// SPDX-License-Identifier: GPL-2.0-or-later
/*******************************************************************************
*
* CTU CAN FD IP Core
*
* Copyright (C) 2015-2018 Ondrej Ille <[email protected]> FEE CTU
* Copyright (C) 2018-2021 Ondrej Ille <[email protected]> self-funded
* Copyright (C) 2018-2019 Martin Jerabek <[email protected]> FEE CTU
* Copyright (C) 2018-2022 Pavel Pisa <[email protected]> FEE CTU/self-funded
*
* Project advisors:
* Jiri Novak <[email protected]>
* Pavel Pisa <[email protected]>
*
* Department of Measurement (http://meas.fel.cvut.cz/)
* Faculty of Electrical Engineering (http://www.fel.cvut.cz)
* Czech Technical University (http://www.cvut.cz/)
******************************************************************************/
#include <linux/clk.h>
#include <linux/errno.h>
#include <linux/ethtool.h>
#include <linux/init.h>
#include <linux/bitfield.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/can/error.h>
#include <linux/pm_runtime.h>
#include "ctucanfd.h"
#include "ctucanfd_kregs.h"
#include "ctucanfd_kframe.h"
#ifdef DEBUG
#define ctucan_netdev_dbg(ndev, args...) \
netdev_dbg(ndev, args)
#else
#define ctucan_netdev_dbg(...) do { } while (0)
#endif
#define CTUCANFD_ID 0xCAFD
/* TX buffer rotation:
* - when a buffer transitions to empty state, rotate order and priorities
* - if more buffers seem to transition at the same time, rotate by the number of buffers
* - it may be assumed that buffers transition to empty state in FIFO order (because we manage
* priorities that way)
* - at frame filling, do not rotate anything, just increment buffer modulo counter
*/
#define CTUCANFD_FLAG_RX_FFW_BUFFERED 1
#define CTUCAN_STATE_TO_TEXT_ENTRY(st) \
[st] = #st
enum ctucan_txtb_status {
TXT_NOT_EXIST = 0x0,
TXT_RDY = 0x1,
TXT_TRAN = 0x2,
TXT_ABTP = 0x3,
TXT_TOK = 0x4,
TXT_ERR = 0x6,
TXT_ABT = 0x7,
TXT_ETY = 0x8,
};
enum ctucan_txtb_command {
TXT_CMD_SET_EMPTY = 0x01,
TXT_CMD_SET_READY = 0x02,
TXT_CMD_SET_ABORT = 0x04
};
static const struct can_bittiming_const ctu_can_fd_bit_timing_max = {
.name = "ctu_can_fd",
.tseg1_min = 2,
.tseg1_max = 190,
.tseg2_min = 1,
.tseg2_max = 63,
.sjw_max = 31,
.brp_min = 1,
.brp_max = 8,
.brp_inc = 1,
};
static const struct can_bittiming_const ctu_can_fd_bit_timing_data_max = {
.name = "ctu_can_fd",
.tseg1_min = 2,
.tseg1_max = 94,
.tseg2_min = 1,
.tseg2_max = 31,
.sjw_max = 31,
.brp_min = 1,
.brp_max = 2,
.brp_inc = 1,
};
static const char * const ctucan_state_strings[CAN_STATE_MAX] = {
CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_ACTIVE),
CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_WARNING),
CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_ERROR_PASSIVE),
CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_BUS_OFF),
CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_STOPPED),
CTUCAN_STATE_TO_TEXT_ENTRY(CAN_STATE_SLEEPING)
};
static void ctucan_write32_le(struct ctucan_priv *priv,
enum ctu_can_fd_can_registers reg, u32 val)
{
iowrite32(val, priv->mem_base + reg);
}
static void ctucan_write32_be(struct ctucan_priv *priv,
enum ctu_can_fd_can_registers reg, u32 val)
{
iowrite32be(val, priv->mem_base + reg);
}
static u32 ctucan_read32_le(struct ctucan_priv *priv,
enum ctu_can_fd_can_registers reg)
{
return ioread32(priv->mem_base + reg);
}
static u32 ctucan_read32_be(struct ctucan_priv *priv,
enum ctu_can_fd_can_registers reg)
{
return ioread32be(priv->mem_base + reg);
}
static void ctucan_write32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg, u32 val)
{
priv->write_reg(priv, reg, val);
}
static u32 ctucan_read32(struct ctucan_priv *priv, enum ctu_can_fd_can_registers reg)
{
return priv->read_reg(priv, reg);
}
static void ctucan_write_txt_buf(struct ctucan_priv *priv, enum ctu_can_fd_can_registers buf_base,
u32 offset, u32 val)
{
priv->write_reg(priv, buf_base + offset, val);
}
#define CTU_CAN_FD_TXTNF(priv) (!!FIELD_GET(REG_STATUS_TXNF, ctucan_read32(priv, CTUCANFD_STATUS)))
#define CTU_CAN_FD_ENABLED(priv) (!!FIELD_GET(REG_MODE_ENA, ctucan_read32(priv, CTUCANFD_MODE)))
/**
* ctucan_state_to_str() - Converts CAN controller state code to corresponding text
* @state: CAN controller state code
*
* Return: Pointer to string representation of the error state
*/
static const char *ctucan_state_to_str(enum can_state state)
{
const char *txt = NULL;
if (state >= 0 && state < CAN_STATE_MAX)
txt = ctucan_state_strings[state];
return txt ? txt : "UNKNOWN";
}
/**
* ctucan_reset() - Issues software reset request to CTU CAN FD
* @ndev: Pointer to net_device structure
*
* Return: 0 for success, -%ETIMEDOUT if CAN controller does not leave reset
*/
static int ctucan_reset(struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
int i = 100;
ctucan_write32(priv, CTUCANFD_MODE, REG_MODE_RST);
clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
do {
u16 device_id = FIELD_GET(REG_DEVICE_ID_DEVICE_ID,
ctucan_read32(priv, CTUCANFD_DEVICE_ID));
if (device_id == 0xCAFD)
return 0;
if (!i--) {
netdev_warn(ndev, "device did not leave reset\n");
return -ETIMEDOUT;
}
usleep_range(100, 200);
} while (1);
}
/**
* ctucan_set_btr() - Sets CAN bus bit timing in CTU CAN FD
* @ndev: Pointer to net_device structure
* @bt: Pointer to Bit timing structure
* @nominal: True - Nominal bit timing, False - Data bit timing
*
* Return: 0 - OK, -%EPERM if controller is enabled
*/
static int ctucan_set_btr(struct net_device *ndev, struct can_bittiming *bt, bool nominal)
{
struct ctucan_priv *priv = netdev_priv(ndev);
int max_ph1_len = 31;
u32 btr = 0;
u32 prop_seg = bt->prop_seg;
u32 phase_seg1 = bt->phase_seg1;
if (CTU_CAN_FD_ENABLED(priv)) {
netdev_err(ndev, "BUG! Cannot set bittiming - CAN is enabled\n");
return -EPERM;
}
if (nominal)
max_ph1_len = 63;
/* The timing calculation functions have only constraints on tseg1, which is prop_seg +
* phase1_seg combined. tseg1 is then split in half and stored into prog_seg and phase_seg1.
* In CTU CAN FD, PROP is 6/7 bits wide but PH1 only 6/5, so we must re-distribute the
* values here.
*/
if (phase_seg1 > max_ph1_len) {
prop_seg += phase_seg1 - max_ph1_len;
phase_seg1 = max_ph1_len;
bt->prop_seg = prop_seg;
bt->phase_seg1 = phase_seg1;
}
if (nominal) {
btr = FIELD_PREP(REG_BTR_PROP, prop_seg);
btr |= FIELD_PREP(REG_BTR_PH1, phase_seg1);
btr |= FIELD_PREP(REG_BTR_PH2, bt->phase_seg2);
btr |= FIELD_PREP(REG_BTR_BRP, bt->brp);
btr |= FIELD_PREP(REG_BTR_SJW, bt->sjw);
ctucan_write32(priv, CTUCANFD_BTR, btr);
} else {
btr = FIELD_PREP(REG_BTR_FD_PROP_FD, prop_seg);
btr |= FIELD_PREP(REG_BTR_FD_PH1_FD, phase_seg1);
btr |= FIELD_PREP(REG_BTR_FD_PH2_FD, bt->phase_seg2);
btr |= FIELD_PREP(REG_BTR_FD_BRP_FD, bt->brp);
btr |= FIELD_PREP(REG_BTR_FD_SJW_FD, bt->sjw);
ctucan_write32(priv, CTUCANFD_BTR_FD, btr);
}
return 0;
}
/**
* ctucan_set_bittiming() - CAN set nominal bit timing routine
* @ndev: Pointer to net_device structure
*
* Return: 0 on success, -%EPERM on error
*/
static int ctucan_set_bittiming(struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
struct can_bittiming *bt = &priv->can.bittiming;
/* Note that bt may be modified here */
return ctucan_set_btr(ndev, bt, true);
}
/**
* ctucan_set_data_bittiming() - CAN set data bit timing routine
* @ndev: Pointer to net_device structure
*
* Return: 0 on success, -%EPERM on error
*/
static int ctucan_set_data_bittiming(struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
struct can_bittiming *dbt = &priv->can.data_bittiming;
/* Note that dbt may be modified here */
return ctucan_set_btr(ndev, dbt, false);
}
/**
* ctucan_set_secondary_sample_point() - Sets secondary sample point in CTU CAN FD
* @ndev: Pointer to net_device structure
*
* Return: 0 on success, -%EPERM if controller is enabled
*/
static int ctucan_set_secondary_sample_point(struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
struct can_bittiming *dbt = &priv->can.data_bittiming;
int ssp_offset = 0;
u32 ssp_cfg = 0; /* No SSP by default */
if (CTU_CAN_FD_ENABLED(priv)) {
netdev_err(ndev, "BUG! Cannot set SSP - CAN is enabled\n");
return -EPERM;
}
/* Use SSP for bit-rates above 1 Mbits/s */
if (dbt->bitrate > 1000000) {
/* Calculate SSP in minimal time quanta */
ssp_offset = (priv->can.clock.freq / 1000) * dbt->sample_point / dbt->bitrate;
if (ssp_offset > 127) {
netdev_warn(ndev, "SSP offset saturated to 127\n");
ssp_offset = 127;
}
ssp_cfg = FIELD_PREP(REG_TRV_DELAY_SSP_OFFSET, ssp_offset);
ssp_cfg |= FIELD_PREP(REG_TRV_DELAY_SSP_SRC, 0x1);
}
ctucan_write32(priv, CTUCANFD_TRV_DELAY, ssp_cfg);
return 0;
}
/**
* ctucan_set_mode() - Sets CTU CAN FDs mode
* @priv: Pointer to private data
* @mode: Pointer to controller modes to be set
*/
static void ctucan_set_mode(struct ctucan_priv *priv, const struct can_ctrlmode *mode)
{
u32 mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
mode_reg = (mode->flags & CAN_CTRLMODE_LOOPBACK) ?
(mode_reg | REG_MODE_ILBP) :
(mode_reg & ~REG_MODE_ILBP);
mode_reg = (mode->flags & CAN_CTRLMODE_LISTENONLY) ?
(mode_reg | REG_MODE_BMM) :
(mode_reg & ~REG_MODE_BMM);
mode_reg = (mode->flags & CAN_CTRLMODE_FD) ?
(mode_reg | REG_MODE_FDE) :
(mode_reg & ~REG_MODE_FDE);
mode_reg = (mode->flags & CAN_CTRLMODE_PRESUME_ACK) ?
(mode_reg | REG_MODE_ACF) :
(mode_reg & ~REG_MODE_ACF);
mode_reg = (mode->flags & CAN_CTRLMODE_FD_NON_ISO) ?
(mode_reg | REG_MODE_NISOFD) :
(mode_reg & ~REG_MODE_NISOFD);
/* One shot mode supported indirectly via Retransmit limit */
mode_reg &= ~FIELD_PREP(REG_MODE_RTRTH, 0xF);
mode_reg = (mode->flags & CAN_CTRLMODE_ONE_SHOT) ?
(mode_reg | REG_MODE_RTRLE) :
(mode_reg & ~REG_MODE_RTRLE);
/* Some bits fixed:
* TSTM - Off, User shall not be able to change REC/TEC by hand during operation
*/
mode_reg &= ~REG_MODE_TSTM;
ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
}
/**
* ctucan_chip_start() - This routine starts the driver
* @ndev: Pointer to net_device structure
*
* Routine expects that chip is in reset state. It setups initial
* Tx buffers for FIFO priorities, sets bittiming, enables interrupts,
* switches core to operational mode and changes controller
* state to %CAN_STATE_STOPPED.
*
* Return: 0 on success and failure value on error
*/
static int ctucan_chip_start(struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
u32 int_ena, int_msk;
u32 mode_reg;
int err;
struct can_ctrlmode mode;
priv->txb_prio = 0x01234567;
priv->txb_head = 0;
priv->txb_tail = 0;
ctucan_write32(priv, CTUCANFD_TX_PRIORITY, priv->txb_prio);
/* Configure bit-rates and ssp */
err = ctucan_set_bittiming(ndev);
if (err < 0)
return err;
err = ctucan_set_data_bittiming(ndev);
if (err < 0)
return err;
err = ctucan_set_secondary_sample_point(ndev);
if (err < 0)
return err;
/* Configure modes */
mode.flags = priv->can.ctrlmode;
mode.mask = 0xFFFFFFFF;
ctucan_set_mode(priv, &mode);
/* Configure interrupts */
int_ena = REG_INT_STAT_RBNEI |
REG_INT_STAT_TXBHCI |
REG_INT_STAT_EWLI |
REG_INT_STAT_FCSI;
/* Bus error reporting -> Allow Error/Arb.lost interrupts */
if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
int_ena |= REG_INT_STAT_ALI |
REG_INT_STAT_BEI;
}
int_msk = ~int_ena; /* Mask all disabled interrupts */
/* It's after reset, so there is no need to clear anything */
ctucan_write32(priv, CTUCANFD_INT_MASK_SET, int_msk);
ctucan_write32(priv, CTUCANFD_INT_ENA_SET, int_ena);
/* Controller enters ERROR_ACTIVE on initial FCSI */
priv->can.state = CAN_STATE_STOPPED;
/* Enable the controller */
mode_reg = ctucan_read32(priv, CTUCANFD_MODE);
mode_reg |= REG_MODE_ENA;
ctucan_write32(priv, CTUCANFD_MODE, mode_reg);
return 0;
}
/**
* ctucan_do_set_mode() - Sets mode of the driver
* @ndev: Pointer to net_device structure
* @mode: Tells the mode of the driver
*
* This check the drivers state and calls the corresponding modes to set.
*
* Return: 0 on success and failure value on error
*/
static int ctucan_do_set_mode(struct net_device *ndev, enum can_mode mode)
{
int ret;
switch (mode) {
case CAN_MODE_START:
ret = ctucan_reset(ndev);
if (ret < 0)
return ret;
ret = ctucan_chip_start(ndev);
if (ret < 0) {
netdev_err(ndev, "ctucan_chip_start failed!\n");
return ret;
}
netif_wake_queue(ndev);
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
/**
* ctucan_get_tx_status() - Gets status of TXT buffer
* @priv: Pointer to private data
* @buf: Buffer index (0-based)
*
* Return: Status of TXT buffer
*/
static enum ctucan_txtb_status ctucan_get_tx_status(struct ctucan_priv *priv, u8 buf)
{
u32 tx_status = ctucan_read32(priv, CTUCANFD_TX_STATUS);
enum ctucan_txtb_status status = (tx_status >> (buf * 4)) & 0x7;
return status;
}
/**
* ctucan_is_txt_buf_writable() - Checks if frame can be inserted to TXT Buffer
* @priv: Pointer to private data
* @buf: Buffer index (0-based)
*
* Return: True - Frame can be inserted to TXT Buffer, False - If attempted, frame will not be
* inserted to TXT Buffer
*/
static bool ctucan_is_txt_buf_writable(struct ctucan_priv *priv, u8 buf)
{
enum ctucan_txtb_status buf_status;
buf_status = ctucan_get_tx_status(priv, buf);
if (buf_status == TXT_RDY || buf_status == TXT_TRAN || buf_status == TXT_ABTP)
return false;
return true;
}
/**
* ctucan_insert_frame() - Inserts frame to TXT buffer
* @priv: Pointer to private data
* @cf: Pointer to CAN frame to be inserted
* @buf: TXT Buffer index to which frame is inserted (0-based)
* @isfdf: True - CAN FD Frame, False - CAN 2.0 Frame
*
* Return: True - Frame inserted successfully
* False - Frame was not inserted due to one of:
* 1. TXT Buffer is not writable (it is in wrong state)
* 2. Invalid TXT buffer index
* 3. Invalid frame length
*/
static bool ctucan_insert_frame(struct ctucan_priv *priv, const struct canfd_frame *cf, u8 buf,
bool isfdf)
{
u32 buf_base;
u32 ffw = 0;
u32 idw = 0;
unsigned int i;
if (buf >= priv->ntxbufs)
return false;
if (!ctucan_is_txt_buf_writable(priv, buf))
return false;
if (cf->len > CANFD_MAX_DLEN)
return false;
/* Prepare Frame format */
if (cf->can_id & CAN_RTR_FLAG)
ffw |= REG_FRAME_FORMAT_W_RTR;
if (cf->can_id & CAN_EFF_FLAG)
ffw |= REG_FRAME_FORMAT_W_IDE;
if (isfdf) {
ffw |= REG_FRAME_FORMAT_W_FDF;
if (cf->flags & CANFD_BRS)
ffw |= REG_FRAME_FORMAT_W_BRS;
}
ffw |= FIELD_PREP(REG_FRAME_FORMAT_W_DLC, can_fd_len2dlc(cf->len));
/* Prepare identifier */
if (cf->can_id & CAN_EFF_FLAG)
idw = cf->can_id & CAN_EFF_MASK;
else
idw = FIELD_PREP(REG_IDENTIFIER_W_IDENTIFIER_BASE, cf->can_id & CAN_SFF_MASK);
/* Write ID, Frame format, Don't write timestamp -> Time triggered transmission disabled */
buf_base = (buf + 1) * 0x100;
ctucan_write_txt_buf(priv, buf_base, CTUCANFD_FRAME_FORMAT_W, ffw);
ctucan_write_txt_buf(priv, buf_base, CTUCANFD_IDENTIFIER_W, idw);
/* Write Data payload */
if (!(cf->can_id & CAN_RTR_FLAG)) {
for (i = 0; i < cf->len; i += 4) {
u32 data = le32_to_cpu(*(__le32 *)(cf->data + i));
ctucan_write_txt_buf(priv, buf_base, CTUCANFD_DATA_1_4_W + i, data);
}
}
return true;
}
/**
* ctucan_give_txtb_cmd() - Applies command on TXT buffer
* @priv: Pointer to private data
* @cmd: Command to give
* @buf: Buffer index (0-based)
*/
static void ctucan_give_txtb_cmd(struct ctucan_priv *priv, enum ctucan_txtb_command cmd, u8 buf)
{
u32 tx_cmd = cmd;
tx_cmd |= 1 << (buf + 8);
ctucan_write32(priv, CTUCANFD_TX_COMMAND, tx_cmd);
}
/**
* ctucan_start_xmit() - Starts the transmission
* @skb: sk_buff pointer that contains data to be Txed
* @ndev: Pointer to net_device structure
*
* Invoked from upper layers to initiate transmission. Uses the next available free TXT Buffer and
* populates its fields to start the transmission.
*
* Return: %NETDEV_TX_OK on success, %NETDEV_TX_BUSY when no free TXT buffer is available,
* negative return values reserved for error cases
*/
static netdev_tx_t ctucan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
u32 txtb_id;
bool ok;
unsigned long flags;
if (can_dev_dropped_skb(ndev, skb))
return NETDEV_TX_OK;
if (unlikely(!CTU_CAN_FD_TXTNF(priv))) {
netif_stop_queue(ndev);
netdev_err(ndev, "BUG!, no TXB free when queue awake!\n");
return NETDEV_TX_BUSY;
}
txtb_id = priv->txb_head % priv->ntxbufs;
ctucan_netdev_dbg(ndev, "%s: using TXB#%u\n", __func__, txtb_id);
ok = ctucan_insert_frame(priv, cf, txtb_id, can_is_canfd_skb(skb));
if (!ok) {
netdev_err(ndev, "BUG! TXNF set but cannot insert frame into TXTB! HW Bug?");
kfree_skb(skb);
ndev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
can_put_echo_skb(skb, ndev, txtb_id, 0);
spin_lock_irqsave(&priv->tx_lock, flags);
ctucan_give_txtb_cmd(priv, TXT_CMD_SET_READY, txtb_id);
priv->txb_head++;
/* Check if all TX buffers are full */
if (!CTU_CAN_FD_TXTNF(priv))
netif_stop_queue(ndev);
spin_unlock_irqrestore(&priv->tx_lock, flags);
return NETDEV_TX_OK;
}
/**
* ctucan_read_rx_frame() - Reads frame from RX FIFO
* @priv: Pointer to CTU CAN FD's private data
* @cf: Pointer to CAN frame struct
* @ffw: Previously read frame format word
*
* Note: Frame format word must be read separately and provided in 'ffw'.
*/
static void ctucan_read_rx_frame(struct ctucan_priv *priv, struct canfd_frame *cf, u32 ffw)
{
u32 idw;
unsigned int i;
unsigned int wc;
unsigned int len;
idw = ctucan_read32(priv, CTUCANFD_RX_DATA);
if (FIELD_GET(REG_FRAME_FORMAT_W_IDE, ffw))
cf->can_id = (idw & CAN_EFF_MASK) | CAN_EFF_FLAG;
else
cf->can_id = (idw >> 18) & CAN_SFF_MASK;
/* BRS, ESI, RTR Flags */
if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw)) {
if (FIELD_GET(REG_FRAME_FORMAT_W_BRS, ffw))
cf->flags |= CANFD_BRS;
if (FIELD_GET(REG_FRAME_FORMAT_W_ESI_RSV, ffw))
cf->flags |= CANFD_ESI;
} else if (FIELD_GET(REG_FRAME_FORMAT_W_RTR, ffw)) {
cf->can_id |= CAN_RTR_FLAG;
}
wc = FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw) - 3;
/* DLC */
if (FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw) <= 8) {
len = FIELD_GET(REG_FRAME_FORMAT_W_DLC, ffw);
} else {
if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
len = wc << 2;
else
len = 8;
}
cf->len = len;
if (unlikely(len > wc * 4))
len = wc * 4;
/* Timestamp - Read and throw away */
ctucan_read32(priv, CTUCANFD_RX_DATA);
ctucan_read32(priv, CTUCANFD_RX_DATA);
/* Data */
for (i = 0; i < len; i += 4) {
u32 data = ctucan_read32(priv, CTUCANFD_RX_DATA);
*(__le32 *)(cf->data + i) = cpu_to_le32(data);
}
while (unlikely(i < wc * 4)) {
ctucan_read32(priv, CTUCANFD_RX_DATA);
i += 4;
}
}
/**
* ctucan_rx() - Called from CAN ISR to complete the received frame processing
* @ndev: Pointer to net_device structure
*
* This function is invoked from the CAN isr(poll) to process the Rx frames. It does minimal
* processing and invokes "netif_receive_skb" to complete further processing.
* Return: 1 when frame is passed to the network layer, 0 when the first frame word is read but
* system is out of free SKBs temporally and left code to resolve SKB allocation later,
* -%EAGAIN in a case of empty Rx FIFO.
*/
static int ctucan_rx(struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct canfd_frame *cf;
struct sk_buff *skb;
u32 ffw;
if (test_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags)) {
ffw = priv->rxfrm_first_word;
clear_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
} else {
ffw = ctucan_read32(priv, CTUCANFD_RX_DATA);
}
if (!FIELD_GET(REG_FRAME_FORMAT_W_RWCNT, ffw))
return -EAGAIN;
if (FIELD_GET(REG_FRAME_FORMAT_W_FDF, ffw))
skb = alloc_canfd_skb(ndev, &cf);
else
skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
if (unlikely(!skb)) {
priv->rxfrm_first_word = ffw;
set_bit(CTUCANFD_FLAG_RX_FFW_BUFFERED, &priv->drv_flags);
return 0;
}
ctucan_read_rx_frame(priv, cf, ffw);
stats->rx_bytes += cf->len;
stats->rx_packets++;
netif_receive_skb(skb);
return 1;
}
/**
* ctucan_read_fault_state() - Reads CTU CAN FDs fault confinement state.
* @priv: Pointer to private data
*
* Returns: Fault confinement state of controller
*/
static enum can_state ctucan_read_fault_state(struct ctucan_priv *priv)
{
u32 fs;
u32 rec_tec;
u32 ewl;
fs = ctucan_read32(priv, CTUCANFD_EWL);
rec_tec = ctucan_read32(priv, CTUCANFD_REC);
ewl = FIELD_GET(REG_EWL_EW_LIMIT, fs);
if (FIELD_GET(REG_EWL_ERA, fs)) {
if (ewl > FIELD_GET(REG_REC_REC_VAL, rec_tec) &&
ewl > FIELD_GET(REG_REC_TEC_VAL, rec_tec))
return CAN_STATE_ERROR_ACTIVE;
else
return CAN_STATE_ERROR_WARNING;
} else if (FIELD_GET(REG_EWL_ERP, fs)) {
return CAN_STATE_ERROR_PASSIVE;
} else if (FIELD_GET(REG_EWL_BOF, fs)) {
return CAN_STATE_BUS_OFF;
}
WARN(true, "Invalid error state");
return CAN_STATE_ERROR_PASSIVE;
}
/**
* ctucan_get_rec_tec() - Reads REC/TEC counter values from controller
* @priv: Pointer to private data
* @bec: Pointer to Error counter structure
*/
static void ctucan_get_rec_tec(struct ctucan_priv *priv, struct can_berr_counter *bec)
{
u32 err_ctrs = ctucan_read32(priv, CTUCANFD_REC);
bec->rxerr = FIELD_GET(REG_REC_REC_VAL, err_ctrs);
bec->txerr = FIELD_GET(REG_REC_TEC_VAL, err_ctrs);
}
/**
* ctucan_err_interrupt() - Error frame ISR
* @ndev: net_device pointer
* @isr: interrupt status register value
*
* This is the CAN error interrupt and it will check the type of error and forward the error
* frame to upper layers.
*/
static void ctucan_err_interrupt(struct net_device *ndev, u32 isr)
{
struct ctucan_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct can_frame *cf;
struct sk_buff *skb;
enum can_state state;
struct can_berr_counter bec;
u32 err_capt_alc;
int dologerr = net_ratelimit();
ctucan_get_rec_tec(priv, &bec);
state = ctucan_read_fault_state(priv);
err_capt_alc = ctucan_read32(priv, CTUCANFD_ERR_CAPT);
if (dologerr)
netdev_info(ndev, "%s: ISR = 0x%08x, rxerr %d, txerr %d, error type %lu, pos %lu, ALC id_field %lu, bit %lu\n",
__func__, isr, bec.rxerr, bec.txerr,
FIELD_GET(REG_ERR_CAPT_ERR_TYPE, err_capt_alc),
FIELD_GET(REG_ERR_CAPT_ERR_POS, err_capt_alc),
FIELD_GET(REG_ERR_CAPT_ALC_ID_FIELD, err_capt_alc),
FIELD_GET(REG_ERR_CAPT_ALC_BIT, err_capt_alc));
skb = alloc_can_err_skb(ndev, &cf);
/* EWLI: error warning limit condition met
* FCSI: fault confinement state changed
* ALI: arbitration lost (just informative)
* BEI: bus error interrupt
*/
if (FIELD_GET(REG_INT_STAT_FCSI, isr) || FIELD_GET(REG_INT_STAT_EWLI, isr)) {
netdev_info(ndev, "state changes from %s to %s\n",
ctucan_state_to_str(priv->can.state),
ctucan_state_to_str(state));
if (priv->can.state == state)
netdev_warn(ndev,
"current and previous state is the same! (missed interrupt?)\n");
priv->can.state = state;
switch (state) {
case CAN_STATE_BUS_OFF:
priv->can.can_stats.bus_off++;
can_bus_off(ndev);
if (skb)
cf->can_id |= CAN_ERR_BUSOFF;
break;
case CAN_STATE_ERROR_PASSIVE:
priv->can.can_stats.error_passive++;
if (skb) {
cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
cf->data[1] = (bec.rxerr > 127) ?
CAN_ERR_CRTL_RX_PASSIVE :
CAN_ERR_CRTL_TX_PASSIVE;
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
}
break;
case CAN_STATE_ERROR_WARNING:
priv->can.can_stats.error_warning++;
if (skb) {
cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
cf->data[1] |= (bec.txerr > bec.rxerr) ?
CAN_ERR_CRTL_TX_WARNING :
CAN_ERR_CRTL_RX_WARNING;
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
}
break;
case CAN_STATE_ERROR_ACTIVE:
cf->can_id |= CAN_ERR_CNT;
cf->data[1] = CAN_ERR_CRTL_ACTIVE;
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
break;
default:
netdev_warn(ndev, "unhandled error state (%d:%s)!\n",
state, ctucan_state_to_str(state));
break;
}
}
/* Check for Arbitration Lost interrupt */
if (FIELD_GET(REG_INT_STAT_ALI, isr)) {
if (dologerr)
netdev_info(ndev, "arbitration lost\n");
priv->can.can_stats.arbitration_lost++;
if (skb) {
cf->can_id |= CAN_ERR_LOSTARB;
cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
}
}
/* Check for Bus Error interrupt */
if (FIELD_GET(REG_INT_STAT_BEI, isr)) {
netdev_info(ndev, "bus error\n");
priv->can.can_stats.bus_error++;
stats->rx_errors++;
if (skb) {
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
cf->data[2] = CAN_ERR_PROT_UNSPEC;
cf->data[3] = CAN_ERR_PROT_LOC_UNSPEC;
}
}
if (skb) {
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
}
}
/**
* ctucan_rx_poll() - Poll routine for rx packets (NAPI)
* @napi: NAPI structure pointer
* @quota: Max number of rx packets to be processed.
*
* This is the poll routine for rx part. It will process the packets maximux quota value.
*
* Return: Number of packets received
*/
static int ctucan_rx_poll(struct napi_struct *napi, int quota)
{
struct net_device *ndev = napi->dev;
struct ctucan_priv *priv = netdev_priv(ndev);
int work_done = 0;
u32 status;
u32 framecnt;
int res = 1;
framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
while (framecnt && work_done < quota && res > 0) {
res = ctucan_rx(ndev);
work_done++;
framecnt = FIELD_GET(REG_RX_STATUS_RXFRC, ctucan_read32(priv, CTUCANFD_RX_STATUS));
}
/* Check for RX FIFO Overflow */
status = ctucan_read32(priv, CTUCANFD_STATUS);
if (FIELD_GET(REG_STATUS_DOR, status)) {
struct net_device_stats *stats = &ndev->stats;
struct can_frame *cf;
struct sk_buff *skb;
netdev_info(ndev, "rx_poll: rx fifo overflow\n");
stats->rx_over_errors++;
stats->rx_errors++;
skb = alloc_can_err_skb(ndev, &cf);
if (skb) {
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
}
/* Clear Data Overrun */
ctucan_write32(priv, CTUCANFD_COMMAND, REG_COMMAND_CDO);
}
if (!framecnt && res != 0) {
if (napi_complete_done(napi, work_done)) {
/* Clear and enable RBNEI. It is level-triggered, so
* there is no race condition.
*/
ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_RBNEI);
ctucan_write32(priv, CTUCANFD_INT_MASK_CLR, REG_INT_STAT_RBNEI);
}
}
return work_done;
}
/**
* ctucan_rotate_txb_prio() - Rotates priorities of TXT Buffers
* @ndev: net_device pointer
*/
static void ctucan_rotate_txb_prio(struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
u32 prio = priv->txb_prio;
prio = (prio << 4) | ((prio >> ((priv->ntxbufs - 1) * 4)) & 0xF);
ctucan_netdev_dbg(ndev, "%s: from 0x%08x to 0x%08x\n", __func__, priv->txb_prio, prio);
priv->txb_prio = prio;
ctucan_write32(priv, CTUCANFD_TX_PRIORITY, prio);
}
/**
* ctucan_tx_interrupt() - Tx done Isr
* @ndev: net_device pointer
*/
static void ctucan_tx_interrupt(struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
bool first = true;
bool some_buffers_processed;
unsigned long flags;
enum ctucan_txtb_status txtb_status;
u32 txtb_id;
/* read tx_status
* if txb[n].finished (bit 2)
* if ok -> echo
* if error / aborted -> ?? (find how to handle oneshot mode)
* txb_tail++
*/
do {
spin_lock_irqsave(&priv->tx_lock, flags);
some_buffers_processed = false;
while ((int)(priv->txb_head - priv->txb_tail) > 0) {
txtb_id = priv->txb_tail % priv->ntxbufs;
txtb_status = ctucan_get_tx_status(priv, txtb_id);
ctucan_netdev_dbg(ndev, "TXI: TXB#%u: status 0x%x\n", txtb_id, txtb_status);
switch (txtb_status) {
case TXT_TOK:
ctucan_netdev_dbg(ndev, "TXT_OK\n");
stats->tx_bytes += can_get_echo_skb(ndev, txtb_id, NULL);
stats->tx_packets++;
break;
case TXT_ERR:
/* This indicated that retransmit limit has been reached. Obviously
* we should not echo the frame, but also not indicate any kind of
* error. If desired, it was already reported (possible multiple
* times) on each arbitration lost.
*/
netdev_warn(ndev, "TXB in Error state\n");
can_free_echo_skb(ndev, txtb_id, NULL);
stats->tx_dropped++;
break;
case TXT_ABT:
/* Same as for TXT_ERR, only with different cause. We *could*
* re-queue the frame, but multiqueue/abort is not supported yet
* anyway.
*/
netdev_warn(ndev, "TXB in Aborted state\n");
can_free_echo_skb(ndev, txtb_id, NULL);
stats->tx_dropped++;
break;
default:
/* Bug only if the first buffer is not finished, otherwise it is
* pretty much expected.
*/
if (first) {
netdev_err(ndev,
"BUG: TXB#%u not in a finished state (0x%x)!\n",
txtb_id, txtb_status);
spin_unlock_irqrestore(&priv->tx_lock, flags);
/* do not clear nor wake */
return;
}
goto clear;
}
priv->txb_tail++;
first = false;
some_buffers_processed = true;
/* Adjust priorities *before* marking the buffer as empty. */
ctucan_rotate_txb_prio(ndev);
ctucan_give_txtb_cmd(priv, TXT_CMD_SET_EMPTY, txtb_id);
}
clear:
spin_unlock_irqrestore(&priv->tx_lock, flags);
/* If no buffers were processed this time, we cannot clear - that would introduce
* a race condition.
*/
if (some_buffers_processed) {
/* Clear the interrupt again. We do not want to receive again interrupt for
* the buffer already handled. If it is the last finished one then it would
* cause log of spurious interrupt.
*/
ctucan_write32(priv, CTUCANFD_INT_STAT, REG_INT_STAT_TXBHCI);
}
} while (some_buffers_processed);
spin_lock_irqsave(&priv->tx_lock, flags);
/* Check if at least one TX buffer is free */
if (CTU_CAN_FD_TXTNF(priv))
netif_wake_queue(ndev);
spin_unlock_irqrestore(&priv->tx_lock, flags);
}
/**
* ctucan_interrupt() - CAN Isr
* @irq: irq number
* @dev_id: device id pointer
*
* This is the CTU CAN FD ISR. It checks for the type of interrupt
* and invokes the corresponding ISR.
*
* Return:
* IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
*/
static irqreturn_t ctucan_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = (struct net_device *)dev_id;
struct ctucan_priv *priv = netdev_priv(ndev);
u32 isr, icr;
u32 imask;
int irq_loops;
for (irq_loops = 0; irq_loops < 10000; irq_loops++) {
/* Get the interrupt status */
isr = ctucan_read32(priv, CTUCANFD_INT_STAT);
if (!isr)
return irq_loops ? IRQ_HANDLED : IRQ_NONE;
/* Receive Buffer Not Empty Interrupt */
if (FIELD_GET(REG_INT_STAT_RBNEI, isr)) {
ctucan_netdev_dbg(ndev, "RXBNEI\n");
/* Mask RXBNEI the first, then clear interrupt and schedule NAPI. Even if
* another IRQ fires, RBNEI will always be 0 (masked).
*/
icr = REG_INT_STAT_RBNEI;
ctucan_write32(priv, CTUCANFD_INT_MASK_SET, icr);
ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
napi_schedule(&priv->napi);
}
/* TXT Buffer HW Command Interrupt */
if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
ctucan_netdev_dbg(ndev, "TXBHCI\n");
/* Cleared inside */
ctucan_tx_interrupt(ndev);
}
/* Error interrupts */
if (FIELD_GET(REG_INT_STAT_EWLI, isr) ||
FIELD_GET(REG_INT_STAT_FCSI, isr) ||
FIELD_GET(REG_INT_STAT_ALI, isr)) {
icr = isr & (REG_INT_STAT_EWLI | REG_INT_STAT_FCSI | REG_INT_STAT_ALI);
ctucan_netdev_dbg(ndev, "some ERR interrupt: clearing 0x%08x\n", icr);
ctucan_write32(priv, CTUCANFD_INT_STAT, icr);
ctucan_err_interrupt(ndev, isr);
}
/* Ignore RI, TI, LFI, RFI, BSI */
}
netdev_err(ndev, "%s: stuck interrupt (isr=0x%08x), stopping\n", __func__, isr);
if (FIELD_GET(REG_INT_STAT_TXBHCI, isr)) {
int i;
netdev_err(ndev, "txb_head=0x%08x txb_tail=0x%08x\n",
priv->txb_head, priv->txb_tail);
for (i = 0; i < priv->ntxbufs; i++) {
u32 status = ctucan_get_tx_status(priv, i);
netdev_err(ndev, "txb[%d] txb status=0x%08x\n", i, status);
}
}
imask = 0xffffffff;
ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, imask);
ctucan_write32(priv, CTUCANFD_INT_MASK_SET, imask);
return IRQ_HANDLED;
}
/**
* ctucan_chip_stop() - Driver stop routine
* @ndev: Pointer to net_device structure
*
* This is the drivers stop routine. It will disable the
* interrupts and disable the controller.
*/
static void ctucan_chip_stop(struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
u32 mask = 0xffffffff;
u32 mode;
/* Disable interrupts and disable CAN */
ctucan_write32(priv, CTUCANFD_INT_ENA_CLR, mask);
ctucan_write32(priv, CTUCANFD_INT_MASK_SET, mask);
mode = ctucan_read32(priv, CTUCANFD_MODE);
mode &= ~REG_MODE_ENA;
ctucan_write32(priv, CTUCANFD_MODE, mode);
priv->can.state = CAN_STATE_STOPPED;
}
/**
* ctucan_open() - Driver open routine
* @ndev: Pointer to net_device structure
*
* This is the driver open routine.
* Return: 0 on success and failure value on error
*/
static int ctucan_open(struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
int ret;
ret = pm_runtime_get_sync(priv->dev);
if (ret < 0) {
netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
__func__, ret);
pm_runtime_put_noidle(priv->dev);
return ret;
}
ret = ctucan_reset(ndev);
if (ret < 0)
goto err_reset;
/* Common open */
ret = open_candev(ndev);
if (ret) {
netdev_warn(ndev, "open_candev failed!\n");
goto err_open;
}
ret = request_irq(ndev->irq, ctucan_interrupt, priv->irq_flags, ndev->name, ndev);
if (ret < 0) {
netdev_err(ndev, "irq allocation for CAN failed\n");
goto err_irq;
}
ret = ctucan_chip_start(ndev);
if (ret < 0) {
netdev_err(ndev, "ctucan_chip_start failed!\n");
goto err_chip_start;
}
netdev_info(ndev, "ctu_can_fd device registered\n");
napi_enable(&priv->napi);
netif_start_queue(ndev);
return 0;
err_chip_start:
free_irq(ndev->irq, ndev);
err_irq:
close_candev(ndev);
err_open:
err_reset:
pm_runtime_put(priv->dev);
return ret;
}
/**
* ctucan_close() - Driver close routine
* @ndev: Pointer to net_device structure
*
* Return: 0 always
*/
static int ctucan_close(struct net_device *ndev)
{
struct ctucan_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
napi_disable(&priv->napi);
ctucan_chip_stop(ndev);
free_irq(ndev->irq, ndev);
close_candev(ndev);
pm_runtime_put(priv->dev);
return 0;
}
/**
* ctucan_get_berr_counter() - error counter routine
* @ndev: Pointer to net_device structure
* @bec: Pointer to can_berr_counter structure
*
* This is the driver error counter routine.
* Return: 0 on success and failure value on error
*/
static int ctucan_get_berr_counter(const struct net_device *ndev, struct can_berr_counter *bec)
{
struct ctucan_priv *priv = netdev_priv(ndev);
int ret;
ret = pm_runtime_get_sync(priv->dev);
if (ret < 0) {
netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", __func__, ret);
pm_runtime_put_noidle(priv->dev);
return ret;
}
ctucan_get_rec_tec(priv, bec);
pm_runtime_put(priv->dev);
return 0;
}
static const struct net_device_ops ctucan_netdev_ops = {
.ndo_open = ctucan_open,
.ndo_stop = ctucan_close,
.ndo_start_xmit = ctucan_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
static const struct ethtool_ops ctucan_ethtool_ops = {
.get_ts_info = ethtool_op_get_ts_info,
};
int ctucan_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct ctucan_priv *priv = netdev_priv(ndev);
if (netif_running(ndev)) {
netif_stop_queue(ndev);
netif_device_detach(ndev);
}
priv->can.state = CAN_STATE_SLEEPING;
return 0;
}
EXPORT_SYMBOL(ctucan_suspend);
int ctucan_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct ctucan_priv *priv = netdev_priv(ndev);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
if (netif_running(ndev)) {
netif_device_attach(ndev);
netif_start_queue(ndev);
}
return 0;
}
EXPORT_SYMBOL(ctucan_resume);
int ctucan_probe_common(struct device *dev, void __iomem *addr, int irq, unsigned int ntxbufs,
unsigned long can_clk_rate, int pm_enable_call,
void (*set_drvdata_fnc)(struct device *dev, struct net_device *ndev))
{
struct ctucan_priv *priv;
struct net_device *ndev;
int ret;
/* Create a CAN device instance */
ndev = alloc_candev(sizeof(struct ctucan_priv), ntxbufs);
if (!ndev)
return -ENOMEM;
priv = netdev_priv(ndev);
spin_lock_init(&priv->tx_lock);
INIT_LIST_HEAD(&priv->peers_on_pdev);
priv->ntxbufs = ntxbufs;
priv->dev = dev;
priv->can.bittiming_const = &ctu_can_fd_bit_timing_max;
priv->can.data_bittiming_const = &ctu_can_fd_bit_timing_data_max;
priv->can.do_set_mode = ctucan_do_set_mode;
/* Needed for timing adjustment to be performed as soon as possible */
priv->can.do_set_bittiming = ctucan_set_bittiming;
priv->can.do_set_data_bittiming = ctucan_set_data_bittiming;
priv->can.do_get_berr_counter = ctucan_get_berr_counter;
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK
| CAN_CTRLMODE_LISTENONLY
| CAN_CTRLMODE_FD
| CAN_CTRLMODE_PRESUME_ACK
| CAN_CTRLMODE_BERR_REPORTING
| CAN_CTRLMODE_FD_NON_ISO
| CAN_CTRLMODE_ONE_SHOT;
priv->mem_base = addr;
/* Get IRQ for the device */
ndev->irq = irq;
ndev->flags |= IFF_ECHO; /* We support local echo */
if (set_drvdata_fnc)
set_drvdata_fnc(dev, ndev);
SET_NETDEV_DEV(ndev, dev);
ndev->netdev_ops = &ctucan_netdev_ops;
ndev->ethtool_ops = &ctucan_ethtool_ops;
/* Getting the can_clk info */
if (!can_clk_rate) {
priv->can_clk = devm_clk_get(dev, NULL);
if (IS_ERR(priv->can_clk)) {
dev_err(dev, "Device clock not found.\n");
ret = PTR_ERR(priv->can_clk);
goto err_free;
}
can_clk_rate = clk_get_rate(priv->can_clk);
}
priv->write_reg = ctucan_write32_le;
priv->read_reg = ctucan_read32_le;
if (pm_enable_call)
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
__func__, ret);
pm_runtime_put_noidle(priv->dev);
goto err_pmdisable;
}
/* Check for big-endianity and set according IO-accessors */
if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
priv->write_reg = ctucan_write32_be;
priv->read_reg = ctucan_read32_be;
if ((ctucan_read32(priv, CTUCANFD_DEVICE_ID) & 0xFFFF) != CTUCANFD_ID) {
netdev_err(ndev, "CTU_CAN_FD signature not found\n");
ret = -ENODEV;
goto err_deviceoff;
}
}
ret = ctucan_reset(ndev);
if (ret < 0)
goto err_deviceoff;
priv->can.clock.freq = can_clk_rate;
netif_napi_add(ndev, &priv->napi, ctucan_rx_poll);
ret = register_candev(ndev);
if (ret) {
dev_err(dev, "fail to register failed (err=%d)\n", ret);
goto err_deviceoff;
}
pm_runtime_put(dev);
netdev_dbg(ndev, "mem_base=0x%p irq=%d clock=%d, no. of txt buffers:%d\n",
priv->mem_base, ndev->irq, priv->can.clock.freq, priv->ntxbufs);
return 0;
err_deviceoff:
pm_runtime_put(priv->dev);
err_pmdisable:
if (pm_enable_call)
pm_runtime_disable(dev);
err_free:
list_del_init(&priv->peers_on_pdev);
free_candev(ndev);
return ret;
}
EXPORT_SYMBOL(ctucan_probe_common);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Martin Jerabek <[email protected]>");
MODULE_AUTHOR("Pavel Pisa <[email protected]>");
MODULE_AUTHOR("Ondrej Ille <[email protected]>");
MODULE_DESCRIPTION("CTU CAN FD interface");