// SPDX-License-Identifier: GPL-2.0
/* Marvell Octeon EP (EndPoint) Ethernet Driver
*
* Copyright (C) 2020 Marvell.
*
*/
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include "octep_config.h"
#include "octep_main.h"
#include "octep_regs_cn9k_pf.h"
#define CTRL_MBOX_MAX_PF 128
#define CTRL_MBOX_SZ ((size_t)(0x400000 / CTRL_MBOX_MAX_PF))
/* Names of Hardware non-queue generic interrupts */
static char *cn93_non_ioq_msix_names[] = {
"epf_ire_rint",
"epf_ore_rint",
"epf_vfire_rint0",
"epf_vfire_rint1",
"epf_vfore_rint0",
"epf_vfore_rint1",
"epf_mbox_rint0",
"epf_mbox_rint1",
"epf_oei_rint",
"epf_dma_rint",
"epf_dma_vf_rint0",
"epf_dma_vf_rint1",
"epf_pp_vf_rint0",
"epf_pp_vf_rint1",
"epf_misc_rint",
"epf_rsvd",
};
/* Dump useful hardware CSRs for debug purpose */
static void cn93_dump_regs(struct octep_device *oct, int qno)
{
struct device *dev = &oct->pdev->dev;
dev_info(dev, "IQ-%d register dump\n", qno);
dev_info(dev, "R[%d]_IN_INSTR_DBELL[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_IN_INSTR_DBELL(qno),
octep_read_csr64(oct, CN93_SDP_R_IN_INSTR_DBELL(qno)));
dev_info(dev, "R[%d]_IN_CONTROL[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_IN_CONTROL(qno),
octep_read_csr64(oct, CN93_SDP_R_IN_CONTROL(qno)));
dev_info(dev, "R[%d]_IN_ENABLE[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_IN_ENABLE(qno),
octep_read_csr64(oct, CN93_SDP_R_IN_ENABLE(qno)));
dev_info(dev, "R[%d]_IN_INSTR_BADDR[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_IN_INSTR_BADDR(qno),
octep_read_csr64(oct, CN93_SDP_R_IN_INSTR_BADDR(qno)));
dev_info(dev, "R[%d]_IN_INSTR_RSIZE[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_IN_INSTR_RSIZE(qno),
octep_read_csr64(oct, CN93_SDP_R_IN_INSTR_RSIZE(qno)));
dev_info(dev, "R[%d]_IN_CNTS[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_IN_CNTS(qno),
octep_read_csr64(oct, CN93_SDP_R_IN_CNTS(qno)));
dev_info(dev, "R[%d]_IN_INT_LEVELS[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_IN_INT_LEVELS(qno),
octep_read_csr64(oct, CN93_SDP_R_IN_INT_LEVELS(qno)));
dev_info(dev, "R[%d]_IN_PKT_CNT[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_IN_PKT_CNT(qno),
octep_read_csr64(oct, CN93_SDP_R_IN_PKT_CNT(qno)));
dev_info(dev, "R[%d]_IN_BYTE_CNT[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_IN_BYTE_CNT(qno),
octep_read_csr64(oct, CN93_SDP_R_IN_BYTE_CNT(qno)));
dev_info(dev, "OQ-%d register dump\n", qno);
dev_info(dev, "R[%d]_OUT_SLIST_DBELL[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_OUT_SLIST_DBELL(qno),
octep_read_csr64(oct, CN93_SDP_R_OUT_SLIST_DBELL(qno)));
dev_info(dev, "R[%d]_OUT_CONTROL[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_OUT_CONTROL(qno),
octep_read_csr64(oct, CN93_SDP_R_OUT_CONTROL(qno)));
dev_info(dev, "R[%d]_OUT_ENABLE[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_OUT_ENABLE(qno),
octep_read_csr64(oct, CN93_SDP_R_OUT_ENABLE(qno)));
dev_info(dev, "R[%d]_OUT_SLIST_BADDR[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_OUT_SLIST_BADDR(qno),
octep_read_csr64(oct, CN93_SDP_R_OUT_SLIST_BADDR(qno)));
dev_info(dev, "R[%d]_OUT_SLIST_RSIZE[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_OUT_SLIST_RSIZE(qno),
octep_read_csr64(oct, CN93_SDP_R_OUT_SLIST_RSIZE(qno)));
dev_info(dev, "R[%d]_OUT_CNTS[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_OUT_CNTS(qno),
octep_read_csr64(oct, CN93_SDP_R_OUT_CNTS(qno)));
dev_info(dev, "R[%d]_OUT_INT_LEVELS[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_OUT_INT_LEVELS(qno),
octep_read_csr64(oct, CN93_SDP_R_OUT_INT_LEVELS(qno)));
dev_info(dev, "R[%d]_OUT_PKT_CNT[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_OUT_PKT_CNT(qno),
octep_read_csr64(oct, CN93_SDP_R_OUT_PKT_CNT(qno)));
dev_info(dev, "R[%d]_OUT_BYTE_CNT[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_OUT_BYTE_CNT(qno),
octep_read_csr64(oct, CN93_SDP_R_OUT_BYTE_CNT(qno)));
dev_info(dev, "R[%d]_ERR_TYPE[0x%llx]: 0x%016llx\n",
qno, CN93_SDP_R_ERR_TYPE(qno),
octep_read_csr64(oct, CN93_SDP_R_ERR_TYPE(qno)));
}
/* Reset Hardware Tx queue */
static int cn93_reset_iq(struct octep_device *oct, int q_no)
{
struct octep_config *conf = oct->conf;
u64 val = 0ULL;
dev_dbg(&oct->pdev->dev, "Reset PF IQ-%d\n", q_no);
/* Get absolute queue number */
q_no += conf->pf_ring_cfg.srn;
/* Disable the Tx/Instruction Ring */
octep_write_csr64(oct, CN93_SDP_R_IN_ENABLE(q_no), val);
/* clear the Instruction Ring packet/byte counts and doorbell CSRs */
octep_write_csr64(oct, CN93_SDP_R_IN_CNTS(q_no), val);
octep_write_csr64(oct, CN93_SDP_R_IN_INT_LEVELS(q_no), val);
octep_write_csr64(oct, CN93_SDP_R_IN_PKT_CNT(q_no), val);
octep_write_csr64(oct, CN93_SDP_R_IN_BYTE_CNT(q_no), val);
octep_write_csr64(oct, CN93_SDP_R_IN_INSTR_BADDR(q_no), val);
octep_write_csr64(oct, CN93_SDP_R_IN_INSTR_RSIZE(q_no), val);
val = 0xFFFFFFFF;
octep_write_csr64(oct, CN93_SDP_R_IN_INSTR_DBELL(q_no), val);
return 0;
}
/* Reset Hardware Rx queue */
static void cn93_reset_oq(struct octep_device *oct, int q_no)
{
u64 val = 0ULL;
q_no += CFG_GET_PORTS_PF_SRN(oct->conf);
/* Disable Output (Rx) Ring */
octep_write_csr64(oct, CN93_SDP_R_OUT_ENABLE(q_no), val);
/* Clear count CSRs */
val = octep_read_csr(oct, CN93_SDP_R_OUT_CNTS(q_no));
octep_write_csr(oct, CN93_SDP_R_OUT_CNTS(q_no), val);
octep_write_csr64(oct, CN93_SDP_R_OUT_PKT_CNT(q_no), 0xFFFFFFFFFULL);
octep_write_csr64(oct, CN93_SDP_R_OUT_SLIST_DBELL(q_no), 0xFFFFFFFF);
}
/* Reset all hardware Tx/Rx queues */
static void octep_reset_io_queues_cn93_pf(struct octep_device *oct)
{
struct pci_dev *pdev = oct->pdev;
int q;
dev_dbg(&pdev->dev, "Reset OCTEP_CN93 PF IO Queues\n");
for (q = 0; q < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); q++) {
cn93_reset_iq(oct, q);
cn93_reset_oq(oct, q);
}
}
/* Initialize windowed addresses to access some hardware registers */
static void octep_setup_pci_window_regs_cn93_pf(struct octep_device *oct)
{
u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
oct->pci_win_regs.pci_win_wr_addr = (u8 __iomem *)(bar0_pciaddr + CN93_SDP_WIN_WR_ADDR64);
oct->pci_win_regs.pci_win_rd_addr = (u8 __iomem *)(bar0_pciaddr + CN93_SDP_WIN_RD_ADDR64);
oct->pci_win_regs.pci_win_wr_data = (u8 __iomem *)(bar0_pciaddr + CN93_SDP_WIN_WR_DATA64);
oct->pci_win_regs.pci_win_rd_data = (u8 __iomem *)(bar0_pciaddr + CN93_SDP_WIN_RD_DATA64);
}
/* Configure Hardware mapping: inform hardware which rings belong to PF. */
static void octep_configure_ring_mapping_cn93_pf(struct octep_device *oct)
{
struct octep_config *conf = oct->conf;
struct pci_dev *pdev = oct->pdev;
u64 pf_srn = CFG_GET_PORTS_PF_SRN(oct->conf);
int q;
for (q = 0; q < CFG_GET_PORTS_ACTIVE_IO_RINGS(conf); q++) {
u64 regval = 0;
if (oct->pcie_port)
regval = 8 << CN93_SDP_FUNC_SEL_EPF_BIT_POS;
octep_write_csr64(oct, CN93_SDP_EPVF_RING(pf_srn + q), regval);
regval = octep_read_csr64(oct, CN93_SDP_EPVF_RING(pf_srn + q));
dev_dbg(&pdev->dev, "Write SDP_EPVF_RING[0x%llx] = 0x%llx\n",
CN93_SDP_EPVF_RING(pf_srn + q), regval);
}
}
/* Initialize configuration limits and initial active config 93xx PF. */
static void octep_init_config_cn93_pf(struct octep_device *oct)
{
struct octep_config *conf = oct->conf;
struct pci_dev *pdev = oct->pdev;
u8 link = 0;
u64 val;
int pos;
/* Read ring configuration:
* PF ring count, number of VFs and rings per VF supported
*/
val = octep_read_csr64(oct, CN93_SDP_EPF_RINFO);
conf->sriov_cfg.max_rings_per_vf = CN93_SDP_EPF_RINFO_RPVF(val);
conf->sriov_cfg.active_rings_per_vf = conf->sriov_cfg.max_rings_per_vf;
conf->sriov_cfg.max_vfs = CN93_SDP_EPF_RINFO_NVFS(val);
conf->sriov_cfg.active_vfs = conf->sriov_cfg.max_vfs;
conf->sriov_cfg.vf_srn = CN93_SDP_EPF_RINFO_SRN(val);
val = octep_read_csr64(oct, CN93_SDP_MAC_PF_RING_CTL(oct->pcie_port));
if (oct->chip_id == OCTEP_PCI_DEVICE_ID_CN98_PF) {
conf->pf_ring_cfg.srn = CN98_SDP_MAC_PF_RING_CTL_SRN(val);
conf->pf_ring_cfg.max_io_rings = CN98_SDP_MAC_PF_RING_CTL_RPPF(val);
conf->pf_ring_cfg.active_io_rings = conf->pf_ring_cfg.max_io_rings;
} else {
conf->pf_ring_cfg.srn = CN93_SDP_MAC_PF_RING_CTL_SRN(val);
conf->pf_ring_cfg.max_io_rings = CN93_SDP_MAC_PF_RING_CTL_RPPF(val);
conf->pf_ring_cfg.active_io_rings = conf->pf_ring_cfg.max_io_rings;
}
dev_info(&pdev->dev, "pf_srn=%u rpvf=%u nvfs=%u rppf=%u\n",
conf->pf_ring_cfg.srn, conf->sriov_cfg.active_rings_per_vf,
conf->sriov_cfg.active_vfs, conf->pf_ring_cfg.active_io_rings);
conf->iq.num_descs = OCTEP_IQ_MAX_DESCRIPTORS;
conf->iq.instr_type = OCTEP_64BYTE_INSTR;
conf->iq.db_min = OCTEP_DB_MIN;
conf->iq.intr_threshold = OCTEP_IQ_INTR_THRESHOLD;
conf->oq.num_descs = OCTEP_OQ_MAX_DESCRIPTORS;
conf->oq.buf_size = OCTEP_OQ_BUF_SIZE;
conf->oq.refill_threshold = OCTEP_OQ_REFILL_THRESHOLD;
conf->oq.oq_intr_pkt = OCTEP_OQ_INTR_PKT_THRESHOLD;
conf->oq.oq_intr_time = OCTEP_OQ_INTR_TIME_THRESHOLD;
conf->msix_cfg.non_ioq_msix = CN93_NUM_NON_IOQ_INTR;
conf->msix_cfg.ioq_msix = conf->pf_ring_cfg.active_io_rings;
conf->msix_cfg.non_ioq_msix_names = cn93_non_ioq_msix_names;
pos = pci_find_ext_capability(oct->pdev, PCI_EXT_CAP_ID_SRIOV);
if (pos) {
pci_read_config_byte(oct->pdev,
pos + PCI_SRIOV_FUNC_LINK,
&link);
link = PCI_DEVFN(PCI_SLOT(oct->pdev->devfn), link);
}
conf->ctrl_mbox_cfg.barmem_addr = (void __iomem *)oct->mmio[2].hw_addr +
CN93_PEM_BAR4_INDEX_OFFSET +
(link * CTRL_MBOX_SZ);
conf->fw_info.hb_interval = OCTEP_DEFAULT_FW_HB_INTERVAL;
conf->fw_info.hb_miss_count = OCTEP_DEFAULT_FW_HB_MISS_COUNT;
}
/* Setup registers for a hardware Tx Queue */
static void octep_setup_iq_regs_cn93_pf(struct octep_device *oct, int iq_no)
{
struct octep_iq *iq = oct->iq[iq_no];
u32 reset_instr_cnt;
u64 reg_val;
iq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
reg_val = octep_read_csr64(oct, CN93_SDP_R_IN_CONTROL(iq_no));
/* wait for IDLE to set to 1 */
if (!(reg_val & CN93_R_IN_CTL_IDLE)) {
do {
reg_val = octep_read_csr64(oct, CN93_SDP_R_IN_CONTROL(iq_no));
} while (!(reg_val & CN93_R_IN_CTL_IDLE));
}
reg_val |= CN93_R_IN_CTL_RDSIZE;
reg_val |= CN93_R_IN_CTL_IS_64B;
reg_val |= CN93_R_IN_CTL_ESR;
octep_write_csr64(oct, CN93_SDP_R_IN_CONTROL(iq_no), reg_val);
/* Write the start of the input queue's ring and its size */
octep_write_csr64(oct, CN93_SDP_R_IN_INSTR_BADDR(iq_no),
iq->desc_ring_dma);
octep_write_csr64(oct, CN93_SDP_R_IN_INSTR_RSIZE(iq_no),
iq->max_count);
/* Remember the doorbell & instruction count register addr
* for this queue
*/
iq->doorbell_reg = oct->mmio[0].hw_addr +
CN93_SDP_R_IN_INSTR_DBELL(iq_no);
iq->inst_cnt_reg = oct->mmio[0].hw_addr +
CN93_SDP_R_IN_CNTS(iq_no);
iq->intr_lvl_reg = oct->mmio[0].hw_addr +
CN93_SDP_R_IN_INT_LEVELS(iq_no);
/* Store the current instruction counter (used in flush_iq calculation) */
reset_instr_cnt = readl(iq->inst_cnt_reg);
writel(reset_instr_cnt, iq->inst_cnt_reg);
/* INTR_THRESHOLD is set to max(FFFFFFFF) to disable the INTR */
reg_val = CFG_GET_IQ_INTR_THRESHOLD(oct->conf) & 0xffffffff;
octep_write_csr64(oct, CN93_SDP_R_IN_INT_LEVELS(iq_no), reg_val);
}
/* Setup registers for a hardware Rx Queue */
static void octep_setup_oq_regs_cn93_pf(struct octep_device *oct, int oq_no)
{
u64 reg_val;
u64 oq_ctl = 0ULL;
u32 time_threshold = 0;
struct octep_oq *oq = oct->oq[oq_no];
oq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
reg_val = octep_read_csr64(oct, CN93_SDP_R_OUT_CONTROL(oq_no));
/* wait for IDLE to set to 1 */
if (!(reg_val & CN93_R_OUT_CTL_IDLE)) {
do {
reg_val = octep_read_csr64(oct, CN93_SDP_R_OUT_CONTROL(oq_no));
} while (!(reg_val & CN93_R_OUT_CTL_IDLE));
}
reg_val &= ~(CN93_R_OUT_CTL_IMODE);
reg_val &= ~(CN93_R_OUT_CTL_ROR_P);
reg_val &= ~(CN93_R_OUT_CTL_NSR_P);
reg_val &= ~(CN93_R_OUT_CTL_ROR_I);
reg_val &= ~(CN93_R_OUT_CTL_NSR_I);
reg_val &= ~(CN93_R_OUT_CTL_ES_I);
reg_val &= ~(CN93_R_OUT_CTL_ROR_D);
reg_val &= ~(CN93_R_OUT_CTL_NSR_D);
reg_val &= ~(CN93_R_OUT_CTL_ES_D);
reg_val |= (CN93_R_OUT_CTL_ES_P);
octep_write_csr64(oct, CN93_SDP_R_OUT_CONTROL(oq_no), reg_val);
octep_write_csr64(oct, CN93_SDP_R_OUT_SLIST_BADDR(oq_no),
oq->desc_ring_dma);
octep_write_csr64(oct, CN93_SDP_R_OUT_SLIST_RSIZE(oq_no),
oq->max_count);
oq_ctl = octep_read_csr64(oct, CN93_SDP_R_OUT_CONTROL(oq_no));
oq_ctl &= ~0x7fffffULL; //clear the ISIZE and BSIZE (22-0)
oq_ctl |= (oq->buffer_size & 0xffff); //populate the BSIZE (15-0)
octep_write_csr64(oct, CN93_SDP_R_OUT_CONTROL(oq_no), oq_ctl);
/* Get the mapped address of the pkt_sent and pkts_credit regs */
oq->pkts_sent_reg = oct->mmio[0].hw_addr + CN93_SDP_R_OUT_CNTS(oq_no);
oq->pkts_credit_reg = oct->mmio[0].hw_addr +
CN93_SDP_R_OUT_SLIST_DBELL(oq_no);
time_threshold = CFG_GET_OQ_INTR_TIME(oct->conf);
reg_val = ((u64)time_threshold << 32) |
CFG_GET_OQ_INTR_PKT(oct->conf);
octep_write_csr64(oct, CN93_SDP_R_OUT_INT_LEVELS(oq_no), reg_val);
}
/* Setup registers for a PF mailbox */
static void octep_setup_mbox_regs_cn93_pf(struct octep_device *oct, int q_no)
{
struct octep_mbox *mbox = oct->mbox[q_no];
/* PF to VF DATA reg. PF writes into this reg */
mbox->pf_vf_data_reg = oct->mmio[0].hw_addr + CN93_SDP_MBOX_PF_VF_DATA(q_no);
/* VF to PF DATA reg. PF reads from this reg */
mbox->vf_pf_data_reg = oct->mmio[0].hw_addr + CN93_SDP_MBOX_VF_PF_DATA(q_no);
}
/* Poll for mailbox messages from VF */
static void octep_poll_pfvf_mailbox(struct octep_device *oct)
{
u32 vf, active_vfs, active_rings_per_vf, vf_mbox_queue;
u64 reg0, reg1;
reg0 = octep_read_csr64(oct, CN93_SDP_EPF_MBOX_RINT(0));
reg1 = octep_read_csr64(oct, CN93_SDP_EPF_MBOX_RINT(1));
if (reg0 || reg1) {
active_vfs = CFG_GET_ACTIVE_VFS(oct->conf);
active_rings_per_vf = CFG_GET_ACTIVE_RPVF(oct->conf);
for (vf = 0; vf < active_vfs; vf++) {
vf_mbox_queue = vf * active_rings_per_vf;
if (vf_mbox_queue < 64) {
if (!(reg0 & (0x1UL << vf_mbox_queue)))
continue;
} else {
if (!(reg1 & (0x1UL << (vf_mbox_queue - 64))))
continue;
}
if (!oct->mbox[vf_mbox_queue]) {
dev_err(&oct->pdev->dev, "bad mbox vf %d\n", vf);
continue;
}
schedule_work(&oct->mbox[vf_mbox_queue]->wk.work);
}
if (reg0)
octep_write_csr64(oct, CN93_SDP_EPF_MBOX_RINT(0), reg0);
if (reg1)
octep_write_csr64(oct, CN93_SDP_EPF_MBOX_RINT(1), reg1);
}
}
/* PF-VF mailbox interrupt handler */
static irqreturn_t octep_pfvf_mbox_intr_handler_cn93_pf(void *dev)
{
struct octep_device *oct = (struct octep_device *)dev;
octep_poll_pfvf_mailbox(oct);
return IRQ_HANDLED;
}
/* Poll OEI events like heartbeat */
static void octep_poll_oei_cn93_pf(struct octep_device *oct)
{
u64 reg;
reg = octep_read_csr64(oct, CN93_SDP_EPF_OEI_RINT);
if (reg) {
octep_write_csr64(oct, CN93_SDP_EPF_OEI_RINT, reg);
if (reg & CN93_SDP_EPF_OEI_RINT_DATA_BIT_MBOX)
queue_work(octep_wq, &oct->ctrl_mbox_task);
else if (reg & CN93_SDP_EPF_OEI_RINT_DATA_BIT_HBEAT)
atomic_set(&oct->hb_miss_cnt, 0);
}
}
/* OEI interrupt handler */
static irqreturn_t octep_oei_intr_handler_cn93_pf(void *dev)
{
struct octep_device *oct = (struct octep_device *)dev;
octep_poll_oei_cn93_pf(oct);
return IRQ_HANDLED;
}
/* Process non-ioq interrupts required to keep pf interface running.
* OEI_RINT is needed for control mailbox
*/
static void octep_poll_non_ioq_interrupts_cn93_pf(struct octep_device *oct)
{
octep_poll_pfvf_mailbox(oct);
octep_poll_oei_cn93_pf(oct);
}
/* Interrupt handler for input ring error interrupts. */
static irqreturn_t octep_ire_intr_handler_cn93_pf(void *dev)
{
struct octep_device *oct = (struct octep_device *)dev;
struct pci_dev *pdev = oct->pdev;
u64 reg_val = 0;
int i = 0;
/* Check for IRERR INTR */
reg_val = octep_read_csr64(oct, CN93_SDP_EPF_IRERR_RINT);
if (reg_val) {
dev_info(&pdev->dev,
"received IRERR_RINT intr: 0x%llx\n", reg_val);
octep_write_csr64(oct, CN93_SDP_EPF_IRERR_RINT, reg_val);
for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
reg_val = octep_read_csr64(oct,
CN93_SDP_R_ERR_TYPE(i));
if (reg_val) {
dev_info(&pdev->dev,
"Received err type on IQ-%d: 0x%llx\n",
i, reg_val);
octep_write_csr64(oct, CN93_SDP_R_ERR_TYPE(i),
reg_val);
}
}
}
return IRQ_HANDLED;
}
/* Interrupt handler for output ring error interrupts. */
static irqreturn_t octep_ore_intr_handler_cn93_pf(void *dev)
{
struct octep_device *oct = (struct octep_device *)dev;
struct pci_dev *pdev = oct->pdev;
u64 reg_val = 0;
int i = 0;
/* Check for ORERR INTR */
reg_val = octep_read_csr64(oct, CN93_SDP_EPF_ORERR_RINT);
if (reg_val) {
dev_info(&pdev->dev,
"Received ORERR_RINT intr: 0x%llx\n", reg_val);
octep_write_csr64(oct, CN93_SDP_EPF_ORERR_RINT, reg_val);
for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
reg_val = octep_read_csr64(oct, CN93_SDP_R_ERR_TYPE(i));
if (reg_val) {
dev_info(&pdev->dev,
"Received err type on OQ-%d: 0x%llx\n",
i, reg_val);
octep_write_csr64(oct, CN93_SDP_R_ERR_TYPE(i),
reg_val);
}
}
}
return IRQ_HANDLED;
}
/* Interrupt handler for vf input ring error interrupts. */
static irqreturn_t octep_vfire_intr_handler_cn93_pf(void *dev)
{
struct octep_device *oct = (struct octep_device *)dev;
struct pci_dev *pdev = oct->pdev;
u64 reg_val = 0;
/* Check for VFIRE INTR */
reg_val = octep_read_csr64(oct, CN93_SDP_EPF_VFIRE_RINT(0));
if (reg_val) {
dev_info(&pdev->dev,
"Received VFIRE_RINT intr: 0x%llx\n", reg_val);
octep_write_csr64(oct, CN93_SDP_EPF_VFIRE_RINT(0), reg_val);
}
return IRQ_HANDLED;
}
/* Interrupt handler for vf output ring error interrupts. */
static irqreturn_t octep_vfore_intr_handler_cn93_pf(void *dev)
{
struct octep_device *oct = (struct octep_device *)dev;
struct pci_dev *pdev = oct->pdev;
u64 reg_val = 0;
/* Check for VFORE INTR */
reg_val = octep_read_csr64(oct, CN93_SDP_EPF_VFORE_RINT(0));
if (reg_val) {
dev_info(&pdev->dev,
"Received VFORE_RINT intr: 0x%llx\n", reg_val);
octep_write_csr64(oct, CN93_SDP_EPF_VFORE_RINT(0), reg_val);
}
return IRQ_HANDLED;
}
/* Interrupt handler for dpi dma related interrupts. */
static irqreturn_t octep_dma_intr_handler_cn93_pf(void *dev)
{
struct octep_device *oct = (struct octep_device *)dev;
u64 reg_val = 0;
/* Check for DMA INTR */
reg_val = octep_read_csr64(oct, CN93_SDP_EPF_DMA_RINT);
if (reg_val) {
octep_write_csr64(oct, CN93_SDP_EPF_DMA_RINT, reg_val);
}
return IRQ_HANDLED;
}
/* Interrupt handler for dpi dma transaction error interrupts for VFs */
static irqreturn_t octep_dma_vf_intr_handler_cn93_pf(void *dev)
{
struct octep_device *oct = (struct octep_device *)dev;
struct pci_dev *pdev = oct->pdev;
u64 reg_val = 0;
/* Check for DMA VF INTR */
reg_val = octep_read_csr64(oct, CN93_SDP_EPF_DMA_VF_RINT(0));
if (reg_val) {
dev_info(&pdev->dev,
"Received DMA_VF_RINT intr: 0x%llx\n", reg_val);
octep_write_csr64(oct, CN93_SDP_EPF_DMA_VF_RINT(0), reg_val);
}
return IRQ_HANDLED;
}
/* Interrupt handler for pp transaction error interrupts for VFs */
static irqreturn_t octep_pp_vf_intr_handler_cn93_pf(void *dev)
{
struct octep_device *oct = (struct octep_device *)dev;
struct pci_dev *pdev = oct->pdev;
u64 reg_val = 0;
/* Check for PPVF INTR */
reg_val = octep_read_csr64(oct, CN93_SDP_EPF_PP_VF_RINT(0));
if (reg_val) {
dev_info(&pdev->dev,
"Received PP_VF_RINT intr: 0x%llx\n", reg_val);
octep_write_csr64(oct, CN93_SDP_EPF_PP_VF_RINT(0), reg_val);
}
return IRQ_HANDLED;
}
/* Interrupt handler for mac related interrupts. */
static irqreturn_t octep_misc_intr_handler_cn93_pf(void *dev)
{
struct octep_device *oct = (struct octep_device *)dev;
struct pci_dev *pdev = oct->pdev;
u64 reg_val = 0;
/* Check for MISC INTR */
reg_val = octep_read_csr64(oct, CN93_SDP_EPF_MISC_RINT);
if (reg_val) {
dev_info(&pdev->dev,
"Received MISC_RINT intr: 0x%llx\n", reg_val);
octep_write_csr64(oct, CN93_SDP_EPF_MISC_RINT, reg_val);
}
return IRQ_HANDLED;
}
/* Interrupts handler for all reserved interrupts. */
static irqreturn_t octep_rsvd_intr_handler_cn93_pf(void *dev)
{
struct octep_device *oct = (struct octep_device *)dev;
struct pci_dev *pdev = oct->pdev;
dev_info(&pdev->dev, "Reserved interrupts raised; Ignore\n");
return IRQ_HANDLED;
}
/* Tx/Rx queue interrupt handler */
static irqreturn_t octep_ioq_intr_handler_cn93_pf(void *data)
{
struct octep_ioq_vector *vector = (struct octep_ioq_vector *)data;
struct octep_oq *oq = vector->oq;
napi_schedule_irqoff(oq->napi);
return IRQ_HANDLED;
}
/* soft reset of 98xx */
static int octep_soft_reset_cn98_pf(struct octep_device *oct)
{
dev_info(&oct->pdev->dev, "CN98XX: skip soft reset\n");
return 0;
}
/* soft reset of 93xx */
static int octep_soft_reset_cn93_pf(struct octep_device *oct)
{
dev_info(&oct->pdev->dev, "CN93XX: Doing soft reset\n");
octep_write_csr64(oct, CN93_SDP_WIN_WR_MASK_REG, 0xFF);
/* Set core domain reset bit */
OCTEP_PCI_WIN_WRITE(oct, CN93_RST_CORE_DOMAIN_W1S, 1);
/* Wait for 100ms as Octeon resets. */
mdelay(100);
/* clear core domain reset bit */
OCTEP_PCI_WIN_WRITE(oct, CN93_RST_CORE_DOMAIN_W1C, 1);
return 0;
}
/* Re-initialize Octeon hardware registers */
static void octep_reinit_regs_cn93_pf(struct octep_device *oct)
{
u32 i;
for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++)
oct->hw_ops.setup_iq_regs(oct, i);
for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++)
oct->hw_ops.setup_oq_regs(oct, i);
oct->hw_ops.enable_interrupts(oct);
oct->hw_ops.enable_io_queues(oct);
for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++)
writel(oct->oq[i]->max_count, oct->oq[i]->pkts_credit_reg);
}
/* Enable all interrupts */
static void octep_enable_interrupts_cn93_pf(struct octep_device *oct)
{
u64 intr_mask = 0ULL;
int srn, num_rings, i;
srn = CFG_GET_PORTS_PF_SRN(oct->conf);
num_rings = CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf);
for (i = 0; i < num_rings; i++)
intr_mask |= (0x1ULL << (srn + i));
octep_write_csr64(oct, CN93_SDP_EPF_IRERR_RINT_ENA_W1S, intr_mask);
octep_write_csr64(oct, CN93_SDP_EPF_ORERR_RINT_ENA_W1S, intr_mask);
octep_write_csr64(oct, CN93_SDP_EPF_OEI_RINT_ENA_W1S, -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_VFIRE_RINT_ENA_W1S(0), -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_VFORE_RINT_ENA_W1S(0), -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_MISC_RINT_ENA_W1S, intr_mask);
octep_write_csr64(oct, CN93_SDP_EPF_DMA_RINT_ENA_W1S, intr_mask);
octep_write_csr64(oct, CN93_SDP_EPF_MBOX_RINT_ENA_W1S(0), -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_MBOX_RINT_ENA_W1S(1), -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_DMA_VF_RINT_ENA_W1S(0), -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_PP_VF_RINT_ENA_W1S(0), -1ULL);
}
/* Disable all interrupts */
static void octep_disable_interrupts_cn93_pf(struct octep_device *oct)
{
u64 intr_mask = 0ULL;
int srn, num_rings, i;
srn = CFG_GET_PORTS_PF_SRN(oct->conf);
num_rings = CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf);
for (i = 0; i < num_rings; i++)
intr_mask |= (0x1ULL << (srn + i));
octep_write_csr64(oct, CN93_SDP_EPF_IRERR_RINT_ENA_W1C, intr_mask);
octep_write_csr64(oct, CN93_SDP_EPF_ORERR_RINT_ENA_W1C, intr_mask);
octep_write_csr64(oct, CN93_SDP_EPF_OEI_RINT_ENA_W1C, -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_VFIRE_RINT_ENA_W1C(0), -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_VFORE_RINT_ENA_W1C(0), -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_MISC_RINT_ENA_W1C, intr_mask);
octep_write_csr64(oct, CN93_SDP_EPF_DMA_RINT_ENA_W1C, intr_mask);
octep_write_csr64(oct, CN93_SDP_EPF_MBOX_RINT_ENA_W1C(0), -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_MBOX_RINT_ENA_W1C(1), -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_DMA_VF_RINT_ENA_W1C(0), -1ULL);
octep_write_csr64(oct, CN93_SDP_EPF_PP_VF_RINT_ENA_W1C(0), -1ULL);
}
/* Get new Octeon Read Index: index of descriptor that Octeon reads next. */
static u32 octep_update_iq_read_index_cn93_pf(struct octep_iq *iq)
{
u32 pkt_in_done = readl(iq->inst_cnt_reg);
u32 last_done, new_idx;
last_done = pkt_in_done - iq->pkt_in_done;
iq->pkt_in_done = pkt_in_done;
new_idx = (iq->octep_read_index + last_done) % iq->max_count;
return new_idx;
}
/* Enable a hardware Tx Queue */
static void octep_enable_iq_cn93_pf(struct octep_device *oct, int iq_no)
{
u64 loop = HZ;
u64 reg_val;
iq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
octep_write_csr64(oct, CN93_SDP_R_IN_INSTR_DBELL(iq_no), 0xFFFFFFFF);
while (octep_read_csr64(oct, CN93_SDP_R_IN_INSTR_DBELL(iq_no)) &&
loop--) {
schedule_timeout_interruptible(1);
}
reg_val = octep_read_csr64(oct, CN93_SDP_R_IN_INT_LEVELS(iq_no));
reg_val |= (0x1ULL << 62);
octep_write_csr64(oct, CN93_SDP_R_IN_INT_LEVELS(iq_no), reg_val);
reg_val = octep_read_csr64(oct, CN93_SDP_R_IN_ENABLE(iq_no));
reg_val |= 0x1ULL;
octep_write_csr64(oct, CN93_SDP_R_IN_ENABLE(iq_no), reg_val);
}
/* Enable a hardware Rx Queue */
static void octep_enable_oq_cn93_pf(struct octep_device *oct, int oq_no)
{
u64 reg_val = 0ULL;
oq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
reg_val = octep_read_csr64(oct, CN93_SDP_R_OUT_INT_LEVELS(oq_no));
reg_val |= (0x1ULL << 62);
octep_write_csr64(oct, CN93_SDP_R_OUT_INT_LEVELS(oq_no), reg_val);
octep_write_csr64(oct, CN93_SDP_R_OUT_SLIST_DBELL(oq_no), 0xFFFFFFFF);
reg_val = octep_read_csr64(oct, CN93_SDP_R_OUT_ENABLE(oq_no));
reg_val |= 0x1ULL;
octep_write_csr64(oct, CN93_SDP_R_OUT_ENABLE(oq_no), reg_val);
}
/* Enable all hardware Tx/Rx Queues assined to PF */
static void octep_enable_io_queues_cn93_pf(struct octep_device *oct)
{
u8 q;
for (q = 0; q < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); q++) {
octep_enable_iq_cn93_pf(oct, q);
octep_enable_oq_cn93_pf(oct, q);
}
}
/* Disable a hardware Tx Queue assined to PF */
static void octep_disable_iq_cn93_pf(struct octep_device *oct, int iq_no)
{
u64 reg_val = 0ULL;
iq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
reg_val = octep_read_csr64(oct, CN93_SDP_R_IN_ENABLE(iq_no));
reg_val &= ~0x1ULL;
octep_write_csr64(oct, CN93_SDP_R_IN_ENABLE(iq_no), reg_val);
}
/* Disable a hardware Rx Queue assined to PF */
static void octep_disable_oq_cn93_pf(struct octep_device *oct, int oq_no)
{
u64 reg_val = 0ULL;
oq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
reg_val = octep_read_csr64(oct, CN93_SDP_R_OUT_ENABLE(oq_no));
reg_val &= ~0x1ULL;
octep_write_csr64(oct, CN93_SDP_R_OUT_ENABLE(oq_no), reg_val);
}
/* Disable all hardware Tx/Rx Queues assined to PF */
static void octep_disable_io_queues_cn93_pf(struct octep_device *oct)
{
int q = 0;
for (q = 0; q < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); q++) {
octep_disable_iq_cn93_pf(oct, q);
octep_disable_oq_cn93_pf(oct, q);
}
}
/* Dump hardware registers (including Tx/Rx queues) for debugging. */
static void octep_dump_registers_cn93_pf(struct octep_device *oct)
{
u8 srn, num_rings, q;
srn = CFG_GET_PORTS_PF_SRN(oct->conf);
num_rings = CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf);
for (q = srn; q < srn + num_rings; q++)
cn93_dump_regs(oct, q);
}
/**
* octep_device_setup_cn93_pf() - Setup Octeon device.
*
* @oct: Octeon device private data structure.
*
* - initialize hardware operations.
* - get target side pcie port number for the device.
* - setup window access to hardware registers.
* - set initial configuration and max limits.
* - setup hardware mapping of rings to the PF device.
*/
void octep_device_setup_cn93_pf(struct octep_device *oct)
{
oct->hw_ops.setup_iq_regs = octep_setup_iq_regs_cn93_pf;
oct->hw_ops.setup_oq_regs = octep_setup_oq_regs_cn93_pf;
oct->hw_ops.setup_mbox_regs = octep_setup_mbox_regs_cn93_pf;
oct->hw_ops.mbox_intr_handler = octep_pfvf_mbox_intr_handler_cn93_pf;
oct->hw_ops.oei_intr_handler = octep_oei_intr_handler_cn93_pf;
oct->hw_ops.ire_intr_handler = octep_ire_intr_handler_cn93_pf;
oct->hw_ops.ore_intr_handler = octep_ore_intr_handler_cn93_pf;
oct->hw_ops.vfire_intr_handler = octep_vfire_intr_handler_cn93_pf;
oct->hw_ops.vfore_intr_handler = octep_vfore_intr_handler_cn93_pf;
oct->hw_ops.dma_intr_handler = octep_dma_intr_handler_cn93_pf;
oct->hw_ops.dma_vf_intr_handler = octep_dma_vf_intr_handler_cn93_pf;
oct->hw_ops.pp_vf_intr_handler = octep_pp_vf_intr_handler_cn93_pf;
oct->hw_ops.misc_intr_handler = octep_misc_intr_handler_cn93_pf;
oct->hw_ops.rsvd_intr_handler = octep_rsvd_intr_handler_cn93_pf;
oct->hw_ops.ioq_intr_handler = octep_ioq_intr_handler_cn93_pf;
if (oct->chip_id == OCTEP_PCI_DEVICE_ID_CN98_PF)
oct->hw_ops.soft_reset = octep_soft_reset_cn98_pf;
else
oct->hw_ops.soft_reset = octep_soft_reset_cn93_pf;
oct->hw_ops.reinit_regs = octep_reinit_regs_cn93_pf;
oct->hw_ops.enable_interrupts = octep_enable_interrupts_cn93_pf;
oct->hw_ops.disable_interrupts = octep_disable_interrupts_cn93_pf;
oct->hw_ops.poll_non_ioq_interrupts = octep_poll_non_ioq_interrupts_cn93_pf;
oct->hw_ops.update_iq_read_idx = octep_update_iq_read_index_cn93_pf;
oct->hw_ops.enable_iq = octep_enable_iq_cn93_pf;
oct->hw_ops.enable_oq = octep_enable_oq_cn93_pf;
oct->hw_ops.enable_io_queues = octep_enable_io_queues_cn93_pf;
oct->hw_ops.disable_iq = octep_disable_iq_cn93_pf;
oct->hw_ops.disable_oq = octep_disable_oq_cn93_pf;
oct->hw_ops.disable_io_queues = octep_disable_io_queues_cn93_pf;
oct->hw_ops.reset_io_queues = octep_reset_io_queues_cn93_pf;
oct->hw_ops.dump_registers = octep_dump_registers_cn93_pf;
octep_setup_pci_window_regs_cn93_pf(oct);
oct->pcie_port = octep_read_csr64(oct, CN93_SDP_MAC_NUMBER) & 0xff;
dev_info(&oct->pdev->dev,
"Octeon device using PCIE Port %d\n", oct->pcie_port);
octep_init_config_cn93_pf(oct);
octep_configure_ring_mapping_cn93_pf(oct);
}