// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2010 ASIX Electronics Corporation
* Copyright (c) 2020 Samsung Electronics Co., Ltd.
*
* ASIX AX88796C SPI Fast Ethernet Linux driver
*/
#define pr_fmt(fmt) "ax88796c: " fmt
#include "ax88796c_main.h"
#include "ax88796c_ioctl.h"
#include <linux/bitmap.h>
#include <linux/etherdevice.h>
#include <linux/iopoll.h>
#include <linux/lockdep.h>
#include <linux/mdio.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/skbuff.h>
#include <linux/spi/spi.h>
static int comp = IS_ENABLED(CONFIG_SPI_AX88796C_COMPRESSION);
static int msg_enable = NETIF_MSG_PROBE |
NETIF_MSG_LINK |
NETIF_MSG_RX_ERR |
NETIF_MSG_TX_ERR;
static const char *no_regs_list = "80018001,e1918001,8001a001,fc0d0000";
unsigned long ax88796c_no_regs_mask[AX88796C_REGDUMP_LEN / (sizeof(unsigned long) * 8)];
module_param(msg_enable, int, 0444);
MODULE_PARM_DESC(msg_enable, "Message mask (see linux/netdevice.h for bitmap)");
static int ax88796c_soft_reset(struct ax88796c_device *ax_local)
{
u16 temp;
int ret;
lockdep_assert_held(&ax_local->spi_lock);
AX_WRITE(&ax_local->ax_spi, PSR_RESET, P0_PSR);
AX_WRITE(&ax_local->ax_spi, PSR_RESET_CLR, P0_PSR);
ret = read_poll_timeout(AX_READ, ret,
(ret & PSR_DEV_READY),
0, jiffies_to_usecs(160 * HZ / 1000), false,
&ax_local->ax_spi, P0_PSR);
if (ret)
return ret;
temp = AX_READ(&ax_local->ax_spi, P4_SPICR);
if (ax_local->priv_flags & AX_CAP_COMP) {
AX_WRITE(&ax_local->ax_spi,
(temp | SPICR_RCEN | SPICR_QCEN), P4_SPICR);
ax_local->ax_spi.comp = 1;
} else {
AX_WRITE(&ax_local->ax_spi,
(temp & ~(SPICR_RCEN | SPICR_QCEN)), P4_SPICR);
ax_local->ax_spi.comp = 0;
}
return 0;
}
static int ax88796c_reload_eeprom(struct ax88796c_device *ax_local)
{
int ret;
lockdep_assert_held(&ax_local->spi_lock);
AX_WRITE(&ax_local->ax_spi, EECR_RELOAD, P3_EECR);
ret = read_poll_timeout(AX_READ, ret,
(ret & PSR_DEV_READY),
0, jiffies_to_usecs(2 * HZ / 1000), false,
&ax_local->ax_spi, P0_PSR);
if (ret) {
dev_err(&ax_local->spi->dev,
"timeout waiting for reload eeprom\n");
return ret;
}
return 0;
}
static void ax88796c_set_hw_multicast(struct net_device *ndev)
{
struct ax88796c_device *ax_local = to_ax88796c_device(ndev);
int mc_count = netdev_mc_count(ndev);
u16 rx_ctl = RXCR_AB;
lockdep_assert_held(&ax_local->spi_lock);
memset(ax_local->multi_filter, 0, AX_MCAST_FILTER_SIZE);
if (ndev->flags & IFF_PROMISC) {
rx_ctl |= RXCR_PRO;
} else if (ndev->flags & IFF_ALLMULTI || mc_count > AX_MAX_MCAST) {
rx_ctl |= RXCR_AMALL;
} else if (mc_count == 0) {
/* just broadcast and directed */
} else {
u32 crc_bits;
int i;
struct netdev_hw_addr *ha;
netdev_for_each_mc_addr(ha, ndev) {
crc_bits = ether_crc(ETH_ALEN, ha->addr);
ax_local->multi_filter[crc_bits >> 29] |=
(1 << ((crc_bits >> 26) & 7));
}
for (i = 0; i < 4; i++) {
AX_WRITE(&ax_local->ax_spi,
((ax_local->multi_filter[i * 2 + 1] << 8) |
ax_local->multi_filter[i * 2]), P3_MFAR(i));
}
}
AX_WRITE(&ax_local->ax_spi, rx_ctl, P2_RXCR);
}
static void ax88796c_set_mac_addr(struct net_device *ndev)
{
struct ax88796c_device *ax_local = to_ax88796c_device(ndev);
lockdep_assert_held(&ax_local->spi_lock);
AX_WRITE(&ax_local->ax_spi, ((u16)(ndev->dev_addr[4] << 8) |
(u16)ndev->dev_addr[5]), P3_MACASR0);
AX_WRITE(&ax_local->ax_spi, ((u16)(ndev->dev_addr[2] << 8) |
(u16)ndev->dev_addr[3]), P3_MACASR1);
AX_WRITE(&ax_local->ax_spi, ((u16)(ndev->dev_addr[0] << 8) |
(u16)ndev->dev_addr[1]), P3_MACASR2);
}
static void ax88796c_load_mac_addr(struct net_device *ndev)
{
struct ax88796c_device *ax_local = to_ax88796c_device(ndev);
u8 addr[ETH_ALEN];
u16 temp;
lockdep_assert_held(&ax_local->spi_lock);
/* Try the device tree first */
if (!platform_get_ethdev_address(&ax_local->spi->dev, ndev) &&
is_valid_ether_addr(ndev->dev_addr)) {
if (netif_msg_probe(ax_local))
dev_info(&ax_local->spi->dev,
"MAC address read from device tree\n");
return;
}
/* Read the MAC address from AX88796C */
temp = AX_READ(&ax_local->ax_spi, P3_MACASR0);
addr[5] = (u8)temp;
addr[4] = (u8)(temp >> 8);
temp = AX_READ(&ax_local->ax_spi, P3_MACASR1);
addr[3] = (u8)temp;
addr[2] = (u8)(temp >> 8);
temp = AX_READ(&ax_local->ax_spi, P3_MACASR2);
addr[1] = (u8)temp;
addr[0] = (u8)(temp >> 8);
if (is_valid_ether_addr(addr)) {
eth_hw_addr_set(ndev, addr);
if (netif_msg_probe(ax_local))
dev_info(&ax_local->spi->dev,
"MAC address read from ASIX chip\n");
return;
}
/* Use random address if none found */
if (netif_msg_probe(ax_local))
dev_info(&ax_local->spi->dev, "Use random MAC address\n");
eth_hw_addr_random(ndev);
}
static void ax88796c_proc_tx_hdr(struct tx_pkt_info *info, u8 ip_summed)
{
u16 pkt_len_bar = (~info->pkt_len & TX_HDR_SOP_PKTLENBAR);
/* Prepare SOP header */
info->sop.flags_len = info->pkt_len |
((ip_summed == CHECKSUM_NONE) ||
(ip_summed == CHECKSUM_UNNECESSARY) ? TX_HDR_SOP_DICF : 0);
info->sop.seq_lenbar = ((info->seq_num << 11) & TX_HDR_SOP_SEQNUM)
| pkt_len_bar;
cpu_to_be16s(&info->sop.flags_len);
cpu_to_be16s(&info->sop.seq_lenbar);
/* Prepare Segment header */
info->seg.flags_seqnum_seglen = TX_HDR_SEG_FS | TX_HDR_SEG_LS
| info->pkt_len;
info->seg.eo_so_seglenbar = pkt_len_bar;
cpu_to_be16s(&info->seg.flags_seqnum_seglen);
cpu_to_be16s(&info->seg.eo_so_seglenbar);
/* Prepare EOP header */
info->eop.seq_len = ((info->seq_num << 11) &
TX_HDR_EOP_SEQNUM) | info->pkt_len;
info->eop.seqbar_lenbar = ((~info->seq_num << 11) &
TX_HDR_EOP_SEQNUMBAR) | pkt_len_bar;
cpu_to_be16s(&info->eop.seq_len);
cpu_to_be16s(&info->eop.seqbar_lenbar);
}
static int
ax88796c_check_free_pages(struct ax88796c_device *ax_local, u8 need_pages)
{
u8 free_pages;
u16 tmp;
lockdep_assert_held(&ax_local->spi_lock);
free_pages = AX_READ(&ax_local->ax_spi, P0_TFBFCR) & TX_FREEBUF_MASK;
if (free_pages < need_pages) {
/* schedule free page interrupt */
tmp = AX_READ(&ax_local->ax_spi, P0_TFBFCR)
& TFBFCR_SCHE_FREE_PAGE;
AX_WRITE(&ax_local->ax_spi, tmp | TFBFCR_TX_PAGE_SET |
TFBFCR_SET_FREE_PAGE(need_pages),
P0_TFBFCR);
return -ENOMEM;
}
return 0;
}
static struct sk_buff *
ax88796c_tx_fixup(struct net_device *ndev, struct sk_buff_head *q)
{
struct ax88796c_device *ax_local = to_ax88796c_device(ndev);
u8 spi_len = ax_local->ax_spi.comp ? 1 : 4;
struct sk_buff *skb;
struct tx_pkt_info info;
struct skb_data *entry;
u16 pkt_len;
u8 padlen, seq_num;
u8 need_pages;
int headroom;
int tailroom;
if (skb_queue_empty(q))
return NULL;
skb = skb_peek(q);
pkt_len = skb->len;
need_pages = (pkt_len + TX_OVERHEAD + 127) >> 7;
if (ax88796c_check_free_pages(ax_local, need_pages) != 0)
return NULL;
headroom = skb_headroom(skb);
tailroom = skb_tailroom(skb);
padlen = round_up(pkt_len, 4) - pkt_len;
seq_num = ++ax_local->seq_num & 0x1F;
info.pkt_len = pkt_len;
if (skb_cloned(skb) ||
(headroom < (TX_OVERHEAD + spi_len)) ||
(tailroom < (padlen + TX_EOP_SIZE))) {
size_t h = max((TX_OVERHEAD + spi_len) - headroom, 0);
size_t t = max((padlen + TX_EOP_SIZE) - tailroom, 0);
if (pskb_expand_head(skb, h, t, GFP_KERNEL))
return NULL;
}
info.seq_num = seq_num;
ax88796c_proc_tx_hdr(&info, skb->ip_summed);
/* SOP and SEG header */
memcpy(skb_push(skb, TX_OVERHEAD), &info.tx_overhead, TX_OVERHEAD);
/* Write SPI TXQ header */
memcpy(skb_push(skb, spi_len), ax88796c_tx_cmd_buf, spi_len);
/* Make 32-bit alignment */
skb_put(skb, padlen);
/* EOP header */
skb_put_data(skb, &info.eop, TX_EOP_SIZE);
skb_unlink(skb, q);
entry = (struct skb_data *)skb->cb;
memset(entry, 0, sizeof(*entry));
entry->len = pkt_len;
if (netif_msg_pktdata(ax_local)) {
char pfx[IFNAMSIZ + 7];
snprintf(pfx, sizeof(pfx), "%s: ", ndev->name);
netdev_info(ndev, "TX packet len %d, total len %d, seq %d\n",
pkt_len, skb->len, seq_num);
netdev_info(ndev, " SPI Header:\n");
print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1,
skb->data, 4, 0);
netdev_info(ndev, " TX SOP:\n");
print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1,
skb->data + 4, TX_OVERHEAD, 0);
netdev_info(ndev, " TX packet:\n");
print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1,
skb->data + 4 + TX_OVERHEAD,
skb->len - TX_EOP_SIZE - 4 - TX_OVERHEAD, 0);
netdev_info(ndev, " TX EOP:\n");
print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1,
skb->data + skb->len - 4, 4, 0);
}
return skb;
}
static int ax88796c_hard_xmit(struct ax88796c_device *ax_local)
{
struct ax88796c_pcpu_stats *stats;
struct sk_buff *tx_skb;
struct skb_data *entry;
unsigned long flags;
lockdep_assert_held(&ax_local->spi_lock);
stats = this_cpu_ptr(ax_local->stats);
tx_skb = ax88796c_tx_fixup(ax_local->ndev, &ax_local->tx_wait_q);
if (!tx_skb) {
this_cpu_inc(ax_local->stats->tx_dropped);
return 0;
}
entry = (struct skb_data *)tx_skb->cb;
AX_WRITE(&ax_local->ax_spi,
(TSNR_TXB_START | TSNR_PKT_CNT(1)), P0_TSNR);
axspi_write_txq(&ax_local->ax_spi, tx_skb->data, tx_skb->len);
if (((AX_READ(&ax_local->ax_spi, P0_TSNR) & TXNR_TXB_IDLE) == 0) ||
((ISR_TXERR & AX_READ(&ax_local->ax_spi, P0_ISR)) != 0)) {
/* Ack tx error int */
AX_WRITE(&ax_local->ax_spi, ISR_TXERR, P0_ISR);
this_cpu_inc(ax_local->stats->tx_dropped);
if (net_ratelimit())
netif_err(ax_local, tx_err, ax_local->ndev,
"TX FIFO error, re-initialize the TX bridge\n");
/* Reinitial tx bridge */
AX_WRITE(&ax_local->ax_spi, TXNR_TXB_REINIT |
AX_READ(&ax_local->ax_spi, P0_TSNR), P0_TSNR);
ax_local->seq_num = 0;
} else {
flags = u64_stats_update_begin_irqsave(&stats->syncp);
u64_stats_inc(&stats->tx_packets);
u64_stats_add(&stats->tx_bytes, entry->len);
u64_stats_update_end_irqrestore(&stats->syncp, flags);
}
entry->state = tx_done;
dev_kfree_skb(tx_skb);
return 1;
}
static netdev_tx_t
ax88796c_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct ax88796c_device *ax_local = to_ax88796c_device(ndev);
skb_queue_tail(&ax_local->tx_wait_q, skb);
if (skb_queue_len(&ax_local->tx_wait_q) > TX_QUEUE_HIGH_WATER)
netif_stop_queue(ndev);
set_bit(EVENT_TX, &ax_local->flags);
schedule_work(&ax_local->ax_work);
return NETDEV_TX_OK;
}
static void
ax88796c_skb_return(struct ax88796c_device *ax_local,
struct sk_buff *skb, struct rx_header *rxhdr)
{
struct net_device *ndev = ax_local->ndev;
struct ax88796c_pcpu_stats *stats;
unsigned long flags;
int status;
stats = this_cpu_ptr(ax_local->stats);
do {
if (!(ndev->features & NETIF_F_RXCSUM))
break;
/* checksum error bit is set */
if ((rxhdr->flags & RX_HDR3_L3_ERR) ||
(rxhdr->flags & RX_HDR3_L4_ERR))
break;
/* Other types may be indicated by more than one bit. */
if ((rxhdr->flags & RX_HDR3_L4_TYPE_TCP) ||
(rxhdr->flags & RX_HDR3_L4_TYPE_UDP))
skb->ip_summed = CHECKSUM_UNNECESSARY;
} while (0);
flags = u64_stats_update_begin_irqsave(&stats->syncp);
u64_stats_inc(&stats->rx_packets);
u64_stats_add(&stats->rx_bytes, skb->len);
u64_stats_update_end_irqrestore(&stats->syncp, flags);
skb->dev = ndev;
skb->protocol = eth_type_trans(skb, ax_local->ndev);
netif_info(ax_local, rx_status, ndev, "< rx, len %zu, type 0x%x\n",
skb->len + sizeof(struct ethhdr), skb->protocol);
status = netif_rx(skb);
if (status != NET_RX_SUCCESS && net_ratelimit())
netif_info(ax_local, rx_err, ndev,
"netif_rx status %d\n", status);
}
static void
ax88796c_rx_fixup(struct ax88796c_device *ax_local, struct sk_buff *rx_skb)
{
struct rx_header *rxhdr = (struct rx_header *)rx_skb->data;
struct net_device *ndev = ax_local->ndev;
u16 len;
be16_to_cpus(&rxhdr->flags_len);
be16_to_cpus(&rxhdr->seq_lenbar);
be16_to_cpus(&rxhdr->flags);
if ((rxhdr->flags_len & RX_HDR1_PKT_LEN) !=
(~rxhdr->seq_lenbar & 0x7FF)) {
netif_err(ax_local, rx_err, ndev, "Header error\n");
this_cpu_inc(ax_local->stats->rx_frame_errors);
kfree_skb(rx_skb);
return;
}
if ((rxhdr->flags_len & RX_HDR1_MII_ERR) ||
(rxhdr->flags_len & RX_HDR1_CRC_ERR)) {
netif_err(ax_local, rx_err, ndev, "CRC or MII error\n");
this_cpu_inc(ax_local->stats->rx_crc_errors);
kfree_skb(rx_skb);
return;
}
len = rxhdr->flags_len & RX_HDR1_PKT_LEN;
if (netif_msg_pktdata(ax_local)) {
char pfx[IFNAMSIZ + 7];
snprintf(pfx, sizeof(pfx), "%s: ", ndev->name);
netdev_info(ndev, "RX data, total len %d, packet len %d\n",
rx_skb->len, len);
netdev_info(ndev, " Dump RX packet header:");
print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1,
rx_skb->data, sizeof(*rxhdr), 0);
netdev_info(ndev, " Dump RX packet:");
print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1,
rx_skb->data + sizeof(*rxhdr), len, 0);
}
skb_pull(rx_skb, sizeof(*rxhdr));
pskb_trim(rx_skb, len);
ax88796c_skb_return(ax_local, rx_skb, rxhdr);
}
static int ax88796c_receive(struct net_device *ndev)
{
struct ax88796c_device *ax_local = to_ax88796c_device(ndev);
struct skb_data *entry;
u16 w_count, pkt_len;
struct sk_buff *skb;
u8 pkt_cnt;
lockdep_assert_held(&ax_local->spi_lock);
/* check rx packet and total word count */
AX_WRITE(&ax_local->ax_spi, AX_READ(&ax_local->ax_spi, P0_RTWCR)
| RTWCR_RX_LATCH, P0_RTWCR);
pkt_cnt = AX_READ(&ax_local->ax_spi, P0_RXBCR2) & RXBCR2_PKT_MASK;
if (!pkt_cnt)
return 0;
pkt_len = AX_READ(&ax_local->ax_spi, P0_RCPHR) & 0x7FF;
w_count = round_up(pkt_len + 6, 4) >> 1;
skb = netdev_alloc_skb(ndev, w_count * 2);
if (!skb) {
AX_WRITE(&ax_local->ax_spi, RXBCR1_RXB_DISCARD, P0_RXBCR1);
this_cpu_inc(ax_local->stats->rx_dropped);
return 0;
}
entry = (struct skb_data *)skb->cb;
AX_WRITE(&ax_local->ax_spi, RXBCR1_RXB_START | w_count, P0_RXBCR1);
axspi_read_rxq(&ax_local->ax_spi,
skb_put(skb, w_count * 2), skb->len);
/* Check if rx bridge is idle */
if ((AX_READ(&ax_local->ax_spi, P0_RXBCR2) & RXBCR2_RXB_IDLE) == 0) {
if (net_ratelimit())
netif_err(ax_local, rx_err, ndev,
"Rx Bridge is not idle\n");
AX_WRITE(&ax_local->ax_spi, RXBCR2_RXB_REINIT, P0_RXBCR2);
entry->state = rx_err;
} else {
entry->state = rx_done;
}
AX_WRITE(&ax_local->ax_spi, ISR_RXPKT, P0_ISR);
ax88796c_rx_fixup(ax_local, skb);
return 1;
}
static int ax88796c_process_isr(struct ax88796c_device *ax_local)
{
struct net_device *ndev = ax_local->ndev;
int todo = 0;
u16 isr;
lockdep_assert_held(&ax_local->spi_lock);
isr = AX_READ(&ax_local->ax_spi, P0_ISR);
AX_WRITE(&ax_local->ax_spi, isr, P0_ISR);
netif_dbg(ax_local, intr, ndev, " ISR 0x%04x\n", isr);
if (isr & ISR_TXERR) {
netif_dbg(ax_local, intr, ndev, " TXERR interrupt\n");
AX_WRITE(&ax_local->ax_spi, TXNR_TXB_REINIT, P0_TSNR);
ax_local->seq_num = 0x1f;
}
if (isr & ISR_TXPAGES) {
netif_dbg(ax_local, intr, ndev, " TXPAGES interrupt\n");
set_bit(EVENT_TX, &ax_local->flags);
}
if (isr & ISR_LINK) {
netif_dbg(ax_local, intr, ndev, " Link change interrupt\n");
phy_mac_interrupt(ax_local->ndev->phydev);
}
if (isr & ISR_RXPKT) {
netif_dbg(ax_local, intr, ndev, " RX interrupt\n");
todo = ax88796c_receive(ax_local->ndev);
}
return todo;
}
static irqreturn_t ax88796c_interrupt(int irq, void *dev_instance)
{
struct ax88796c_device *ax_local;
struct net_device *ndev;
ndev = dev_instance;
if (!ndev) {
pr_err("irq %d for unknown device.\n", irq);
return IRQ_RETVAL(0);
}
ax_local = to_ax88796c_device(ndev);
disable_irq_nosync(irq);
netif_dbg(ax_local, intr, ndev, "Interrupt occurred\n");
set_bit(EVENT_INTR, &ax_local->flags);
schedule_work(&ax_local->ax_work);
return IRQ_HANDLED;
}
static void ax88796c_work(struct work_struct *work)
{
struct ax88796c_device *ax_local =
container_of(work, struct ax88796c_device, ax_work);
mutex_lock(&ax_local->spi_lock);
if (test_bit(EVENT_SET_MULTI, &ax_local->flags)) {
ax88796c_set_hw_multicast(ax_local->ndev);
clear_bit(EVENT_SET_MULTI, &ax_local->flags);
}
if (test_bit(EVENT_INTR, &ax_local->flags)) {
AX_WRITE(&ax_local->ax_spi, IMR_MASKALL, P0_IMR);
while (ax88796c_process_isr(ax_local))
/* nothing */;
clear_bit(EVENT_INTR, &ax_local->flags);
AX_WRITE(&ax_local->ax_spi, IMR_DEFAULT, P0_IMR);
enable_irq(ax_local->ndev->irq);
}
if (test_bit(EVENT_TX, &ax_local->flags)) {
while (skb_queue_len(&ax_local->tx_wait_q)) {
if (!ax88796c_hard_xmit(ax_local))
break;
}
clear_bit(EVENT_TX, &ax_local->flags);
if (netif_queue_stopped(ax_local->ndev) &&
(skb_queue_len(&ax_local->tx_wait_q) < TX_QUEUE_LOW_WATER))
netif_wake_queue(ax_local->ndev);
}
mutex_unlock(&ax_local->spi_lock);
}
static void ax88796c_get_stats64(struct net_device *ndev,
struct rtnl_link_stats64 *stats)
{
struct ax88796c_device *ax_local = to_ax88796c_device(ndev);
u32 rx_frame_errors = 0, rx_crc_errors = 0;
u32 rx_dropped = 0, tx_dropped = 0;
unsigned int start;
int cpu;
for_each_possible_cpu(cpu) {
struct ax88796c_pcpu_stats *s;
u64 rx_packets, rx_bytes;
u64 tx_packets, tx_bytes;
s = per_cpu_ptr(ax_local->stats, cpu);
do {
start = u64_stats_fetch_begin(&s->syncp);
rx_packets = u64_stats_read(&s->rx_packets);
rx_bytes = u64_stats_read(&s->rx_bytes);
tx_packets = u64_stats_read(&s->tx_packets);
tx_bytes = u64_stats_read(&s->tx_bytes);
} while (u64_stats_fetch_retry(&s->syncp, start));
stats->rx_packets += rx_packets;
stats->rx_bytes += rx_bytes;
stats->tx_packets += tx_packets;
stats->tx_bytes += tx_bytes;
rx_dropped += s->rx_dropped;
tx_dropped += s->tx_dropped;
rx_frame_errors += s->rx_frame_errors;
rx_crc_errors += s->rx_crc_errors;
}
stats->rx_dropped = rx_dropped;
stats->tx_dropped = tx_dropped;
stats->rx_frame_errors = rx_frame_errors;
stats->rx_crc_errors = rx_crc_errors;
}
static void ax88796c_set_mac(struct ax88796c_device *ax_local)
{
u16 maccr;
maccr = (ax_local->link) ? MACCR_RXEN : 0;
switch (ax_local->speed) {
case SPEED_100:
maccr |= MACCR_SPEED_100;
break;
case SPEED_10:
case SPEED_UNKNOWN:
break;
default:
return;
}
switch (ax_local->duplex) {
case DUPLEX_FULL:
maccr |= MACCR_SPEED_100;
break;
case DUPLEX_HALF:
case DUPLEX_UNKNOWN:
break;
default:
return;
}
if (ax_local->flowctrl & AX_FC_ANEG &&
ax_local->phydev->autoneg) {
maccr |= ax_local->pause ? MACCR_RXFC_ENABLE : 0;
maccr |= !ax_local->pause != !ax_local->asym_pause ?
MACCR_TXFC_ENABLE : 0;
} else {
maccr |= (ax_local->flowctrl & AX_FC_RX) ? MACCR_RXFC_ENABLE : 0;
maccr |= (ax_local->flowctrl & AX_FC_TX) ? MACCR_TXFC_ENABLE : 0;
}
mutex_lock(&ax_local->spi_lock);
maccr |= AX_READ(&ax_local->ax_spi, P0_MACCR) &
~(MACCR_DUPLEX_FULL | MACCR_SPEED_100 |
MACCR_TXFC_ENABLE | MACCR_RXFC_ENABLE);
AX_WRITE(&ax_local->ax_spi, maccr, P0_MACCR);
mutex_unlock(&ax_local->spi_lock);
}
static void ax88796c_handle_link_change(struct net_device *ndev)
{
struct ax88796c_device *ax_local = to_ax88796c_device(ndev);
struct phy_device *phydev = ndev->phydev;
bool update = false;
if (phydev->link && (ax_local->speed != phydev->speed ||
ax_local->duplex != phydev->duplex ||
ax_local->pause != phydev->pause ||
ax_local->asym_pause != phydev->asym_pause)) {
ax_local->speed = phydev->speed;
ax_local->duplex = phydev->duplex;
ax_local->pause = phydev->pause;
ax_local->asym_pause = phydev->asym_pause;
update = true;
}
if (phydev->link != ax_local->link) {
if (!phydev->link) {
ax_local->speed = SPEED_UNKNOWN;
ax_local->duplex = DUPLEX_UNKNOWN;
}
ax_local->link = phydev->link;
update = true;
}
if (update)
ax88796c_set_mac(ax_local);
if (net_ratelimit())
phy_print_status(ndev->phydev);
}
static void ax88796c_set_csums(struct ax88796c_device *ax_local)
{
struct net_device *ndev = ax_local->ndev;
lockdep_assert_held(&ax_local->spi_lock);
if (ndev->features & NETIF_F_RXCSUM) {
AX_WRITE(&ax_local->ax_spi, COERCR0_DEFAULT, P4_COERCR0);
AX_WRITE(&ax_local->ax_spi, COERCR1_DEFAULT, P4_COERCR1);
} else {
AX_WRITE(&ax_local->ax_spi, 0, P4_COERCR0);
AX_WRITE(&ax_local->ax_spi, 0, P4_COERCR1);
}
if (ndev->features & NETIF_F_HW_CSUM) {
AX_WRITE(&ax_local->ax_spi, COETCR0_DEFAULT, P4_COETCR0);
AX_WRITE(&ax_local->ax_spi, COETCR1_TXPPPE, P4_COETCR1);
} else {
AX_WRITE(&ax_local->ax_spi, 0, P4_COETCR0);
AX_WRITE(&ax_local->ax_spi, 0, P4_COETCR1);
}
}
static int
ax88796c_open(struct net_device *ndev)
{
struct ax88796c_device *ax_local = to_ax88796c_device(ndev);
unsigned long irq_flag = 0;
int fc = AX_FC_NONE;
int ret;
u16 t;
ret = request_irq(ndev->irq, ax88796c_interrupt,
irq_flag, ndev->name, ndev);
if (ret) {
netdev_err(ndev, "unable to get IRQ %d (errno=%d).\n",
ndev->irq, ret);
return ret;
}
mutex_lock(&ax_local->spi_lock);
ret = ax88796c_soft_reset(ax_local);
if (ret < 0) {
free_irq(ndev->irq, ndev);
mutex_unlock(&ax_local->spi_lock);
return ret;
}
ax_local->seq_num = 0x1f;
ax88796c_set_mac_addr(ndev);
ax88796c_set_csums(ax_local);
/* Disable stuffing packet */
t = AX_READ(&ax_local->ax_spi, P1_RXBSPCR);
t &= ~RXBSPCR_STUF_ENABLE;
AX_WRITE(&ax_local->ax_spi, t, P1_RXBSPCR);
/* Enable RX packet process */
AX_WRITE(&ax_local->ax_spi, RPPER_RXEN, P1_RPPER);
t = AX_READ(&ax_local->ax_spi, P0_FER);
t |= FER_RXEN | FER_TXEN | FER_BSWAP | FER_IRQ_PULL;
AX_WRITE(&ax_local->ax_spi, t, P0_FER);
/* Setup LED mode */
AX_WRITE(&ax_local->ax_spi,
(LCR_LED0_EN | LCR_LED0_DUPLEX | LCR_LED1_EN |
LCR_LED1_100MODE), P2_LCR0);
AX_WRITE(&ax_local->ax_spi,
(AX_READ(&ax_local->ax_spi, P2_LCR1) & LCR_LED2_MASK) |
LCR_LED2_EN | LCR_LED2_LINK, P2_LCR1);
/* Disable PHY auto-polling */
AX_WRITE(&ax_local->ax_spi, PCR_PHYID(AX88796C_PHY_ID), P2_PCR);
/* Enable MAC interrupts */
AX_WRITE(&ax_local->ax_spi, IMR_DEFAULT, P0_IMR);
mutex_unlock(&ax_local->spi_lock);
/* Setup flow-control configuration */
phy_support_asym_pause(ax_local->phydev);
if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
ax_local->phydev->advertising) ||
linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
ax_local->phydev->advertising))
fc |= AX_FC_ANEG;
fc |= linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
ax_local->phydev->advertising) ? AX_FC_RX : 0;
fc |= (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
ax_local->phydev->advertising) !=
linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
ax_local->phydev->advertising)) ? AX_FC_TX : 0;
ax_local->flowctrl = fc;
phy_start(ax_local->ndev->phydev);
netif_start_queue(ndev);
spi_message_init(&ax_local->ax_spi.rx_msg);
return 0;
}
static int
ax88796c_close(struct net_device *ndev)
{
struct ax88796c_device *ax_local = to_ax88796c_device(ndev);
phy_stop(ndev->phydev);
/* We lock the mutex early not only to protect the device
* against concurrent access, but also avoid waking up the
* queue in ax88796c_work(). phy_stop() needs to be called
* before because it locks the mutex to access SPI.
*/
mutex_lock(&ax_local->spi_lock);
netif_stop_queue(ndev);
/* No more work can be scheduled now. Make any pending work,
* including one already waiting for the mutex to be unlocked,
* NOP.
*/
netif_dbg(ax_local, ifdown, ndev, "clearing bits\n");
clear_bit(EVENT_SET_MULTI, &ax_local->flags);
clear_bit(EVENT_INTR, &ax_local->flags);
clear_bit(EVENT_TX, &ax_local->flags);
/* Disable MAC interrupts */
AX_WRITE(&ax_local->ax_spi, IMR_MASKALL, P0_IMR);
__skb_queue_purge(&ax_local->tx_wait_q);
ax88796c_soft_reset(ax_local);
mutex_unlock(&ax_local->spi_lock);
cancel_work_sync(&ax_local->ax_work);
free_irq(ndev->irq, ndev);
return 0;
}
static int
ax88796c_set_features(struct net_device *ndev, netdev_features_t features)
{
struct ax88796c_device *ax_local = to_ax88796c_device(ndev);
netdev_features_t changed = features ^ ndev->features;
if (!(changed & (NETIF_F_RXCSUM | NETIF_F_HW_CSUM)))
return 0;
ndev->features = features;
if (changed & (NETIF_F_RXCSUM | NETIF_F_HW_CSUM))
ax88796c_set_csums(ax_local);
return 0;
}
static const struct net_device_ops ax88796c_netdev_ops = {
.ndo_open = ax88796c_open,
.ndo_stop = ax88796c_close,
.ndo_start_xmit = ax88796c_start_xmit,
.ndo_get_stats64 = ax88796c_get_stats64,
.ndo_eth_ioctl = ax88796c_ioctl,
.ndo_set_mac_address = eth_mac_addr,
.ndo_set_features = ax88796c_set_features,
};
static int ax88796c_hard_reset(struct ax88796c_device *ax_local)
{
struct device *dev = (struct device *)&ax_local->spi->dev;
struct gpio_desc *reset_gpio;
/* reset info */
reset_gpio = gpiod_get(dev, "reset", 0);
if (IS_ERR(reset_gpio)) {
dev_err(dev, "Could not get 'reset' GPIO: %ld", PTR_ERR(reset_gpio));
return PTR_ERR(reset_gpio);
}
/* set reset */
gpiod_direction_output(reset_gpio, 1);
msleep(100);
gpiod_direction_output(reset_gpio, 0);
gpiod_put(reset_gpio);
msleep(20);
return 0;
}
static int ax88796c_probe(struct spi_device *spi)
{
char phy_id[MII_BUS_ID_SIZE + 3];
struct ax88796c_device *ax_local;
struct net_device *ndev;
u16 temp;
int ret;
ndev = devm_alloc_etherdev(&spi->dev, sizeof(*ax_local));
if (!ndev)
return -ENOMEM;
SET_NETDEV_DEV(ndev, &spi->dev);
ax_local = to_ax88796c_device(ndev);
dev_set_drvdata(&spi->dev, ax_local);
ax_local->spi = spi;
ax_local->ax_spi.spi = spi;
ax_local->stats =
devm_netdev_alloc_pcpu_stats(&spi->dev,
struct ax88796c_pcpu_stats);
if (!ax_local->stats)
return -ENOMEM;
ax_local->ndev = ndev;
ax_local->priv_flags |= comp ? AX_CAP_COMP : 0;
ax_local->msg_enable = msg_enable;
mutex_init(&ax_local->spi_lock);
ax_local->mdiobus = devm_mdiobus_alloc(&spi->dev);
if (!ax_local->mdiobus)
return -ENOMEM;
ax_local->mdiobus->priv = ax_local;
ax_local->mdiobus->read = ax88796c_mdio_read;
ax_local->mdiobus->write = ax88796c_mdio_write;
ax_local->mdiobus->name = "ax88976c-mdiobus";
ax_local->mdiobus->phy_mask = (u32)~BIT(AX88796C_PHY_ID);
ax_local->mdiobus->parent = &spi->dev;
snprintf(ax_local->mdiobus->id, MII_BUS_ID_SIZE,
"ax88796c-%s.%u", dev_name(&spi->dev), spi_get_chipselect(spi, 0));
ret = devm_mdiobus_register(&spi->dev, ax_local->mdiobus);
if (ret < 0) {
dev_err(&spi->dev, "Could not register MDIO bus\n");
return ret;
}
if (netif_msg_probe(ax_local)) {
dev_info(&spi->dev, "AX88796C-SPI Configuration:\n");
dev_info(&spi->dev, " Compression : %s\n",
ax_local->priv_flags & AX_CAP_COMP ? "ON" : "OFF");
}
ndev->irq = spi->irq;
ndev->netdev_ops = &ax88796c_netdev_ops;
ndev->ethtool_ops = &ax88796c_ethtool_ops;
ndev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
ndev->features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
ndev->needed_headroom = TX_OVERHEAD;
ndev->needed_tailroom = TX_EOP_SIZE;
mutex_lock(&ax_local->spi_lock);
/* ax88796c gpio reset */
ax88796c_hard_reset(ax_local);
/* Reset AX88796C */
ret = ax88796c_soft_reset(ax_local);
if (ret < 0) {
ret = -ENODEV;
mutex_unlock(&ax_local->spi_lock);
goto err;
}
/* Check board revision */
temp = AX_READ(&ax_local->ax_spi, P2_CRIR);
if ((temp & 0xF) != 0x0) {
dev_err(&spi->dev, "spi read failed: %d\n", temp);
ret = -ENODEV;
mutex_unlock(&ax_local->spi_lock);
goto err;
}
/*Reload EEPROM*/
ax88796c_reload_eeprom(ax_local);
ax88796c_load_mac_addr(ndev);
if (netif_msg_probe(ax_local))
dev_info(&spi->dev,
"irq %d, MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
ndev->irq,
ndev->dev_addr[0], ndev->dev_addr[1],
ndev->dev_addr[2], ndev->dev_addr[3],
ndev->dev_addr[4], ndev->dev_addr[5]);
/* Disable power saving */
AX_WRITE(&ax_local->ax_spi, (AX_READ(&ax_local->ax_spi, P0_PSCR)
& PSCR_PS_MASK) | PSCR_PS_D0, P0_PSCR);
mutex_unlock(&ax_local->spi_lock);
INIT_WORK(&ax_local->ax_work, ax88796c_work);
skb_queue_head_init(&ax_local->tx_wait_q);
snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
ax_local->mdiobus->id, AX88796C_PHY_ID);
ax_local->phydev = phy_connect(ax_local->ndev, phy_id,
ax88796c_handle_link_change,
PHY_INTERFACE_MODE_MII);
if (IS_ERR(ax_local->phydev)) {
ret = PTR_ERR(ax_local->phydev);
goto err;
}
ax_local->phydev->irq = PHY_POLL;
ret = devm_register_netdev(&spi->dev, ndev);
if (ret) {
dev_err(&spi->dev, "failed to register a network device\n");
goto err_phy_dis;
}
netif_info(ax_local, probe, ndev, "%s %s registered\n",
dev_driver_string(&spi->dev),
dev_name(&spi->dev));
phy_attached_info(ax_local->phydev);
return 0;
err_phy_dis:
phy_disconnect(ax_local->phydev);
err:
return ret;
}
static void ax88796c_remove(struct spi_device *spi)
{
struct ax88796c_device *ax_local = dev_get_drvdata(&spi->dev);
struct net_device *ndev = ax_local->ndev;
phy_disconnect(ndev->phydev);
netif_info(ax_local, probe, ndev, "removing network device %s %s\n",
dev_driver_string(&spi->dev),
dev_name(&spi->dev));
}
#ifdef CONFIG_OF
static const struct of_device_id ax88796c_dt_ids[] = {
{ .compatible = "asix,ax88796c" },
{},
};
MODULE_DEVICE_TABLE(of, ax88796c_dt_ids);
#endif
static const struct spi_device_id asix_id[] = {
{ "ax88796c", 0 },
{ }
};
MODULE_DEVICE_TABLE(spi, asix_id);
static struct spi_driver ax88796c_spi_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = of_match_ptr(ax88796c_dt_ids),
},
.probe = ax88796c_probe,
.remove = ax88796c_remove,
.id_table = asix_id,
};
static __init int ax88796c_spi_init(void)
{
int ret;
bitmap_zero(ax88796c_no_regs_mask, AX88796C_REGDUMP_LEN);
ret = bitmap_parse(no_regs_list, 35,
ax88796c_no_regs_mask, AX88796C_REGDUMP_LEN);
if (ret) {
bitmap_fill(ax88796c_no_regs_mask, AX88796C_REGDUMP_LEN);
pr_err("Invalid bitmap description, masking all registers\n");
}
return spi_register_driver(&ax88796c_spi_driver);
}
static __exit void ax88796c_spi_exit(void)
{
spi_unregister_driver(&ax88796c_spi_driver);
}
module_init(ax88796c_spi_init);
module_exit(ax88796c_spi_exit);
MODULE_AUTHOR("Ćukasz Stelmach <[email protected]>");
MODULE_DESCRIPTION("ASIX AX88796C SPI Ethernet driver");
MODULE_LICENSE("GPL");