// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright(c) 2015 EZchip Technologies.
*/
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/mod_devicetable.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include "nps_enet.h"
#define DRV_NAME "nps_mgt_enet"
static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
{
u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
return (!tx_ctrl_ct && priv->tx_skb);
}
static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
/* Empty Rx FIFO buffer by reading all words */
for (i = 0; i < len; i++)
nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
}
static void nps_enet_read_rx_fifo(struct net_device *ndev,
unsigned char *dst, u32 length)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
s32 i, last = length & (sizeof(u32) - 1);
u32 *reg = (u32 *)dst, len = length / sizeof(u32);
bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
/* In case dst is not aligned we need an intermediate buffer */
if (dst_is_aligned) {
ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
reg += len;
} else { /* !dst_is_aligned */
for (i = 0; i < len; i++, reg++) {
u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
put_unaligned_be32(buf, reg);
}
}
/* copy last bytes (if any) */
if (last) {
u32 buf;
ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
memcpy((u8 *)reg, &buf, last);
}
}
static u32 nps_enet_rx_handler(struct net_device *ndev)
{
u32 frame_len, err = 0;
u32 work_done = 0;
struct nps_enet_priv *priv = netdev_priv(ndev);
struct sk_buff *skb;
u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
/* Check if we got RX */
if (!rx_ctrl_cr)
return work_done;
/* If we got here there is a work for us */
work_done++;
/* Check Rx error */
if (rx_ctrl_er) {
ndev->stats.rx_errors++;
err = 1;
}
/* Check Rx CRC error */
if (rx_ctrl_crc) {
ndev->stats.rx_crc_errors++;
ndev->stats.rx_dropped++;
err = 1;
}
/* Check Frame length Min 64b */
if (unlikely(frame_len < ETH_ZLEN)) {
ndev->stats.rx_length_errors++;
ndev->stats.rx_dropped++;
err = 1;
}
if (err)
goto rx_irq_clean;
/* Skb allocation */
skb = netdev_alloc_skb_ip_align(ndev, frame_len);
if (unlikely(!skb)) {
ndev->stats.rx_errors++;
ndev->stats.rx_dropped++;
goto rx_irq_clean;
}
/* Copy frame from Rx fifo into the skb */
nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
skb_put(skb, frame_len);
skb->protocol = eth_type_trans(skb, ndev);
skb->ip_summed = CHECKSUM_UNNECESSARY;
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += frame_len;
netif_receive_skb(skb);
goto rx_irq_frame_done;
rx_irq_clean:
/* Clean Rx fifo */
nps_enet_clean_rx_fifo(ndev, frame_len);
rx_irq_frame_done:
/* Ack Rx ctrl register */
nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
return work_done;
}
static void nps_enet_tx_handler(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
/* Check if we got TX */
if (!nps_enet_is_tx_pending(priv))
return;
/* Ack Tx ctrl register */
nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
/* Check Tx transmit error */
if (unlikely(tx_ctrl_et)) {
ndev->stats.tx_errors++;
} else {
ndev->stats.tx_packets++;
ndev->stats.tx_bytes += tx_ctrl_nt;
}
dev_kfree_skb(priv->tx_skb);
priv->tx_skb = NULL;
if (netif_queue_stopped(ndev))
netif_wake_queue(ndev);
}
/**
* nps_enet_poll - NAPI poll handler.
* @napi: Pointer to napi_struct structure.
* @budget: How many frames to process on one call.
*
* returns: Number of processed frames
*/
static int nps_enet_poll(struct napi_struct *napi, int budget)
{
struct net_device *ndev = napi->dev;
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 work_done;
nps_enet_tx_handler(ndev);
work_done = nps_enet_rx_handler(ndev);
if ((work_done < budget) && napi_complete_done(napi, work_done)) {
u32 buf_int_enable_value = 0;
/* set tx_done and rx_rdy bits */
buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
buf_int_enable_value);
/* in case we will get a tx interrupt while interrupts
* are masked, we will lose it since the tx is edge interrupt.
* specifically, while executing the code section above,
* between nps_enet_tx_handler and the interrupts enable, all
* tx requests will be stuck until we will get an rx interrupt.
* the two code lines below will solve this situation by
* re-adding ourselves to the poll list.
*/
if (nps_enet_is_tx_pending(priv)) {
nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
napi_schedule(napi);
}
}
return work_done;
}
/**
* nps_enet_irq_handler - Global interrupt handler for ENET.
* @irq: irq number.
* @dev_instance: device instance.
*
* returns: IRQ_HANDLED for all cases.
*
* EZchip ENET has 2 interrupt causes, and depending on bits raised in
* CTRL registers we may tell what is a reason for interrupt to fire up.
* We got one for RX and the other for TX (completion).
*/
static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
{
struct net_device *ndev = dev_instance;
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
if (likely(napi_schedule_prep(&priv->napi))) {
nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
__napi_schedule(&priv->napi);
}
return IRQ_HANDLED;
}
static void nps_enet_set_hw_mac_address(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 ge_mac_cfg_1_value = 0;
u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
/* set MAC address in HW */
ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
| ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
| ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
ge_mac_cfg_1_value);
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
*ge_mac_cfg_2_value);
}
/**
* nps_enet_hw_reset - Reset the network device.
* @ndev: Pointer to the network device.
*
* This function reset the PCS and TX fifo.
* The programming model is to set the relevant reset bits
* wait for some time for this to propagate and then unset
* the reset bits. This way we ensure that reset procedure
* is done successfully by device.
*/
static void nps_enet_hw_reset(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
/* Pcs reset sequence*/
ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
usleep_range(10, 20);
ge_rst_value = 0;
nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
/* Tx fifo reset sequence */
phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
phase_fifo_ctl_value);
usleep_range(10, 20);
phase_fifo_ctl_value = 0;
nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
phase_fifo_ctl_value);
}
static void nps_enet_hw_enable_control(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
s32 max_frame_length;
/* Enable Rx and Tx statistics */
*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
| NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
/* Discard packets with different MAC address */
*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
| NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
/* Discard multicast packets */
*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
| NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
*ge_mac_cfg_2_value);
/* Discard Packets bigger than max frame length */
max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
*ge_mac_cfg_3_value =
(*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
| max_frame_length << CFG_3_MAX_LEN_SHIFT;
}
/* Enable interrupts */
buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
buf_int_enable_value);
/* Write device MAC address to HW */
nps_enet_set_hw_mac_address(ndev);
/* Rx and Tx HW features */
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
/* IFG configuration */
ge_mac_cfg_0_value |=
NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
ge_mac_cfg_0_value |=
NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
/* preamble configuration */
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
ge_mac_cfg_0_value |=
NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
/* enable flow control frames */
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
ge_mac_cfg_0_value |=
NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
*ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
| NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
/* Enable Rx and Tx */
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
*ge_mac_cfg_3_value);
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
ge_mac_cfg_0_value);
}
static void nps_enet_hw_disable_control(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
/* Disable interrupts */
nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
/* Disable Rx and Tx */
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
}
static void nps_enet_send_frame(struct net_device *ndev,
struct sk_buff *skb)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 tx_ctrl_value = 0;
short length = skb->len;
u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
u32 *src = (void *)skb->data;
bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
/* In case src is not aligned we need an intermediate buffer */
if (src_is_aligned)
iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
else /* !src_is_aligned */
for (i = 0; i < len; i++, src++)
nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
get_unaligned_be32(src));
/* Write the length of the Frame */
tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
/* Send Frame */
nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
}
/**
* nps_enet_set_mac_address - Set the MAC address for this device.
* @ndev: Pointer to net_device structure.
* @p: 6 byte Address to be written as MAC address.
*
* This function copies the HW address from the sockaddr structure to the
* net_device structure and updates the address in HW.
*
* returns: -EBUSY if the net device is busy or 0 if the address is set
* successfully.
*/
static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
{
struct sockaddr *addr = p;
s32 res;
if (netif_running(ndev))
return -EBUSY;
res = eth_mac_addr(ndev, p);
if (!res) {
eth_hw_addr_set(ndev, addr->sa_data);
nps_enet_set_hw_mac_address(ndev);
}
return res;
}
/**
* nps_enet_set_rx_mode - Change the receive filtering mode.
* @ndev: Pointer to the network device.
*
* This function enables/disables promiscuous mode
*/
static void nps_enet_set_rx_mode(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
if (ndev->flags & IFF_PROMISC) {
ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
| NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
| NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
} else {
ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
| NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
| NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
}
nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
}
/**
* nps_enet_open - Open the network device.
* @ndev: Pointer to the network device.
*
* returns: 0, on success or non-zero error value on failure.
*
* This function sets the MAC address, requests and enables an IRQ
* for the ENET device and starts the Tx queue.
*/
static s32 nps_enet_open(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
s32 err;
/* Reset private variables */
priv->tx_skb = NULL;
priv->ge_mac_cfg_2_value = 0;
priv->ge_mac_cfg_3_value = 0;
/* ge_mac_cfg_3 default values */
priv->ge_mac_cfg_3_value |=
NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
priv->ge_mac_cfg_3_value |=
NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
/* Disable HW device */
nps_enet_hw_disable_control(ndev);
/* irq Rx allocation */
err = request_irq(priv->irq, nps_enet_irq_handler,
0, "enet-rx-tx", ndev);
if (err)
return err;
napi_enable(&priv->napi);
/* Enable HW device */
nps_enet_hw_reset(ndev);
nps_enet_hw_enable_control(ndev);
netif_start_queue(ndev);
return 0;
}
/**
* nps_enet_stop - Close the network device.
* @ndev: Pointer to the network device.
*
* This function stops the Tx queue, disables interrupts for the ENET device.
*/
static s32 nps_enet_stop(struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
napi_disable(&priv->napi);
netif_stop_queue(ndev);
nps_enet_hw_disable_control(ndev);
free_irq(priv->irq, ndev);
return 0;
}
/**
* nps_enet_start_xmit - Starts the data transmission.
* @skb: sk_buff pointer that contains data to be Transmitted.
* @ndev: Pointer to net_device structure.
*
* returns: NETDEV_TX_OK, on success
* NETDEV_TX_BUSY, if any of the descriptors are not free.
*
* This function is invoked from upper layers to initiate transmission.
*/
static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct nps_enet_priv *priv = netdev_priv(ndev);
/* This driver handles one frame at a time */
netif_stop_queue(ndev);
priv->tx_skb = skb;
/* make sure tx_skb is actually written to the memory
* before the HW is informed and the IRQ is fired.
*/
wmb();
nps_enet_send_frame(ndev, skb);
return NETDEV_TX_OK;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void nps_enet_poll_controller(struct net_device *ndev)
{
disable_irq(ndev->irq);
nps_enet_irq_handler(ndev->irq, ndev);
enable_irq(ndev->irq);
}
#endif
static const struct net_device_ops nps_netdev_ops = {
.ndo_open = nps_enet_open,
.ndo_stop = nps_enet_stop,
.ndo_start_xmit = nps_enet_start_xmit,
.ndo_set_mac_address = nps_enet_set_mac_address,
.ndo_set_rx_mode = nps_enet_set_rx_mode,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = nps_enet_poll_controller,
#endif
};
static s32 nps_enet_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct net_device *ndev;
struct nps_enet_priv *priv;
s32 err = 0;
if (!dev->of_node)
return -ENODEV;
ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
if (!ndev)
return -ENOMEM;
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, dev);
priv = netdev_priv(ndev);
/* The EZ NET specific entries in the device structure. */
ndev->netdev_ops = &nps_netdev_ops;
ndev->watchdog_timeo = (400 * HZ / 1000);
/* FIXME :: no multicast support yet */
ndev->flags &= ~IFF_MULTICAST;
priv->regs_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->regs_base)) {
err = PTR_ERR(priv->regs_base);
goto out_netdev;
}
dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
/* set kernel MAC address to dev */
err = of_get_ethdev_address(dev->of_node, ndev);
if (err)
eth_hw_addr_random(ndev);
/* Get IRQ number */
priv->irq = platform_get_irq(pdev, 0);
if (priv->irq < 0) {
err = -ENODEV;
goto out_netdev;
}
netif_napi_add_weight(ndev, &priv->napi, nps_enet_poll,
NPS_ENET_NAPI_POLL_WEIGHT);
/* Register the driver. Should be the last thing in probe */
err = register_netdev(ndev);
if (err) {
dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
ndev->name, (s32)err);
goto out_netif_api;
}
dev_info(dev, "(rx/tx=%d)\n", priv->irq);
return 0;
out_netif_api:
netif_napi_del(&priv->napi);
out_netdev:
free_netdev(ndev);
return err;
}
static void nps_enet_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct nps_enet_priv *priv = netdev_priv(ndev);
unregister_netdev(ndev);
netif_napi_del(&priv->napi);
free_netdev(ndev);
}
static const struct of_device_id nps_enet_dt_ids[] = {
{ .compatible = "ezchip,nps-mgt-enet" },
{ /* Sentinel */ }
};
MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
static struct platform_driver nps_enet_driver = {
.probe = nps_enet_probe,
.remove_new = nps_enet_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = nps_enet_dt_ids,
},
};
module_platform_driver(nps_enet_driver);
MODULE_AUTHOR("EZchip Semiconductor");
MODULE_DESCRIPTION("EZchip NPS Ethernet driver");
MODULE_LICENSE("GPL v2");