// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
#include <linux/dma-mapping.h>
#include <linux/ip.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include <linux/tcp.h>
#include <uapi/linux/udp.h>
#include "funeth.h"
#include "funeth_ktls.h"
#include "funeth_txrx.h"
#include "funeth_trace.h"
#include "fun_queue.h"
#define FUN_XDP_CLEAN_THRES 32
#define FUN_XDP_CLEAN_BATCH 16
/* DMA-map a packet and return the (length, DMA_address) pairs for its
* segments. If a mapping error occurs -ENOMEM is returned. The packet
* consists of an skb_shared_info and one additional address/length pair.
*/
static int fun_map_pkt(struct device *dev, const struct skb_shared_info *si,
void *data, unsigned int data_len,
dma_addr_t *addr, unsigned int *len)
{
const skb_frag_t *fp, *end;
*len = data_len;
*addr = dma_map_single(dev, data, *len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, *addr))
return -ENOMEM;
if (!si)
return 0;
for (fp = si->frags, end = fp + si->nr_frags; fp < end; fp++) {
*++len = skb_frag_size(fp);
*++addr = skb_frag_dma_map(dev, fp, 0, *len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, *addr))
goto unwind;
}
return 0;
unwind:
while (fp-- > si->frags)
dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
dma_unmap_single(dev, addr[-1], data_len, DMA_TO_DEVICE);
return -ENOMEM;
}
/* Return the address just past the end of a Tx queue's descriptor ring.
* It exploits the fact that the HW writeback area is just after the end
* of the descriptor ring.
*/
static void *txq_end(const struct funeth_txq *q)
{
return (void *)q->hw_wb;
}
/* Return the amount of space within a Tx ring from the given address to the
* end.
*/
static unsigned int txq_to_end(const struct funeth_txq *q, void *p)
{
return txq_end(q) - p;
}
/* Return the number of Tx descriptors occupied by a Tx request. */
static unsigned int tx_req_ndesc(const struct fun_eth_tx_req *req)
{
return DIV_ROUND_UP(req->len8, FUNETH_SQE_SIZE / 8);
}
/* Write a gather list to the Tx descriptor at @req from @ngle address/length
* pairs.
*/
static struct fun_dataop_gl *fun_write_gl(const struct funeth_txq *q,
struct fun_eth_tx_req *req,
const dma_addr_t *addrs,
const unsigned int *lens,
unsigned int ngle)
{
struct fun_dataop_gl *gle;
unsigned int i;
req->len8 = (sizeof(*req) + ngle * sizeof(*gle)) / 8;
for (i = 0, gle = (struct fun_dataop_gl *)req->dataop.imm;
i < ngle && txq_to_end(q, gle); i++, gle++)
fun_dataop_gl_init(gle, 0, 0, lens[i], addrs[i]);
if (txq_to_end(q, gle) == 0) {
gle = (struct fun_dataop_gl *)q->desc;
for ( ; i < ngle; i++, gle++)
fun_dataop_gl_init(gle, 0, 0, lens[i], addrs[i]);
}
return gle;
}
static __be16 tcp_hdr_doff_flags(const struct tcphdr *th)
{
return *(__be16 *)&tcp_flag_word(th);
}
static struct sk_buff *fun_tls_tx(struct sk_buff *skb, struct funeth_txq *q,
unsigned int *tls_len)
{
#if IS_ENABLED(CONFIG_TLS_DEVICE)
const struct fun_ktls_tx_ctx *tls_ctx;
u32 datalen, seq;
datalen = skb->len - skb_tcp_all_headers(skb);
if (!datalen)
return skb;
if (likely(!tls_offload_tx_resync_pending(skb->sk))) {
seq = ntohl(tcp_hdr(skb)->seq);
tls_ctx = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
if (likely(tls_ctx->next_seq == seq)) {
*tls_len = datalen;
return skb;
}
if (seq - tls_ctx->next_seq < U32_MAX / 4) {
tls_offload_tx_resync_request(skb->sk, seq,
tls_ctx->next_seq);
}
}
FUN_QSTAT_INC(q, tx_tls_fallback);
skb = tls_encrypt_skb(skb);
if (!skb)
FUN_QSTAT_INC(q, tx_tls_drops);
return skb;
#else
return NULL;
#endif
}
/* Write as many descriptors as needed for the supplied skb starting at the
* current producer location. The caller has made certain enough descriptors
* are available.
*
* Returns the number of descriptors written, 0 on error.
*/
static unsigned int write_pkt_desc(struct sk_buff *skb, struct funeth_txq *q,
unsigned int tls_len)
{
unsigned int extra_bytes = 0, extra_pkts = 0;
unsigned int idx = q->prod_cnt & q->mask;
const struct skb_shared_info *shinfo;
unsigned int lens[MAX_SKB_FRAGS + 1];
dma_addr_t addrs[MAX_SKB_FRAGS + 1];
struct fun_eth_tx_req *req;
struct fun_dataop_gl *gle;
const struct tcphdr *th;
unsigned int l4_hlen;
unsigned int ngle;
u16 flags;
shinfo = skb_shinfo(skb);
if (unlikely(fun_map_pkt(q->dma_dev, shinfo, skb->data,
skb_headlen(skb), addrs, lens))) {
FUN_QSTAT_INC(q, tx_map_err);
return 0;
}
req = fun_tx_desc_addr(q, idx);
req->op = FUN_ETH_OP_TX;
req->len8 = 0;
req->flags = 0;
req->suboff8 = offsetof(struct fun_eth_tx_req, dataop);
req->repr_idn = 0;
req->encap_proto = 0;
if (likely(shinfo->gso_size)) {
if (skb->encapsulation) {
u16 ol4_ofst;
flags = FUN_ETH_OUTER_EN | FUN_ETH_INNER_LSO |
FUN_ETH_UPDATE_INNER_L4_CKSUM |
FUN_ETH_UPDATE_OUTER_L3_LEN;
if (shinfo->gso_type & (SKB_GSO_UDP_TUNNEL |
SKB_GSO_UDP_TUNNEL_CSUM)) {
flags |= FUN_ETH_UPDATE_OUTER_L4_LEN |
FUN_ETH_OUTER_UDP;
if (shinfo->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
flags |= FUN_ETH_UPDATE_OUTER_L4_CKSUM;
ol4_ofst = skb_transport_offset(skb);
} else {
ol4_ofst = skb_inner_network_offset(skb);
}
if (ip_hdr(skb)->version == 4)
flags |= FUN_ETH_UPDATE_OUTER_L3_CKSUM;
else
flags |= FUN_ETH_OUTER_IPV6;
if (skb->inner_network_header) {
if (inner_ip_hdr(skb)->version == 4)
flags |= FUN_ETH_UPDATE_INNER_L3_CKSUM |
FUN_ETH_UPDATE_INNER_L3_LEN;
else
flags |= FUN_ETH_INNER_IPV6 |
FUN_ETH_UPDATE_INNER_L3_LEN;
}
th = inner_tcp_hdr(skb);
l4_hlen = __tcp_hdrlen(th);
fun_eth_offload_init(&req->offload, flags,
shinfo->gso_size,
tcp_hdr_doff_flags(th), 0,
skb_inner_network_offset(skb),
skb_inner_transport_offset(skb),
skb_network_offset(skb), ol4_ofst);
FUN_QSTAT_INC(q, tx_encap_tso);
} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
flags = FUN_ETH_INNER_LSO | FUN_ETH_INNER_UDP |
FUN_ETH_UPDATE_INNER_L4_CKSUM |
FUN_ETH_UPDATE_INNER_L4_LEN |
FUN_ETH_UPDATE_INNER_L3_LEN;
if (ip_hdr(skb)->version == 4)
flags |= FUN_ETH_UPDATE_INNER_L3_CKSUM;
else
flags |= FUN_ETH_INNER_IPV6;
l4_hlen = sizeof(struct udphdr);
fun_eth_offload_init(&req->offload, flags,
shinfo->gso_size,
cpu_to_be16(l4_hlen << 10), 0,
skb_network_offset(skb),
skb_transport_offset(skb), 0, 0);
FUN_QSTAT_INC(q, tx_uso);
} else {
/* HW considers one set of headers as inner */
flags = FUN_ETH_INNER_LSO |
FUN_ETH_UPDATE_INNER_L4_CKSUM |
FUN_ETH_UPDATE_INNER_L3_LEN;
if (shinfo->gso_type & SKB_GSO_TCPV6)
flags |= FUN_ETH_INNER_IPV6;
else
flags |= FUN_ETH_UPDATE_INNER_L3_CKSUM;
th = tcp_hdr(skb);
l4_hlen = __tcp_hdrlen(th);
fun_eth_offload_init(&req->offload, flags,
shinfo->gso_size,
tcp_hdr_doff_flags(th), 0,
skb_network_offset(skb),
skb_transport_offset(skb), 0, 0);
FUN_QSTAT_INC(q, tx_tso);
}
u64_stats_update_begin(&q->syncp);
q->stats.tx_cso += shinfo->gso_segs;
u64_stats_update_end(&q->syncp);
extra_pkts = shinfo->gso_segs - 1;
extra_bytes = (be16_to_cpu(req->offload.inner_l4_off) +
l4_hlen) * extra_pkts;
} else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
flags = FUN_ETH_UPDATE_INNER_L4_CKSUM;
if (skb->csum_offset == offsetof(struct udphdr, check))
flags |= FUN_ETH_INNER_UDP;
fun_eth_offload_init(&req->offload, flags, 0, 0, 0, 0,
skb_checksum_start_offset(skb), 0, 0);
FUN_QSTAT_INC(q, tx_cso);
} else {
fun_eth_offload_init(&req->offload, 0, 0, 0, 0, 0, 0, 0, 0);
}
ngle = shinfo->nr_frags + 1;
req->dataop = FUN_DATAOP_HDR_INIT(ngle, 0, ngle, 0, skb->len);
gle = fun_write_gl(q, req, addrs, lens, ngle);
if (IS_ENABLED(CONFIG_TLS_DEVICE) && unlikely(tls_len)) {
struct fun_eth_tls *tls = (struct fun_eth_tls *)gle;
struct fun_ktls_tx_ctx *tls_ctx;
req->len8 += FUNETH_TLS_SZ / 8;
req->flags = cpu_to_be16(FUN_ETH_TX_TLS);
tls_ctx = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
tls->tlsid = tls_ctx->tlsid;
tls_ctx->next_seq += tls_len;
u64_stats_update_begin(&q->syncp);
q->stats.tx_tls_bytes += tls_len;
q->stats.tx_tls_pkts += 1 + extra_pkts;
u64_stats_update_end(&q->syncp);
}
u64_stats_update_begin(&q->syncp);
q->stats.tx_bytes += skb->len + extra_bytes;
q->stats.tx_pkts += 1 + extra_pkts;
u64_stats_update_end(&q->syncp);
q->info[idx].skb = skb;
trace_funeth_tx(q, skb->len, idx, req->dataop.ngather);
return tx_req_ndesc(req);
}
/* Return the number of available descriptors of a Tx queue.
* HW assumes head==tail means the ring is empty so we need to keep one
* descriptor unused.
*/
static unsigned int fun_txq_avail(const struct funeth_txq *q)
{
return q->mask - q->prod_cnt + q->cons_cnt;
}
/* Stop a queue if it can't handle another worst-case packet. */
static void fun_tx_check_stop(struct funeth_txq *q)
{
if (likely(fun_txq_avail(q) >= FUNETH_MAX_PKT_DESC))
return;
netif_tx_stop_queue(q->ndq);
/* NAPI reclaim is freeing packets in parallel with us and we may race.
* We have stopped the queue but check again after synchronizing with
* reclaim.
*/
smp_mb();
if (likely(fun_txq_avail(q) < FUNETH_MAX_PKT_DESC))
FUN_QSTAT_INC(q, tx_nstops);
else
netif_tx_start_queue(q->ndq);
}
/* Return true if a queue has enough space to restart. Current condition is
* that the queue must be >= 1/4 empty.
*/
static bool fun_txq_may_restart(struct funeth_txq *q)
{
return fun_txq_avail(q) >= q->mask / 4;
}
netdev_tx_t fun_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct funeth_priv *fp = netdev_priv(netdev);
unsigned int qid = skb_get_queue_mapping(skb);
struct funeth_txq *q = fp->txqs[qid];
unsigned int tls_len = 0;
unsigned int ndesc;
if (tls_is_skb_tx_device_offloaded(skb)) {
skb = fun_tls_tx(skb, q, &tls_len);
if (unlikely(!skb))
goto dropped;
}
ndesc = write_pkt_desc(skb, q, tls_len);
if (unlikely(!ndesc)) {
dev_kfree_skb_any(skb);
goto dropped;
}
q->prod_cnt += ndesc;
fun_tx_check_stop(q);
skb_tx_timestamp(skb);
if (__netdev_tx_sent_queue(q->ndq, skb->len, netdev_xmit_more()))
fun_txq_wr_db(q);
else
FUN_QSTAT_INC(q, tx_more);
return NETDEV_TX_OK;
dropped:
/* A dropped packet may be the last one in a xmit_more train,
* ring the doorbell just in case.
*/
if (!netdev_xmit_more())
fun_txq_wr_db(q);
return NETDEV_TX_OK;
}
/* Return a Tx queue's HW head index written back to host memory. */
static u16 txq_hw_head(const struct funeth_txq *q)
{
return (u16)be64_to_cpu(*q->hw_wb);
}
/* Unmap the Tx packet starting at the given descriptor index and
* return the number of Tx descriptors it occupied.
*/
static unsigned int fun_unmap_pkt(const struct funeth_txq *q, unsigned int idx)
{
const struct fun_eth_tx_req *req = fun_tx_desc_addr(q, idx);
unsigned int ngle = req->dataop.ngather;
struct fun_dataop_gl *gle;
if (ngle) {
gle = (struct fun_dataop_gl *)req->dataop.imm;
dma_unmap_single(q->dma_dev, be64_to_cpu(gle->sgl_data),
be32_to_cpu(gle->sgl_len), DMA_TO_DEVICE);
for (gle++; --ngle && txq_to_end(q, gle); gle++)
dma_unmap_page(q->dma_dev, be64_to_cpu(gle->sgl_data),
be32_to_cpu(gle->sgl_len),
DMA_TO_DEVICE);
for (gle = (struct fun_dataop_gl *)q->desc; ngle; ngle--, gle++)
dma_unmap_page(q->dma_dev, be64_to_cpu(gle->sgl_data),
be32_to_cpu(gle->sgl_len),
DMA_TO_DEVICE);
}
return tx_req_ndesc(req);
}
/* Reclaim completed Tx descriptors and free their packets. Restart a stopped
* queue if we freed enough descriptors.
*
* Return true if we exhausted the budget while there is more work to be done.
*/
static bool fun_txq_reclaim(struct funeth_txq *q, int budget)
{
unsigned int npkts = 0, nbytes = 0, ndesc = 0;
unsigned int head, limit, reclaim_idx;
/* budget may be 0, e.g., netpoll */
limit = budget ? budget : UINT_MAX;
for (head = txq_hw_head(q), reclaim_idx = q->cons_cnt & q->mask;
head != reclaim_idx && npkts < limit; head = txq_hw_head(q)) {
/* The HW head is continually updated, ensure we don't read
* descriptor state before the head tells us to reclaim it.
* On the enqueue side the doorbell is an implicit write
* barrier.
*/
rmb();
do {
unsigned int pkt_desc = fun_unmap_pkt(q, reclaim_idx);
struct sk_buff *skb = q->info[reclaim_idx].skb;
trace_funeth_tx_free(q, reclaim_idx, pkt_desc, head);
nbytes += skb->len;
napi_consume_skb(skb, budget);
ndesc += pkt_desc;
reclaim_idx = (reclaim_idx + pkt_desc) & q->mask;
npkts++;
} while (reclaim_idx != head && npkts < limit);
}
q->cons_cnt += ndesc;
netdev_tx_completed_queue(q->ndq, npkts, nbytes);
smp_mb(); /* pairs with the one in fun_tx_check_stop() */
if (unlikely(netif_tx_queue_stopped(q->ndq) &&
fun_txq_may_restart(q))) {
netif_tx_wake_queue(q->ndq);
FUN_QSTAT_INC(q, tx_nrestarts);
}
return reclaim_idx != head;
}
/* The NAPI handler for Tx queues. */
int fun_txq_napi_poll(struct napi_struct *napi, int budget)
{
struct fun_irq *irq = container_of(napi, struct fun_irq, napi);
struct funeth_txq *q = irq->txq;
unsigned int db_val;
if (fun_txq_reclaim(q, budget))
return budget; /* exhausted budget */
napi_complete(napi); /* exhausted pending work */
db_val = READ_ONCE(q->irq_db_val) | (q->cons_cnt & q->mask);
writel(db_val, q->db);
return 0;
}
/* Reclaim up to @budget completed Tx packets from a TX XDP queue. */
static unsigned int fun_xdpq_clean(struct funeth_txq *q, unsigned int budget)
{
unsigned int npkts = 0, ndesc = 0, head, reclaim_idx;
for (head = txq_hw_head(q), reclaim_idx = q->cons_cnt & q->mask;
head != reclaim_idx && npkts < budget; head = txq_hw_head(q)) {
/* The HW head is continually updated, ensure we don't read
* descriptor state before the head tells us to reclaim it.
* On the enqueue side the doorbell is an implicit write
* barrier.
*/
rmb();
do {
unsigned int pkt_desc = fun_unmap_pkt(q, reclaim_idx);
xdp_return_frame(q->info[reclaim_idx].xdpf);
trace_funeth_tx_free(q, reclaim_idx, pkt_desc, head);
reclaim_idx = (reclaim_idx + pkt_desc) & q->mask;
ndesc += pkt_desc;
npkts++;
} while (reclaim_idx != head && npkts < budget);
}
q->cons_cnt += ndesc;
return npkts;
}
bool fun_xdp_tx(struct funeth_txq *q, struct xdp_frame *xdpf)
{
unsigned int idx, nfrags = 1, ndesc = 1, tot_len = xdpf->len;
const struct skb_shared_info *si = NULL;
unsigned int lens[MAX_SKB_FRAGS + 1];
dma_addr_t dma[MAX_SKB_FRAGS + 1];
struct fun_eth_tx_req *req;
if (fun_txq_avail(q) < FUN_XDP_CLEAN_THRES)
fun_xdpq_clean(q, FUN_XDP_CLEAN_BATCH);
if (unlikely(xdp_frame_has_frags(xdpf))) {
si = xdp_get_shared_info_from_frame(xdpf);
tot_len = xdp_get_frame_len(xdpf);
nfrags += si->nr_frags;
ndesc = DIV_ROUND_UP((sizeof(*req) + nfrags *
sizeof(struct fun_dataop_gl)),
FUNETH_SQE_SIZE);
}
if (unlikely(fun_txq_avail(q) < ndesc)) {
FUN_QSTAT_INC(q, tx_xdp_full);
return false;
}
if (unlikely(fun_map_pkt(q->dma_dev, si, xdpf->data, xdpf->len, dma,
lens))) {
FUN_QSTAT_INC(q, tx_map_err);
return false;
}
idx = q->prod_cnt & q->mask;
req = fun_tx_desc_addr(q, idx);
req->op = FUN_ETH_OP_TX;
req->len8 = 0;
req->flags = 0;
req->suboff8 = offsetof(struct fun_eth_tx_req, dataop);
req->repr_idn = 0;
req->encap_proto = 0;
fun_eth_offload_init(&req->offload, 0, 0, 0, 0, 0, 0, 0, 0);
req->dataop = FUN_DATAOP_HDR_INIT(nfrags, 0, nfrags, 0, tot_len);
fun_write_gl(q, req, dma, lens, nfrags);
q->info[idx].xdpf = xdpf;
u64_stats_update_begin(&q->syncp);
q->stats.tx_bytes += tot_len;
q->stats.tx_pkts++;
u64_stats_update_end(&q->syncp);
trace_funeth_tx(q, tot_len, idx, nfrags);
q->prod_cnt += ndesc;
return true;
}
int fun_xdp_xmit_frames(struct net_device *dev, int n,
struct xdp_frame **frames, u32 flags)
{
struct funeth_priv *fp = netdev_priv(dev);
struct funeth_txq *q, **xdpqs;
int i, q_idx;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
xdpqs = rcu_dereference_bh(fp->xdpqs);
if (unlikely(!xdpqs))
return -ENETDOWN;
q_idx = smp_processor_id();
if (unlikely(q_idx >= fp->num_xdpqs))
return -ENXIO;
for (q = xdpqs[q_idx], i = 0; i < n; i++)
if (!fun_xdp_tx(q, frames[i]))
break;
if (unlikely(flags & XDP_XMIT_FLUSH))
fun_txq_wr_db(q);
return i;
}
/* Purge a Tx queue of any queued packets. Should be called once HW access
* to the packets has been revoked, e.g., after the queue has been disabled.
*/
static void fun_txq_purge(struct funeth_txq *q)
{
while (q->cons_cnt != q->prod_cnt) {
unsigned int idx = q->cons_cnt & q->mask;
q->cons_cnt += fun_unmap_pkt(q, idx);
dev_kfree_skb_any(q->info[idx].skb);
}
netdev_tx_reset_queue(q->ndq);
}
static void fun_xdpq_purge(struct funeth_txq *q)
{
while (q->cons_cnt != q->prod_cnt) {
unsigned int idx = q->cons_cnt & q->mask;
q->cons_cnt += fun_unmap_pkt(q, idx);
xdp_return_frame(q->info[idx].xdpf);
}
}
/* Create a Tx queue, allocating all the host resources needed. */
static struct funeth_txq *fun_txq_create_sw(struct net_device *dev,
unsigned int qidx,
unsigned int ndesc,
struct fun_irq *irq)
{
struct funeth_priv *fp = netdev_priv(dev);
struct funeth_txq *q;
int numa_node;
if (irq)
numa_node = fun_irq_node(irq); /* skb Tx queue */
else
numa_node = cpu_to_node(qidx); /* XDP Tx queue */
q = kzalloc_node(sizeof(*q), GFP_KERNEL, numa_node);
if (!q)
goto err;
q->dma_dev = &fp->pdev->dev;
q->desc = fun_alloc_ring_mem(q->dma_dev, ndesc, FUNETH_SQE_SIZE,
sizeof(*q->info), true, numa_node,
&q->dma_addr, (void **)&q->info,
&q->hw_wb);
if (!q->desc)
goto free_q;
q->netdev = dev;
q->mask = ndesc - 1;
q->qidx = qidx;
q->numa_node = numa_node;
u64_stats_init(&q->syncp);
q->init_state = FUN_QSTATE_INIT_SW;
return q;
free_q:
kfree(q);
err:
netdev_err(dev, "Can't allocate memory for %s queue %u\n",
irq ? "Tx" : "XDP", qidx);
return NULL;
}
static void fun_txq_free_sw(struct funeth_txq *q)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
fun_free_ring_mem(q->dma_dev, q->mask + 1, FUNETH_SQE_SIZE, true,
q->desc, q->dma_addr, q->info);
fp->tx_packets += q->stats.tx_pkts;
fp->tx_bytes += q->stats.tx_bytes;
fp->tx_dropped += q->stats.tx_map_err;
kfree(q);
}
/* Allocate the device portion of a Tx queue. */
int fun_txq_create_dev(struct funeth_txq *q, struct fun_irq *irq)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
unsigned int irq_idx, ndesc = q->mask + 1;
int err;
q->irq = irq;
*q->hw_wb = 0;
q->prod_cnt = 0;
q->cons_cnt = 0;
irq_idx = irq ? irq->irq_idx : 0;
err = fun_sq_create(fp->fdev,
FUN_ADMIN_EPSQ_CREATE_FLAG_HEAD_WB_ADDRESS |
FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR, 0,
FUN_HCI_ID_INVALID, ilog2(FUNETH_SQE_SIZE), ndesc,
q->dma_addr, fp->tx_coal_count, fp->tx_coal_usec,
irq_idx, 0, fp->fdev->kern_end_qid, 0,
&q->hw_qid, &q->db);
if (err)
goto out;
err = fun_create_and_bind_tx(fp, q->hw_qid);
if (err < 0)
goto free_devq;
q->ethid = err;
if (irq) {
irq->txq = q;
q->ndq = netdev_get_tx_queue(q->netdev, q->qidx);
q->irq_db_val = FUN_IRQ_SQ_DB(fp->tx_coal_usec,
fp->tx_coal_count);
writel(q->irq_db_val, q->db);
}
q->init_state = FUN_QSTATE_INIT_FULL;
netif_info(fp, ifup, q->netdev,
"%s queue %u, depth %u, HW qid %u, IRQ idx %u, eth id %u, node %d\n",
irq ? "Tx" : "XDP", q->qidx, ndesc, q->hw_qid, irq_idx,
q->ethid, q->numa_node);
return 0;
free_devq:
fun_destroy_sq(fp->fdev, q->hw_qid);
out:
netdev_err(q->netdev,
"Failed to create %s queue %u on device, error %d\n",
irq ? "Tx" : "XDP", q->qidx, err);
return err;
}
static void fun_txq_free_dev(struct funeth_txq *q)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
if (q->init_state < FUN_QSTATE_INIT_FULL)
return;
netif_info(fp, ifdown, q->netdev,
"Freeing %s queue %u (id %u), IRQ %u, ethid %u\n",
q->irq ? "Tx" : "XDP", q->qidx, q->hw_qid,
q->irq ? q->irq->irq_idx : 0, q->ethid);
fun_destroy_sq(fp->fdev, q->hw_qid);
fun_res_destroy(fp->fdev, FUN_ADMIN_OP_ETH, 0, q->ethid);
if (q->irq) {
q->irq->txq = NULL;
fun_txq_purge(q);
} else {
fun_xdpq_purge(q);
}
q->init_state = FUN_QSTATE_INIT_SW;
}
/* Create or advance a Tx queue, allocating all the host and device resources
* needed to reach the target state.
*/
int funeth_txq_create(struct net_device *dev, unsigned int qidx,
unsigned int ndesc, struct fun_irq *irq, int state,
struct funeth_txq **qp)
{
struct funeth_txq *q = *qp;
int err;
if (!q)
q = fun_txq_create_sw(dev, qidx, ndesc, irq);
if (!q)
return -ENOMEM;
if (q->init_state >= state)
goto out;
err = fun_txq_create_dev(q, irq);
if (err) {
if (!*qp)
fun_txq_free_sw(q);
return err;
}
out:
*qp = q;
return 0;
}
/* Free Tx queue resources until it reaches the target state.
* The queue must be already disconnected from the stack.
*/
struct funeth_txq *funeth_txq_free(struct funeth_txq *q, int state)
{
if (state < FUN_QSTATE_INIT_FULL)
fun_txq_free_dev(q);
if (state == FUN_QSTATE_DESTROYED) {
fun_txq_free_sw(q);
q = NULL;
}
return q;
}