// SPDX-License-Identifier: GPL-2.0
/* Marvell RVU Admin Function driver
*
* Copyright (C) 2020 Marvell.
*/
#include <linux/bitfield.h>
#include "rvu_struct.h"
#include "rvu_reg.h"
#include "rvu.h"
#include "npc.h"
#include "rvu_npc_fs.h"
#include "rvu_npc_hash.h"
static const char * const npc_flow_names[] = {
[NPC_DMAC] = "dmac",
[NPC_SMAC] = "smac",
[NPC_ETYPE] = "ether type",
[NPC_VLAN_ETYPE_CTAG] = "vlan ether type ctag",
[NPC_VLAN_ETYPE_STAG] = "vlan ether type stag",
[NPC_OUTER_VID] = "outer vlan id",
[NPC_INNER_VID] = "inner vlan id",
[NPC_TOS] = "tos",
[NPC_IPFRAG_IPV4] = "fragmented IPv4 header ",
[NPC_SIP_IPV4] = "ipv4 source ip",
[NPC_DIP_IPV4] = "ipv4 destination ip",
[NPC_IPFRAG_IPV6] = "fragmented IPv6 header ",
[NPC_SIP_IPV6] = "ipv6 source ip",
[NPC_DIP_IPV6] = "ipv6 destination ip",
[NPC_IPPROTO_TCP] = "ip proto tcp",
[NPC_IPPROTO_UDP] = "ip proto udp",
[NPC_IPPROTO_SCTP] = "ip proto sctp",
[NPC_IPPROTO_ICMP] = "ip proto icmp",
[NPC_IPPROTO_ICMP6] = "ip proto icmp6",
[NPC_IPPROTO_AH] = "ip proto AH",
[NPC_IPPROTO_ESP] = "ip proto ESP",
[NPC_SPORT_TCP] = "tcp source port",
[NPC_DPORT_TCP] = "tcp destination port",
[NPC_SPORT_UDP] = "udp source port",
[NPC_DPORT_UDP] = "udp destination port",
[NPC_SPORT_SCTP] = "sctp source port",
[NPC_DPORT_SCTP] = "sctp destination port",
[NPC_LXMB] = "Mcast/Bcast header ",
[NPC_IPSEC_SPI] = "SPI ",
[NPC_MPLS1_LBTCBOS] = "lse depth 1 label tc bos",
[NPC_MPLS1_TTL] = "lse depth 1 ttl",
[NPC_MPLS2_LBTCBOS] = "lse depth 2 label tc bos",
[NPC_MPLS2_TTL] = "lse depth 2 ttl",
[NPC_MPLS3_LBTCBOS] = "lse depth 3 label tc bos",
[NPC_MPLS3_TTL] = "lse depth 3 ttl",
[NPC_MPLS4_LBTCBOS] = "lse depth 4 label tc bos",
[NPC_MPLS4_TTL] = "lse depth 4",
[NPC_TYPE_ICMP] = "icmp type",
[NPC_CODE_ICMP] = "icmp code",
[NPC_TCP_FLAGS] = "tcp flags",
[NPC_UNKNOWN] = "unknown",
};
bool npc_is_feature_supported(struct rvu *rvu, u64 features, u8 intf)
{
struct npc_mcam *mcam = &rvu->hw->mcam;
u64 mcam_features;
u64 unsupported;
mcam_features = is_npc_intf_tx(intf) ? mcam->tx_features : mcam->rx_features;
unsupported = (mcam_features ^ features) & ~mcam_features;
/* Return false if at least one of the input flows is not extracted */
return !unsupported;
}
const char *npc_get_field_name(u8 hdr)
{
if (hdr >= ARRAY_SIZE(npc_flow_names))
return npc_flow_names[NPC_UNKNOWN];
return npc_flow_names[hdr];
}
/* Compute keyword masks and figure out the number of keywords a field
* spans in the key.
*/
static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type,
u8 nr_bits, int start_kwi, int offset, u8 intf)
{
struct npc_key_field *field = &mcam->rx_key_fields[type];
u8 bits_in_kw;
int max_kwi;
if (mcam->banks_per_entry == 1)
max_kwi = 1; /* NPC_MCAM_KEY_X1 */
else if (mcam->banks_per_entry == 2)
max_kwi = 3; /* NPC_MCAM_KEY_X2 */
else
max_kwi = 6; /* NPC_MCAM_KEY_X4 */
if (is_npc_intf_tx(intf))
field = &mcam->tx_key_fields[type];
if (offset + nr_bits <= 64) {
/* one KW only */
if (start_kwi > max_kwi)
return;
field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0)
<< offset;
field->nr_kws = 1;
} else if (offset + nr_bits > 64 &&
offset + nr_bits <= 128) {
/* two KWs */
if (start_kwi + 1 > max_kwi)
return;
/* first KW mask */
bits_in_kw = 64 - offset;
field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
<< offset;
/* second KW mask i.e. mask for rest of bits */
bits_in_kw = nr_bits + offset - 64;
field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0);
field->nr_kws = 2;
} else {
/* three KWs */
if (start_kwi + 2 > max_kwi)
return;
/* first KW mask */
bits_in_kw = 64 - offset;
field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
<< offset;
/* second KW mask */
field->kw_mask[start_kwi + 1] = ~0ULL;
/* third KW mask i.e. mask for rest of bits */
bits_in_kw = nr_bits + offset - 128;
field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0);
field->nr_kws = 3;
}
}
/* Helper function to figure out whether field exists in the key */
static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf)
{
struct npc_mcam *mcam = &rvu->hw->mcam;
struct npc_key_field *input;
input = &mcam->rx_key_fields[type];
if (is_npc_intf_tx(intf))
input = &mcam->tx_key_fields[type];
return input->nr_kws > 0;
}
static bool npc_is_same(struct npc_key_field *input,
struct npc_key_field *field)
{
return memcmp(&input->layer_mdata, &field->layer_mdata,
sizeof(struct npc_layer_mdata)) == 0;
}
static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type,
u64 cfg, u8 lid, u8 lt, u8 intf)
{
struct npc_key_field *input = &mcam->rx_key_fields[type];
if (is_npc_intf_tx(intf))
input = &mcam->tx_key_fields[type];
input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg);
input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1;
input->layer_mdata.ltype = lt;
input->layer_mdata.lid = lid;
}
static bool npc_check_overlap_fields(struct npc_key_field *input1,
struct npc_key_field *input2)
{
int kwi;
/* Fields with same layer id and different ltypes are mutually
* exclusive hence they can be overlapped
*/
if (input1->layer_mdata.lid == input2->layer_mdata.lid &&
input1->layer_mdata.ltype != input2->layer_mdata.ltype)
return false;
for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) {
if (input1->kw_mask[kwi] & input2->kw_mask[kwi])
return true;
}
return false;
}
/* Helper function to check whether given field overlaps with any other fields
* in the key. Due to limitations on key size and the key extraction profile in
* use higher layers can overwrite lower layer's header fields. Hence overlap
* needs to be checked.
*/
static bool npc_check_overlap(struct rvu *rvu, int blkaddr,
enum key_fields type, u8 start_lid, u8 intf)
{
struct npc_mcam *mcam = &rvu->hw->mcam;
struct npc_key_field *dummy, *input;
int start_kwi, offset;
u8 nr_bits, lid, lt, ld;
u64 cfg;
dummy = &mcam->rx_key_fields[NPC_UNKNOWN];
input = &mcam->rx_key_fields[type];
if (is_npc_intf_tx(intf)) {
dummy = &mcam->tx_key_fields[NPC_UNKNOWN];
input = &mcam->tx_key_fields[type];
}
for (lid = start_lid; lid < NPC_MAX_LID; lid++) {
for (lt = 0; lt < NPC_MAX_LT; lt++) {
for (ld = 0; ld < NPC_MAX_LD; ld++) {
cfg = rvu_read64(rvu, blkaddr,
NPC_AF_INTFX_LIDX_LTX_LDX_CFG
(intf, lid, lt, ld));
if (!FIELD_GET(NPC_LDATA_EN, cfg))
continue;
memset(dummy, 0, sizeof(struct npc_key_field));
npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg,
lid, lt, intf);
/* exclude input */
if (npc_is_same(input, dummy))
continue;
start_kwi = dummy->layer_mdata.key / 8;
offset = (dummy->layer_mdata.key * 8) % 64;
nr_bits = dummy->layer_mdata.len * 8;
/* form KW masks */
npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits,
start_kwi, offset, intf);
/* check any input field bits falls in any
* other field bits.
*/
if (npc_check_overlap_fields(dummy, input))
return true;
}
}
}
return false;
}
static bool npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type,
u8 intf)
{
if (!npc_is_field_present(rvu, type, intf) ||
npc_check_overlap(rvu, blkaddr, type, 0, intf))
return false;
return true;
}
static void npc_scan_exact_result(struct npc_mcam *mcam, u8 bit_number,
u8 key_nibble, u8 intf)
{
u8 offset = (key_nibble * 4) % 64; /* offset within key word */
u8 kwi = (key_nibble * 4) / 64; /* which word in key */
u8 nr_bits = 4; /* bits in a nibble */
u8 type;
switch (bit_number) {
case 40 ... 43:
type = NPC_EXACT_RESULT;
break;
default:
return;
}
npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
}
static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number,
u8 key_nibble, u8 intf)
{
u8 offset = (key_nibble * 4) % 64; /* offset within key word */
u8 kwi = (key_nibble * 4) / 64; /* which word in key */
u8 nr_bits = 4; /* bits in a nibble */
u8 type;
switch (bit_number) {
case 0 ... 2:
type = NPC_CHAN;
break;
case 3:
type = NPC_ERRLEV;
break;
case 4 ... 5:
type = NPC_ERRCODE;
break;
case 6:
type = NPC_LXMB;
break;
/* check for LTYPE only as of now */
case 9:
type = NPC_LA;
break;
case 12:
type = NPC_LB;
break;
case 15:
type = NPC_LC;
break;
case 18:
type = NPC_LD;
break;
case 21:
type = NPC_LE;
break;
case 24:
type = NPC_LF;
break;
case 27:
type = NPC_LG;
break;
case 30:
type = NPC_LH;
break;
default:
return;
}
npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
}
static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf)
{
struct npc_mcam *mcam = &rvu->hw->mcam;
struct npc_key_field *key_fields;
/* Ether type can come from three layers
* (ethernet, single tagged, double tagged)
*/
struct npc_key_field *etype_ether;
struct npc_key_field *etype_tag1;
struct npc_key_field *etype_tag2;
/* Outer VLAN TCI can come from two layers
* (single tagged, double tagged)
*/
struct npc_key_field *vlan_tag1;
struct npc_key_field *vlan_tag2;
/* Inner VLAN TCI for double tagged frames */
struct npc_key_field *vlan_tag3;
u64 *features;
u8 start_lid;
int i;
key_fields = mcam->rx_key_fields;
features = &mcam->rx_features;
if (is_npc_intf_tx(intf)) {
key_fields = mcam->tx_key_fields;
features = &mcam->tx_features;
}
/* Handle header fields which can come from multiple layers like
* etype, outer vlan tci. These fields should have same position in
* the key otherwise to install a mcam rule more than one entry is
* needed which complicates mcam space management.
*/
etype_ether = &key_fields[NPC_ETYPE_ETHER];
etype_tag1 = &key_fields[NPC_ETYPE_TAG1];
etype_tag2 = &key_fields[NPC_ETYPE_TAG2];
vlan_tag1 = &key_fields[NPC_VLAN_TAG1];
vlan_tag2 = &key_fields[NPC_VLAN_TAG2];
vlan_tag3 = &key_fields[NPC_VLAN_TAG3];
/* if key profile programmed does not extract Ethertype at all */
if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws) {
dev_err(rvu->dev, "mkex: Ethertype is not extracted.\n");
goto vlan_tci;
}
/* if key profile programmed extracts Ethertype from one layer */
if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
key_fields[NPC_ETYPE] = *etype_ether;
if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws)
key_fields[NPC_ETYPE] = *etype_tag1;
if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws)
key_fields[NPC_ETYPE] = *etype_tag2;
/* if key profile programmed extracts Ethertype from multiple layers */
if (etype_ether->nr_kws && etype_tag1->nr_kws) {
for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i]) {
dev_err(rvu->dev, "mkex: Etype pos is different for untagged and tagged pkts.\n");
goto vlan_tci;
}
}
key_fields[NPC_ETYPE] = *etype_tag1;
}
if (etype_ether->nr_kws && etype_tag2->nr_kws) {
for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i]) {
dev_err(rvu->dev, "mkex: Etype pos is different for untagged and double tagged pkts.\n");
goto vlan_tci;
}
}
key_fields[NPC_ETYPE] = *etype_tag2;
}
if (etype_tag1->nr_kws && etype_tag2->nr_kws) {
for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i]) {
dev_err(rvu->dev, "mkex: Etype pos is different for tagged and double tagged pkts.\n");
goto vlan_tci;
}
}
key_fields[NPC_ETYPE] = *etype_tag2;
}
/* check none of higher layers overwrite Ethertype */
start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1;
if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf)) {
dev_err(rvu->dev, "mkex: Ethertype is overwritten by higher layers.\n");
goto vlan_tci;
}
*features |= BIT_ULL(NPC_ETYPE);
vlan_tci:
/* if key profile does not extract outer vlan tci at all */
if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws) {
dev_err(rvu->dev, "mkex: Outer vlan tci is not extracted.\n");
goto done;
}
/* if key profile extracts outer vlan tci from one layer */
if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
key_fields[NPC_OUTER_VID] = *vlan_tag1;
if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws)
key_fields[NPC_OUTER_VID] = *vlan_tag2;
/* if key profile extracts outer vlan tci from multiple layers */
if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) {
for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i]) {
dev_err(rvu->dev, "mkex: Out vlan tci pos is different for tagged and double tagged pkts.\n");
goto done;
}
}
key_fields[NPC_OUTER_VID] = *vlan_tag2;
}
/* check none of higher layers overwrite outer vlan tci */
start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1;
if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf)) {
dev_err(rvu->dev, "mkex: Outer vlan tci is overwritten by higher layers.\n");
goto done;
}
*features |= BIT_ULL(NPC_OUTER_VID);
/* If key profile extracts inner vlan tci */
if (vlan_tag3->nr_kws) {
key_fields[NPC_INNER_VID] = *vlan_tag3;
*features |= BIT_ULL(NPC_INNER_VID);
}
done:
return;
}
static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid,
u8 lt, u64 cfg, u8 intf)
{
struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
struct npc_mcam *mcam = &rvu->hw->mcam;
u8 hdr, key, nr_bytes, bit_offset;
u8 la_ltype, la_start;
/* starting KW index and starting bit position */
int start_kwi, offset;
nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1;
hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
key = FIELD_GET(NPC_KEY_OFFSET, cfg);
/* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding
* ethernet header.
*/
if (is_npc_intf_tx(intf)) {
la_ltype = NPC_LT_LA_IH_NIX_ETHER;
la_start = 8;
} else {
la_ltype = NPC_LT_LA_ETHER;
la_start = 0;
}
#define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen) \
do { \
start_kwi = key / 8; \
offset = (key * 8) % 64; \
if (lid == (hlid) && lt == (hlt)) { \
if ((hstart) >= hdr && \
((hstart) + (hlen)) <= (hdr + nr_bytes)) { \
bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \
npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \
offset += bit_offset; \
start_kwi += offset / 64; \
offset %= 64; \
npc_set_kw_masks(mcam, (name), (hlen) * 8, \
start_kwi, offset, intf); \
} \
} \
} while (0)
/* List LID, LTYPE, start offset from layer and length(in bytes) of
* packet header fields below.
* Example: Source IP is 4 bytes and starts at 12th byte of IP header
*/
NPC_SCAN_HDR(NPC_TOS, NPC_LID_LC, NPC_LT_LC_IP, 1, 1);
NPC_SCAN_HDR(NPC_IPFRAG_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 6, 1);
NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4);
NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4);
NPC_SCAN_HDR(NPC_IPFRAG_IPV6, NPC_LID_LC, NPC_LT_LC_IP6_EXT, 6, 1);
if (rvu->hw->cap.npc_hash_extract) {
if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][0])
NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 4);
else
NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][1])
NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 4);
else
NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
} else {
NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
}
NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2);
NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2);
NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2);
NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2);
NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2);
NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2);
NPC_SCAN_HDR(NPC_TYPE_ICMP, NPC_LID_LD, NPC_LT_LD_ICMP, 0, 1);
NPC_SCAN_HDR(NPC_CODE_ICMP, NPC_LID_LD, NPC_LT_LD_ICMP, 1, 1);
NPC_SCAN_HDR(NPC_TCP_FLAGS, NPC_LID_LD, NPC_LT_LD_TCP, 12, 2);
NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2);
NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2);
NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2);
NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2);
NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2);
NPC_SCAN_HDR(NPC_VLAN_TAG3, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 6, 2);
NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6);
NPC_SCAN_HDR(NPC_IPSEC_SPI, NPC_LID_LD, NPC_LT_LD_AH, 4, 4);
NPC_SCAN_HDR(NPC_IPSEC_SPI, NPC_LID_LE, NPC_LT_LE_ESP, 0, 4);
NPC_SCAN_HDR(NPC_MPLS1_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 0, 3);
NPC_SCAN_HDR(NPC_MPLS1_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 3, 1);
NPC_SCAN_HDR(NPC_MPLS2_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 4, 3);
NPC_SCAN_HDR(NPC_MPLS2_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 7, 1);
NPC_SCAN_HDR(NPC_MPLS3_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 8, 3);
NPC_SCAN_HDR(NPC_MPLS3_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 11, 1);
NPC_SCAN_HDR(NPC_MPLS4_LBTCBOS, NPC_LID_LC, NPC_LT_LC_MPLS, 12, 3);
NPC_SCAN_HDR(NPC_MPLS4_TTL, NPC_LID_LC, NPC_LT_LC_MPLS, 15, 1);
/* SMAC follows the DMAC(which is 6 bytes) */
NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start + 6, 6);
/* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */
NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2);
}
static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf)
{
struct npc_mcam *mcam = &rvu->hw->mcam;
u64 *features = &mcam->rx_features;
u64 proto_flags;
int hdr;
if (is_npc_intf_tx(intf))
features = &mcam->tx_features;
for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) {
if (npc_check_field(rvu, blkaddr, hdr, intf))
*features |= BIT_ULL(hdr);
}
proto_flags = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) |
BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) |
BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP) |
BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP) |
BIT_ULL(NPC_TYPE_ICMP) | BIT_ULL(NPC_CODE_ICMP) |
BIT_ULL(NPC_TCP_FLAGS);
/* for tcp/udp/sctp corresponding layer type should be in the key */
if (*features & proto_flags) {
if (!npc_check_field(rvu, blkaddr, NPC_LD, intf))
*features &= ~proto_flags;
else
*features |= BIT_ULL(NPC_IPPROTO_TCP) |
BIT_ULL(NPC_IPPROTO_UDP) |
BIT_ULL(NPC_IPPROTO_SCTP) |
BIT_ULL(NPC_IPPROTO_ICMP);
}
/* for AH/ICMP/ICMPv6/, check if corresponding layer type is present in the key */
if (npc_check_field(rvu, blkaddr, NPC_LD, intf)) {
*features |= BIT_ULL(NPC_IPPROTO_AH);
*features |= BIT_ULL(NPC_IPPROTO_ICMP);
*features |= BIT_ULL(NPC_IPPROTO_ICMP6);
}
/* for ESP, check if corresponding layer type is present in the key */
if (npc_check_field(rvu, blkaddr, NPC_LE, intf))
*features |= BIT_ULL(NPC_IPPROTO_ESP);
/* for vlan corresponding layer type should be in the key */
if (*features & BIT_ULL(NPC_OUTER_VID))
if (!npc_check_field(rvu, blkaddr, NPC_LB, intf))
*features &= ~BIT_ULL(NPC_OUTER_VID);
/* Set SPI flag only if AH/ESP and IPSEC_SPI are in the key */
if (npc_check_field(rvu, blkaddr, NPC_IPSEC_SPI, intf) &&
(*features & (BIT_ULL(NPC_IPPROTO_ESP) | BIT_ULL(NPC_IPPROTO_AH))))
*features |= BIT_ULL(NPC_IPSEC_SPI);
/* for vlan ethertypes corresponding layer type should be in the key */
if (npc_check_field(rvu, blkaddr, NPC_LB, intf))
*features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG) |
BIT_ULL(NPC_VLAN_ETYPE_STAG);
/* for L2M/L2B/L3M/L3B, check if the type is present in the key */
if (npc_check_field(rvu, blkaddr, NPC_LXMB, intf))
*features |= BIT_ULL(NPC_LXMB);
for (hdr = NPC_MPLS1_LBTCBOS; hdr <= NPC_MPLS4_TTL; hdr++) {
if (npc_check_field(rvu, blkaddr, hdr, intf))
*features |= BIT_ULL(hdr);
}
}
/* Scan key extraction profile and record how fields of our interest
* fill the key structure. Also verify Channel and DMAC exists in
* key and not overwritten by other header fields.
*/
static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf)
{
struct npc_mcam *mcam = &rvu->hw->mcam;
u8 lid, lt, ld, bitnr;
u64 cfg, masked_cfg;
u8 key_nibble = 0;
/* Scan and note how parse result is going to be in key.
* A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from
* parse result in the key. The enabled nibbles from parse result
* will be concatenated in key.
*/
cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf));
masked_cfg = cfg & NPC_PARSE_NIBBLE;
for_each_set_bit(bitnr, (unsigned long *)&masked_cfg, 31) {
npc_scan_parse_result(mcam, bitnr, key_nibble, intf);
key_nibble++;
}
/* Ignore exact match bits for mcam entries except the first rule
* which is drop on hit. This first rule is configured explitcitly by
* exact match code.
*/
masked_cfg = cfg & NPC_EXACT_NIBBLE;
bitnr = NPC_EXACT_NIBBLE_START;
for_each_set_bit_from(bitnr, (unsigned long *)&masked_cfg, NPC_EXACT_NIBBLE_END + 1) {
npc_scan_exact_result(mcam, bitnr, key_nibble, intf);
key_nibble++;
}
/* Scan and note how layer data is going to be in key */
for (lid = 0; lid < NPC_MAX_LID; lid++) {
for (lt = 0; lt < NPC_MAX_LT; lt++) {
for (ld = 0; ld < NPC_MAX_LD; ld++) {
cfg = rvu_read64(rvu, blkaddr,
NPC_AF_INTFX_LIDX_LTX_LDX_CFG
(intf, lid, lt, ld));
if (!FIELD_GET(NPC_LDATA_EN, cfg))
continue;
npc_scan_ldata(rvu, blkaddr, lid, lt, cfg,
intf);
}
}
}
return 0;
}
static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr)
{
int err;
err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX);
if (err)
return err;
err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX);
if (err)
return err;
/* Channel is mandatory */
if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) {
dev_err(rvu->dev, "Channel not present in Key\n");
return -EINVAL;
}
/* check that none of the fields overwrite channel */
if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) {
dev_err(rvu->dev, "Channel cannot be overwritten\n");
return -EINVAL;
}
npc_set_features(rvu, blkaddr, NIX_INTF_TX);
npc_set_features(rvu, blkaddr, NIX_INTF_RX);
npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX);
npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX);
return 0;
}
int npc_flow_steering_init(struct rvu *rvu, int blkaddr)
{
struct npc_mcam *mcam = &rvu->hw->mcam;
INIT_LIST_HEAD(&mcam->mcam_rules);
return npc_scan_verify_kex(rvu, blkaddr);
}
static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf)
{
struct npc_mcam *mcam = &rvu->hw->mcam;
u64 *mcam_features = &mcam->rx_features;
u64 unsupported;
u8 bit;
if (is_npc_intf_tx(intf))
mcam_features = &mcam->tx_features;
unsupported = (*mcam_features ^ features) & ~(*mcam_features);
if (unsupported) {
dev_warn(rvu->dev, "Unsupported flow(s):\n");
for_each_set_bit(bit, (unsigned long *)&unsupported, 64)
dev_warn(rvu->dev, "%s ", npc_get_field_name(bit));
return -EOPNOTSUPP;
}
return 0;
}
/* npc_update_entry - Based on the masks generated during
* the key scanning, updates the given entry with value and
* masks for the field of interest. Maximum 16 bytes of a packet
* header can be extracted by HW hence lo and hi are sufficient.
* When field bytes are less than or equal to 8 then hi should be
* 0 for value and mask.
*
* If exact match of value is required then mask should be all 1's.
* If any bits in mask are 0 then corresponding bits in value are
* dont care.
*/
void npc_update_entry(struct rvu *rvu, enum key_fields type,
struct mcam_entry *entry, u64 val_lo,
u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf)
{
struct npc_mcam *mcam = &rvu->hw->mcam;
struct mcam_entry dummy = { {0} };
struct npc_key_field *field;
u64 kw1, kw2, kw3;
u8 shift;
int i;
field = &mcam->rx_key_fields[type];
if (is_npc_intf_tx(intf))
field = &mcam->tx_key_fields[type];
if (!field->nr_kws)
return;
for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
if (!field->kw_mask[i])
continue;
/* place key value in kw[x] */
shift = __ffs64(field->kw_mask[i]);
/* update entry value */
kw1 = (val_lo << shift) & field->kw_mask[i];
dummy.kw[i] = kw1;
/* update entry mask */
kw1 = (mask_lo << shift) & field->kw_mask[i];
dummy.kw_mask[i] = kw1;
if (field->nr_kws == 1)
break;
/* place remaining bits of key value in kw[x + 1] */
if (field->nr_kws == 2) {
/* update entry value */
kw2 = shift ? val_lo >> (64 - shift) : 0;
kw2 |= (val_hi << shift);
kw2 &= field->kw_mask[i + 1];
dummy.kw[i + 1] = kw2;
/* update entry mask */
kw2 = shift ? mask_lo >> (64 - shift) : 0;
kw2 |= (mask_hi << shift);
kw2 &= field->kw_mask[i + 1];
dummy.kw_mask[i + 1] = kw2;
break;
}
/* place remaining bits of key value in kw[x + 1], kw[x + 2] */
if (field->nr_kws == 3) {
/* update entry value */
kw2 = shift ? val_lo >> (64 - shift) : 0;
kw2 |= (val_hi << shift);
kw2 &= field->kw_mask[i + 1];
kw3 = shift ? val_hi >> (64 - shift) : 0;
kw3 &= field->kw_mask[i + 2];
dummy.kw[i + 1] = kw2;
dummy.kw[i + 2] = kw3;
/* update entry mask */
kw2 = shift ? mask_lo >> (64 - shift) : 0;
kw2 |= (mask_hi << shift);
kw2 &= field->kw_mask[i + 1];
kw3 = shift ? mask_hi >> (64 - shift) : 0;
kw3 &= field->kw_mask[i + 2];
dummy.kw_mask[i + 1] = kw2;
dummy.kw_mask[i + 2] = kw3;
break;
}
}
/* dummy is ready with values and masks for given key
* field now clear and update input entry with those
*/
for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
if (!field->kw_mask[i])
continue;
entry->kw[i] &= ~field->kw_mask[i];
entry->kw_mask[i] &= ~field->kw_mask[i];
entry->kw[i] |= dummy.kw[i];
entry->kw_mask[i] |= dummy.kw_mask[i];
}
}
static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry,
u64 features, struct flow_msg *pkt,
struct flow_msg *mask,
struct rvu_npc_mcam_rule *output, u8 intf)
{
u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS];
u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS];
struct flow_msg *opkt = &output->packet;
struct flow_msg *omask = &output->mask;
u64 mask_lo, mask_hi;
u64 val_lo, val_hi;
/* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet
* values to be programmed in MCAM should as below:
* val_high: 0xfe80000000000000
* val_low: 0x2c6863fffe5e2d0a
*/
if (features & BIT_ULL(NPC_SIP_IPV6)) {
be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS);
be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);
mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1];
mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3];
val_hi = (u64)src_ip[0] << 32 | src_ip[1];
val_lo = (u64)src_ip[2] << 32 | src_ip[3];
npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi,
mask_lo, mask_hi, intf);
memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src));
memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src));
}
if (features & BIT_ULL(NPC_DIP_IPV6)) {
be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS);
be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);
mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1];
mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3];
val_hi = (u64)dst_ip[0] << 32 | dst_ip[1];
val_lo = (u64)dst_ip[2] << 32 | dst_ip[3];
npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi,
mask_lo, mask_hi, intf);
memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst));
memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst));
}
}
static void npc_update_vlan_features(struct rvu *rvu, struct mcam_entry *entry,
u64 features, u8 intf)
{
bool ctag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_CTAG));
bool stag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_STAG));
bool vid = !!(features & BIT_ULL(NPC_OUTER_VID));
/* If only VLAN id is given then always match outer VLAN id */
if (vid && !ctag && !stag) {
npc_update_entry(rvu, NPC_LB, entry,
NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0,
NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf);
return;
}
if (ctag)
npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_CTAG, 0,
~0ULL, 0, intf);
if (stag)
npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_STAG_QINQ, 0,
~0ULL, 0, intf);
}
static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry,
u64 features, struct flow_msg *pkt,
struct flow_msg *mask,
struct rvu_npc_mcam_rule *output, u8 intf,
int blkaddr)
{
u64 dmac_mask = ether_addr_to_u64(mask->dmac);
u64 smac_mask = ether_addr_to_u64(mask->smac);
u64 dmac_val = ether_addr_to_u64(pkt->dmac);
u64 smac_val = ether_addr_to_u64(pkt->smac);
struct flow_msg *opkt = &output->packet;
struct flow_msg *omask = &output->mask;
if (!features)
return;
/* For tcp/udp/sctp LTYPE should be present in entry */
if (features & BIT_ULL(NPC_IPPROTO_TCP))
npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP,
0, ~0ULL, 0, intf);
if (features & BIT_ULL(NPC_IPPROTO_UDP))
npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP,
0, ~0ULL, 0, intf);
if (features & BIT_ULL(NPC_IPPROTO_SCTP))
npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP,
0, ~0ULL, 0, intf);
if (features & BIT_ULL(NPC_IPPROTO_ICMP))
npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP,
0, ~0ULL, 0, intf);
if (features & BIT_ULL(NPC_IPPROTO_ICMP6))
npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP6,
0, ~0ULL, 0, intf);
/* For AH, LTYPE should be present in entry */
if (features & BIT_ULL(NPC_IPPROTO_AH))
npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_AH,
0, ~0ULL, 0, intf);
/* For ESP, LTYPE should be present in entry */
if (features & BIT_ULL(NPC_IPPROTO_ESP))
npc_update_entry(rvu, NPC_LE, entry, NPC_LT_LE_ESP,
0, ~0ULL, 0, intf);
if (features & BIT_ULL(NPC_LXMB)) {
output->lxmb = is_broadcast_ether_addr(pkt->dmac) ? 2 : 1;
npc_update_entry(rvu, NPC_LXMB, entry, output->lxmb, 0,
output->lxmb, 0, intf);
}
#define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi) \
do { \
if (features & BIT_ULL((field))) { \
npc_update_entry(rvu, (field), entry, (val_lo), (val_hi), \
(mask_lo), (mask_hi), intf); \
memcpy(&opkt->member, &pkt->member, sizeof(pkt->member)); \
memcpy(&omask->member, &mask->member, sizeof(mask->member)); \
} \
} while (0)
NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0);
NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0);
NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0,
ntohs(mask->etype), 0);
NPC_WRITE_FLOW(NPC_TOS, tos, pkt->tos, 0, mask->tos, 0);
NPC_WRITE_FLOW(NPC_IPFRAG_IPV4, ip_flag, pkt->ip_flag, 0,
mask->ip_flag, 0);
NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0,
ntohl(mask->ip4src), 0);
NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0,
ntohl(mask->ip4dst), 0);
NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0,
ntohs(mask->sport), 0);
NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0,
ntohs(mask->sport), 0);
NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0,
ntohs(mask->dport), 0);
NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0,
ntohs(mask->dport), 0);
NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0,
ntohs(mask->sport), 0);
NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0,
ntohs(mask->dport), 0);
NPC_WRITE_FLOW(NPC_TYPE_ICMP, icmp_type, pkt->icmp_type, 0,
mask->icmp_type, 0);
NPC_WRITE_FLOW(NPC_CODE_ICMP, icmp_code, pkt->icmp_code, 0,
mask->icmp_code, 0);
NPC_WRITE_FLOW(NPC_TCP_FLAGS, tcp_flags, ntohs(pkt->tcp_flags), 0,
ntohs(mask->tcp_flags), 0);
NPC_WRITE_FLOW(NPC_IPSEC_SPI, spi, ntohl(pkt->spi), 0,
ntohl(mask->spi), 0);
NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0,
ntohs(mask->vlan_tci), 0);
NPC_WRITE_FLOW(NPC_INNER_VID, vlan_itci, ntohs(pkt->vlan_itci), 0,
ntohs(mask->vlan_itci), 0);
NPC_WRITE_FLOW(NPC_MPLS1_LBTCBOS, mpls_lse,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
pkt->mpls_lse[0]), 0,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
mask->mpls_lse[0]), 0);
NPC_WRITE_FLOW(NPC_MPLS1_TTL, mpls_lse,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
pkt->mpls_lse[0]), 0,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
mask->mpls_lse[0]), 0);
NPC_WRITE_FLOW(NPC_MPLS2_LBTCBOS, mpls_lse,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
pkt->mpls_lse[1]), 0,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
mask->mpls_lse[1]), 0);
NPC_WRITE_FLOW(NPC_MPLS2_TTL, mpls_lse,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
pkt->mpls_lse[1]), 0,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
mask->mpls_lse[1]), 0);
NPC_WRITE_FLOW(NPC_MPLS3_LBTCBOS, mpls_lse,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
pkt->mpls_lse[2]), 0,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
mask->mpls_lse[2]), 0);
NPC_WRITE_FLOW(NPC_MPLS3_TTL, mpls_lse,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
pkt->mpls_lse[2]), 0,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
mask->mpls_lse[2]), 0);
NPC_WRITE_FLOW(NPC_MPLS4_LBTCBOS, mpls_lse,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
pkt->mpls_lse[3]), 0,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_NON_TTL,
mask->mpls_lse[3]), 0);
NPC_WRITE_FLOW(NPC_MPLS4_TTL, mpls_lse,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
pkt->mpls_lse[3]), 0,
FIELD_GET(OTX2_FLOWER_MASK_MPLS_TTL,
mask->mpls_lse[3]), 0);
NPC_WRITE_FLOW(NPC_IPFRAG_IPV6, next_header, pkt->next_header, 0,
mask->next_header, 0);
npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf);
npc_update_vlan_features(rvu, entry, features, intf);
npc_update_field_hash(rvu, intf, entry, blkaddr, features,
pkt, mask, opkt, omask);
}
static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam, u16 entry)
{
struct rvu_npc_mcam_rule *iter;
mutex_lock(&mcam->lock);
list_for_each_entry(iter, &mcam->mcam_rules, list) {
if (iter->entry == entry) {
mutex_unlock(&mcam->lock);
return iter;
}
}
mutex_unlock(&mcam->lock);
return NULL;
}
static void rvu_mcam_add_rule(struct npc_mcam *mcam,
struct rvu_npc_mcam_rule *rule)
{
struct list_head *head = &mcam->mcam_rules;
struct rvu_npc_mcam_rule *iter;
mutex_lock(&mcam->lock);
list_for_each_entry(iter, &mcam->mcam_rules, list) {
if (iter->entry > rule->entry)
break;
head = &iter->list;
}
list_add(&rule->list, head);
mutex_unlock(&mcam->lock);
}
static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc,
struct rvu_npc_mcam_rule *rule)
{
struct npc_mcam_oper_counter_req free_req = { 0 };
struct msg_rsp free_rsp;
if (!rule->has_cntr)
return;
free_req.hdr.pcifunc = pcifunc;
free_req.cntr = rule->cntr;
rvu_mbox_handler_npc_mcam_free_counter(rvu, &free_req, &free_rsp);
rule->has_cntr = false;
}
static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc,
struct rvu_npc_mcam_rule *rule,
struct npc_install_flow_rsp *rsp)
{
struct npc_mcam_alloc_counter_req cntr_req = { 0 };
struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
int err;
cntr_req.hdr.pcifunc = pcifunc;
cntr_req.contig = true;
cntr_req.count = 1;
/* we try to allocate a counter to track the stats of this
* rule. If counter could not be allocated then proceed
* without counter because counters are limited than entries.
*/
err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req,
&cntr_rsp);
if (!err && cntr_rsp.count) {
rule->cntr = cntr_rsp.cntr;
rule->has_cntr = true;
rsp->counter = rule->cntr;
} else {
rsp->counter = err;
}
}
static int npc_mcast_update_action_index(struct rvu *rvu, struct npc_install_flow_req *req,
u64 op, void *action)
{
int mce_index;
/* If a PF/VF is installing a multicast rule then it is expected
* that the PF/VF should have created a group for the multicast/mirror
* list. Otherwise reject the configuration.
* During this scenario, req->index is set as multicast/mirror
* group index.
*/
if (req->hdr.pcifunc &&
(op == NIX_RX_ACTIONOP_MCAST || op == NIX_TX_ACTIONOP_MCAST)) {
mce_index = rvu_nix_mcast_get_mce_index(rvu, req->hdr.pcifunc, req->index);
if (mce_index < 0)
return mce_index;
if (op == NIX_RX_ACTIONOP_MCAST)
((struct nix_rx_action *)action)->index = mce_index;
else
((struct nix_tx_action *)action)->index = mce_index;
}
return 0;
}
static int npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
struct mcam_entry *entry,
struct npc_install_flow_req *req,
u16 target, bool pf_set_vfs_mac)
{
struct rvu_switch *rswitch = &rvu->rswitch;
struct nix_rx_action action;
int ret;
if (rswitch->mode == DEVLINK_ESWITCH_MODE_SWITCHDEV && pf_set_vfs_mac)
req->chan_mask = 0x0; /* Do not care channel */
npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0, req->chan_mask,
0, NIX_INTF_RX);
*(u64 *)&action = 0x00;
action.pf_func = target;
action.op = req->op;
action.index = req->index;
ret = npc_mcast_update_action_index(rvu, req, action.op, (void *)&action);
if (ret)
return ret;
action.match_id = req->match_id;
action.flow_key_alg = req->flow_key_alg;
if (req->op == NIX_RX_ACTION_DEFAULT) {
if (pfvf->def_ucast_rule) {
action = pfvf->def_ucast_rule->rx_action;
} else {
/* For profiles which do not extract DMAC, the default
* unicast entry is unused. Hence modify action for the
* requests which use same action as default unicast
* entry
*/
*(u64 *)&action = 0;
action.pf_func = target;
action.op = NIX_RX_ACTIONOP_UCAST;
}
if (req->match_id)
action.match_id = req->match_id;
}
entry->action = *(u64 *)&action;
/* VTAG0 starts at 0th byte of LID_B.
* VTAG1 starts at 4th byte of LID_B.
*/
entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) |
FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) |
FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) |
FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) |
FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) |
FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) |
FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) |
FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4);
return 0;
}
static int npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
struct mcam_entry *entry,
struct npc_install_flow_req *req, u16 target)
{
struct nix_tx_action action;
u64 mask = ~0ULL;
int ret;
/* If AF is installing then do not care about
* PF_FUNC in Send Descriptor
*/
if (is_pffunc_af(req->hdr.pcifunc))
mask = 0;
npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target),
0, mask, 0, NIX_INTF_TX);
*(u64 *)&action = 0x00;
action.op = req->op;
action.index = req->index;
ret = npc_mcast_update_action_index(rvu, req, action.op, (void *)&action);
if (ret)
return ret;
action.match_id = req->match_id;
entry->action = *(u64 *)&action;
/* VTAG0 starts at 0th byte of LID_B.
* VTAG1 starts at 4th byte of LID_B.
*/
entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) |
FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) |
FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) |
FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) |
FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) |
FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) |
FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) |
FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24);
return 0;
}
static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target,
int nixlf, struct rvu_pfvf *pfvf,
struct npc_install_flow_req *req,
struct npc_install_flow_rsp *rsp, bool enable,
bool pf_set_vfs_mac)
{
struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule;
u64 features, installed_features, missing_features = 0;
struct npc_mcam_write_entry_req write_req = { 0 };
struct npc_mcam *mcam = &rvu->hw->mcam;
struct rvu_npc_mcam_rule dummy = { 0 };
struct rvu_npc_mcam_rule *rule;
u16 owner = req->hdr.pcifunc;
struct msg_rsp write_rsp;
struct mcam_entry *entry;
bool new = false;
u16 entry_index;
int err;
installed_features = req->features;
features = req->features;
entry = &write_req.entry_data;
entry_index = req->entry;
npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy,
req->intf, blkaddr);
if (is_npc_intf_rx(req->intf)) {
err = npc_update_rx_entry(rvu, pfvf, entry, req, target, pf_set_vfs_mac);
if (err)
return err;
} else {
err = npc_update_tx_entry(rvu, pfvf, entry, req, target);
if (err)
return err;
}
/* Default unicast rules do not exist for TX */
if (is_npc_intf_tx(req->intf))
goto find_rule;
if (req->default_rule) {
entry_index = npc_get_nixlf_mcam_index(mcam, target, nixlf,
NIXLF_UCAST_ENTRY);
enable = is_mcam_entry_enabled(rvu, mcam, blkaddr, entry_index);
}
/* update mcam entry with default unicast rule attributes */
if (def_ucast_rule && (req->default_rule && req->append)) {
missing_features = (def_ucast_rule->features ^ features) &
def_ucast_rule->features;
if (missing_features)
npc_update_flow(rvu, entry, missing_features,
&def_ucast_rule->packet,
&def_ucast_rule->mask,
&dummy, req->intf,
blkaddr);
installed_features = req->features | missing_features;
}
find_rule:
rule = rvu_mcam_find_rule(mcam, entry_index);
if (!rule) {
rule = kzalloc(sizeof(*rule), GFP_KERNEL);
if (!rule)
return -ENOMEM;
new = true;
}
/* allocate new counter if rule has no counter */
if (!req->default_rule && req->set_cntr && !rule->has_cntr)
rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp);
/* if user wants to delete an existing counter for a rule then
* free the counter
*/
if (!req->set_cntr && rule->has_cntr)
rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
write_req.hdr.pcifunc = owner;
/* AF owns the default rules so change the owner just to relax
* the checks in rvu_mbox_handler_npc_mcam_write_entry
*/
if (req->default_rule)
write_req.hdr.pcifunc = 0;
write_req.entry = entry_index;
write_req.intf = req->intf;
write_req.enable_entry = (u8)enable;
/* if counter is available then clear and use it */
if (req->set_cntr && rule->has_cntr) {
rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), req->cntr_val);
write_req.set_cntr = 1;
write_req.cntr = rule->cntr;
}
/* update rule */
memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet));
memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask));
rule->entry = entry_index;
memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action));
if (is_npc_intf_tx(req->intf))
memcpy(&rule->tx_action, &entry->action,
sizeof(struct nix_tx_action));
rule->vtag_action = entry->vtag_action;
rule->features = installed_features;
rule->default_rule = req->default_rule;
rule->owner = owner;
rule->enable = enable;
rule->chan_mask = write_req.entry_data.kw_mask[0] & NPC_KEX_CHAN_MASK;
rule->chan = write_req.entry_data.kw[0] & NPC_KEX_CHAN_MASK;
rule->chan &= rule->chan_mask;
rule->lxmb = dummy.lxmb;
if (is_npc_intf_tx(req->intf))
rule->intf = pfvf->nix_tx_intf;
else
rule->intf = pfvf->nix_rx_intf;
if (new)
rvu_mcam_add_rule(mcam, rule);
if (req->default_rule)
pfvf->def_ucast_rule = rule;
/* write to mcam entry registers */
err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req,
&write_rsp);
if (err) {
rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
if (new) {
list_del(&rule->list);
kfree(rule);
}
return err;
}
/* VF's MAC address is being changed via PF */
if (pf_set_vfs_mac) {
ether_addr_copy(pfvf->default_mac, req->packet.dmac);
ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
set_bit(PF_SET_VF_MAC, &pfvf->flags);
}
if (test_bit(PF_SET_VF_CFG, &pfvf->flags) &&
req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7)
rule->vfvlan_cfg = true;
if (is_npc_intf_rx(req->intf) && req->match_id &&
(req->op == NIX_RX_ACTIONOP_UCAST || req->op == NIX_RX_ACTIONOP_RSS))
return rvu_nix_setup_ratelimit_aggr(rvu, req->hdr.pcifunc,
req->index, req->match_id);
if (owner && req->op == NIX_RX_ACTIONOP_MCAST)
return rvu_nix_mcast_update_mcam_entry(rvu, req->hdr.pcifunc,
req->index, entry_index);
return 0;
}
int rvu_mbox_handler_npc_install_flow(struct rvu *rvu,
struct npc_install_flow_req *req,
struct npc_install_flow_rsp *rsp)
{
bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK);
struct rvu_switch *rswitch = &rvu->rswitch;
int blkaddr, nixlf, err;
struct rvu_pfvf *pfvf;
bool pf_set_vfs_mac = false;
bool enable = true;
u16 target;
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
if (blkaddr < 0) {
dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
return NPC_MCAM_INVALID_REQ;
}
if (!is_npc_interface_valid(rvu, req->intf))
return NPC_FLOW_INTF_INVALID;
/* If DMAC is not extracted in MKEX, rules installed by AF
* can rely on L2MB bit set by hardware protocol checker for
* broadcast and multicast addresses.
*/
if (npc_check_field(rvu, blkaddr, NPC_DMAC, req->intf))
goto process_flow;
if (is_pffunc_af(req->hdr.pcifunc) &&
req->features & BIT_ULL(NPC_DMAC)) {
if (is_unicast_ether_addr(req->packet.dmac)) {
dev_warn(rvu->dev,
"%s: mkex profile does not support ucast flow\n",
__func__);
return NPC_FLOW_NOT_SUPPORTED;
}
if (!npc_is_field_present(rvu, NPC_LXMB, req->intf)) {
dev_warn(rvu->dev,
"%s: mkex profile does not support bcast/mcast flow",
__func__);
return NPC_FLOW_NOT_SUPPORTED;
}
/* Modify feature to use LXMB instead of DMAC */
req->features &= ~BIT_ULL(NPC_DMAC);
req->features |= BIT_ULL(NPC_LXMB);
}
process_flow:
if (from_vf && req->default_rule)
return NPC_FLOW_VF_PERM_DENIED;
/* Each PF/VF info is maintained in struct rvu_pfvf.
* rvu_pfvf for the target PF/VF needs to be retrieved
* hence modify pcifunc accordingly.
*/
/* AF installing for a PF/VF */
if (!req->hdr.pcifunc)
target = req->vf;
/* PF installing for its VF */
else if (!from_vf && req->vf) {
target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf;
pf_set_vfs_mac = req->default_rule &&
(req->features & BIT_ULL(NPC_DMAC));
}
/* msg received from PF/VF */
else
target = req->hdr.pcifunc;
/* ignore chan_mask in case pf func is not AF, revisit later */
if (!is_pffunc_af(req->hdr.pcifunc))
req->chan_mask = 0xFFF;
err = npc_check_unsupported_flows(rvu, req->features, req->intf);
if (err)
return NPC_FLOW_NOT_SUPPORTED;
pfvf = rvu_get_pfvf(rvu, target);
/* PF installing for its VF */
if (req->hdr.pcifunc && !from_vf && req->vf)
set_bit(PF_SET_VF_CFG, &pfvf->flags);
/* update req destination mac addr */
if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) &&
is_zero_ether_addr(req->packet.dmac)) {
ether_addr_copy(req->packet.dmac, pfvf->mac_addr);
eth_broadcast_addr((u8 *)&req->mask.dmac);
}
/* Proceed if NIXLF is attached or not for TX rules */
err = nix_get_nixlf(rvu, target, &nixlf, NULL);
if (err && is_npc_intf_rx(req->intf) && !pf_set_vfs_mac)
return NPC_FLOW_NO_NIXLF;
/* don't enable rule when nixlf not attached or initialized */
if (!(is_nixlf_attached(rvu, target) &&
test_bit(NIXLF_INITIALIZED, &pfvf->flags)))
enable = false;
/* Packets reaching NPC in Tx path implies that a
* NIXLF is properly setup and transmitting.
* Hence rules can be enabled for Tx.
*/
if (is_npc_intf_tx(req->intf))
enable = true;
/* Do not allow requests from uninitialized VFs */
if (from_vf && !enable)
return NPC_FLOW_VF_NOT_INIT;
/* PF sets VF mac & VF NIXLF is not attached, update the mac addr */
if (pf_set_vfs_mac && !enable) {
ether_addr_copy(pfvf->default_mac, req->packet.dmac);
ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
set_bit(PF_SET_VF_MAC, &pfvf->flags);
return 0;
}
mutex_lock(&rswitch->switch_lock);
err = npc_install_flow(rvu, blkaddr, target, nixlf, pfvf,
req, rsp, enable, pf_set_vfs_mac);
mutex_unlock(&rswitch->switch_lock);
return err;
}
static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule,
u16 pcifunc)
{
struct npc_mcam_ena_dis_entry_req dis_req = { 0 };
struct msg_rsp dis_rsp;
if (rule->default_rule)
return 0;
if (rule->has_cntr)
rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule);
dis_req.hdr.pcifunc = pcifunc;
dis_req.entry = rule->entry;
list_del(&rule->list);
kfree(rule);
return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp);
}
int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu,
struct npc_delete_flow_req *req,
struct npc_delete_flow_rsp *rsp)
{
struct npc_mcam *mcam = &rvu->hw->mcam;
struct rvu_npc_mcam_rule *iter, *tmp;
u16 pcifunc = req->hdr.pcifunc;
struct list_head del_list;
int blkaddr;
INIT_LIST_HEAD(&del_list);
mutex_lock(&mcam->lock);
list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) {
if (iter->owner == pcifunc) {
/* All rules */
if (req->all) {
list_move_tail(&iter->list, &del_list);
/* Range of rules */
} else if (req->end && iter->entry >= req->start &&
iter->entry <= req->end) {
list_move_tail(&iter->list, &del_list);
/* single rule */
} else if (req->entry == iter->entry) {
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
if (blkaddr)
rsp->cntr_val = rvu_read64(rvu, blkaddr,
NPC_AF_MATCH_STATX(iter->cntr));
list_move_tail(&iter->list, &del_list);
break;
}
}
}
mutex_unlock(&mcam->lock);
list_for_each_entry_safe(iter, tmp, &del_list, list) {
u16 entry = iter->entry;
/* clear the mcam entry target pcifunc */
mcam->entry2target_pffunc[entry] = 0x0;
if (npc_delete_flow(rvu, iter, pcifunc))
dev_err(rvu->dev, "rule deletion failed for entry:%u",
entry);
}
return 0;
}
static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr,
struct rvu_npc_mcam_rule *rule,
struct rvu_pfvf *pfvf)
{
struct npc_mcam_write_entry_req write_req = { 0 };
struct mcam_entry *entry = &write_req.entry_data;
struct npc_mcam *mcam = &rvu->hw->mcam;
struct msg_rsp rsp;
u8 intf, enable;
int err;
ether_addr_copy(rule->packet.dmac, pfvf->mac_addr);
npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry,
entry, &intf, &enable);
npc_update_entry(rvu, NPC_DMAC, entry,
ether_addr_to_u64(pfvf->mac_addr), 0,
0xffffffffffffull, 0, intf);
write_req.hdr.pcifunc = rule->owner;
write_req.entry = rule->entry;
write_req.intf = pfvf->nix_rx_intf;
mutex_unlock(&mcam->lock);
err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp);
mutex_lock(&mcam->lock);
return err;
}
void npc_mcam_enable_flows(struct rvu *rvu, u16 target)
{
struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target);
struct rvu_npc_mcam_rule *def_ucast_rule;
struct npc_mcam *mcam = &rvu->hw->mcam;
struct rvu_npc_mcam_rule *rule;
int blkaddr, bank, index;
u64 def_action;
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
if (blkaddr < 0)
return;
def_ucast_rule = pfvf->def_ucast_rule;
mutex_lock(&mcam->lock);
list_for_each_entry(rule, &mcam->mcam_rules, list) {
if (is_npc_intf_rx(rule->intf) &&
rule->rx_action.pf_func == target && !rule->enable) {
if (rule->default_rule) {
npc_enable_mcam_entry(rvu, mcam, blkaddr,
rule->entry, true);
rule->enable = true;
continue;
}
if (rule->vfvlan_cfg)
npc_update_dmac_value(rvu, blkaddr, rule, pfvf);
if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) {
if (!def_ucast_rule)
continue;
/* Use default unicast entry action */
rule->rx_action = def_ucast_rule->rx_action;
def_action = *(u64 *)&def_ucast_rule->rx_action;
bank = npc_get_bank(mcam, rule->entry);
rvu_write64(rvu, blkaddr,
NPC_AF_MCAMEX_BANKX_ACTION
(rule->entry, bank), def_action);
}
npc_enable_mcam_entry(rvu, mcam, blkaddr,
rule->entry, true);
rule->enable = true;
}
}
/* Enable MCAM entries installed by PF with target as VF pcifunc */
for (index = 0; index < mcam->bmap_entries; index++) {
if (mcam->entry2target_pffunc[index] == target)
npc_enable_mcam_entry(rvu, mcam, blkaddr,
index, true);
}
mutex_unlock(&mcam->lock);
}
void npc_mcam_disable_flows(struct rvu *rvu, u16 target)
{
struct npc_mcam *mcam = &rvu->hw->mcam;
int blkaddr, index;
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
if (blkaddr < 0)
return;
mutex_lock(&mcam->lock);
/* Disable MCAM entries installed by PF with target as VF pcifunc */
for (index = 0; index < mcam->bmap_entries; index++) {
if (mcam->entry2target_pffunc[index] == target)
npc_enable_mcam_entry(rvu, mcam, blkaddr,
index, false);
}
mutex_unlock(&mcam->lock);
}
/* single drop on non hit rule starting from 0th index. This an extension
* to RPM mac filter to support more rules.
*/
int npc_install_mcam_drop_rule(struct rvu *rvu, int mcam_idx, u16 *counter_idx,
u64 chan_val, u64 chan_mask, u64 exact_val, u64 exact_mask,
u64 bcast_mcast_val, u64 bcast_mcast_mask)
{
struct npc_mcam_alloc_counter_req cntr_req = { 0 };
struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
struct npc_mcam_write_entry_req req = { 0 };
struct npc_mcam *mcam = &rvu->hw->mcam;
struct rvu_npc_mcam_rule *rule;
struct msg_rsp rsp;
bool enabled;
int blkaddr;
int err;
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
if (blkaddr < 0) {
dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
return -ENODEV;
}
/* Bail out if no exact match support */
if (!rvu_npc_exact_has_match_table(rvu)) {
dev_info(rvu->dev, "%s: No support for exact match feature\n", __func__);
return -EINVAL;
}
/* If 0th entry is already used, return err */
enabled = is_mcam_entry_enabled(rvu, mcam, blkaddr, mcam_idx);
if (enabled) {
dev_err(rvu->dev, "%s: failed to add single drop on non hit rule at %d th index\n",
__func__, mcam_idx);
return -EINVAL;
}
/* Add this entry to mcam rules list */
rule = kzalloc(sizeof(*rule), GFP_KERNEL);
if (!rule)
return -ENOMEM;
/* Disable rule by default. Enable rule when first dmac filter is
* installed
*/
rule->enable = false;
rule->chan = chan_val;
rule->chan_mask = chan_mask;
rule->entry = mcam_idx;
rvu_mcam_add_rule(mcam, rule);
/* Reserve slot 0 */
npc_mcam_rsrcs_reserve(rvu, blkaddr, mcam_idx);
/* Allocate counter for this single drop on non hit rule */
cntr_req.hdr.pcifunc = 0; /* AF request */
cntr_req.contig = true;
cntr_req.count = 1;
err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req, &cntr_rsp);
if (err) {
dev_err(rvu->dev, "%s: Err to allocate cntr for drop rule (err=%d)\n",
__func__, err);
return -EFAULT;
}
*counter_idx = cntr_rsp.cntr;
/* Fill in fields for this mcam entry */
npc_update_entry(rvu, NPC_EXACT_RESULT, &req.entry_data, exact_val, 0,
exact_mask, 0, NIX_INTF_RX);
npc_update_entry(rvu, NPC_CHAN, &req.entry_data, chan_val, 0,
chan_mask, 0, NIX_INTF_RX);
npc_update_entry(rvu, NPC_LXMB, &req.entry_data, bcast_mcast_val, 0,
bcast_mcast_mask, 0, NIX_INTF_RX);
req.intf = NIX_INTF_RX;
req.set_cntr = true;
req.cntr = cntr_rsp.cntr;
req.entry = mcam_idx;
err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &req, &rsp);
if (err) {
dev_err(rvu->dev, "%s: Installation of single drop on non hit rule at %d failed\n",
__func__, mcam_idx);
return err;
}
dev_err(rvu->dev, "%s: Installed single drop on non hit rule at %d, cntr=%d\n",
__func__, mcam_idx, req.cntr);
/* disable entry at Bank 0, index 0 */
npc_enable_mcam_entry(rvu, mcam, blkaddr, mcam_idx, false);
return 0;
}
int rvu_mbox_handler_npc_get_field_status(struct rvu *rvu,
struct npc_get_field_status_req *req,
struct npc_get_field_status_rsp *rsp)
{
int blkaddr;
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
if (blkaddr < 0)
return NPC_MCAM_INVALID_REQ;
if (!is_npc_interface_valid(rvu, req->intf))
return NPC_FLOW_INTF_INVALID;
if (npc_check_field(rvu, blkaddr, req->field, req->intf))
rsp->enable = 1;
return 0;
}