flush_fifo(ptp_priv->phydev, false);
lan8814_flush_fifo(ptp_priv->phydev, true);
return 0;
}
static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
struct sk_buff *skb, int type)
{
struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
switch (ptp_priv->hwts_tx_type) {
case HWTSTAMP_TX_ONESTEP_SYNC:
if (ptp_msg_is_sync(skb, type)) {
kfree_skb(skb);
return;
}
fallthrough;
case HWTSTAMP_TX_ON:
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
skb_queue_tail(&ptp_priv->tx_queue, skb);
break;
case HWTSTAMP_TX_OFF:
default:
kfree_skb(skb);
break;
}
}
static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
{
struct ptp_header *ptp_header;
u32 type;
skb_push(skb, ETH_HLEN);
type = ptp_classify_raw(skb);
ptp_header = ptp_parse_header(skb, type);
skb_pull_inline(skb, ETH_HLEN);
if (!ptp_header)
return false;
*sig = (__force u16)(ntohs(ptp_header->sequence_id));
return true;
}
static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
struct sk_buff *skb)
{
struct skb_shared_hwtstamps *shhwtstamps;
struct lan8814_ptp_rx_ts *rx_ts, *tmp;
unsigned long flags;
bool ret = false;
u16 skb_sig;
if (!lan8814_get_sig_rx(skb, &skb_sig))
return ret;
/* Iterate over all RX timestamps and match it with the received skbs */
spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
/* Check if we found the signature we were looking for. */
if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
continue;
shhwtstamps = skb_hwtstamps(skb);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
rx_ts->nsec);
list_del(&rx_ts->list);
kfree(rx_ts);
ret = true;
break;
}
spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
if (ret)
netif_rx(skb);
return ret;
}
static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
{
struct kszphy_ptp_priv *ptp_priv =
container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
type == PTP_CLASS_NONE)
return false;
if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
return false;
/* If we failed to match then add it to the queue for when the timestamp
* will come
*/
if (!lan8814_match_rx_skb(ptp_priv, skb))
skb_queue_tail(&ptp_priv->rx_queue, skb);
return true;
}
static void lan8814_ptp_clock_set(struct phy_device *phydev,
time64_t sec, u32 nsec)
{
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
}
static void lan8814_ptp_clock_get(struct phy_device *phydev,
time64_t *sec, u32 *nsec)
{
lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
*sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
*sec <<= 16;
*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
*sec <<= 16;
*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
*nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
*nsec <<= 16;
*nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
}
static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
struct timespec64 *ts)
{
struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
ptp_clock_info);
struct phy_device *phydev = shared->phydev;
u32 nano_seconds;
time64_t seconds;
mutex_lock(&shared->shared_lock);
lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
mutex_unlock(&shared->shared_lock);
ts->tv_sec = seconds;
ts->tv_nsec = nano_seconds;
return 0;
}
static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
const struct timespec64 *ts)
{
struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
ptp_clock_info);
struct phy_device *phydev = shared->phydev;
mutex_lock(&shared->shared_lock);
lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
mutex_unlock(&shared->shared_lock);
return 0;
}
static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
s64 start_sec, u32 start_nsec)
{
/* Set the start time */
lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
lower_16_bits(start_sec));
lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
upper_16_bits(start_sec));
lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
lower_16_bits(start_nsec));
lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
upper_16_bits(start_nsec) & 0x3fff);
}
static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
{
lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
sec + LAN8814_BUFFER_TIME, 0);
lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
sec + LAN8814_BUFFER_TIME, 0);
}
static void lan8814_ptp_clock_step(struct phy_device *phydev,
s64 time_step_ns)
{
u32 nano_seconds_step;
u64 abs_time_step_ns;
time64_t set_seconds;
u32 nano_seconds;
u32 remainder;
s32 seconds;
if (time_step_ns > 15000000000LL) {
/* convert to clock set */
lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
&remainder);
nano_seconds += remainder;
if (nano_seconds >= 1000000000) {
set_seconds++;
nano_seconds -= 1000000000;
}
lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
lan8814_ptp_update_target(phydev, set_seconds);
return;
} else if (time_step_ns < -15000000000LL) {
/* convert to clock set */
time_step_ns = -time_step_ns;
lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
&remainder);
nano_seconds_step = remainder;
if (nano_seconds < nano_seconds_step) {
set_seconds--;
nano_seconds += 1000000000;
}
nano_seconds -= nano_seconds_step;
lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
lan8814_ptp_update_target(phydev, set_seconds);
return;
}
/* do clock step */
if (time_step_ns >= 0) {
abs_time_step_ns = (u64)time_step_ns;
seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
&remainder);
nano_seconds = remainder;
} else {
abs_time_step_ns = (u64)(-time_step_ns);
seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
&remainder));
nano_seconds = remainder;
if (nano_seconds > 0) {
/* subtracting nano seconds is not allowed
* convert to subtracting from seconds,
* and adding to nanoseconds
*/
seconds--;
nano_seconds = (1000000000 - nano_seconds);
}
}
if (nano_seconds > 0) {
/* add 8 ns to cover the likely normal increment */
nano_seconds += 8;
}
if (nano_seconds >= 1000000000) {
/* carry into seconds */
seconds++;
nano_seconds -= 1000000000;
}
while (seconds) {
u32 nsec;
if (seconds > 0) {
u32 adjustment_value = (u32)seconds;
u16 adjustment_value_lo, adjustment_value_hi;
if (adjustment_value > 0xF)
adjustment_value = 0xF;
adjustment_value_lo = adjustment_value & 0xffff;
adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
adjustment_value_lo);
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
PTP_LTC_STEP_ADJ_DIR_ |
adjustment_value_hi);
seconds -= ((s32)adjustment_value);
lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
set_seconds -= adjustment_value;
lan8814_ptp_update_target(phydev, set_seconds);
} else {
u32 adjustment_value = (u32)(-seconds);
u16 adjustment_value_lo, adjustment_value_hi;
if (adjustment_value > 0xF)
adjustment_value = 0xF;
adjustment_value_lo = adjustment_value & 0xffff;
adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
adjustment_value_lo);
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
adjustment_value_hi);
seconds += ((s32)adjustment_value);
lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
set_seconds += adjustment_value;
lan8814_ptp_update_target(phydev, set_seconds);
}
lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
}
if (nano_seconds) {
u16 nano_seconds_lo;
u16 nano_seconds_hi;
nano_seconds_lo = nano_seconds & 0xffff;
nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
nano_seconds_lo);
lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
PTP_LTC_STEP_ADJ_DIR_ |
nano_seconds_hi);
lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
}
}
static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
{
struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
ptp_clock_info);
struct phy_device *phydev = shared->phydev;
mutex_lock(&shared->shared_lock);
lan8814_ptp_clock_step(phydev, delta);
mutex_unlock(&shared->shared_lock);
return 0;
}
static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
{
struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
ptp_clock_info);
struct phy_device *phydev = shared->phydev;
u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
bool positive = true;
u32 kszphy_rate_adj;
if (scaled_ppm < 0) {
scaled_ppm = -scaled_ppm;
positive = false;
}
kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
if (positive)
kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
mutex_lock(&shared->shared_lock);
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
mutex_unlock(&shared->shared_lock);
return 0;
}
static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
s64 period_sec, u32 period_nsec)
{
lanphy_write_page_reg(phydev, 4,
LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
lower_16_bits(period_sec));
lanphy_write_page_reg(phydev, 4,
LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
upper_16_bits(period_sec));
lanphy_write_page_reg(phydev, 4,
LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
lower_16_bits(period_nsec));
lanphy_write_page_reg(phydev, 4,
LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
upper_16_bits(period_nsec) & 0x3fff);
}
static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
int pulse_width)
{
u16 val;
val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
/* Set the pulse width of the event */
val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event));
/* Make sure that the target clock will be incremented each time when
* local time reaches or pass it
*/
val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width);
val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
/* Set the polarity high */
val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event);
lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
}
static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
{
u16 val;
/* Set target to too far in the future, effectively disabling it */
lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
/* And then reload once it recheas the target */
val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event);
lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
}
static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
{
u16 val;
/* Disable gpio alternate function,
* 1: select as gpio,
* 0: select alt func
*/
val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
val |= LAN8814_GPIO_EN_BIT(pin);
lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
val &= ~LAN8814_GPIO_DIR_BIT(pin);
lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
val &= ~LAN8814_GPIO_BUF_BIT(pin);
lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
}
static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
{
int val;
/* Set as gpio output */
val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
val |= LAN8814_GPIO_DIR_BIT(pin);
lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
/* Enable gpio 0:for alternate function, 1:gpio */
val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
val &= ~LAN8814_GPIO_EN_BIT(pin);
lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
/* Set buffer type to push pull */
val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
val |= LAN8814_GPIO_BUF_BIT(pin);
lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
}
static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
struct ptp_clock_request *rq, int on)
{
struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
ptp_clock_info);
struct phy_device *phydev = shared->phydev;
struct timespec64 ts_on, ts_period;
s64 on_nsec, period_nsec;
int pulse_width;
int pin, event;
/* Reject requests with unsupported flags */
if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
return -EOPNOTSUPP;
mutex_lock(&shared->shared_lock);
event = rq->perout.index;
pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
mutex_unlock(&shared->shared_lock);
return -EBUSY;
}
if (!on) {
lan8814_ptp_perout_off(phydev, pin);
lan8814_ptp_disable_event(phydev, event);
mutex_unlock(&shared->shared_lock);
return 0;
}
ts_on.tv_sec = rq->perout.on.sec;
ts_on.tv_nsec = rq->perout.on.nsec;
on_nsec = timespec64_to_ns(&ts_on);
ts_period.tv_sec = rq->perout.period.sec;
ts_period.tv_nsec = rq->perout.period.nsec;
period_nsec = timespec64_to_ns(&ts_period);
if (period_nsec < 200) {
pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
phydev_name(phydev));
mutex_unlock(&shared->shared_lock);
return -EOPNOTSUPP;
}
if (on_nsec >= period_nsec) {
pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
phydev_name(phydev));
mutex_unlock(&shared->shared_lock);
return -EINVAL;
}
switch (on_nsec) {
case 200000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
break;
case 100000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
break;
case 50000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
break;
case 10000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
break;
case 5000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
break;
case 1000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
break;
case 500000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
break;
case 100000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
break;
case 50000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
break;
case 10000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
break;
case 5000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
break;
case 1000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
break;
case 500:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
break;
case 100:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
break;
default:
pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
phydev_name(phydev));
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
break;
}
/* Configure to pulse every period */
lan8814_ptp_enable_event(phydev, event, pulse_width);
lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
rq->perout.start.nsec);
lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
rq->perout.period.nsec);
lan8814_ptp_perout_on(phydev, pin);
mutex_unlock(&shared->shared_lock);
return 0;
}
static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
{
u16 tmp;
/* Set as gpio input */
tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
tmp &= ~LAN8814_GPIO_DIR_BIT(pin);
lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
/* Map the pin to ltc pin 0 of the capture map registers */
tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
tmp |= pin;
lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
/* Enable capture on the edges of the ltc pin */
tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
if (flags & PTP_RISING_EDGE)
tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0);
if (flags & PTP_FALLING_EDGE)
tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0);
lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
/* Enable interrupt top interrupt */
tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN;
lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
}
static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
{
u16 tmp;
/* Set as gpio out */
tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
tmp |= LAN8814_GPIO_DIR_BIT(pin);
lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
/* Enable alternate, 0:for alternate function, 1:gpio */
tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
tmp &= ~LAN8814_GPIO_EN_BIT(pin);
lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp);
/* Clear the mapping of pin to registers 0 of the capture registers */
tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
tmp &= ~GENMASK(3, 0);
lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
/* Disable capture on both of the edges */
tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
/* Disable interrupt top interrupt */
tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN;
lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
}
static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
struct ptp_clock_request *rq, int on)
{
struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
ptp_clock_info);
struct phy_device *phydev = shared->phydev;
int pin;
if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
PTP_EXTTS_EDGES |
PTP_STRICT_FLAGS))
return -EOPNOTSUPP;
pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
rq->extts.index);
if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
return -EINVAL;
mutex_lock(&shared->shared_lock);
if (on)
lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
else
lan8814_ptp_extts_off(phydev, pin);
mutex_unlock(&shared->shared_lock);
return 0;
}
static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
struct ptp_clock_request *rq, int on)
{
switch (rq->type) {
case PTP_CLK_REQ_PEROUT:
return lan8814_ptp_perout(ptpci, rq, on);
case PTP_CLK_REQ_EXTTS:
return lan8814_ptp_extts(ptpci, rq, on);
default:
return -EINVAL;
}
}
static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
switch (func) {
case PTP_PF_NONE:
case PTP_PF_PEROUT:
/* Only pins 0 and 1 can generate perout signals. And for pin 0
* there is only chan 0 (event A) and for pin 1 there is only
* chan 1 (event B)
*/
if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
return -1;
break;
case PTP_PF_EXTTS:
if (pin != LAN8814_PTP_EXTTS_NUM)
return -1;
break;
default:
return -1;
}
return 0;
}
static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
{
struct ptp_header *ptp_header;
u32 type;
type = ptp_classify_raw(skb);
ptp_header = ptp_parse_header(skb, type);
if (!ptp_header)
return false;
*sig = (__force u16)(ntohs(ptp_header->sequence_id));
return true;
}
static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
u32 seconds, u32 nsec, u16 seq_id)
{
struct skb_shared_hwtstamps shhwtstamps;
struct sk_buff *skb, *skb_tmp;
unsigned long flags;
bool ret = false;
u16 skb_sig;
spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
if (!lan8814_get_sig_tx(skb, &skb_sig))
continue;
if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
continue;
__skb_unlink(skb, &ptp_priv->tx_queue);
ret = true;
break;
}
spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
if (ret) {
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
skb_complete_tx_timestamp(skb, &shhwtstamps);
}
}
static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
{
struct phy_device *phydev = ptp_priv->phydev;
u32 seconds, nsec;
u16 seq_id;
lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
}
static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
{
struct phy_device *phydev = ptp_priv->phydev;
u32 reg;
do {
lan8814_dequeue_tx_skb(ptp_priv);
/* If other timestamps are available in the FIFO,
* process them.
*/
reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
}
static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
struct lan8814_ptp_rx_ts *rx_ts)
{
struct skb_shared_hwtstamps *shhwtstamps;
struct sk_buff *skb, *skb_tmp;
unsigned long flags;
bool ret = false;
u16 skb_sig;
spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
if (!lan8814_get_sig_rx(skb, &skb_sig))
continue;
if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
continue;
__skb_unlink(skb, &ptp_priv->rx_queue);
ret = true;
break;
}
spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
if (ret) {
shhwtstamps = skb_hwtstamps(skb);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
netif_rx(skb);
}
return ret;
}
static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
struct lan8814_ptp_rx_ts *rx_ts)
{
unsigned long flags;
/* If we failed to match the skb add it to the queue for when
* the frame will come
*/
if (!lan8814_match_skb(ptp_priv, rx_ts)) {
spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
} else {
kfree(rx_ts);
}
}
static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
{
struct phy_device *phydev = ptp_priv->phydev;
struct lan8814_ptp_rx_ts *rx_ts;
u32 reg;
do {
rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
if (!rx_ts)
return;
lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
&rx_ts->seq_id);
lan8814_match_rx_ts(ptp_priv, rx_ts);
/* If other timestamps are available in the FIFO,
* process them.
*/
reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
}
static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
{
struct kszphy_priv *priv = phydev->priv;
struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
lan8814_get_tx_ts(ptp_priv);
if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
lan8814_get_rx_ts(ptp_priv);
if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
lan8814_flush_fifo(phydev, true);
skb_queue_purge(&ptp_priv->tx_queue);
}
if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
lan8814_flush_fifo(phydev, false);
skb_queue_purge(&ptp_priv->rx_queue);
}
}
static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
{
struct phy_device *phydev = shared->phydev;
struct ptp_clock_event ptp_event = {0};
unsigned long nsec;
s64 sec;
u16 tmp;
/* This is 0 because whatever was the input pin it was mapped it to
* ltc gpio pin 0
*/
tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL);
tmp |= PTP_GPIO_SEL_GPIO_SEL(0);
lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp);
tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS);
if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
return -1;
if (tmp & BIT(0)) {
sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP);
sec <<= 16;
sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP);
nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
nsec <<= 16;
nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
} else {
sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP);
sec <<= 16;
sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP);
nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
nsec <<= 16;
nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
}
ptp_event.index = 0;
ptp_event.timestamp = ktime_set(sec, nsec);
ptp_event.type = PTP_CLOCK_EXTTS;
ptp_clock_event(shared->ptp_clock, &ptp_event);
return 0;
}
static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
{
struct lan8814_shared_priv *shared = phydev->shared->priv;
int ret;
mutex_lock(&shared->shared_lock);
ret = lan8814_gpio_process_cap(shared);
mutex_unlock(&shared->shared_lock);
return ret;
}
static int lan8804_config_init(struct phy_device *phydev)
{
int val;
/* MDI-X setting for swap A,B transmit */
val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
val |= LAN8804_ALIGN_TX_A_B_SWAP;
lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
/* Make sure that the PHY will not stop generating the clock when the
* link partner goes down
*/
lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
return 0;
}
static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
{
int status;
status = phy_read(phydev, LAN8814_INTS);
if (status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
if (status > 0)
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
#define LAN8804_OUTPUT_CONTROL 25
#define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14)
#define LAN8804_CONTROL 31
#define LAN8804_CONTROL_INTR_POLARITY BIT(14)
static int lan8804_config_intr(struct phy_device *phydev)
{
int err;
/* This is an internal PHY of lan966x and is not possible to change the
* polarity on the GIC found in lan966x, therefore change the polarity
* of the interrupt in the PHY from being active low instead of active
* high.
*/
phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
/* By default interrupt buffer is open-drain in which case the interrupt
* can be active only low. Therefore change the interrupt buffer to be
* push-pull to be able to change interrupt polarity
*/
phy_write(phydev, LAN8804_OUTPUT_CONTROL,
LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
err = phy_read(phydev, LAN8814_INTS);
if (err < 0)
return err;
err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
if (err)
return err;
} else {
err = phy_write(phydev, LAN8814_INTC, 0);
if (err)
return err;
err = phy_read(phydev, LAN8814_INTS);
if (err < 0)
return err;
}
return 0;
}
static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
{
int ret = IRQ_NONE;
int irq_status;
irq_status = phy_read(phydev, LAN8814_INTS);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
if (irq_status & LAN8814_INT_LINK) {
phy_trigger_machine(phydev);
ret = IRQ_HANDLED;
}
while (true) {
irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
if (!irq_status)
break;
lan8814_handle_ptp_interrupt(phydev, irq_status);
ret = IRQ_HANDLED;
}
if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
ret = IRQ_HANDLED;
return ret;
}
static int lan8814_ack_interrupt(struct phy_device *phydev)
{
/* bit[12..0] int status, which is a read and clear register. */
int rc;
rc = phy_read(phydev, LAN8814_INTS);
return (rc < 0) ? rc : 0;
}
static int lan8814_config_intr(struct phy_device *phydev)
{
int err;
lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
LAN8814_INTR_CTRL_REG_POLARITY |
LAN8814_INTR_CTRL_REG_INTR_ENABLE);
/* enable / disable interrupts */
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
err = lan8814_ack_interrupt(phydev);
if (err)
return err;
err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
} else {
err = phy_write(phydev, LAN8814_INTC, 0);
if (err)
return err;
err = lan8814_ack_interrupt(phydev);
}
return err;
}
static void lan8814_ptp_init(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
u32 temp;
if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
return;
lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
/* Removing default registers configs related to L2 and IP */
lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
/* Disable checking for minorVersionPTP field */
lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
skb_queue_head_init(&ptp_priv->tx_queue);
skb_queue_head_init(&ptp_priv->rx_queue);
INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
spin_lock_init(&ptp_priv->rx_ts_lock);
ptp_priv->phydev = phydev;
ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
ptp_priv->mii_ts.ts_info = lan8814_ts_info;
phydev->mii_ts = &ptp_priv->mii_ts;
/* Timestamp selected by default to keep legacy API */
phydev->default_timestamp = true;
}
static int lan8814_ptp_probe_once(struct phy_device *phydev)
{
struct lan8814_shared_priv *shared = phydev->shared->priv;
/* Initialise shared lock for clock*/
mutex_init(&shared->shared_lock);
shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
LAN8814_PTP_GPIO_NUM,
sizeof(*shared->pin_config),
GFP_KERNEL);
if (!shared->pin_config)
return -ENOMEM;
for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) {
struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
memset(ptp_pin, 0, sizeof(*ptp_pin));
snprintf(ptp_pin->name,
sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i);
ptp_pin->index = i;
ptp_pin->func = PTP_PF_NONE;
}
shared->ptp_clock_info.owner = THIS_MODULE;
snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
shared->ptp_clock_info.max_adj = 31249999;
shared->ptp_clock_info.n_alarm = 0;
shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM;
shared->ptp_clock_info.pps = 0;
shared->ptp_clock_info.pin_config = shared->pin_config;
shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
shared->ptp_clock_info.getcrosststamp = NULL;
shared->ptp_clock_info.enable = lan8814_ptpci_enable;
shared->ptp_clock_info.verify = lan8814_ptpci_verify;
shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
&phydev->mdio.dev);
if (IS_ERR(shared->ptp_clock)) {
phydev_err(phydev, "ptp_clock_register failed %lu\n",
PTR_ERR(shared->ptp_clock));
return -EINVAL;
}
/* Check if PHC support is missing at the configuration level */
if (!shared->ptp_clock)
return 0;
phydev_dbg(phydev, "successfully registered ptp clock\n");
shared->phydev = phydev;
/* The EP.4 is shared between all the PHYs in the package and also it
* can be accessed by any of the PHYs
*/
lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
PTP_OPERATING_MODE_STANDALONE_);
/* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_);
return 0;
}
static void lan8814_setup_led(struct phy_device *phydev, int val)
{
int temp;
temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
if (val)
temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
else
temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
}
static int lan8814_config_init(struct phy_device *phydev)
{
struct kszphy_priv *lan8814 = phydev->priv;
int val;
/* Reset the PHY */
val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
val |= LAN8814_QSGMII_SOFT_RESET_BIT;
lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
/* Disable ANEG with QSGMII PCS Host side */
val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
/* MDI-X setting for swap A,B transmit */
val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
val |= LAN8814_ALIGN_TX_A_B_SWAP;
lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
if (lan8814->led_mode >= 0)
lan8814_setup_led(phydev, lan8814->led_mode);
return 0;
}
/* It is expected that there will not be any 'lan8814_take_coma_mode'
* function called in suspend. Because the GPIO line can be shared, so if one of
* the phys goes back in coma mode, then all the other PHYs will go, which is
* wrong.
*/
static int lan8814_release_coma_mode(struct phy_device *phydev)
{
struct gpio_desc *gpiod;
gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
GPIOD_OUT_HIGH_OPEN_DRAIN |
GPIOD_FLAGS_BIT_NONEXCLUSIVE);
if (IS_ERR(gpiod))
return PTR_ERR(gpiod);
gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
gpiod_set_value_cansleep(gpiod, 0);
return 0;
}
static void lan8814_clear_2psp_bit(struct phy_device *phydev)
{
u16 val;
/* It was noticed that when traffic is passing through the PHY and the
* cable is removed then the LED was still one even though there is no
* link
*/
val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE);
val &= ~LAN8814_EEE_STATE_MASK2P5P;
lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val);
}
static void lan8814_update_meas_time(struct phy_device *phydev)
{
u16 val;
/* By setting the measure time to a value of 0xb this will allow cables
* longer than 100m to be used. This configuration can be used
* regardless of the mode of operation of the PHY
*/
val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS);
val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK;
val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL;
lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val);
}
static int lan8814_probe(struct phy_device *phydev)
{
const struct kszphy_type *type = phydev->drv->driver_data;
struct kszphy_priv *priv;
u16 addr;
int err;
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
priv->type = type;
kszphy_parse_led_mode(phydev);
/* Strap-in value for PHY address, below register read gives starting
* phy address value
*/
addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
devm_phy_package_join(&phydev->mdio.dev, phydev,
addr, sizeof(struct lan8814_shared_priv));
if (phy_package_init_once(phydev)) {
err = lan8814_release_coma_mode(phydev);
if (err)
return err;
err = lan8814_ptp_probe_once(phydev);
if (err)
return err;
}
lan8814_ptp_init(phydev);
/* Errata workarounds */
lan8814_clear_2psp_bit(phydev);
lan8814_update_meas_time(phydev);
return 0;
}
#define LAN8841_MMD_TIMER_REG 0
#define LAN8841_MMD0_REGISTER_17 17
#define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3)
#define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3)
#define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2
#define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14)
#define LAN8841_MMD_ANALOG_REG 28
#define LAN8841_ANALOG_CONTROL_1 1
#define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5)
#define LAN8841_ANALOG_CONTROL_10 13
#define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3)
#define LAN8841_ANALOG_CONTROL_11 14
#define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12)
#define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69
#define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
#define LAN8841_BTRX_POWER_DOWN 70
#define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0)
#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1)
#define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2)
#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3)
#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5)
#define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7)
#define LAN8841_ADC_CHANNEL_MASK 198
#define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370
#define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371
#define LAN8841_PTP_RX_VERSION 374
#define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434
#define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435
#define LAN8841_PTP_TX_VERSION 438
#define LAN8841_PTP_CMD_CTL 256
#define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2)
#define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1)
#define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0)
#define LAN8841_PTP_RX_PARSE_CONFIG 368
#define LAN8841_PTP_TX_PARSE_CONFIG 432
#define LAN8841_PTP_RX_MODE 381
#define LAN8841_PTP_INSERT_TS_EN BIT(0)
#define LAN8841_PTP_INSERT_TS_32BIT BIT(1)
static int lan8841_config_init(struct phy_device *phydev)
{
int ret;
ret = ksz9131_config_init(phydev);
if (ret)
return ret;
/* Initialize the HW by resetting everything */
phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_CMD_CTL,
LAN8841_PTP_CMD_CTL_PTP_RESET,
LAN8841_PTP_CMD_CTL_PTP_RESET);
phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_CMD_CTL,
LAN8841_PTP_CMD_CTL_PTP_ENABLE,
LAN8841_PTP_CMD_CTL_PTP_ENABLE);
/* Don't process any frames */
phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_RX_PARSE_CONFIG, 0);
phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_TX_PARSE_CONFIG, 0);
phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
/* Disable checking for minorVersionPTP field */
phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_RX_VERSION, 0xff00);
phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_TX_VERSION, 0xff00);
/* 100BT Clause 40 improvenent errata */
phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
LAN8841_ANALOG_CONTROL_1,
LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
LAN8841_ANALOG_CONTROL_10,
LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
* Magnetics
*/
ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
LAN8841_BTRX_POWER_DOWN,
LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
}
/* LDO Adjustment errata */
phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
LAN8841_ANALOG_CONTROL_11,
LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
/* 100BT RGMII latency tuning errata */
phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
LAN8841_ADC_CHANNEL_MASK, 0x0);
phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
LAN8841_MMD0_REGISTER_17,
LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
return 0;
}
#define LAN8841_OUTPUT_CTRL 25
#define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14)
#define LAN8841_INT_PTP BIT(9)
static int lan8841_config_intr(struct phy_device *phydev)
{
int err;
phy_modify(phydev, LAN8841_OUTPUT_CTRL,
LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
err = phy_read(phydev, LAN8814_INTS);
if (err < 0)
return err;
/* Enable / disable interrupts. It is OK to enable PTP interrupt
* even if it PTP is not enabled. Because the underneath blocks
* will not enable the PTP so we will never get the PTP
* interrupt.
*/
err = phy_write(phydev, LAN8814_INTC,
LAN8814_INT_LINK | LAN8841_INT_PTP);
} else {
err = phy_write(phydev, LAN8814_INTC, 0);
if (err)
return err;
err = phy_read(phydev, LAN8814_INTS);
if (err < 0)
return err;
/* Getting a positive value doesn't mean that is an error, it
* just indicates what was the status. Therefore make sure to
* clear the value and say that there is no error.
*/
err = 0;
}
return err;
}
#define LAN8841_PTP_TX_EGRESS_SEC_LO 453
#define LAN8841_PTP_TX_EGRESS_SEC_HI 452
#define LAN8841_PTP_TX_EGRESS_NS_LO 451
#define LAN8841_PTP_TX_EGRESS_NS_HI 450
#define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15)
#define LAN8841_PTP_TX_MSG_HEADER2 455
static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
u32 *sec, u32 *nsec, u16 *seq)
{
struct phy_device *phydev = ptp_priv->phydev;
*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
return false;
*nsec = ((*nsec & 0x3fff) << 16);
*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
*sec = *sec << 16;
*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
return true;
}
static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
{
u32 sec, nsec;
u16 seq;
while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
}
#define LAN8841_PTP_INT_STS 259
#define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13)
#define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12)
#define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2)
static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
{
struct phy_device *phydev = ptp_priv->phydev;
int i;
for (i = 0; i < FIFO_SIZE; ++i)
phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
}
#define LAN8841_PTP_GPIO_CAP_STS 506
#define LAN8841_PTP_GPIO_SEL 327
#define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8)
#define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498
#define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499
#define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500
#define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501
#define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502
#define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503
#define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504
#define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505
static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
{
struct phy_device *phydev = ptp_priv->phydev;
struct ptp_clock_event ptp_event = {0};
int pin, ret, tmp;
s32 sec, nsec;
pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
if (pin == -1)
return;
tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
if (tmp < 0)
return;
ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
if (ret)
return;
mutex_lock(&ptp_priv->ptp_lock);
if (tmp & BIT(pin)) {
sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
sec <<= 16;
sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
nsec <<= 16;
nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
} else {
sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
sec <<= 16;
sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
nsec <<= 16;
nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
}
mutex_unlock(&ptp_priv->ptp_lock);
ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
if (ret)
return;
ptp_event.index = 0;
ptp_event.timestamp = ktime_set(sec, nsec);
ptp_event.type = PTP_CLOCK_EXTTS;
ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
}
static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
u16 status;
do {
status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
lan8841_ptp_process_tx_ts(ptp_priv);
if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
lan8841_gpio_process_cap(ptp_priv);
if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
lan8841_ptp_flush_fifo(ptp_priv);
skb_queue_purge(&ptp_priv->tx_queue);
}
} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
}
#define LAN8841_INTS_PTP BIT(9)
static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
{
irqreturn_t ret = IRQ_NONE;
int irq_status;
irq_status = phy_read(phydev, LAN8814_INTS);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
if (irq_status & LAN8814_INT_LINK) {
phy_trigger_machine(phydev);
ret = IRQ_HANDLED;
}
if (irq_status & LAN8841_INTS_PTP) {
lan8841_handle_ptp_interrupt(phydev);
ret = IRQ_HANDLED;
}
return ret;
}
static int lan8841_ts_info(struct mii_timestamper *mii_ts,
struct kernel_ethtool_ts_info *info)
{
struct kszphy_ptp_priv *ptp_priv;
ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
info->phc_index = ptp_priv->ptp_clock ?
ptp_clock_index(ptp_priv->ptp_clock) : -1;
if (info->phc_index == -1)
return 0;
info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->tx_types = (1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON) |
(1 << HWTSTAMP_TX_ONESTEP_SYNC);
info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
return 0;
}
#define LAN8841_PTP_INT_EN 260
#define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13)
#define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12)
static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
bool enable)
{
struct phy_device *phydev = ptp_priv->phydev;
if (enable) {
/* Enable interrupts on the TX side */
phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
/* Enable the modification of the frame on RX side,
* this will add the ns and 2 bits of sec in the reserved field
* of the PTP header
*/
phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_RX_MODE,
LAN8841_PTP_INSERT_TS_EN |
LAN8841_PTP_INSERT_TS_32BIT,
LAN8841_PTP_INSERT_TS_EN |
LAN8841_PTP_INSERT_TS_32BIT);
ptp_schedule_worker(ptp_priv->ptp_clock, 0);
} else {
/* Disable interrupts on the TX side */
phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
/* Disable modification of the RX frames */
phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_PTP_RX_MODE,
LAN8841_PTP_INSERT_TS_EN |
LAN8841_PTP_INSERT_TS_32BIT, 0);
ptp_cancel_worker_sync(ptp_priv->ptp_clock);
}
}
#define LAN8841_PTP_RX_TIMESTAMP_EN 379
#define LAN8841_PTP_TX_TIMESTAMP_EN 443
#define LAN8841_PTP_TX_MOD 445
static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
struct kernel_hwtstamp_config *config,
struct netlink_ext_ack *extack)
{
struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
struct phy_device *phydev = ptp_priv->phydev;
int txcfg = 0, rxcfg = 0;
int pkt_ts_enable;
ptp_priv->hwts_tx_type = config->tx_type;
ptp_priv->rx_filter = config->rx_filter;
switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
ptp_priv->layer = 0;
ptp_priv->version = 0;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
ptp_priv->layer = PTP_CLASS_L4;
ptp_priv->version = PTP_CLASS_V2;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
ptp_priv->layer = PTP_CLASS_L2;
ptp_priv->version = PTP_CLASS_V2;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
ptp_priv->version = PTP_CLASS_V2;
break;
default:
return -ERANGE;
}
/* Setup parsing of the frames and enable the timestamping for ptp
* frames
*/
if (ptp_priv->layer & PTP_CLASS_L2) {
rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
} else if (ptp_priv->layer & PTP_CLASS_L4) {
rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
}
phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
/* Enable / disable of the TX timestamp in the SYNC frames */
phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
/* Now enable/disable the timestamping */
lan8841_ptp_enable_processing(ptp_priv,
config->rx_filter != HWTSTAMP_FILTER_NONE);
skb_queue_purge(&ptp_priv->tx_queue);
lan8841_ptp_flush_fifo(ptp_priv);
return 0;
}
static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
struct sk_buff *skb, int type)
{
struct kszphy_ptp_priv *ptp_priv =
container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
struct ptp_header *header = ptp_parse_header(skb, type);
struct skb_shared_hwtstamps *shhwtstamps;
struct timespec64 ts;
unsigned long flags;
u32 ts_header;
if (!header)
return false;
if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
type == PTP_CLASS_NONE)
return false;
if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
return false;
spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
ts.tv_sec = ptp_priv->seconds;
spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
ts_header = __be32_to_cpu(header->reserved2);
shhwtstamps = skb_hwtstamps(skb);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
/* Check for any wrap arounds for the second part */
if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
ts.tv_sec -= GENMASK(1, 0) + 1;
else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
ts.tv_sec += 1;
shhwtstamps->hwtstamp =
ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
ts_header & GENMASK(29, 0));
header->reserved2 = 0;
netif_rx(skb);
return true;
}
#define LAN8841_EVENT_A 0
#define LAN8841_EVENT_B 1
#define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288)
#define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289)
#define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290)
#define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291)
static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
s64 sec, u32 nsec)
{
struct phy_device *phydev = ptp_priv->phydev;
int ret;
ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
upper_16_bits(sec));
if (ret)
return ret;
ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
lower_16_bits(sec));
if (ret)
return ret;
ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
upper_16_bits(nsec));
if (ret)
return ret;
return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
lower_16_bits(nsec));
}
#define LAN8841_BUFFER_TIME 2
static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
const struct timespec64 *ts)
{
return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
ts->tv_sec + LAN8841_BUFFER_TIME, 0);
}
#define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292)
#define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293)
#define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294)
#define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295)
static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
s64 sec, u32 nsec)
{
struct phy_device *phydev = ptp_priv->phydev;
int ret;
ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
upper_16_bits(sec));
if (ret)
return ret;
ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
lower_16_bits(sec));
if (ret)
return ret;
ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
upper_16_bits(nsec));
if (ret)
return ret;
return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
lower_16_bits(nsec));
}
#define LAN8841_PTP_LTC_SET_SEC_HI 262
#define LAN8841_PTP_LTC_SET_SEC_MID 263
#define LAN8841_PTP_LTC_SET_SEC_LO 264
#define LAN8841_PTP_LTC_SET_NS_HI 265
#define LAN8841_PTP_LTC_SET_NS_LO 266
#define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4)
static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
ptp_clock_info);
struct phy_device *phydev = ptp_priv->phydev;
unsigned long flags;
int ret;
/* Set the value to be stored */
mutex_lock(&ptp_priv->ptp_lock);
phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
/* Set the command to load the LTC */
phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
ret = lan8841_ptp_update_target(ptp_priv, ts);
mutex_unlock(&ptp_priv->ptp_lock);
spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
ptp_priv->seconds = ts->tv_sec;
spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
return ret;
}
#define LAN8841_PTP_LTC_RD_SEC_HI 358
#define LAN8841_PTP_LTC_RD_SEC_MID 359
#define LAN8841_PTP_LTC_RD_SEC_LO 360
#define LAN8841_PTP_LTC_RD_NS_HI 361
#define LAN8841_PTP_LTC_RD_NS_LO 362
#define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3)
static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
struct timespec64 *ts)
{
struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
ptp_clock_info);
struct phy_device *phydev = ptp_priv->phydev;
time64_t s;
s64 ns;
mutex_lock(&ptp_priv->ptp_lock);
/* Issue the command to read the LTC */
phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
/* Read the LTC */
s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
s <<= 16;
s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
s <<= 16;
s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
ns <<= 16;
ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
mutex_unlock(&ptp_priv->ptp_lock);
set_normalized_timespec64(ts, s, ns);
return 0;
}
static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
struct timespec64 *ts)
{
struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
ptp_clock_info);
struct phy_device *phydev = ptp_priv->phydev;
time64_t s;
mutex_lock(&ptp_priv->ptp_lock);
/* Issue the command to read the LTC */
phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
/* Read the LTC */
s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
s <<= 16;
s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
s <<= 16;
s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
mutex_unlock(&ptp_priv->ptp_lock);
set_normalized_timespec64(ts, s, 0);
}
#define LAN8841_PTP_LTC_STEP_ADJ_LO 276
#define LAN8841_PTP_LTC_STEP_ADJ_HI 275
#define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15)
#define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5)
#define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6)
static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
ptp_clock_info);
struct phy_device *phydev = ptp_priv->phydev;
struct timespec64 ts;
bool add = true;
u32 nsec;
s32 sec;
int ret;
/* The HW allows up to 15 sec to adjust the time, but here we limit to
* 10 sec the adjustment. The reason is, in case the adjustment is 14
* sec and 999999999 nsec, then we add 8ns to compansate the actual
* increment so the value can be bigger than 15 sec. Therefore limit the
* possible adjustments so we will not have these corner cases
*/
if (delta > 10000000000LL || delta < -10000000000LL) {
/* The timeadjustment is too big, so fall back using set time */
u64 now;
ptp->gettime64(ptp, &ts);
now = ktime_to_ns(timespec64_to_ktime(ts));
ts = ns_to_timespec64(now + delta);
ptp->settime64(ptp, &ts);
return 0;
}
sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
if (delta < 0 && nsec != 0) {
/* It is not allowed to adjust low the nsec part, therefore
* subtract more from second part and add to nanosecond such
* that would roll over, so the second part will increase
*/
sec--;
nsec = NSEC_PER_SEC - nsec;
}
/* Calculate the adjustments and the direction */
if (delta < 0)
add = false;
if (nsec > 0)
/* add 8 ns to cover the likely normal increment */
nsec += 8;
if (nsec >= NSEC_PER_SEC) {
/* carry into seconds */
sec++;
nsec -= NSEC_PER_SEC;
}
mutex_lock(&ptp_priv->ptp_lock);
if (sec) {
phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
}
if (nsec) {
phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
nsec & 0xffff);
phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
(nsec >> 16) & 0x3fff);
phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
}
mutex_unlock(&ptp_priv->ptp_lock);
/* Update the target clock */
ptp->gettime64(ptp, &ts);
mutex_lock(&ptp_priv->ptp_lock);
ret = lan8841_ptp_update_target(ptp_priv, &ts);
mutex_unlock(&ptp_priv->ptp_lock);
return ret;
}
#define LAN8841_PTP_LTC_RATE_ADJ_HI 269
#define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15)
#define LAN8841_PTP_LTC_RATE_ADJ_LO 270
static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
ptp_clock_info);
struct phy_device *phydev = ptp_priv->phydev;
bool faster = true;
u32 rate;
if (!scaled_ppm)
return 0;
if (scaled_ppm < 0) {
scaled_ppm = -scaled_ppm;
faster = false;
}
rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
mutex_lock(&ptp_priv->ptp_lock);
phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
: upper_16_bits(rate) & 0x3fff);
phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
mutex_unlock(&ptp_priv->ptp_lock);
return 0;
}
static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
switch (func) {
case PTP_PF_NONE:
case PTP_PF_PEROUT:
case PTP_PF_EXTTS:
break;
default:
return -1;
}
return 0;
}
#define LAN8841_PTP_GPIO_NUM 10
#define LAN8841_GPIO_EN 128
#define LAN8841_GPIO_DIR 129
#define LAN8841_GPIO_BUF 130
static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
{
struct phy_device *phydev = ptp_priv->phydev;
int ret;
ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
if (ret)
return ret;
ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
if (ret)
return ret;
return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
}
static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
{
struct phy_device *phydev = ptp_priv->phydev;
int ret;
ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
if (ret)
return ret;
ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
if (ret)
return ret;
return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
}
#define LAN8841_GPIO_DATA_SEL1 131
#define LAN8841_GPIO_DATA_SEL2 132
#define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0)
#define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1
#define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2
#define LAN8841_PTP_GENERAL_CONFIG 257
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1)
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3)
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4)
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8)
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7
static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
u8 event)
{
struct phy_device *phydev = ptp_priv->phydev;
u16 tmp;
int ret;
/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
* pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
* depending on the pin, it requires to read a different register
*/
if (pin < 5) {
tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
} else {
tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
}
if (ret)
return ret;
/* Disable the event */
if (event == LAN8841_EVENT_A)
tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
else
tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
}
static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
u8 event, int pulse_width)
{
struct phy_device *phydev = ptp_priv->phydev;
u16 tmp;
int ret;
/* Enable the event */
if (event == LAN8841_EVENT_A)
ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
else
ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
if (ret)
return ret;
/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
* pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
* depending on the pin, it requires to read a different register
*/
if (event == LAN8841_EVENT_A)
tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
else
tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
if (pin < 5)
ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
tmp << (3 * pin));
else
ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
tmp << (3 * (pin - 5)));
return ret;
}
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
#define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
ptp_clock_info);
struct phy_device *phydev = ptp_priv->phydev;
struct timespec64 ts_on, ts_period;
s64 on_nsec, period_nsec;
int pulse_width;
int pin;
int ret;
if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
return -EOPNOTSUPP;
pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
return -EINVAL;
if (!on) {
ret = lan8841_ptp_perout_off(ptp_priv, pin);
if (ret)
return ret;
return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
}
ts_on.tv_sec = rq->perout.on.sec;
ts_on.tv_nsec = rq->perout.on.nsec;
on_nsec = timespec64_to_ns(&ts_on);
ts_period.tv_sec = rq->perout.period.sec;
ts_period.tv_nsec = rq->perout.period.nsec;
period_nsec = timespec64_to_ns(&ts_period);
if (period_nsec < 200) {
pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
phydev_name(phydev));
return -EOPNOTSUPP;
}
if (on_nsec >= period_nsec) {
pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
phydev_name(phydev));
return -EINVAL;
}
switch (on_nsec) {
case 200000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
break;
case 100000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
break;
case 50000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
break;
case 10000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
break;
case 5000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
break;
case 1000000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
break;
case 500000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
break;
case 100000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
break;
case 50000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
break;
case 10000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
break;
case 5000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
break;
case 1000:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
break;
case 500:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
break;
case 100:
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
break;
default:
pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
phydev_name(phydev));
pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
break;
}
mutex_lock(&ptp_priv->ptp_lock);
ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
rq->perout.start.nsec);
mutex_unlock(&ptp_priv->ptp_lock);
if (ret)
return ret;
ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
rq->perout.period.nsec);
if (ret)
return ret;
ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
pulse_width);
if (ret)
return ret;
ret = lan8841_ptp_perout_on(ptp_priv, pin);
if (ret)
lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
return ret;
}
#define LAN8841_PTP_GPIO_CAP_EN 496
#define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio))
#define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
#define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2)
static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
u32 flags)
{
struct phy_device *phydev = ptp_priv->phydev;
u16 tmp = 0;
int ret;
/* Set GPIO to be intput */
ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
if (ret)
return ret;
ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
if (ret)
return ret;
/* Enable capture on the edges of the pin */
if (flags & PTP_RISING_EDGE)
tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
if (flags & PTP_FALLING_EDGE)
tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
if (ret)
return ret;
/* Enable interrupt */
return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
}
static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
{
struct phy_device *phydev = ptp_priv->phydev;
int ret;
/* Set GPIO to be output */
ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
if (ret)
return ret;
ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
if (ret)
return ret;
/* Disable capture on both of the edges */
ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
0);
if (ret)
return ret;
/* Disable interrupt */
return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
0);
}
static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
ptp_clock_info);
int pin;
int ret;
/* Reject requests with unsupported flags */
if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
PTP_EXTTS_EDGES |
PTP_STRICT_FLAGS))
return -EOPNOTSUPP;
pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
return -EINVAL;
mutex_lock(&ptp_priv->ptp_lock);
if (on)
ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
else
ret = lan8841_ptp_extts_off(ptp_priv, pin);
mutex_unlock(&ptp_priv->ptp_lock);
return ret;
}
static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
switch (rq->type) {
case PTP_CLK_REQ_EXTTS:
return lan8841_ptp_extts(ptp, rq, on);
case PTP_CLK_REQ_PEROUT:
return lan8841_ptp_perout(ptp, rq, on);
default:
return -EOPNOTSUPP;
}
return 0;
}
static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
{
struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
ptp_clock_info);
struct timespec64 ts;
unsigned long flags;
lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
ptp_priv->seconds = ts.tv_sec;
spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
}
static struct ptp_clock_info lan8841_ptp_clock_info = {
.owner = THIS_MODULE,
.name = "lan8841 ptp",
.max_adj = 31249999,
.gettime64 = lan8841_ptp_gettime64,
.settime64 = lan8841_ptp_settime64,
.adjtime = lan8841_ptp_adjtime,
.adjfine = lan8841_ptp_adjfine,
.verify = lan8841_ptp_verify,
.enable = lan8841_ptp_enable,
.do_aux_work = lan8841_ptp_do_aux_work,
.n_per_out = LAN8841_PTP_GPIO_NUM,
.n_ext_ts = LAN8841_PTP_GPIO_NUM,
.n_pins = LAN8841_PTP_GPIO_NUM,
};
#define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
#define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
static int lan8841_probe(struct phy_device *phydev)
{
struct kszphy_ptp_priv *ptp_priv;
struct kszphy_priv *priv;
int err;
err = kszphy_probe(phydev);
if (err)
return err;
if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
/* Register the clock */
if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
return 0;
priv = phydev->priv;
ptp_priv = &priv->ptp_priv;
ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
LAN8841_PTP_GPIO_NUM,
sizeof(*ptp_priv->pin_config),
GFP_KERNEL);
if (!ptp_priv->pin_config)
return -ENOMEM;
for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
snprintf(p->name, sizeof(p->name), "pin%d", i);
p->index = i;
p->func = PTP_PF_NONE;
}
ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
&phydev->mdio.dev);
if (IS_ERR(ptp_priv->ptp_clock)) {
phydev_err(phydev, "ptp_clock_register failed: %lu\n",
PTR_ERR(ptp_priv->ptp_clock));
return -EINVAL;
}
if (!ptp_priv->ptp_clock)
return 0;
/* Initialize the SW */
skb_queue_head_init(&ptp_priv->tx_queue);
ptp_priv->phydev = phydev;
mutex_init(&ptp_priv->ptp_lock);
spin_lock_init(&ptp_priv->seconds_lock);
ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
ptp_priv->mii_ts.ts_info = lan8841_ts_info;
phydev->mii_ts = &ptp_priv->mii_ts;
/* Timestamp selected by default to keep legacy API */
phydev->default_timestamp = true;
return 0;
}
static int lan8841_suspend(struct phy_device *phydev)
{
struct kszphy_priv *priv = phydev->priv;
struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
if (ptp_priv->ptp_clock)
ptp_cancel_worker_sync(ptp_priv->ptp_clock);
return genphy_suspend(phydev);
}
static struct phy_driver ksphy_driver[] = {
{
.phy_id = PHY_ID_KS8737,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KS8737",
/* PHY_BASIC_FEATURES */
.driver_data = &ks8737_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8021,
.phy_id_mask = 0x00ffffff,
.name = "Micrel KSZ8021 or KSZ8031",
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8021_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8031,
.phy_id_mask = 0x00ffffff,
.name = "Micrel KSZ8031",
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8021_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8041,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8041",
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8041_type,
.probe = kszphy_probe,
.config_init = ksz8041_config_init,
.config_aneg = ksz8041_config_aneg,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
/* No suspend/resume callbacks because of errata DS80000700A,
* receiver error following software power down.
*/
}, {
.phy_id = PHY_ID_KSZ8041RNLI,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8041RNLI",
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8041_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.name = "Micrel KSZ8051",
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8051_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.match_phy_device = ksz8051_match_phy_device,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8001,
.name = "Micrel KSZ8001 or KS8721",
.phy_id_mask = 0x00fffffc,
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8041_type,
.probe = kszphy_probe,
.config_init = kszphy_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
}, {
.phy_id = PHY_ID_KSZ8081,
.name = "Micrel KSZ8081 or KSZ8091",
.phy_id_mask = MICREL_PHY_ID_MASK,
.flags = PHY_POLL_CABLE_TEST,
/* PHY_BASIC_FEATURES */
.driver_data = &ksz8081_type,
.probe = kszphy_probe,
.config_init = ksz8081_config_init,
.soft_reset = genphy_soft_reset,
.config_aneg = ksz8081_config_aneg,
.read_status = ksz8081_read_status,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
.cable_test_start = ksz886x_cable_test_start,
.cable_test_get_status = ksz886x_cable_test_get_status,
}, {
.phy_id = PHY_ID_KSZ8061,
.name = "Micrel KSZ8061",
.phy_id_mask = MICREL_PHY_ID_MASK,
/* PHY_BASIC_FEATURES */
.probe = kszphy_probe,
.config_init = ksz8061_config_init,
.soft_reset = genphy_soft_reset,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.suspend = kszphy_suspend,
.resume = ksz8061_resume,
}, {
.phy_id = PHY_ID_KSZ9021,
.phy_id_mask = 0x000ffffe,
.name = "Micrel KSZ9021 Gigabit PHY",
/* PHY_GBIT_FEATURES */
.driver_data = &ksz9021_type,
.probe = kszphy_probe,
.get_features = ksz9031_get_features,
.config_init = ksz9021_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
.read_mmd = genphy_read_mmd_unsupported,
.write_mmd = genphy_write_mmd_unsupported,
}, {
.phy_id = PHY_ID_KSZ9031,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ9031 Gigabit PHY",
.flags = PHY_POLL_CABLE_TEST,
.driver_data = &ksz9021_type,
.probe = kszphy_probe,
.get_features = ksz9031_get_features,
.config_init = ksz9031_config_init,
.soft_reset = genphy_soft_reset,
.read_status = ksz9031_read_status,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
.cable_test_start = ksz9x31_cable_test_start,
.cable_test_get_status = ksz9x31_cable_test_get_status,
}, {
.phy_id = PHY_ID_LAN8814,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Microchip INDY Gigabit Quad PHY",
.flags = PHY_POLL_CABLE_TEST,
.config_init = lan8814_config_init,
.driver_data = &lan8814_type,
.probe = lan8814_probe,
.soft_reset = genphy_soft_reset,
.read_status = ksz9031_read_status,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = genphy_suspend,
.resume = kszphy_resume,
.config_intr = lan8814_config_intr,
.handle_interrupt = lan8814_handle_interrupt,
.cable_test_start = lan8814_cable_test_start,
.cable_test_get_status = ksz886x_cable_test_get_status,
}, {
.phy_id = PHY_ID_LAN8804,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Microchip LAN966X Gigabit PHY",
.config_init = lan8804_config_init,
.driver_data = &ksz9021_type,
.probe = kszphy_probe,
.soft_reset = genphy_soft_reset,
.read_status = ksz9031_read_status,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = genphy_suspend,
.resume = kszphy_resume,
.config_intr = lan8804_config_intr,
.handle_interrupt = lan8804_handle_interrupt,
}, {
.phy_id = PHY_ID_LAN8841,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Microchip LAN8841 Gigabit PHY",
.flags = PHY_POLL_CABLE_TEST,
.driver_data = &lan8841_type,
.config_init = lan8841_config_init,
.probe = lan8841_probe,
.soft_reset = genphy_soft_reset,
.config_intr = lan8841_config_intr,
.handle_interrupt = lan8841_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = lan8841_suspend,
.resume = genphy_resume,
.cable_test_start = lan8814_cable_test_start,
.cable_test_get_status = ksz886x_cable_test_get_status,
}, {
.phy_id = PHY_ID_KSZ9131,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Microchip KSZ9131 Gigabit PHY",
/* PHY_GBIT_FEATURES */
.flags = PHY_POLL_CABLE_TEST,
.driver_data = &ksz9131_type,
.probe = kszphy_probe,
.soft_reset = genphy_soft_reset,
.config_init = ksz9131_config_init,
.config_intr = kszphy_config_intr,
.config_aneg = ksz9131_config_aneg,
.read_status = ksz9131_read_status,
.handle_interrupt = kszphy_handle_interrupt,
.get_sset_count = kszphy_get_sset_count,
.get_strings = kszphy_get_strings,
.get_stats = kszphy_get_stats,
.suspend = kszphy_suspend,
.resume = kszphy_resume,
.cable_test_start = ksz9x31_cable_test_start,
.cable_test_get_status = ksz9x31_cable_test_get_status,
.get_features = ksz9477_get_features,
}, {
.phy_id = PHY_ID_KSZ8873MLL,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8873MLL Switch",
/* PHY_BASIC_FEATURES */
.config_init = kszphy_config_init,
.config_aneg = ksz8873mll_config_aneg,
.read_status = ksz8873mll_read_status,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ886X,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
.driver_data = &ksz886x_type,
/* PHY_BASIC_FEATURES */
.flags = PHY_POLL_CABLE_TEST,
.config_init = kszphy_config_init,
.config_aneg = ksz886x_config_aneg,
.read_status = ksz886x_read_status,
.suspend = genphy_suspend,
.resume = genphy_resume,
.cable_test_start = ksz886x_cable_test_start,
.cable_test_get_status = ksz886x_cable_test_get_status,
}, {
.name = "Micrel KSZ87XX Switch",
/* PHY_BASIC_FEATURES */
.config_init = kszphy_config_init,
.match_phy_device = ksz8795_match_phy_device,
.suspend = genphy_suspend,
.resume = genphy_resume,
}, {
.phy_id = PHY_ID_KSZ9477,
.phy_id_mask = MICREL_PHY_ID_MASK,
.name = "Microchip KSZ9477",
/* PHY_GBIT_FEATURES */
.config_init = ksz9477_config_init,
.config_intr = kszphy_config_intr,
.handle_interrupt = kszphy_handle_interrupt,
.suspend = genphy_suspend,
.resume = ksz9477_resume,
.get_features = ksz9477_get_features,
} };
module_phy_driver(ksphy_driver);
MODULE_DESCRIPTION("Micrel PHY driver");
MODULE_AUTHOR("David J. Choi");
MODULE_LICENSE("GPL");
static struct mdio_device_id __maybe_unused micrel_tbl[] = {
{ PHY_ID_KSZ9021, 0x000ffffe },
{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8001, 0x00fffffc },
{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8021, 0x00ffffff },
{ PHY_ID_KSZ8031, 0x00ffffff },
{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
{ PHY_ID_KSZ9477, MICREL_PHY_ID_MASK },
{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
{ }
};
MODULE_DEVICE_TABLE(mdio, micrel_tbl);