// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Google virtual Ethernet (gve) driver
*
* Copyright (C) 2015-2024 Google LLC
*/
#include <linux/bpf.h>
#include <linux/cpumask.h>
#include <linux/etherdevice.h>
#include <linux/filter.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/utsname.h>
#include <linux/version.h>
#include <net/netdev_queues.h>
#include <net/sch_generic.h>
#include <net/xdp_sock_drv.h>
#include "gve.h"
#include "gve_dqo.h"
#include "gve_adminq.h"
#include "gve_register.h"
#include "gve_utils.h"
#define GVE_DEFAULT_RX_COPYBREAK (256)
#define DEFAULT_MSG_LEVEL (NETIF_MSG_DRV | NETIF_MSG_LINK)
#define GVE_VERSION "1.0.0"
#define GVE_VERSION_PREFIX "GVE-"
// Minimum amount of time between queue kicks in msec (10 seconds)
#define MIN_TX_TIMEOUT_GAP (1000 * 10)
char gve_driver_name[] = "gve";
const char gve_version_str[] = GVE_VERSION;
static const char gve_version_prefix[] = GVE_VERSION_PREFIX;
static int gve_verify_driver_compatibility(struct gve_priv *priv)
{
int err;
struct gve_driver_info *driver_info;
dma_addr_t driver_info_bus;
driver_info = dma_alloc_coherent(&priv->pdev->dev,
sizeof(struct gve_driver_info),
&driver_info_bus, GFP_KERNEL);
if (!driver_info)
return -ENOMEM;
*driver_info = (struct gve_driver_info) {
.os_type = 1, /* Linux */
.os_version_major = cpu_to_be32(LINUX_VERSION_MAJOR),
.os_version_minor = cpu_to_be32(LINUX_VERSION_SUBLEVEL),
.os_version_sub = cpu_to_be32(LINUX_VERSION_PATCHLEVEL),
.driver_capability_flags = {
cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS1),
cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS2),
cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS3),
cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS4),
},
};
strscpy(driver_info->os_version_str1, utsname()->release,
sizeof(driver_info->os_version_str1));
strscpy(driver_info->os_version_str2, utsname()->version,
sizeof(driver_info->os_version_str2));
err = gve_adminq_verify_driver_compatibility(priv,
sizeof(struct gve_driver_info),
driver_info_bus);
/* It's ok if the device doesn't support this */
if (err == -EOPNOTSUPP)
err = 0;
dma_free_coherent(&priv->pdev->dev,
sizeof(struct gve_driver_info),
driver_info, driver_info_bus);
return err;
}
static netdev_features_t gve_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
struct gve_priv *priv = netdev_priv(dev);
if (!gve_is_gqi(priv))
return gve_features_check_dqo(skb, dev, features);
return features;
}
static netdev_tx_t gve_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct gve_priv *priv = netdev_priv(dev);
if (gve_is_gqi(priv))
return gve_tx(skb, dev);
else
return gve_tx_dqo(skb, dev);
}
static void gve_get_stats(struct net_device *dev, struct rtnl_link_stats64 *s)
{
struct gve_priv *priv = netdev_priv(dev);
unsigned int start;
u64 packets, bytes;
int num_tx_queues;
int ring;
num_tx_queues = gve_num_tx_queues(priv);
if (priv->rx) {
for (ring = 0; ring < priv->rx_cfg.num_queues; ring++) {
do {
start =
u64_stats_fetch_begin(&priv->rx[ring].statss);
packets = priv->rx[ring].rpackets;
bytes = priv->rx[ring].rbytes;
} while (u64_stats_fetch_retry(&priv->rx[ring].statss,
start));
s->rx_packets += packets;
s->rx_bytes += bytes;
}
}
if (priv->tx) {
for (ring = 0; ring < num_tx_queues; ring++) {
do {
start =
u64_stats_fetch_begin(&priv->tx[ring].statss);
packets = priv->tx[ring].pkt_done;
bytes = priv->tx[ring].bytes_done;
} while (u64_stats_fetch_retry(&priv->tx[ring].statss,
start));
s->tx_packets += packets;
s->tx_bytes += bytes;
}
}
}
static int gve_alloc_flow_rule_caches(struct gve_priv *priv)
{
struct gve_flow_rules_cache *flow_rules_cache = &priv->flow_rules_cache;
int err = 0;
if (!priv->max_flow_rules)
return 0;
flow_rules_cache->rules_cache =
kvcalloc(GVE_FLOW_RULES_CACHE_SIZE, sizeof(*flow_rules_cache->rules_cache),
GFP_KERNEL);
if (!flow_rules_cache->rules_cache) {
dev_err(&priv->pdev->dev, "Cannot alloc flow rules cache\n");
return -ENOMEM;
}
flow_rules_cache->rule_ids_cache =
kvcalloc(GVE_FLOW_RULE_IDS_CACHE_SIZE, sizeof(*flow_rules_cache->rule_ids_cache),
GFP_KERNEL);
if (!flow_rules_cache->rule_ids_cache) {
dev_err(&priv->pdev->dev, "Cannot alloc flow rule ids cache\n");
err = -ENOMEM;
goto free_rules_cache;
}
return 0;
free_rules_cache:
kvfree(flow_rules_cache->rules_cache);
flow_rules_cache->rules_cache = NULL;
return err;
}
static void gve_free_flow_rule_caches(struct gve_priv *priv)
{
struct gve_flow_rules_cache *flow_rules_cache = &priv->flow_rules_cache;
kvfree(flow_rules_cache->rule_ids_cache);
flow_rules_cache->rule_ids_cache = NULL;
kvfree(flow_rules_cache->rules_cache);
flow_rules_cache->rules_cache = NULL;
}
static int gve_alloc_counter_array(struct gve_priv *priv)
{
priv->counter_array =
dma_alloc_coherent(&priv->pdev->dev,
priv->num_event_counters *
sizeof(*priv->counter_array),
&priv->counter_array_bus, GFP_KERNEL);
if (!priv->counter_array)
return -ENOMEM;
return 0;
}
static void gve_free_counter_array(struct gve_priv *priv)
{
if (!priv->counter_array)
return;
dma_free_coherent(&priv->pdev->dev,
priv->num_event_counters *
sizeof(*priv->counter_array),
priv->counter_array, priv->counter_array_bus);
priv->counter_array = NULL;
}
/* NIC requests to report stats */
static void gve_stats_report_task(struct work_struct *work)
{
struct gve_priv *priv = container_of(work, struct gve_priv,
stats_report_task);
if (gve_get_do_report_stats(priv)) {
gve_handle_report_stats(priv);
gve_clear_do_report_stats(priv);
}
}
static void gve_stats_report_schedule(struct gve_priv *priv)
{
if (!gve_get_probe_in_progress(priv) &&
!gve_get_reset_in_progress(priv)) {
gve_set_do_report_stats(priv);
queue_work(priv->gve_wq, &priv->stats_report_task);
}
}
static void gve_stats_report_timer(struct timer_list *t)
{
struct gve_priv *priv = from_timer(priv, t, stats_report_timer);
mod_timer(&priv->stats_report_timer,
round_jiffies(jiffies +
msecs_to_jiffies(priv->stats_report_timer_period)));
gve_stats_report_schedule(priv);
}
static int gve_alloc_stats_report(struct gve_priv *priv)
{
int tx_stats_num, rx_stats_num;
tx_stats_num = (GVE_TX_STATS_REPORT_NUM + NIC_TX_STATS_REPORT_NUM) *
gve_num_tx_queues(priv);
rx_stats_num = (GVE_RX_STATS_REPORT_NUM + NIC_RX_STATS_REPORT_NUM) *
priv->rx_cfg.num_queues;
priv->stats_report_len = struct_size(priv->stats_report, stats,
size_add(tx_stats_num, rx_stats_num));
priv->stats_report =
dma_alloc_coherent(&priv->pdev->dev, priv->stats_report_len,
&priv->stats_report_bus, GFP_KERNEL);
if (!priv->stats_report)
return -ENOMEM;
/* Set up timer for the report-stats task */
timer_setup(&priv->stats_report_timer, gve_stats_report_timer, 0);
priv->stats_report_timer_period = GVE_STATS_REPORT_TIMER_PERIOD;
return 0;
}
static void gve_free_stats_report(struct gve_priv *priv)
{
if (!priv->stats_report)
return;
del_timer_sync(&priv->stats_report_timer);
dma_free_coherent(&priv->pdev->dev, priv->stats_report_len,
priv->stats_report, priv->stats_report_bus);
priv->stats_report = NULL;
}
static irqreturn_t gve_mgmnt_intr(int irq, void *arg)
{
struct gve_priv *priv = arg;
queue_work(priv->gve_wq, &priv->service_task);
return IRQ_HANDLED;
}
static irqreturn_t gve_intr(int irq, void *arg)
{
struct gve_notify_block *block = arg;
struct gve_priv *priv = block->priv;
iowrite32be(GVE_IRQ_MASK, gve_irq_doorbell(priv, block));
napi_schedule_irqoff(&block->napi);
return IRQ_HANDLED;
}
static irqreturn_t gve_intr_dqo(int irq, void *arg)
{
struct gve_notify_block *block = arg;
/* Interrupts are automatically masked */
napi_schedule_irqoff(&block->napi);
return IRQ_HANDLED;
}
static int gve_is_napi_on_home_cpu(struct gve_priv *priv, u32 irq)
{
int cpu_curr = smp_processor_id();
const struct cpumask *aff_mask;
aff_mask = irq_get_effective_affinity_mask(irq);
if (unlikely(!aff_mask))
return 1;
return cpumask_test_cpu(cpu_curr, aff_mask);
}
int gve_napi_poll(struct napi_struct *napi, int budget)
{
struct gve_notify_block *block;
__be32 __iomem *irq_doorbell;
bool reschedule = false;
struct gve_priv *priv;
int work_done = 0;
block = container_of(napi, struct gve_notify_block, napi);
priv = block->priv;
if (block->tx) {
if (block->tx->q_num < priv->tx_cfg.num_queues)
reschedule |= gve_tx_poll(block, budget);
else if (budget)
reschedule |= gve_xdp_poll(block, budget);
}
if (!budget)
return 0;
if (block->rx) {
work_done = gve_rx_poll(block, budget);
reschedule |= work_done == budget;
}
if (reschedule)
return budget;
/* Complete processing - don't unmask irq if busy polling is enabled */
if (likely(napi_complete_done(napi, work_done))) {
irq_doorbell = gve_irq_doorbell(priv, block);
iowrite32be(GVE_IRQ_ACK | GVE_IRQ_EVENT, irq_doorbell);
/* Ensure IRQ ACK is visible before we check pending work.
* If queue had issued updates, it would be truly visible.
*/
mb();
if (block->tx)
reschedule |= gve_tx_clean_pending(priv, block->tx);
if (block->rx)
reschedule |= gve_rx_work_pending(block->rx);
if (reschedule && napi_schedule(napi))
iowrite32be(GVE_IRQ_MASK, irq_doorbell);
}
return work_done;
}
int gve_napi_poll_dqo(struct napi_struct *napi, int budget)
{
struct gve_notify_block *block =
container_of(napi, struct gve_notify_block, napi);
struct gve_priv *priv = block->priv;
bool reschedule = false;
int work_done = 0;
if (block->tx)
reschedule |= gve_tx_poll_dqo(block, /*do_clean=*/true);
if (!budget)
return 0;
if (block->rx) {
work_done = gve_rx_poll_dqo(block, budget);
reschedule |= work_done == budget;
}
if (reschedule) {
/* Reschedule by returning budget only if already on the correct
* cpu.
*/
if (likely(gve_is_napi_on_home_cpu(priv, block->irq)))
return budget;
/* If not on the cpu with which this queue's irq has affinity
* with, we avoid rescheduling napi and arm the irq instead so
* that napi gets rescheduled back eventually onto the right
* cpu.
*/
if (work_done == budget)
work_done--;
}
if (likely(napi_complete_done(napi, work_done))) {
/* Enable interrupts again.
*
* We don't need to repoll afterwards because HW supports the
* PCI MSI-X PBA feature.
*
* Another interrupt would be triggered if a new event came in
* since the last one.
*/
gve_write_irq_doorbell_dqo(priv, block,
GVE_ITR_NO_UPDATE_DQO | GVE_ITR_ENABLE_BIT_DQO);
}
return work_done;
}
static int gve_alloc_notify_blocks(struct gve_priv *priv)
{
int num_vecs_requested = priv->num_ntfy_blks + 1;
unsigned int active_cpus;
int vecs_enabled;
int i, j;
int err;
priv->msix_vectors = kvcalloc(num_vecs_requested,
sizeof(*priv->msix_vectors), GFP_KERNEL);
if (!priv->msix_vectors)
return -ENOMEM;
for (i = 0; i < num_vecs_requested; i++)
priv->msix_vectors[i].entry = i;
vecs_enabled = pci_enable_msix_range(priv->pdev, priv->msix_vectors,
GVE_MIN_MSIX, num_vecs_requested);
if (vecs_enabled < 0) {
dev_err(&priv->pdev->dev, "Could not enable min msix %d/%d\n",
GVE_MIN_MSIX, vecs_enabled);
err = vecs_enabled;
goto abort_with_msix_vectors;
}
if (vecs_enabled != num_vecs_requested) {
int new_num_ntfy_blks = (vecs_enabled - 1) & ~0x1;
int vecs_per_type = new_num_ntfy_blks / 2;
int vecs_left = new_num_ntfy_blks % 2;
priv->num_ntfy_blks = new_num_ntfy_blks;
priv->mgmt_msix_idx = priv->num_ntfy_blks;
priv->tx_cfg.max_queues = min_t(int, priv->tx_cfg.max_queues,
vecs_per_type);
priv->rx_cfg.max_queues = min_t(int, priv->rx_cfg.max_queues,
vecs_per_type + vecs_left);
dev_err(&priv->pdev->dev,
"Could not enable desired msix, only enabled %d, adjusting tx max queues to %d, and rx max queues to %d\n",
vecs_enabled, priv->tx_cfg.max_queues,
priv->rx_cfg.max_queues);
if (priv->tx_cfg.num_queues > priv->tx_cfg.max_queues)
priv->tx_cfg.num_queues = priv->tx_cfg.max_queues;
if (priv->rx_cfg.num_queues > priv->rx_cfg.max_queues)
priv->rx_cfg.num_queues = priv->rx_cfg.max_queues;
}
/* Half the notification blocks go to TX and half to RX */
active_cpus = min_t(int, priv->num_ntfy_blks / 2, num_online_cpus());
/* Setup Management Vector - the last vector */
snprintf(priv->mgmt_msix_name, sizeof(priv->mgmt_msix_name), "gve-mgmnt@pci:%s",
pci_name(priv->pdev));
err = request_irq(priv->msix_vectors[priv->mgmt_msix_idx].vector,
gve_mgmnt_intr, 0, priv->mgmt_msix_name, priv);
if (err) {
dev_err(&priv->pdev->dev, "Did not receive management vector.\n");
goto abort_with_msix_enabled;
}
priv->irq_db_indices =
dma_alloc_coherent(&priv->pdev->dev,
priv->num_ntfy_blks *
sizeof(*priv->irq_db_indices),
&priv->irq_db_indices_bus, GFP_KERNEL);
if (!priv->irq_db_indices) {
err = -ENOMEM;
goto abort_with_mgmt_vector;
}
priv->ntfy_blocks = kvzalloc(priv->num_ntfy_blks *
sizeof(*priv->ntfy_blocks), GFP_KERNEL);
if (!priv->ntfy_blocks) {
err = -ENOMEM;
goto abort_with_irq_db_indices;
}
/* Setup the other blocks - the first n-1 vectors */
for (i = 0; i < priv->num_ntfy_blks; i++) {
struct gve_notify_block *block = &priv->ntfy_blocks[i];
int msix_idx = i;
snprintf(block->name, sizeof(block->name), "gve-ntfy-blk%d@pci:%s",
i, pci_name(priv->pdev));
block->priv = priv;
err = request_irq(priv->msix_vectors[msix_idx].vector,
gve_is_gqi(priv) ? gve_intr : gve_intr_dqo,
0, block->name, block);
if (err) {
dev_err(&priv->pdev->dev,
"Failed to receive msix vector %d\n", i);
goto abort_with_some_ntfy_blocks;
}
block->irq = priv->msix_vectors[msix_idx].vector;
irq_set_affinity_hint(priv->msix_vectors[msix_idx].vector,
get_cpu_mask(i % active_cpus));
block->irq_db_index = &priv->irq_db_indices[i].index;
}
return 0;
abort_with_some_ntfy_blocks:
for (j = 0; j < i; j++) {
struct gve_notify_block *block = &priv->ntfy_blocks[j];
int msix_idx = j;
irq_set_affinity_hint(priv->msix_vectors[msix_idx].vector,
NULL);
free_irq(priv->msix_vectors[msix_idx].vector, block);
block->irq = 0;
}
kvfree(priv->ntfy_blocks);
priv->ntfy_blocks = NULL;
abort_with_irq_db_indices:
dma_free_coherent(&priv->pdev->dev, priv->num_ntfy_blks *
sizeof(*priv->irq_db_indices),
priv->irq_db_indices, priv->irq_db_indices_bus);
priv->irq_db_indices = NULL;
abort_with_mgmt_vector:
free_irq(priv->msix_vectors[priv->mgmt_msix_idx].vector, priv);
abort_with_msix_enabled:
pci_disable_msix(priv->pdev);
abort_with_msix_vectors:
kvfree(priv->msix_vectors);
priv->msix_vectors = NULL;
return err;
}
static void gve_free_notify_blocks(struct gve_priv *priv)
{
int i;
if (!priv->msix_vectors)
return;
/* Free the irqs */
for (i = 0; i < priv->num_ntfy_blks; i++) {
struct gve_notify_block *block = &priv->ntfy_blocks[i];
int msix_idx = i;
irq_set_affinity_hint(priv->msix_vectors[msix_idx].vector,
NULL);
free_irq(priv->msix_vectors[msix_idx].vector, block);
block->irq = 0;
}
free_irq(priv->msix_vectors[priv->mgmt_msix_idx].vector, priv);
kvfree(priv->ntfy_blocks);
priv->ntfy_blocks = NULL;
dma_free_coherent(&priv->pdev->dev, priv->num_ntfy_blks *
sizeof(*priv->irq_db_indices),
priv->irq_db_indices, priv->irq_db_indices_bus);
priv->irq_db_indices = NULL;
pci_disable_msix(priv->pdev);
kvfree(priv->msix_vectors);
priv->msix_vectors = NULL;
}
static int gve_setup_device_resources(struct gve_priv *priv)
{
int err;
err = gve_alloc_flow_rule_caches(priv);
if (err)
return err;
err = gve_alloc_counter_array(priv);
if (err)
goto abort_with_flow_rule_caches;
err = gve_alloc_notify_blocks(priv);
if (err)
goto abort_with_counter;
err = gve_alloc_stats_report(priv);
if (err)
goto abort_with_ntfy_blocks;
err = gve_adminq_configure_device_resources(priv,
priv->counter_array_bus,
priv->num_event_counters,
priv->irq_db_indices_bus,
priv->num_ntfy_blks);
if (unlikely(err)) {
dev_err(&priv->pdev->dev,
"could not setup device_resources: err=%d\n", err);
err = -ENXIO;
goto abort_with_stats_report;
}
if (!gve_is_gqi(priv)) {
priv->ptype_lut_dqo = kvzalloc(sizeof(*priv->ptype_lut_dqo),
GFP_KERNEL);
if (!priv->ptype_lut_dqo) {
err = -ENOMEM;
goto abort_with_stats_report;
}
err = gve_adminq_get_ptype_map_dqo(priv, priv->ptype_lut_dqo);
if (err) {
dev_err(&priv->pdev->dev,
"Failed to get ptype map: err=%d\n", err);
goto abort_with_ptype_lut;
}
}
err = gve_adminq_report_stats(priv, priv->stats_report_len,
priv->stats_report_bus,
GVE_STATS_REPORT_TIMER_PERIOD);
if (err)
dev_err(&priv->pdev->dev,
"Failed to report stats: err=%d\n", err);
gve_set_device_resources_ok(priv);
return 0;
abort_with_ptype_lut:
kvfree(priv->ptype_lut_dqo);
priv->ptype_lut_dqo = NULL;
abort_with_stats_report:
gve_free_stats_report(priv);
abort_with_ntfy_blocks:
gve_free_notify_blocks(priv);
abort_with_counter:
gve_free_counter_array(priv);
abort_with_flow_rule_caches:
gve_free_flow_rule_caches(priv);
return err;
}
static void gve_trigger_reset(struct gve_priv *priv);
static void gve_teardown_device_resources(struct gve_priv *priv)
{
int err;
/* Tell device its resources are being freed */
if (gve_get_device_resources_ok(priv)) {
err = gve_flow_rules_reset(priv);
if (err) {
dev_err(&priv->pdev->dev,
"Failed to reset flow rules: err=%d\n", err);
gve_trigger_reset(priv);
}
/* detach the stats report */
err = gve_adminq_report_stats(priv, 0, 0x0, GVE_STATS_REPORT_TIMER_PERIOD);
if (err) {
dev_err(&priv->pdev->dev,
"Failed to detach stats report: err=%d\n", err);
gve_trigger_reset(priv);
}
err = gve_adminq_deconfigure_device_resources(priv);
if (err) {
dev_err(&priv->pdev->dev,
"Could not deconfigure device resources: err=%d\n",
err);
gve_trigger_reset(priv);
}
}
kvfree(priv->ptype_lut_dqo);
priv->ptype_lut_dqo = NULL;
gve_free_flow_rule_caches(priv);
gve_free_counter_array(priv);
gve_free_notify_blocks(priv);
gve_free_stats_report(priv);
gve_clear_device_resources_ok(priv);
}
static int gve_unregister_qpl(struct gve_priv *priv,
struct gve_queue_page_list *qpl)
{
int err;
if (!qpl)
return 0;
err = gve_adminq_unregister_page_list(priv, qpl->id);
if (err) {
netif_err(priv, drv, priv->dev,
"Failed to unregister queue page list %d\n",
qpl->id);
return err;
}
priv->num_registered_pages -= qpl->num_entries;
return 0;
}
static int gve_register_qpl(struct gve_priv *priv,
struct gve_queue_page_list *qpl)
{
int pages;
int err;
if (!qpl)
return 0;
pages = qpl->num_entries;
if (pages + priv->num_registered_pages > priv->max_registered_pages) {
netif_err(priv, drv, priv->dev,
"Reached max number of registered pages %llu > %llu\n",
pages + priv->num_registered_pages,
priv->max_registered_pages);
return -EINVAL;
}
err = gve_adminq_register_page_list(priv, qpl);
if (err) {
netif_err(priv, drv, priv->dev,
"failed to register queue page list %d\n",
qpl->id);
return err;
}
priv->num_registered_pages += pages;
return 0;
}
static struct gve_queue_page_list *gve_tx_get_qpl(struct gve_priv *priv, int idx)
{
struct gve_tx_ring *tx = &priv->tx[idx];
if (gve_is_gqi(priv))
return tx->tx_fifo.qpl;
else
return tx->dqo.qpl;
}
static struct gve_queue_page_list *gve_rx_get_qpl(struct gve_priv *priv, int idx)
{
struct gve_rx_ring *rx = &priv->rx[idx];
if (gve_is_gqi(priv))
return rx->data.qpl;
else
return rx->dqo.qpl;
}
static int gve_register_xdp_qpls(struct gve_priv *priv)
{
int start_id;
int err;
int i;
start_id = gve_xdp_tx_start_queue_id(priv);
for (i = start_id; i < start_id + gve_num_xdp_qpls(priv); i++) {
err = gve_register_qpl(priv, gve_tx_get_qpl(priv, i));
/* This failure will trigger a reset - no need to clean up */
if (err)
return err;
}
return 0;
}
static int gve_register_qpls(struct gve_priv *priv)
{
int num_tx_qpls, num_rx_qpls;
int err;
int i;
num_tx_qpls = gve_num_tx_qpls(&priv->tx_cfg, gve_num_xdp_qpls(priv),
gve_is_qpl(priv));
num_rx_qpls = gve_num_rx_qpls(&priv->rx_cfg, gve_is_qpl(priv));
for (i = 0; i < num_tx_qpls; i++) {
err = gve_register_qpl(priv, gve_tx_get_qpl(priv, i));
if (err)
return err;
}
for (i = 0; i < num_rx_qpls; i++) {
err = gve_register_qpl(priv, gve_rx_get_qpl(priv, i));
if (err)
return err;
}
return 0;
}
static int gve_unregister_xdp_qpls(struct gve_priv *priv)
{
int start_id;
int err;
int i;
start_id = gve_xdp_tx_start_queue_id(priv);
for (i = start_id; i < start_id + gve_num_xdp_qpls(priv); i++) {
err = gve_unregister_qpl(priv, gve_tx_get_qpl(priv, i));
/* This failure will trigger a reset - no need to clean */
if (err)
return err;
}
return 0;
}
static int gve_unregister_qpls(struct gve_priv *priv)
{
int num_tx_qpls, num_rx_qpls;
int err;
int i;
num_tx_qpls = gve_num_tx_qpls(&priv->tx_cfg, gve_num_xdp_qpls(priv),
gve_is_qpl(priv));
num_rx_qpls = gve_num_rx_qpls(&priv->rx_cfg, gve_is_qpl(priv));
for (i = 0; i < num_tx_qpls; i++) {
err = gve_unregister_qpl(priv, gve_tx_get_qpl(priv, i));
/* This failure will trigger a reset - no need to clean */
if (err)
return err;
}
for (i = 0; i < num_rx_qpls; i++) {
err = gve_unregister_qpl(priv, gve_rx_get_qpl(priv, i));
/* This failure will trigger a reset - no need to clean */
if (err)
return err;
}
return 0;
}
static int gve_create_xdp_rings(struct gve_priv *priv)
{
int err;
err = gve_adminq_create_tx_queues(priv,
gve_xdp_tx_start_queue_id(priv),
priv->num_xdp_queues);
if (err) {
netif_err(priv, drv, priv->dev, "failed to create %d XDP tx queues\n",
priv->num_xdp_queues);
/* This failure will trigger a reset - no need to clean
* up
*/
return err;
}
netif_dbg(priv, drv, priv->dev, "created %d XDP tx queues\n",
priv->num_xdp_queues);
return 0;
}
static int gve_create_rings(struct gve_priv *priv)
{
int num_tx_queues = gve_num_tx_queues(priv);
int err;
int i;
err = gve_adminq_create_tx_queues(priv, 0, num_tx_queues);
if (err) {
netif_err(priv, drv, priv->dev, "failed to create %d tx queues\n",
num_tx_queues);
/* This failure will trigger a reset - no need to clean
* up
*/
return err;
}
netif_dbg(priv, drv, priv->dev, "created %d tx queues\n",
num_tx_queues);
err = gve_adminq_create_rx_queues(priv, priv->rx_cfg.num_queues);
if (err) {
netif_err(priv, drv, priv->dev, "failed to create %d rx queues\n",
priv->rx_cfg.num_queues);
/* This failure will trigger a reset - no need to clean
* up
*/
return err;
}
netif_dbg(priv, drv, priv->dev, "created %d rx queues\n",
priv->rx_cfg.num_queues);
if (gve_is_gqi(priv)) {
/* Rx data ring has been prefilled with packet buffers at queue
* allocation time.
*
* Write the doorbell to provide descriptor slots and packet
* buffers to the NIC.
*/
for (i = 0; i < priv->rx_cfg.num_queues; i++)
gve_rx_write_doorbell(priv, &priv->rx[i]);
} else {
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
/* Post buffers and ring doorbell. */
gve_rx_post_buffers_dqo(&priv->rx[i]);
}
}
return 0;
}
static void init_xdp_sync_stats(struct gve_priv *priv)
{
int start_id = gve_xdp_tx_start_queue_id(priv);
int i;
/* Init stats */
for (i = start_id; i < start_id + priv->num_xdp_queues; i++) {
int ntfy_idx = gve_tx_idx_to_ntfy(priv, i);
u64_stats_init(&priv->tx[i].statss);
priv->tx[i].ntfy_id = ntfy_idx;
}
}
static void gve_init_sync_stats(struct gve_priv *priv)
{
int i;
for (i = 0; i < priv->tx_cfg.num_queues; i++)
u64_stats_init(&priv->tx[i].statss);
/* Init stats for XDP TX queues */
init_xdp_sync_stats(priv);
for (i = 0; i < priv->rx_cfg.num_queues; i++)
u64_stats_init(&priv->rx[i].statss);
}
static void gve_tx_get_curr_alloc_cfg(struct gve_priv *priv,
struct gve_tx_alloc_rings_cfg *cfg)
{
cfg->qcfg = &priv->tx_cfg;
cfg->raw_addressing = !gve_is_qpl(priv);
cfg->ring_size = priv->tx_desc_cnt;
cfg->start_idx = 0;
cfg->num_rings = gve_num_tx_queues(priv);
cfg->tx = priv->tx;
}
static void gve_tx_stop_rings(struct gve_priv *priv, int start_id, int num_rings)
{
int i;
if (!priv->tx)
return;
for (i = start_id; i < start_id + num_rings; i++) {
if (gve_is_gqi(priv))
gve_tx_stop_ring_gqi(priv, i);
else
gve_tx_stop_ring_dqo(priv, i);
}
}
static void gve_tx_start_rings(struct gve_priv *priv, int start_id,
int num_rings)
{
int i;
for (i = start_id; i < start_id + num_rings; i++) {
if (gve_is_gqi(priv))
gve_tx_start_ring_gqi(priv, i);
else
gve_tx_start_ring_dqo(priv, i);
}
}
static int gve_alloc_xdp_rings(struct gve_priv *priv)
{
struct gve_tx_alloc_rings_cfg cfg = {0};
int err = 0;
if (!priv->num_xdp_queues)
return 0;
gve_tx_get_curr_alloc_cfg(priv, &cfg);
cfg.start_idx = gve_xdp_tx_start_queue_id(priv);
cfg.num_rings = priv->num_xdp_queues;
err = gve_tx_alloc_rings_gqi(priv, &cfg);
if (err)
return err;
gve_tx_start_rings(priv, cfg.start_idx, cfg.num_rings);
init_xdp_sync_stats(priv);
return 0;
}
static int gve_queues_mem_alloc(struct gve_priv *priv,
struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
{
int err;
if (gve_is_gqi(priv))
err = gve_tx_alloc_rings_gqi(priv, tx_alloc_cfg);
else
err = gve_tx_alloc_rings_dqo(priv, tx_alloc_cfg);
if (err)
return err;
if (gve_is_gqi(priv))
err = gve_rx_alloc_rings_gqi(priv, rx_alloc_cfg);
else
err = gve_rx_alloc_rings_dqo(priv, rx_alloc_cfg);
if (err)
goto free_tx;
return 0;
free_tx:
if (gve_is_gqi(priv))
gve_tx_free_rings_gqi(priv, tx_alloc_cfg);
else
gve_tx_free_rings_dqo(priv, tx_alloc_cfg);
return err;
}
static int gve_destroy_xdp_rings(struct gve_priv *priv)
{
int start_id;
int err;
start_id = gve_xdp_tx_start_queue_id(priv);
err = gve_adminq_destroy_tx_queues(priv,
start_id,
priv->num_xdp_queues);
if (err) {
netif_err(priv, drv, priv->dev,
"failed to destroy XDP queues\n");
/* This failure will trigger a reset - no need to clean up */
return err;
}
netif_dbg(priv, drv, priv->dev, "destroyed XDP queues\n");
return 0;
}
static int gve_destroy_rings(struct gve_priv *priv)
{
int num_tx_queues = gve_num_tx_queues(priv);
int err;
err = gve_adminq_destroy_tx_queues(priv, 0, num_tx_queues);
if (err) {
netif_err(priv, drv, priv->dev,
"failed to destroy tx queues\n");
/* This failure will trigger a reset - no need to clean up */
return err;
}
netif_dbg(priv, drv, priv->dev, "destroyed tx queues\n");
err = gve_adminq_destroy_rx_queues(priv, priv->rx_cfg.num_queues);
if (err) {
netif_err(priv, drv, priv->dev,
"failed to destroy rx queues\n");
/* This failure will trigger a reset - no need to clean up */
return err;
}
netif_dbg(priv, drv, priv->dev, "destroyed rx queues\n");
return 0;
}
static void gve_free_xdp_rings(struct gve_priv *priv)
{
struct gve_tx_alloc_rings_cfg cfg = {0};
gve_tx_get_curr_alloc_cfg(priv, &cfg);
cfg.start_idx = gve_xdp_tx_start_queue_id(priv);
cfg.num_rings = priv->num_xdp_queues;
if (priv->tx) {
gve_tx_stop_rings(priv, cfg.start_idx, cfg.num_rings);
gve_tx_free_rings_gqi(priv, &cfg);
}
}
static void gve_queues_mem_free(struct gve_priv *priv,
struct gve_tx_alloc_rings_cfg *tx_cfg,
struct gve_rx_alloc_rings_cfg *rx_cfg)
{
if (gve_is_gqi(priv)) {
gve_tx_free_rings_gqi(priv, tx_cfg);
gve_rx_free_rings_gqi(priv, rx_cfg);
} else {
gve_tx_free_rings_dqo(priv, tx_cfg);
gve_rx_free_rings_dqo(priv, rx_cfg);
}
}
int gve_alloc_page(struct gve_priv *priv, struct device *dev,
struct page **page, dma_addr_t *dma,
enum dma_data_direction dir, gfp_t gfp_flags)
{
*page = alloc_page(gfp_flags);
if (!*page) {
priv->page_alloc_fail++;
return -ENOMEM;
}
*dma = dma_map_page(dev, *page, 0, PAGE_SIZE, dir);
if (dma_mapping_error(dev, *dma)) {
priv->dma_mapping_error++;
put_page(*page);
return -ENOMEM;
}
return 0;
}
struct gve_queue_page_list *gve_alloc_queue_page_list(struct gve_priv *priv,
u32 id, int pages)
{
struct gve_queue_page_list *qpl;
int err;
int i;
qpl = kvzalloc(sizeof(*qpl), GFP_KERNEL);
if (!qpl)
return NULL;
qpl->id = id;
qpl->num_entries = 0;
qpl->pages = kvcalloc(pages, sizeof(*qpl->pages), GFP_KERNEL);
if (!qpl->pages)
goto abort;
qpl->page_buses = kvcalloc(pages, sizeof(*qpl->page_buses), GFP_KERNEL);
if (!qpl->page_buses)
goto abort;
for (i = 0; i < pages; i++) {
err = gve_alloc_page(priv, &priv->pdev->dev, &qpl->pages[i],
&qpl->page_buses[i],
gve_qpl_dma_dir(priv, id), GFP_KERNEL);
if (err)
goto abort;
qpl->num_entries++;
}
return qpl;
abort:
gve_free_queue_page_list(priv, qpl, id);
return NULL;
}
void gve_free_page(struct device *dev, struct page *page, dma_addr_t dma,
enum dma_data_direction dir)
{
if (!dma_mapping_error(dev, dma))
dma_unmap_page(dev, dma, PAGE_SIZE, dir);
if (page)
put_page(page);
}
void gve_free_queue_page_list(struct gve_priv *priv,
struct gve_queue_page_list *qpl,
u32 id)
{
int i;
if (!qpl)
return;
if (!qpl->pages)
goto free_qpl;
if (!qpl->page_buses)
goto free_pages;
for (i = 0; i < qpl->num_entries; i++)
gve_free_page(&priv->pdev->dev, qpl->pages[i],
qpl->page_buses[i], gve_qpl_dma_dir(priv, id));
kvfree(qpl->page_buses);
qpl->page_buses = NULL;
free_pages:
kvfree(qpl->pages);
qpl->pages = NULL;
free_qpl:
kvfree(qpl);
}
/* Use this to schedule a reset when the device is capable of continuing
* to handle other requests in its current state. If it is not, do a reset
* in thread instead.
*/
void gve_schedule_reset(struct gve_priv *priv)
{
gve_set_do_reset(priv);
queue_work(priv->gve_wq, &priv->service_task);
}
static void gve_reset_and_teardown(struct gve_priv *priv, bool was_up);
static int gve_reset_recovery(struct gve_priv *priv, bool was_up);
static void gve_turndown(struct gve_priv *priv);
static void gve_turnup(struct gve_priv *priv);
static int gve_reg_xdp_info(struct gve_priv *priv, struct net_device *dev)
{
struct napi_struct *napi;
struct gve_rx_ring *rx;
int err = 0;
int i, j;
u32 tx_qid;
if (!priv->num_xdp_queues)
return 0;
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
rx = &priv->rx[i];
napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
err = xdp_rxq_info_reg(&rx->xdp_rxq, dev, i,
napi->napi_id);
if (err)
goto err;
err = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
MEM_TYPE_PAGE_SHARED, NULL);
if (err)
goto err;
rx->xsk_pool = xsk_get_pool_from_qid(dev, i);
if (rx->xsk_pool) {
err = xdp_rxq_info_reg(&rx->xsk_rxq, dev, i,
napi->napi_id);
if (err)
goto err;
err = xdp_rxq_info_reg_mem_model(&rx->xsk_rxq,
MEM_TYPE_XSK_BUFF_POOL, NULL);
if (err)
goto err;
xsk_pool_set_rxq_info(rx->xsk_pool,
&rx->xsk_rxq);
}
}
for (i = 0; i < priv->num_xdp_queues; i++) {
tx_qid = gve_xdp_tx_queue_id(priv, i);
priv->tx[tx_qid].xsk_pool = xsk_get_pool_from_qid(dev, i);
}
return 0;
err:
for (j = i; j >= 0; j--) {
rx = &priv->rx[j];
if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
xdp_rxq_info_unreg(&rx->xdp_rxq);
if (xdp_rxq_info_is_reg(&rx->xsk_rxq))
xdp_rxq_info_unreg(&rx->xsk_rxq);
}
return err;
}
static void gve_unreg_xdp_info(struct gve_priv *priv)
{
int i, tx_qid;
if (!priv->num_xdp_queues)
return;
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
struct gve_rx_ring *rx = &priv->rx[i];
xdp_rxq_info_unreg(&rx->xdp_rxq);
if (rx->xsk_pool) {
xdp_rxq_info_unreg(&rx->xsk_rxq);
rx->xsk_pool = NULL;
}
}
for (i = 0; i < priv->num_xdp_queues; i++) {
tx_qid = gve_xdp_tx_queue_id(priv, i);
priv->tx[tx_qid].xsk_pool = NULL;
}
}
static void gve_drain_page_cache(struct gve_priv *priv)
{
int i;
for (i = 0; i < priv->rx_cfg.num_queues; i++)
page_frag_cache_drain(&priv->rx[i].page_cache);
}
static void gve_rx_get_curr_alloc_cfg(struct gve_priv *priv,
struct gve_rx_alloc_rings_cfg *cfg)
{
cfg->qcfg = &priv->rx_cfg;
cfg->qcfg_tx = &priv->tx_cfg;
cfg->raw_addressing = !gve_is_qpl(priv);
cfg->enable_header_split = priv->header_split_enabled;
cfg->ring_size = priv->rx_desc_cnt;
cfg->packet_buffer_size = gve_is_gqi(priv) ?
GVE_DEFAULT_RX_BUFFER_SIZE :
priv->data_buffer_size_dqo;
cfg->rx = priv->rx;
}
void gve_get_curr_alloc_cfgs(struct gve_priv *priv,
struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
{
gve_tx_get_curr_alloc_cfg(priv, tx_alloc_cfg);
gve_rx_get_curr_alloc_cfg(priv, rx_alloc_cfg);
}
static void gve_rx_start_ring(struct gve_priv *priv, int i)
{
if (gve_is_gqi(priv))
gve_rx_start_ring_gqi(priv, i);
else
gve_rx_start_ring_dqo(priv, i);
}
static void gve_rx_start_rings(struct gve_priv *priv, int num_rings)
{
int i;
for (i = 0; i < num_rings; i++)
gve_rx_start_ring(priv, i);
}
static void gve_rx_stop_ring(struct gve_priv *priv, int i)
{
if (gve_is_gqi(priv))
gve_rx_stop_ring_gqi(priv, i);
else
gve_rx_stop_ring_dqo(priv, i);
}
static void gve_rx_stop_rings(struct gve_priv *priv, int num_rings)
{
int i;
if (!priv->rx)
return;
for (i = 0; i < num_rings; i++)
gve_rx_stop_ring(priv, i);
}
static void gve_queues_mem_remove(struct gve_priv *priv)
{
struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
gve_queues_mem_free(priv, &tx_alloc_cfg, &rx_alloc_cfg);
priv->tx = NULL;
priv->rx = NULL;
}
/* The passed-in queue memory is stored into priv and the queues are made live.
* No memory is allocated. Passed-in memory is freed on errors.
*/
static int gve_queues_start(struct gve_priv *priv,
struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
{
struct net_device *dev = priv->dev;
int err;
/* Record new resources into priv */
priv->tx = tx_alloc_cfg->tx;
priv->rx = rx_alloc_cfg->rx;
/* Record new configs into priv */
priv->tx_cfg = *tx_alloc_cfg->qcfg;
priv->rx_cfg = *rx_alloc_cfg->qcfg;
priv->tx_desc_cnt = tx_alloc_cfg->ring_size;
priv->rx_desc_cnt = rx_alloc_cfg->ring_size;
if (priv->xdp_prog)
priv->num_xdp_queues = priv->rx_cfg.num_queues;
else
priv->num_xdp_queues = 0;
gve_tx_start_rings(priv, 0, tx_alloc_cfg->num_rings);
gve_rx_start_rings(priv, rx_alloc_cfg->qcfg->num_queues);
gve_init_sync_stats(priv);
err = netif_set_real_num_tx_queues(dev, priv->tx_cfg.num_queues);
if (err)
goto stop_and_free_rings;
err = netif_set_real_num_rx_queues(dev, priv->rx_cfg.num_queues);
if (err)
goto stop_and_free_rings;
err = gve_reg_xdp_info(priv, dev);
if (err)
goto stop_and_free_rings;
err = gve_register_qpls(priv);
if (err)
goto reset;
priv->header_split_enabled = rx_alloc_cfg->enable_header_split;
priv->data_buffer_size_dqo = rx_alloc_cfg->packet_buffer_size;
err = gve_create_rings(priv);
if (err)
goto reset;
gve_set_device_rings_ok(priv);
if (gve_get_report_stats(priv))
mod_timer(&priv->stats_report_timer,
round_jiffies(jiffies +
msecs_to_jiffies(priv->stats_report_timer_period)));
gve_turnup(priv);
queue_work(priv->gve_wq, &priv->service_task);
priv->interface_up_cnt++;
return 0;
reset:
if (gve_get_reset_in_progress(priv))
goto stop_and_free_rings;
gve_reset_and_teardown(priv, true);
/* if this fails there is nothing we can do so just ignore the return */
gve_reset_recovery(priv, false);
/* return the original error */
return err;
stop_and_free_rings:
gve_tx_stop_rings(priv, 0, gve_num_tx_queues(priv));
gve_rx_stop_rings(priv, priv->rx_cfg.num_queues);
gve_queues_mem_remove(priv);
return err;
}
static int gve_open(struct net_device *dev)
{
struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
struct gve_priv *priv = netdev_priv(dev);
int err;
gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
err = gve_queues_mem_alloc(priv, &tx_alloc_cfg, &rx_alloc_cfg);
if (err)
return err;
/* No need to free on error: ownership of resources is lost after
* calling gve_queues_start.
*/
err = gve_queues_start(priv, &tx_alloc_cfg, &rx_alloc_cfg);
if (err)
return err;
return 0;
}
static int gve_queues_stop(struct gve_priv *priv)
{
int err;
netif_carrier_off(priv->dev);
if (gve_get_device_rings_ok(priv)) {
gve_turndown(priv);
gve_drain_page_cache(priv);
err = gve_destroy_rings(priv);
if (err)
goto err;
err = gve_unregister_qpls(priv);
if (err)
goto err;
gve_clear_device_rings_ok(priv);
}
del_timer_sync(&priv->stats_report_timer);
gve_unreg_xdp_info(priv);
gve_tx_stop_rings(priv, 0, gve_num_tx_queues(priv));
gve_rx_stop_rings(priv, priv->rx_cfg.num_queues);
priv->interface_down_cnt++;
return 0;
err:
/* This must have been called from a reset due to the rtnl lock
* so just return at this point.
*/
if (gve_get_reset_in_progress(priv))
return err;
/* Otherwise reset before returning */
gve_reset_and_teardown(priv, true);
return gve_reset_recovery(priv, false);
}
static int gve_close(struct net_device *dev)
{
struct gve_priv *priv = netdev_priv(dev);
int err;
err = gve_queues_stop(priv);
if (err)
return err;
gve_queues_mem_remove(priv);
return 0;
}
static int gve_remove_xdp_queues(struct gve_priv *priv)
{
int err;
err = gve_destroy_xdp_rings(priv);
if (err)
return err;
err = gve_unregister_xdp_qpls(priv);
if (err)
return err;
gve_unreg_xdp_info(priv);
gve_free_xdp_rings(priv);
priv->num_xdp_queues = 0;
return 0;
}
static int gve_add_xdp_queues(struct gve_priv *priv)
{
int err;
priv->num_xdp_queues = priv->rx_cfg.num_queues;
err = gve_alloc_xdp_rings(priv);
if (err)
goto err;
err = gve_reg_xdp_info(priv, priv->dev);
if (err)
goto free_xdp_rings;
err = gve_register_xdp_qpls(priv);
if (err)
goto free_xdp_rings;
err = gve_create_xdp_rings(priv);
if (err)
goto free_xdp_rings;
return 0;
free_xdp_rings:
gve_free_xdp_rings(priv);
err:
priv->num_xdp_queues = 0;
return err;
}
static void gve_handle_link_status(struct gve_priv *priv, bool link_status)
{
if (!gve_get_napi_enabled(priv))
return;
if (link_status == netif_carrier_ok(priv->dev))
return;
if (link_status) {
netdev_info(priv->dev, "Device link is up.\n");
netif_carrier_on(priv->dev);
} else {
netdev_info(priv->dev, "Device link is down.\n");
netif_carrier_off(priv->dev);
}
}
static int gve_set_xdp(struct gve_priv *priv, struct bpf_prog *prog,
struct netlink_ext_ack *extack)
{
struct bpf_prog *old_prog;
int err = 0;
u32 status;
old_prog = READ_ONCE(priv->xdp_prog);
if (!netif_running(priv->dev)) {
WRITE_ONCE(priv->xdp_prog, prog);
if (old_prog)
bpf_prog_put(old_prog);
return 0;
}
gve_turndown(priv);
if (!old_prog && prog) {
// Allocate XDP TX queues if an XDP program is
// being installed
err = gve_add_xdp_queues(priv);
if (err)
goto out;
} else if (old_prog && !prog) {
// Remove XDP TX queues if an XDP program is
// being uninstalled
err = gve_remove_xdp_queues(priv);
if (err)
goto out;
}
WRITE_ONCE(priv->xdp_prog, prog);
if (old_prog)
bpf_prog_put(old_prog);
out:
gve_turnup(priv);
status = ioread32be(&priv->reg_bar0->device_status);
gve_handle_link_status(priv, GVE_DEVICE_STATUS_LINK_STATUS_MASK & status);
return err;
}
static int gve_xsk_pool_enable(struct net_device *dev,
struct xsk_buff_pool *pool,
u16 qid)
{
struct gve_priv *priv = netdev_priv(dev);
struct napi_struct *napi;
struct gve_rx_ring *rx;
int tx_qid;
int err;
if (qid >= priv->rx_cfg.num_queues) {
dev_err(&priv->pdev->dev, "xsk pool invalid qid %d", qid);
return -EINVAL;
}
if (xsk_pool_get_rx_frame_size(pool) <
priv->dev->max_mtu + sizeof(struct ethhdr)) {
dev_err(&priv->pdev->dev, "xsk pool frame_len too small");
return -EINVAL;
}
err = xsk_pool_dma_map(pool, &priv->pdev->dev,
DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
if (err)
return err;
/* If XDP prog is not installed, return */
if (!priv->xdp_prog)
return 0;
rx = &priv->rx[qid];
napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
err = xdp_rxq_info_reg(&rx->xsk_rxq, dev, qid, napi->napi_id);
if (err)
goto err;
err = xdp_rxq_info_reg_mem_model(&rx->xsk_rxq,
MEM_TYPE_XSK_BUFF_POOL, NULL);
if (err)
goto err;
xsk_pool_set_rxq_info(pool, &rx->xsk_rxq);
rx->xsk_pool = pool;
tx_qid = gve_xdp_tx_queue_id(priv, qid);
priv->tx[tx_qid].xsk_pool = pool;
return 0;
err:
if (xdp_rxq_info_is_reg(&rx->xsk_rxq))
xdp_rxq_info_unreg(&rx->xsk_rxq);
xsk_pool_dma_unmap(pool,
DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
return err;
}
static int gve_xsk_pool_disable(struct net_device *dev,
u16 qid)
{
struct gve_priv *priv = netdev_priv(dev);
struct napi_struct *napi_rx;
struct napi_struct *napi_tx;
struct xsk_buff_pool *pool;
int tx_qid;
pool = xsk_get_pool_from_qid(dev, qid);
if (!pool)
return -EINVAL;
if (qid >= priv->rx_cfg.num_queues)
return -EINVAL;
/* If XDP prog is not installed, unmap DMA and return */
if (!priv->xdp_prog)
goto done;
tx_qid = gve_xdp_tx_queue_id(priv, qid);
if (!netif_running(dev)) {
priv->rx[qid].xsk_pool = NULL;
xdp_rxq_info_unreg(&priv->rx[qid].xsk_rxq);
priv->tx[tx_qid].xsk_pool = NULL;
goto done;
}
napi_rx = &priv->ntfy_blocks[priv->rx[qid].ntfy_id].napi;
napi_disable(napi_rx); /* make sure current rx poll is done */
napi_tx = &priv->ntfy_blocks[priv->tx[tx_qid].ntfy_id].napi;
napi_disable(napi_tx); /* make sure current tx poll is done */
priv->rx[qid].xsk_pool = NULL;
xdp_rxq_info_unreg(&priv->rx[qid].xsk_rxq);
priv->tx[tx_qid].xsk_pool = NULL;
smp_mb(); /* Make sure it is visible to the workers on datapath */
napi_enable(napi_rx);
if (gve_rx_work_pending(&priv->rx[qid]))
napi_schedule(napi_rx);
napi_enable(napi_tx);
if (gve_tx_clean_pending(priv, &priv->tx[tx_qid]))
napi_schedule(napi_tx);
done:
xsk_pool_dma_unmap(pool,
DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
return 0;
}
static int gve_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
{
struct gve_priv *priv = netdev_priv(dev);
int tx_queue_id = gve_xdp_tx_queue_id(priv, queue_id);
if (queue_id >= priv->rx_cfg.num_queues || !priv->xdp_prog)
return -EINVAL;
if (flags & XDP_WAKEUP_TX) {
struct gve_tx_ring *tx = &priv->tx[tx_queue_id];
struct napi_struct *napi =
&priv->ntfy_blocks[tx->ntfy_id].napi;
if (!napi_if_scheduled_mark_missed(napi)) {
/* Call local_bh_enable to trigger SoftIRQ processing */
local_bh_disable();
napi_schedule(napi);
local_bh_enable();
}
tx->xdp_xsk_wakeup++;
}
return 0;
}
static int verify_xdp_configuration(struct net_device *dev)
{
struct gve_priv *priv = netdev_priv(dev);
if (dev->features & NETIF_F_LRO) {
netdev_warn(dev, "XDP is not supported when LRO is on.\n");
return -EOPNOTSUPP;
}
if (priv->queue_format != GVE_GQI_QPL_FORMAT) {
netdev_warn(dev, "XDP is not supported in mode %d.\n",
priv->queue_format);
return -EOPNOTSUPP;
}
if (dev->mtu > GVE_DEFAULT_RX_BUFFER_SIZE - sizeof(struct ethhdr) - GVE_RX_PAD) {
netdev_warn(dev, "XDP is not supported for mtu %d.\n",
dev->mtu);
return -EOPNOTSUPP;
}
if (priv->rx_cfg.num_queues != priv->tx_cfg.num_queues ||
(2 * priv->tx_cfg.num_queues > priv->tx_cfg.max_queues)) {
netdev_warn(dev, "XDP load failed: The number of configured RX queues %d should be equal to the number of configured TX queues %d and the number of configured RX/TX queues should be less than or equal to half the maximum number of RX/TX queues %d",
priv->rx_cfg.num_queues,
priv->tx_cfg.num_queues,
priv->tx_cfg.max_queues);
return -EINVAL;
}
return 0;
}
static int gve_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
struct gve_priv *priv = netdev_priv(dev);
int err;
err = verify_xdp_configuration(dev);
if (err)
return err;
switch (xdp->command) {
case XDP_SETUP_PROG:
return gve_set_xdp(priv, xdp->prog, xdp->extack);
case XDP_SETUP_XSK_POOL:
if (xdp->xsk.pool)
return gve_xsk_pool_enable(dev, xdp->xsk.pool, xdp->xsk.queue_id);
else
return gve_xsk_pool_disable(dev, xdp->xsk.queue_id);
default:
return -EINVAL;
}
}
int gve_flow_rules_reset(struct gve_priv *priv)
{
if (!priv->max_flow_rules)
return 0;
return gve_adminq_reset_flow_rules(priv);
}
int gve_adjust_config(struct gve_priv *priv,
struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
{
int err;
/* Allocate resources for the new confiugration */
err = gve_queues_mem_alloc(priv, tx_alloc_cfg, rx_alloc_cfg);
if (err) {
netif_err(priv, drv, priv->dev,
"Adjust config failed to alloc new queues");
return err;
}
/* Teardown the device and free existing resources */
err = gve_close(priv->dev);
if (err) {
netif_err(priv, drv, priv->dev,
"Adjust config failed to close old queues");
gve_queues_mem_free(priv, tx_alloc_cfg, rx_alloc_cfg);
return err;
}
/* Bring the device back up again with the new resources. */
err = gve_queues_start(priv, tx_alloc_cfg, rx_alloc_cfg);
if (err) {
netif_err(priv, drv, priv->dev,
"Adjust config failed to start new queues, !!! DISABLING ALL QUEUES !!!\n");
/* No need to free on error: ownership of resources is lost after
* calling gve_queues_start.
*/
gve_turndown(priv);
return err;
}
return 0;
}
int gve_adjust_queues(struct gve_priv *priv,
struct gve_queue_config new_rx_config,
struct gve_queue_config new_tx_config)
{
struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
int err;
gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
/* Relay the new config from ethtool */
tx_alloc_cfg.qcfg = &new_tx_config;
rx_alloc_cfg.qcfg_tx = &new_tx_config;
rx_alloc_cfg.qcfg = &new_rx_config;
tx_alloc_cfg.num_rings = new_tx_config.num_queues;
if (netif_running(priv->dev)) {
err = gve_adjust_config(priv, &tx_alloc_cfg, &rx_alloc_cfg);
return err;
}
/* Set the config for the next up. */
priv->tx_cfg = new_tx_config;
priv->rx_cfg = new_rx_config;
return 0;
}
static void gve_turndown(struct gve_priv *priv)
{
int idx;
if (netif_carrier_ok(priv->dev))
netif_carrier_off(priv->dev);
if (!gve_get_napi_enabled(priv))
return;
/* Disable napi to prevent more work from coming in */
for (idx = 0; idx < gve_num_tx_queues(priv); idx++) {
int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
if (!gve_tx_was_added_to_block(priv, idx))
continue;
napi_disable(&block->napi);
}
for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
if (!gve_rx_was_added_to_block(priv, idx))
continue;
napi_disable(&block->napi);
}
/* Stop tx queues */
netif_tx_disable(priv->dev);
gve_clear_napi_enabled(priv);
gve_clear_report_stats(priv);
}
static void gve_turnup(struct gve_priv *priv)
{
int idx;
/* Start the tx queues */
netif_tx_start_all_queues(priv->dev);
/* Enable napi and unmask interrupts for all queues */
for (idx = 0; idx < gve_num_tx_queues(priv); idx++) {
int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
if (!gve_tx_was_added_to_block(priv, idx))
continue;
napi_enable(&block->napi);
if (gve_is_gqi(priv)) {
iowrite32be(0, gve_irq_doorbell(priv, block));
} else {
gve_set_itr_coalesce_usecs_dqo(priv, block,
priv->tx_coalesce_usecs);
}
/* Any descs written by the NIC before this barrier will be
* handled by the one-off napi schedule below. Whereas any
* descs after the barrier will generate interrupts.
*/
mb();
napi_schedule(&block->napi);
}
for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
if (!gve_rx_was_added_to_block(priv, idx))
continue;
napi_enable(&block->napi);
if (gve_is_gqi(priv)) {
iowrite32be(0, gve_irq_doorbell(priv, block));
} else {
gve_set_itr_coalesce_usecs_dqo(priv, block,
priv->rx_coalesce_usecs);
}
/* Any descs written by the NIC before this barrier will be
* handled by the one-off napi schedule below. Whereas any
* descs after the barrier will generate interrupts.
*/
mb();
napi_schedule(&block->napi);
}
gve_set_napi_enabled(priv);
}
static void gve_turnup_and_check_status(struct gve_priv *priv)
{
u32 status;
gve_turnup(priv);
status = ioread32be(&priv->reg_bar0->device_status);
gve_handle_link_status(priv, GVE_DEVICE_STATUS_LINK_STATUS_MASK & status);
}
static void gve_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct gve_notify_block *block;
struct gve_tx_ring *tx = NULL;
struct gve_priv *priv;
u32 last_nic_done;
u32 current_time;
u32 ntfy_idx;
netdev_info(dev, "Timeout on tx queue, %d", txqueue);
priv = netdev_priv(dev);
if (txqueue > priv->tx_cfg.num_queues)
goto reset;
ntfy_idx = gve_tx_idx_to_ntfy(priv, txqueue);
if (ntfy_idx >= priv->num_ntfy_blks)
goto reset;
block = &priv->ntfy_blocks[ntfy_idx];
tx = block->tx;
current_time = jiffies_to_msecs(jiffies);
if (tx->last_kick_msec + MIN_TX_TIMEOUT_GAP > current_time)
goto reset;
/* Check to see if there are missed completions, which will allow us to
* kick the queue.
*/
last_nic_done = gve_tx_load_event_counter(priv, tx);
if (last_nic_done - tx->done) {
netdev_info(dev, "Kicking queue %d", txqueue);
iowrite32be(GVE_IRQ_MASK, gve_irq_doorbell(priv, block));
napi_schedule(&block->napi);
tx->last_kick_msec = current_time;
goto out;
} // Else reset.
reset:
gve_schedule_reset(priv);
out:
if (tx)
tx->queue_timeout++;
priv->tx_timeo_cnt++;
}
u16 gve_get_pkt_buf_size(const struct gve_priv *priv, bool enable_hsplit)
{
if (enable_hsplit && priv->max_rx_buffer_size >= GVE_MAX_RX_BUFFER_SIZE)
return GVE_MAX_RX_BUFFER_SIZE;
else
return GVE_DEFAULT_RX_BUFFER_SIZE;
}
/* header-split is not supported on non-DQO_RDA yet even if device advertises it */
bool gve_header_split_supported(const struct gve_priv *priv)
{
return priv->header_buf_size && priv->queue_format == GVE_DQO_RDA_FORMAT;
}
int gve_set_hsplit_config(struct gve_priv *priv, u8 tcp_data_split)
{
struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
bool enable_hdr_split;
int err = 0;
if (tcp_data_split == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN)
return 0;
if (!gve_header_split_supported(priv)) {
dev_err(&priv->pdev->dev, "Header-split not supported\n");
return -EOPNOTSUPP;
}
if (tcp_data_split == ETHTOOL_TCP_DATA_SPLIT_ENABLED)
enable_hdr_split = true;
else
enable_hdr_split = false;
if (enable_hdr_split == priv->header_split_enabled)
return 0;
gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
rx_alloc_cfg.enable_header_split = enable_hdr_split;
rx_alloc_cfg.packet_buffer_size = gve_get_pkt_buf_size(priv, enable_hdr_split);
if (netif_running(priv->dev))
err = gve_adjust_config(priv, &tx_alloc_cfg, &rx_alloc_cfg);
return err;
}
static int gve_set_features(struct net_device *netdev,
netdev_features_t features)
{
const netdev_features_t orig_features = netdev->features;
struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
struct gve_priv *priv = netdev_priv(netdev);
int err;
gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
if ((netdev->features & NETIF_F_LRO) != (features & NETIF_F_LRO)) {
netdev->features ^= NETIF_F_LRO;
if (netif_running(netdev)) {
err = gve_adjust_config(priv, &tx_alloc_cfg, &rx_alloc_cfg);
if (err)
goto revert_features;
}
}
if ((netdev->features & NETIF_F_NTUPLE) && !(features & NETIF_F_NTUPLE)) {
err = gve_flow_rules_reset(priv);
if (err)
goto revert_features;
}
return 0;
revert_features:
netdev->features = orig_features;
return err;
}
static const struct net_device_ops gve_netdev_ops = {
.ndo_start_xmit = gve_start_xmit,
.ndo_features_check = gve_features_check,
.ndo_open = gve_open,
.ndo_stop = gve_close,
.ndo_get_stats64 = gve_get_stats,
.ndo_tx_timeout = gve_tx_timeout,
.ndo_set_features = gve_set_features,
.ndo_bpf = gve_xdp,
.ndo_xdp_xmit = gve_xdp_xmit,
.ndo_xsk_wakeup = gve_xsk_wakeup,
};
static void gve_handle_status(struct gve_priv *priv, u32 status)
{
if (GVE_DEVICE_STATUS_RESET_MASK & status) {
dev_info(&priv->pdev->dev, "Device requested reset.\n");
gve_set_do_reset(priv);
}
if (GVE_DEVICE_STATUS_REPORT_STATS_MASK & status) {
priv->stats_report_trigger_cnt++;
gve_set_do_report_stats(priv);
}
}
static void gve_handle_reset(struct gve_priv *priv)
{
/* A service task will be scheduled at the end of probe to catch any
* resets that need to happen, and we don't want to reset until
* probe is done.
*/
if (gve_get_probe_in_progress(priv))
return;
if (gve_get_do_reset(priv)) {
rtnl_lock();
gve_reset(priv, false);
rtnl_unlock();
}
}
void gve_handle_report_stats(struct gve_priv *priv)
{
struct stats *stats = priv->stats_report->stats;
int idx, stats_idx = 0;
unsigned int start = 0;
u64 tx_bytes;
if (!gve_get_report_stats(priv))
return;
be64_add_cpu(&priv->stats_report->written_count, 1);
/* tx stats */
if (priv->tx) {
for (idx = 0; idx < gve_num_tx_queues(priv); idx++) {
u32 last_completion = 0;
u32 tx_frames = 0;
/* DQO doesn't currently support these metrics. */
if (gve_is_gqi(priv)) {
last_completion = priv->tx[idx].done;
tx_frames = priv->tx[idx].req;
}
do {
start = u64_stats_fetch_begin(&priv->tx[idx].statss);
tx_bytes = priv->tx[idx].bytes_done;
} while (u64_stats_fetch_retry(&priv->tx[idx].statss, start));
stats[stats_idx++] = (struct stats) {
.stat_name = cpu_to_be32(TX_WAKE_CNT),
.value = cpu_to_be64(priv->tx[idx].wake_queue),
.queue_id = cpu_to_be32(idx),
};
stats[stats_idx++] = (struct stats) {
.stat_name = cpu_to_be32(TX_STOP_CNT),
.value = cpu_to_be64(priv->tx[idx].stop_queue),
.queue_id = cpu_to_be32(idx),
};
stats[stats_idx++] = (struct stats) {
.stat_name = cpu_to_be32(TX_FRAMES_SENT),
.value = cpu_to_be64(tx_frames),
.queue_id = cpu_to_be32(idx),
};
stats[stats_idx++] = (struct stats) {
.stat_name = cpu_to_be32(TX_BYTES_SENT),
.value = cpu_to_be64(tx_bytes),
.queue_id = cpu_to_be32(idx),
};
stats[stats_idx++] = (struct stats) {
.stat_name = cpu_to_be32(TX_LAST_COMPLETION_PROCESSED),
.value = cpu_to_be64(last_completion),
.queue_id = cpu_to_be32(idx),
};
stats[stats_idx++] = (struct stats) {
.stat_name = cpu_to_be32(TX_TIMEOUT_CNT),
.value = cpu_to_be64(priv->tx[idx].queue_timeout),
.queue_id = cpu_to_be32(idx),
};
}
}
/* rx stats */
if (priv->rx) {
for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
stats[stats_idx++] = (struct stats) {
.stat_name = cpu_to_be32(RX_NEXT_EXPECTED_SEQUENCE),
.value = cpu_to_be64(priv->rx[idx].desc.seqno),
.queue_id = cpu_to_be32(idx),
};
stats[stats_idx++] = (struct stats) {
.stat_name = cpu_to_be32(RX_BUFFERS_POSTED),
.value = cpu_to_be64(priv->rx[0].fill_cnt),
.queue_id = cpu_to_be32(idx),
};
}
}
}
/* Handle NIC status register changes, reset requests and report stats */
static void gve_service_task(struct work_struct *work)
{
struct gve_priv *priv = container_of(work, struct gve_priv,
service_task);
u32 status = ioread32be(&priv->reg_bar0->device_status);
gve_handle_status(priv, status);
gve_handle_reset(priv);
gve_handle_link_status(priv, GVE_DEVICE_STATUS_LINK_STATUS_MASK & status);
}
static void gve_set_netdev_xdp_features(struct gve_priv *priv)
{
if (priv->queue_format == GVE_GQI_QPL_FORMAT) {
priv->dev->xdp_features = NETDEV_XDP_ACT_BASIC;
priv->dev->xdp_features |= NETDEV_XDP_ACT_REDIRECT;
priv->dev->xdp_features |= NETDEV_XDP_ACT_NDO_XMIT;
priv->dev->xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY;
} else {
priv->dev->xdp_features = 0;
}
}
static int gve_init_priv(struct gve_priv *priv, bool skip_describe_device)
{
int num_ntfy;
int err;
/* Set up the adminq */
err = gve_adminq_alloc(&priv->pdev->dev, priv);
if (err) {
dev_err(&priv->pdev->dev,
"Failed to alloc admin queue: err=%d\n", err);
return err;
}
err = gve_verify_driver_compatibility(priv);
if (err) {
dev_err(&priv->pdev->dev,
"Could not verify driver compatibility: err=%d\n", err);
goto err;
}
priv->num_registered_pages = 0;
if (skip_describe_device)
goto setup_device;
priv->queue_format = GVE_QUEUE_FORMAT_UNSPECIFIED;
/* Get the initial information we need from the device */
err = gve_adminq_describe_device(priv);
if (err) {
dev_err(&priv->pdev->dev,
"Could not get device information: err=%d\n", err);
goto err;
}
priv->dev->mtu = priv->dev->max_mtu;
num_ntfy = pci_msix_vec_count(priv->pdev);
if (num_ntfy <= 0) {
dev_err(&priv->pdev->dev,
"could not count MSI-x vectors: err=%d\n", num_ntfy);
err = num_ntfy;
goto err;
} else if (num_ntfy < GVE_MIN_MSIX) {
dev_err(&priv->pdev->dev, "gve needs at least %d MSI-x vectors, but only has %d\n",
GVE_MIN_MSIX, num_ntfy);
err = -EINVAL;
goto err;
}
/* Big TCP is only supported on DQ*/
if (!gve_is_gqi(priv))
netif_set_tso_max_size(priv->dev, GVE_DQO_TX_MAX);
priv->rx_copybreak = GVE_DEFAULT_RX_COPYBREAK;
/* gvnic has one Notification Block per MSI-x vector, except for the
* management vector
*/
priv->num_ntfy_blks = (num_ntfy - 1) & ~0x1;
priv->mgmt_msix_idx = priv->num_ntfy_blks;
priv->tx_cfg.max_queues =
min_t(int, priv->tx_cfg.max_queues, priv->num_ntfy_blks / 2);
priv->rx_cfg.max_queues =
min_t(int, priv->rx_cfg.max_queues, priv->num_ntfy_blks / 2);
priv->tx_cfg.num_queues = priv->tx_cfg.max_queues;
priv->rx_cfg.num_queues = priv->rx_cfg.max_queues;
if (priv->default_num_queues > 0) {
priv->tx_cfg.num_queues = min_t(int, priv->default_num_queues,
priv->tx_cfg.num_queues);
priv->rx_cfg.num_queues = min_t(int, priv->default_num_queues,
priv->rx_cfg.num_queues);
}
dev_info(&priv->pdev->dev, "TX queues %d, RX queues %d\n",
priv->tx_cfg.num_queues, priv->rx_cfg.num_queues);
dev_info(&priv->pdev->dev, "Max TX queues %d, Max RX queues %d\n",
priv->tx_cfg.max_queues, priv->rx_cfg.max_queues);
if (!gve_is_gqi(priv)) {
priv->tx_coalesce_usecs = GVE_TX_IRQ_RATELIMIT_US_DQO;
priv->rx_coalesce_usecs = GVE_RX_IRQ_RATELIMIT_US_DQO;
}
setup_device:
gve_set_netdev_xdp_features(priv);
err = gve_setup_device_resources(priv);
if (!err)
return 0;
err:
gve_adminq_free(&priv->pdev->dev, priv);
return err;
}
static void gve_teardown_priv_resources(struct gve_priv *priv)
{
gve_teardown_device_resources(priv);
gve_adminq_free(&priv->pdev->dev, priv);
}
static void gve_trigger_reset(struct gve_priv *priv)
{
/* Reset the device by releasing the AQ */
gve_adminq_release(priv);
}
static void gve_reset_and_teardown(struct gve_priv *priv, bool was_up)
{
gve_trigger_reset(priv);
/* With the reset having already happened, close cannot fail */
if (was_up)
gve_close(priv->dev);
gve_teardown_priv_resources(priv);
}
static int gve_reset_recovery(struct gve_priv *priv, bool was_up)
{
int err;
err = gve_init_priv(priv, true);
if (err)
goto err;
if (was_up) {
err = gve_open(priv->dev);
if (err)
goto err;
}
return 0;
err:
dev_err(&priv->pdev->dev, "Reset failed! !!! DISABLING ALL QUEUES !!!\n");
gve_turndown(priv);
return err;
}
int gve_reset(struct gve_priv *priv, bool attempt_teardown)
{
bool was_up = netif_running(priv->dev);
int err;
dev_info(&priv->pdev->dev, "Performing reset\n");
gve_clear_do_reset(priv);
gve_set_reset_in_progress(priv);
/* If we aren't attempting to teardown normally, just go turndown and
* reset right away.
*/
if (!attempt_teardown) {
gve_turndown(priv);
gve_reset_and_teardown(priv, was_up);
} else {
/* Otherwise attempt to close normally */
if (was_up) {
err = gve_close(priv->dev);
/* If that fails reset as we did above */
if (err)
gve_reset_and_teardown(priv, was_up);
}
/* Clean up any remaining resources */
gve_teardown_priv_resources(priv);
}
/* Set it all back up */
err = gve_reset_recovery(priv, was_up);
gve_clear_reset_in_progress(priv);
priv->reset_cnt++;
priv->interface_up_cnt = 0;
priv->interface_down_cnt = 0;
priv->stats_report_trigger_cnt = 0;
return err;
}
static void gve_write_version(u8 __iomem *driver_version_register)
{
const char *c = gve_version_prefix;
while (*c) {
writeb(*c, driver_version_register);
c++;
}
c = gve_version_str;
while (*c) {
writeb(*c, driver_version_register);
c++;
}
writeb('\n', driver_version_register);
}
static int gve_rx_queue_stop(struct net_device *dev, void *per_q_mem, int idx)
{
struct gve_priv *priv = netdev_priv(dev);
struct gve_rx_ring *gve_per_q_mem;
int err;
if (!priv->rx)
return -EAGAIN;
/* Destroying queue 0 while other queues exist is not supported in DQO */
if (!gve_is_gqi(priv) && idx == 0)
return -ERANGE;
/* Single-queue destruction requires quiescence on all queues */
gve_turndown(priv);
/* This failure will trigger a reset - no need to clean up */
err = gve_adminq_destroy_single_rx_queue(priv, idx);
if (err)
return err;
if (gve_is_qpl(priv)) {
/* This failure will trigger a reset - no need to clean up */
err = gve_unregister_qpl(priv, gve_rx_get_qpl(priv, idx));
if (err)
return err;
}
gve_rx_stop_ring(priv, idx);
/* Turn the unstopped queues back up */
gve_turnup_and_check_status(priv);
gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
*gve_per_q_mem = priv->rx[idx];
memset(&priv->rx[idx], 0, sizeof(priv->rx[idx]));
return 0;
}
static void gve_rx_queue_mem_free(struct net_device *dev, void *per_q_mem)
{
struct gve_priv *priv = netdev_priv(dev);
struct gve_rx_alloc_rings_cfg cfg = {0};
struct gve_rx_ring *gve_per_q_mem;
gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
gve_rx_get_curr_alloc_cfg(priv, &cfg);
if (gve_is_gqi(priv))
gve_rx_free_ring_gqi(priv, gve_per_q_mem, &cfg);
else
gve_rx_free_ring_dqo(priv, gve_per_q_mem, &cfg);
}
static int gve_rx_queue_mem_alloc(struct net_device *dev, void *per_q_mem,
int idx)
{
struct gve_priv *priv = netdev_priv(dev);
struct gve_rx_alloc_rings_cfg cfg = {0};
struct gve_rx_ring *gve_per_q_mem;
int err;
if (!priv->rx)
return -EAGAIN;
gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
gve_rx_get_curr_alloc_cfg(priv, &cfg);
if (gve_is_gqi(priv))
err = gve_rx_alloc_ring_gqi(priv, &cfg, gve_per_q_mem, idx);
else
err = gve_rx_alloc_ring_dqo(priv, &cfg, gve_per_q_mem, idx);
return err;
}
static int gve_rx_queue_start(struct net_device *dev, void *per_q_mem, int idx)
{
struct gve_priv *priv = netdev_priv(dev);
struct gve_rx_ring *gve_per_q_mem;
int err;
if (!priv->rx)
return -EAGAIN;
gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
priv->rx[idx] = *gve_per_q_mem;
/* Single-queue creation requires quiescence on all queues */
gve_turndown(priv);
gve_rx_start_ring(priv, idx);
if (gve_is_qpl(priv)) {
/* This failure will trigger a reset - no need to clean up */
err = gve_register_qpl(priv, gve_rx_get_qpl(priv, idx));
if (err)
goto abort;
}
/* This failure will trigger a reset - no need to clean up */
err = gve_adminq_create_single_rx_queue(priv, idx);
if (err)
goto abort;
if (gve_is_gqi(priv))
gve_rx_write_doorbell(priv, &priv->rx[idx]);
else
gve_rx_post_buffers_dqo(&priv->rx[idx]);
/* Turn the unstopped queues back up */
gve_turnup_and_check_status(priv);
return 0;
abort:
gve_rx_stop_ring(priv, idx);
/* All failures in this func result in a reset, by clearing the struct
* at idx, we prevent a double free when that reset runs. The reset,
* which needs the rtnl lock, will not run till this func returns and
* its caller gives up the lock.
*/
memset(&priv->rx[idx], 0, sizeof(priv->rx[idx]));
return err;
}
static const struct netdev_queue_mgmt_ops gve_queue_mgmt_ops = {
.ndo_queue_mem_size = sizeof(struct gve_rx_ring),
.ndo_queue_mem_alloc = gve_rx_queue_mem_alloc,
.ndo_queue_mem_free = gve_rx_queue_mem_free,
.ndo_queue_start = gve_rx_queue_start,
.ndo_queue_stop = gve_rx_queue_stop,
};
static int gve_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int max_tx_queues, max_rx_queues;
struct net_device *dev;
__be32 __iomem *db_bar;
struct gve_registers __iomem *reg_bar;
struct gve_priv *priv;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
err = pci_request_regions(pdev, gve_driver_name);
if (err)
goto abort_with_enabled;
pci_set_master(pdev);
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
dev_err(&pdev->dev, "Failed to set dma mask: err=%d\n", err);
goto abort_with_pci_region;
}
reg_bar = pci_iomap(pdev, GVE_REGISTER_BAR, 0);
if (!reg_bar) {
dev_err(&pdev->dev, "Failed to map pci bar!\n");
err = -ENOMEM;
goto abort_with_pci_region;
}
db_bar = pci_iomap(pdev, GVE_DOORBELL_BAR, 0);
if (!db_bar) {
dev_err(&pdev->dev, "Failed to map doorbell bar!\n");
err = -ENOMEM;
goto abort_with_reg_bar;
}
gve_write_version(®_bar->driver_version);
/* Get max queues to alloc etherdev */
max_tx_queues = ioread32be(®_bar->max_tx_queues);
max_rx_queues = ioread32be(®_bar->max_rx_queues);
/* Alloc and setup the netdev and priv */
dev = alloc_etherdev_mqs(sizeof(*priv), max_tx_queues, max_rx_queues);
if (!dev) {
dev_err(&pdev->dev, "could not allocate netdev\n");
err = -ENOMEM;
goto abort_with_db_bar;
}
SET_NETDEV_DEV(dev, &pdev->dev);
pci_set_drvdata(pdev, dev);
dev->ethtool_ops = &gve_ethtool_ops;
dev->netdev_ops = &gve_netdev_ops;
dev->queue_mgmt_ops = &gve_queue_mgmt_ops;
/* Set default and supported features.
*
* Features might be set in other locations as well (such as
* `gve_adminq_describe_device`).
*/
dev->hw_features = NETIF_F_HIGHDMA;
dev->hw_features |= NETIF_F_SG;
dev->hw_features |= NETIF_F_HW_CSUM;
dev->hw_features |= NETIF_F_TSO;
dev->hw_features |= NETIF_F_TSO6;
dev->hw_features |= NETIF_F_TSO_ECN;
dev->hw_features |= NETIF_F_RXCSUM;
dev->hw_features |= NETIF_F_RXHASH;
dev->features = dev->hw_features;
dev->watchdog_timeo = 5 * HZ;
dev->min_mtu = ETH_MIN_MTU;
netif_carrier_off(dev);
priv = netdev_priv(dev);
priv->dev = dev;
priv->pdev = pdev;
priv->msg_enable = DEFAULT_MSG_LEVEL;
priv->reg_bar0 = reg_bar;
priv->db_bar2 = db_bar;
priv->service_task_flags = 0x0;
priv->state_flags = 0x0;
priv->ethtool_flags = 0x0;
priv->data_buffer_size_dqo = GVE_DEFAULT_RX_BUFFER_SIZE;
priv->max_rx_buffer_size = GVE_DEFAULT_RX_BUFFER_SIZE;
gve_set_probe_in_progress(priv);
priv->gve_wq = alloc_ordered_workqueue("gve", 0);
if (!priv->gve_wq) {
dev_err(&pdev->dev, "Could not allocate workqueue");
err = -ENOMEM;
goto abort_with_netdev;
}
INIT_WORK(&priv->service_task, gve_service_task);
INIT_WORK(&priv->stats_report_task, gve_stats_report_task);
priv->tx_cfg.max_queues = max_tx_queues;
priv->rx_cfg.max_queues = max_rx_queues;
err = gve_init_priv(priv, false);
if (err)
goto abort_with_wq;
err = register_netdev(dev);
if (err)
goto abort_with_gve_init;
dev_info(&pdev->dev, "GVE version %s\n", gve_version_str);
dev_info(&pdev->dev, "GVE queue format %d\n", (int)priv->queue_format);
gve_clear_probe_in_progress(priv);
queue_work(priv->gve_wq, &priv->service_task);
return 0;
abort_with_gve_init:
gve_teardown_priv_resources(priv);
abort_with_wq:
destroy_workqueue(priv->gve_wq);
abort_with_netdev:
free_netdev(dev);
abort_with_db_bar:
pci_iounmap(pdev, db_bar);
abort_with_reg_bar:
pci_iounmap(pdev, reg_bar);
abort_with_pci_region:
pci_release_regions(pdev);
abort_with_enabled:
pci_disable_device(pdev);
return err;
}
static void gve_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct gve_priv *priv = netdev_priv(netdev);
__be32 __iomem *db_bar = priv->db_bar2;
void __iomem *reg_bar = priv->reg_bar0;
unregister_netdev(netdev);
gve_teardown_priv_resources(priv);
destroy_workqueue(priv->gve_wq);
free_netdev(netdev);
pci_iounmap(pdev, db_bar);
pci_iounmap(pdev, reg_bar);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static void gve_shutdown(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct gve_priv *priv = netdev_priv(netdev);
bool was_up = netif_running(priv->dev);
rtnl_lock();
if (was_up && gve_close(priv->dev)) {
/* If the dev was up, attempt to close, if close fails, reset */
gve_reset_and_teardown(priv, was_up);
} else {
/* If the dev wasn't up or close worked, finish tearing down */
gve_teardown_priv_resources(priv);
}
rtnl_unlock();
}
#ifdef CONFIG_PM
static int gve_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct gve_priv *priv = netdev_priv(netdev);
bool was_up = netif_running(priv->dev);
priv->suspend_cnt++;
rtnl_lock();
if (was_up && gve_close(priv->dev)) {
/* If the dev was up, attempt to close, if close fails, reset */
gve_reset_and_teardown(priv, was_up);
} else {
/* If the dev wasn't up or close worked, finish tearing down */
gve_teardown_priv_resources(priv);
}
priv->up_before_suspend = was_up;
rtnl_unlock();
return 0;
}
static int gve_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct gve_priv *priv = netdev_priv(netdev);
int err;
priv->resume_cnt++;
rtnl_lock();
err = gve_reset_recovery(priv, priv->up_before_suspend);
rtnl_unlock();
return err;
}
#endif /* CONFIG_PM */
static const struct pci_device_id gve_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_GOOGLE, PCI_DEV_ID_GVNIC) },
{ }
};
static struct pci_driver gve_driver = {
.name = gve_driver_name,
.id_table = gve_id_table,
.probe = gve_probe,
.remove = gve_remove,
.shutdown = gve_shutdown,
#ifdef CONFIG_PM
.suspend = gve_suspend,
.resume = gve_resume,
#endif
};
module_pci_driver(gve_driver);
MODULE_DEVICE_TABLE(pci, gve_id_table);
MODULE_AUTHOR("Google, Inc.");
MODULE_DESCRIPTION("Google Virtual NIC Driver");
MODULE_LICENSE("Dual MIT/GPL");
MODULE_VERSION(GVE_VERSION);