// SPDX-License-Identifier: GPL-2.0
/* Marvell RVU Admin Function driver
*
* Copyright (C) 2022 Marvell.
*
*/
#include <linux/bitfield.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/firmware.h>
#include <linux/stddef.h>
#include <linux/debugfs.h>
#include "rvu_struct.h"
#include "rvu_reg.h"
#include "rvu.h"
#include "npc.h"
#include "cgx.h"
#include "rvu_npc_fs.h"
#include "rvu_npc_hash.h"
static u64 rvu_npc_wide_extract(const u64 input[], size_t start_bit,
size_t width_bits)
{
const u64 mask = ~(u64)((~(__uint128_t)0) << width_bits);
const size_t msb = start_bit + width_bits - 1;
const size_t lword = start_bit >> 6;
const size_t uword = msb >> 6;
size_t lbits;
u64 hi, lo;
if (lword == uword)
return (input[lword] >> (start_bit & 63)) & mask;
lbits = 64 - (start_bit & 63);
hi = input[uword];
lo = (input[lword] >> (start_bit & 63));
return ((hi << lbits) | lo) & mask;
}
static void rvu_npc_lshift_key(u64 *key, size_t key_bit_len)
{
u64 prev_orig_word = 0;
u64 cur_orig_word = 0;
size_t extra = key_bit_len % 64;
size_t max_idx = key_bit_len / 64;
size_t i;
if (extra)
max_idx++;
for (i = 0; i < max_idx; i++) {
cur_orig_word = key[i];
key[i] = key[i] << 1;
key[i] |= ((prev_orig_word >> 63) & 0x1);
prev_orig_word = cur_orig_word;
}
}
static u32 rvu_npc_toeplitz_hash(const u64 *data, u64 *key, size_t data_bit_len,
size_t key_bit_len)
{
u32 hash_out = 0;
u64 temp_data = 0;
int i;
for (i = data_bit_len - 1; i >= 0; i--) {
temp_data = (data[i / 64]);
temp_data = temp_data >> (i % 64);
temp_data &= 0x1;
if (temp_data)
hash_out ^= (u32)(rvu_npc_wide_extract(key, key_bit_len - 32, 32));
rvu_npc_lshift_key(key, key_bit_len);
}
return hash_out;
}
u32 npc_field_hash_calc(u64 *ldata, struct npc_get_field_hash_info_rsp rsp,
u8 intf, u8 hash_idx)
{
u64 hash_key[3];
u64 data_padded[2];
u32 field_hash;
hash_key[0] = rsp.secret_key[1] << 31;
hash_key[0] |= rsp.secret_key[2];
hash_key[1] = rsp.secret_key[1] >> 33;
hash_key[1] |= rsp.secret_key[0] << 31;
hash_key[2] = rsp.secret_key[0] >> 33;
data_padded[0] = rsp.hash_mask[intf][hash_idx][0] & ldata[0];
data_padded[1] = rsp.hash_mask[intf][hash_idx][1] & ldata[1];
field_hash = rvu_npc_toeplitz_hash(data_padded, hash_key, 128, 159);
field_hash &= FIELD_GET(GENMASK(63, 32), rsp.hash_ctrl[intf][hash_idx]);
field_hash += FIELD_GET(GENMASK(31, 0), rsp.hash_ctrl[intf][hash_idx]);
return field_hash;
}
static u64 npc_update_use_hash(struct rvu *rvu, int blkaddr,
u8 intf, int lid, int lt, int ld)
{
u8 hdr, key;
u64 cfg;
cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_LIDX_LTX_LDX_CFG(intf, lid, lt, ld));
hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
key = FIELD_GET(NPC_KEY_OFFSET, cfg);
/* Update use_hash(bit-20) to 'true' and
* bytesm1(bit-16:19) to '0x3' in KEX_LD_CFG
*/
cfg = KEX_LD_CFG_USE_HASH(0x1, 0x03,
hdr, 0x1, 0x0, key);
return cfg;
}
static void npc_program_mkex_hash_rx(struct rvu *rvu, int blkaddr,
u8 intf)
{
struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
int lid, lt, ld, hash_cnt = 0;
if (is_npc_intf_tx(intf))
return;
/* Program HASH_CFG */
for (lid = 0; lid < NPC_MAX_LID; lid++) {
for (lt = 0; lt < NPC_MAX_LT; lt++) {
for (ld = 0; ld < NPC_MAX_LD; ld++) {
if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][ld]) {
u64 cfg;
if (hash_cnt == NPC_MAX_HASH)
return;
cfg = npc_update_use_hash(rvu, blkaddr,
intf, lid, lt, ld);
/* Set updated KEX configuration */
SET_KEX_LD(intf, lid, lt, ld, cfg);
/* Set HASH configuration */
SET_KEX_LD_HASH(intf, ld,
mkex_hash->hash[intf][ld]);
SET_KEX_LD_HASH_MASK(intf, ld, 0,
mkex_hash->hash_mask[intf][ld][0]);
SET_KEX_LD_HASH_MASK(intf, ld, 1,
mkex_hash->hash_mask[intf][ld][1]);
SET_KEX_LD_HASH_CTRL(intf, ld,
mkex_hash->hash_ctrl[intf][ld]);
hash_cnt++;
}
}
}
}
}
static void npc_program_mkex_hash_tx(struct rvu *rvu, int blkaddr,
u8 intf)
{
struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
int lid, lt, ld, hash_cnt = 0;
if (is_npc_intf_rx(intf))
return;
/* Program HASH_CFG */
for (lid = 0; lid < NPC_MAX_LID; lid++) {
for (lt = 0; lt < NPC_MAX_LT; lt++) {
for (ld = 0; ld < NPC_MAX_LD; ld++)
if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][ld]) {
u64 cfg;
if (hash_cnt == NPC_MAX_HASH)
return;
cfg = npc_update_use_hash(rvu, blkaddr,
intf, lid, lt, ld);
/* Set updated KEX configuration */
SET_KEX_LD(intf, lid, lt, ld, cfg);
/* Set HASH configuration */
SET_KEX_LD_HASH(intf, ld,
mkex_hash->hash[intf][ld]);
SET_KEX_LD_HASH_MASK(intf, ld, 0,
mkex_hash->hash_mask[intf][ld][0]);
SET_KEX_LD_HASH_MASK(intf, ld, 1,
mkex_hash->hash_mask[intf][ld][1]);
SET_KEX_LD_HASH_CTRL(intf, ld,
mkex_hash->hash_ctrl[intf][ld]);
hash_cnt++;
}
}
}
}
void npc_config_secret_key(struct rvu *rvu, int blkaddr)
{
struct hw_cap *hwcap = &rvu->hw->cap;
struct rvu_hwinfo *hw = rvu->hw;
u8 intf;
if (!hwcap->npc_hash_extract)
return;
for (intf = 0; intf < hw->npc_intfs; intf++) {
rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY0(intf),
RVU_NPC_HASH_SECRET_KEY0);
rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY1(intf),
RVU_NPC_HASH_SECRET_KEY1);
rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY2(intf),
RVU_NPC_HASH_SECRET_KEY2);
}
}
void npc_program_mkex_hash(struct rvu *rvu, int blkaddr)
{
struct npc_mcam_kex_hash *mh = rvu->kpu.mkex_hash;
struct hw_cap *hwcap = &rvu->hw->cap;
u8 intf, ld, hdr_offset, byte_len;
struct rvu_hwinfo *hw = rvu->hw;
u64 cfg;
/* Check if hardware supports hash extraction */
if (!hwcap->npc_hash_extract)
return;
/* Check if IPv6 source/destination address
* should be hash enabled.
* Hashing reduces 128bit SIP/DIP fields to 32bit
* so that 224 bit X2 key can be used for IPv6 based filters as well,
* which in turn results in more number of MCAM entries available for
* use.
*
* Hashing of IPV6 SIP/DIP is enabled in below scenarios
* 1. If the silicon variant supports hashing feature
* 2. If the number of bytes of IP addr being extracted is 4 bytes ie
* 32bit. The assumption here is that if user wants 8bytes of LSB of
* IP addr or full 16 bytes then his intention is not to use 32bit
* hash.
*/
for (intf = 0; intf < hw->npc_intfs; intf++) {
for (ld = 0; ld < NPC_MAX_LD; ld++) {
cfg = rvu_read64(rvu, blkaddr,
NPC_AF_INTFX_LIDX_LTX_LDX_CFG(intf,
NPC_LID_LC,
NPC_LT_LC_IP6,
ld));
hdr_offset = FIELD_GET(NPC_HDR_OFFSET, cfg);
byte_len = FIELD_GET(NPC_BYTESM, cfg);
/* Hashing of IPv6 source/destination address should be
* enabled if,
* hdr_offset == 8 (offset of source IPv6 address) or
* hdr_offset == 24 (offset of destination IPv6)
* address) and the number of byte to be
* extracted is 4. As per hardware configuration
* byte_len should be == actual byte_len - 1.
* Hence byte_len is checked against 3 but nor 4.
*/
if ((hdr_offset == 8 || hdr_offset == 24) && byte_len == 3)
mh->lid_lt_ld_hash_en[intf][NPC_LID_LC][NPC_LT_LC_IP6][ld] = true;
}
}
/* Update hash configuration if the field is hash enabled */
for (intf = 0; intf < hw->npc_intfs; intf++) {
npc_program_mkex_hash_rx(rvu, blkaddr, intf);
npc_program_mkex_hash_tx(rvu, blkaddr, intf);
}
}
void npc_update_field_hash(struct rvu *rvu, u8 intf,
struct mcam_entry *entry,
int blkaddr,
u64 features,
struct flow_msg *pkt,
struct flow_msg *mask,
struct flow_msg *opkt,
struct flow_msg *omask)
{
struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
struct npc_get_field_hash_info_req req;
struct npc_get_field_hash_info_rsp rsp;
u64 ldata[2], cfg;
u32 field_hash;
u8 hash_idx;
if (!rvu->hw->cap.npc_hash_extract) {
dev_dbg(rvu->dev, "%s: Field hash extract feature is not supported\n", __func__);
return;
}
req.intf = intf;
rvu_mbox_handler_npc_get_field_hash_info(rvu, &req, &rsp);
for (hash_idx = 0; hash_idx < NPC_MAX_HASH; hash_idx++) {
cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_HASHX_CFG(intf, hash_idx));
if ((cfg & BIT_ULL(11)) && (cfg & BIT_ULL(12))) {
u8 lid = (cfg & GENMASK_ULL(10, 8)) >> 8;
u8 ltype = (cfg & GENMASK_ULL(7, 4)) >> 4;
u8 ltype_mask = cfg & GENMASK_ULL(3, 0);
if (mkex_hash->lid_lt_ld_hash_en[intf][lid][ltype][hash_idx]) {
switch (ltype & ltype_mask) {
/* If hash extract enabled is supported for IPv6 then
* 128 bit IPv6 source and destination addressed
* is hashed to 32 bit value.
*/
case NPC_LT_LC_IP6:
/* ld[0] == hash_idx[0] == Source IPv6
* ld[1] == hash_idx[1] == Destination IPv6
*/
if ((features & BIT_ULL(NPC_SIP_IPV6)) && !hash_idx) {
u32 src_ip[IPV6_WORDS];
be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);
ldata[1] = (u64)src_ip[0] << 32 | src_ip[1];
ldata[0] = (u64)src_ip[2] << 32 | src_ip[3];
field_hash = npc_field_hash_calc(ldata,
rsp,
intf,
hash_idx);
npc_update_entry(rvu, NPC_SIP_IPV6, entry,
field_hash, 0,
GENMASK(31, 0), 0, intf);
memcpy(&opkt->ip6src, &pkt->ip6src,
sizeof(pkt->ip6src));
memcpy(&omask->ip6src, &mask->ip6src,
sizeof(mask->ip6src));
} else if ((features & BIT_ULL(NPC_DIP_IPV6)) && hash_idx) {
u32 dst_ip[IPV6_WORDS];
be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);
ldata[1] = (u64)dst_ip[0] << 32 | dst_ip[1];
ldata[0] = (u64)dst_ip[2] << 32 | dst_ip[3];
field_hash = npc_field_hash_calc(ldata,
rsp,
intf,
hash_idx);
npc_update_entry(rvu, NPC_DIP_IPV6, entry,
field_hash, 0,
GENMASK(31, 0), 0, intf);
memcpy(&opkt->ip6dst, &pkt->ip6dst,
sizeof(pkt->ip6dst));
memcpy(&omask->ip6dst, &mask->ip6dst,
sizeof(mask->ip6dst));
}
break;
}
}
}
}
}
int rvu_mbox_handler_npc_get_field_hash_info(struct rvu *rvu,
struct npc_get_field_hash_info_req *req,
struct npc_get_field_hash_info_rsp *rsp)
{
u64 *secret_key = rsp->secret_key;
u8 intf = req->intf;
int i, j, blkaddr;
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
if (blkaddr < 0) {
dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
return -EINVAL;
}
secret_key[0] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY0(intf));
secret_key[1] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY1(intf));
secret_key[2] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY2(intf));
for (i = 0; i < NPC_MAX_HASH; i++) {
for (j = 0; j < NPC_MAX_HASH_MASK; j++) {
rsp->hash_mask[NIX_INTF_RX][i][j] =
GET_KEX_LD_HASH_MASK(NIX_INTF_RX, i, j);
rsp->hash_mask[NIX_INTF_TX][i][j] =
GET_KEX_LD_HASH_MASK(NIX_INTF_TX, i, j);
}
}
for (i = 0; i < NPC_MAX_INTF; i++)
for (j = 0; j < NPC_MAX_HASH; j++)
rsp->hash_ctrl[i][j] = GET_KEX_LD_HASH_CTRL(i, j);
return 0;
}
/**
* rvu_exact_prepare_mdata - Make mdata for mcam entry
* @mac: MAC address
* @chan: Channel number.
* @ctype: Channel Type.
* @mask: LDATA mask.
* Return: Meta data
*/
static u64 rvu_exact_prepare_mdata(u8 *mac, u16 chan, u16 ctype, u64 mask)
{
u64 ldata = ether_addr_to_u64(mac);
/* Please note that mask is 48bit which excludes chan and ctype.
* Increase mask bits if we need to include them as well.
*/
ldata |= ((u64)chan << 48);
ldata |= ((u64)ctype << 60);
ldata &= mask;
ldata = ldata << 2;
return ldata;
}
/**
* rvu_exact_calculate_hash - calculate hash index to mem table.
* @rvu: resource virtualization unit.
* @chan: Channel number
* @ctype: Channel type.
* @mac: MAC address
* @mask: HASH mask.
* @table_depth: Depth of table.
* Return: Hash value
*/
static u32 rvu_exact_calculate_hash(struct rvu *rvu, u16 chan, u16 ctype, u8 *mac,
u64 mask, u32 table_depth)
{
struct npc_exact_table *table = rvu->hw->table;
u64 hash_key[2];
u64 key_in[2];
u64 ldata;
u32 hash;
key_in[0] = RVU_NPC_HASH_SECRET_KEY0;
key_in[1] = RVU_NPC_HASH_SECRET_KEY2;
hash_key[0] = key_in[0] << 31;
hash_key[0] |= key_in[1];
hash_key[1] = key_in[0] >> 33;
ldata = rvu_exact_prepare_mdata(mac, chan, ctype, mask);
dev_dbg(rvu->dev, "%s: ldata=0x%llx hash_key0=0x%llx hash_key2=0x%llx\n", __func__,
ldata, hash_key[1], hash_key[0]);
hash = rvu_npc_toeplitz_hash(&ldata, (u64 *)hash_key, 64, 95);
hash &= table->mem_table.hash_mask;
hash += table->mem_table.hash_offset;
dev_dbg(rvu->dev, "%s: hash=%x\n", __func__, hash);
return hash;
}
/**
* rvu_npc_exact_alloc_mem_table_entry - find free entry in 4 way table.
* @rvu: resource virtualization unit.
* @way: Indicate way to table.
* @index: Hash index to 4 way table.
* @hash: Hash value.
*
* Searches 4 way table using hash index. Returns 0 on success.
* Return: 0 upon success.
*/
static int rvu_npc_exact_alloc_mem_table_entry(struct rvu *rvu, u8 *way,
u32 *index, unsigned int hash)
{
struct npc_exact_table *table;
int depth, i;
table = rvu->hw->table;
depth = table->mem_table.depth;
/* Check all the 4 ways for a free slot. */
mutex_lock(&table->lock);
for (i = 0; i < table->mem_table.ways; i++) {
if (test_bit(hash + i * depth, table->mem_table.bmap))
continue;
set_bit(hash + i * depth, table->mem_table.bmap);
mutex_unlock(&table->lock);
dev_dbg(rvu->dev, "%s: mem table entry alloc success (way=%d index=%d)\n",
__func__, i, hash);
*way = i;
*index = hash;
return 0;
}
mutex_unlock(&table->lock);
dev_dbg(rvu->dev, "%s: No space in 4 way exact way, weight=%u\n", __func__,
bitmap_weight(table->mem_table.bmap, table->mem_table.depth));
return -ENOSPC;
}
/**
* rvu_npc_exact_free_id - Free seq id from bitmat.
* @rvu: Resource virtualization unit.
* @seq_id: Sequence identifier to be freed.
*/
static void rvu_npc_exact_free_id(struct rvu *rvu, u32 seq_id)
{
struct npc_exact_table *table;
table = rvu->hw->table;
mutex_lock(&table->lock);
clear_bit(seq_id, table->id_bmap);
mutex_unlock(&table->lock);
dev_dbg(rvu->dev, "%s: freed id %d\n", __func__, seq_id);
}
/**
* rvu_npc_exact_alloc_id - Alloc seq id from bitmap.
* @rvu: Resource virtualization unit.
* @seq_id: Sequence identifier.
* Return: True or false.
*/
static bool rvu_npc_exact_alloc_id(struct rvu *rvu, u32 *seq_id)
{
struct npc_exact_table *table;
u32 idx;
table = rvu->hw->table;
mutex_lock(&table->lock);
idx = find_first_zero_bit(table->id_bmap, table->tot_ids);
if (idx == table->tot_ids) {
mutex_unlock(&table->lock);
dev_err(rvu->dev, "%s: No space in id bitmap (%d)\n",
__func__, table->tot_ids);
return false;
}
/* Mark bit map to indicate that slot is used.*/
set_bit(idx, table->id_bmap);
mutex_unlock(&table->lock);
*seq_id = idx;
dev_dbg(rvu->dev, "%s: Allocated id (%d)\n", __func__, *seq_id);
return true;
}
/**
* rvu_npc_exact_alloc_cam_table_entry - find free slot in fully associative table.
* @rvu: resource virtualization unit.
* @index: Index to exact CAM table.
* Return: 0 upon success; else error number.
*/
static int rvu_npc_exact_alloc_cam_table_entry(struct rvu *rvu, int *index)
{
struct npc_exact_table *table;
u32 idx;
table = rvu->hw->table;
mutex_lock(&table->lock);
idx = find_first_zero_bit(table->cam_table.bmap, table->cam_table.depth);
if (idx == table->cam_table.depth) {
mutex_unlock(&table->lock);
dev_info(rvu->dev, "%s: No space in exact cam table, weight=%u\n", __func__,
bitmap_weight(table->cam_table.bmap, table->cam_table.depth));
return -ENOSPC;
}
/* Mark bit map to indicate that slot is used.*/
set_bit(idx, table->cam_table.bmap);
mutex_unlock(&table->lock);
*index = idx;
dev_dbg(rvu->dev, "%s: cam table entry alloc success (index=%d)\n",
__func__, idx);
return 0;
}
/**
* rvu_exact_prepare_table_entry - Data for exact match table entry.
* @rvu: Resource virtualization unit.
* @enable: Enable/Disable entry
* @ctype: Software defined channel type. Currently set as 0.
* @chan: Channel number.
* @mac_addr: Destination mac address.
* Return: mdata for exact match table.
*/
static u64 rvu_exact_prepare_table_entry(struct rvu *rvu, bool enable,
u8 ctype, u16 chan, u8 *mac_addr)
{
u64 ldata = ether_addr_to_u64(mac_addr);
/* Enable or disable */
u64 mdata = FIELD_PREP(GENMASK_ULL(63, 63), enable ? 1 : 0);
/* Set Ctype */
mdata |= FIELD_PREP(GENMASK_ULL(61, 60), ctype);
/* Set chan */
mdata |= FIELD_PREP(GENMASK_ULL(59, 48), chan);
/* MAC address */
mdata |= FIELD_PREP(GENMASK_ULL(47, 0), ldata);
return mdata;
}
/**
* rvu_exact_config_secret_key - Configure secret key.
* @rvu: Resource virtualization unit.
*/
static void rvu_exact_config_secret_key(struct rvu *rvu)
{
int blkaddr;
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET0(NIX_INTF_RX),
RVU_NPC_HASH_SECRET_KEY0);
rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET1(NIX_INTF_RX),
RVU_NPC_HASH_SECRET_KEY1);
rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET2(NIX_INTF_RX),
RVU_NPC_HASH_SECRET_KEY2);
}
/**
* rvu_exact_config_search_key - Configure search key
* @rvu: Resource virtualization unit.
*/
static void rvu_exact_config_search_key(struct rvu *rvu)
{
int blkaddr;
u64 reg_val;
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
/* HDR offset */
reg_val = FIELD_PREP(GENMASK_ULL(39, 32), 0);
/* BYTESM1, number of bytes - 1 */
reg_val |= FIELD_PREP(GENMASK_ULL(18, 16), ETH_ALEN - 1);
/* Enable LID and set LID to NPC_LID_LA */
reg_val |= FIELD_PREP(GENMASK_ULL(11, 11), 1);
reg_val |= FIELD_PREP(GENMASK_ULL(10, 8), NPC_LID_LA);
/* Clear layer type based extraction */
/* Disable LT_EN */
reg_val |= FIELD_PREP(GENMASK_ULL(12, 12), 0);
/* Set LTYPE_MATCH to 0 */
reg_val |= FIELD_PREP(GENMASK_ULL(7, 4), 0);
/* Set LTYPE_MASK to 0 */
reg_val |= FIELD_PREP(GENMASK_ULL(3, 0), 0);
rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_CFG(NIX_INTF_RX), reg_val);
}
/**
* rvu_exact_config_result_ctrl - Set exact table hash control
* @rvu: Resource virtualization unit.
* @depth: Depth of Exact match table.
*
* Sets mask and offset for hash for mem table.
*/
static void rvu_exact_config_result_ctrl(struct rvu *rvu, uint32_t depth)
{
int blkaddr;
u64 reg = 0;
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
/* Set mask. Note that depth is a power of 2 */
rvu->hw->table->mem_table.hash_mask = (depth - 1);
reg |= FIELD_PREP(GENMASK_ULL(42, 32), (depth - 1));
/* Set offset as 0 */
rvu->hw->table->mem_table.hash_offset = 0;
reg |= FIELD_PREP(GENMASK_ULL(10, 0), 0);
/* Set reg for RX */
rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_RESULT_CTL(NIX_INTF_RX), reg);
/* Store hash mask and offset for s/w algorithm */
}
/**
* rvu_exact_config_table_mask - Set exact table mask.
* @rvu: Resource virtualization unit.
*/
static void rvu_exact_config_table_mask(struct rvu *rvu)
{
int blkaddr;
u64 mask = 0;
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
/* Don't use Ctype */
mask |= FIELD_PREP(GENMASK_ULL(61, 60), 0);
/* Set chan */
mask |= GENMASK_ULL(59, 48);
/* Full ldata */
mask |= GENMASK_ULL(47, 0);
/* Store mask for s/w hash calcualtion */
rvu->hw->table->mem_table.mask = mask;
/* Set mask for RX.*/
rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_MASK(NIX_INTF_RX), mask);
}
/**
* rvu_npc_exact_get_max_entries - Get total number of entries in table.
* @rvu: resource virtualization unit.
* Return: Maximum table entries possible.
*/
u32 rvu_npc_exact_get_max_entries(struct rvu *rvu)
{
struct npc_exact_table *table;
table = rvu->hw->table;
return table->tot_ids;
}
/**
* rvu_npc_exact_has_match_table - Checks support for exact match.
* @rvu: resource virtualization unit.
* Return: True if exact match table is supported/enabled.
*/
bool rvu_npc_exact_has_match_table(struct rvu *rvu)
{
return rvu->hw->cap.npc_exact_match_enabled;
}
/**
* __rvu_npc_exact_find_entry_by_seq_id - find entry by id
* @rvu: resource virtualization unit.
* @seq_id: Sequence identifier.
*
* Caller should acquire the lock.
* Return: Pointer to table entry.
*/
static struct npc_exact_table_entry *
__rvu_npc_exact_find_entry_by_seq_id(struct rvu *rvu, u32 seq_id)
{
struct npc_exact_table *table = rvu->hw->table;
struct npc_exact_table_entry *entry = NULL;
struct list_head *lhead;
lhead = &table->lhead_gbl;
/* traverse to find the matching entry */
list_for_each_entry(entry, lhead, glist) {
if (entry->seq_id != seq_id)
continue;
return entry;
}
return NULL;
}
/**
* rvu_npc_exact_add_to_list - Add entry to list
* @rvu: resource virtualization unit.
* @opc_type: OPCODE to select MEM/CAM table.
* @ways: MEM table ways.
* @index: Index in MEM/CAM table.
* @cgx_id: CGX identifier.
* @lmac_id: LMAC identifier.
* @mac_addr: MAC address.
* @chan: Channel number.
* @ctype: Channel Type.
* @seq_id: Sequence identifier
* @cmd: True if function is called by ethtool cmd
* @mcam_idx: NPC mcam index of DMAC entry in NPC mcam.
* @pcifunc: pci function
* Return: 0 upon success.
*/
static int rvu_npc_exact_add_to_list(struct rvu *rvu, enum npc_exact_opc_type opc_type, u8 ways,
u32 index, u8 cgx_id, u8 lmac_id, u8 *mac_addr, u16 chan,
u8 ctype, u32 *seq_id, bool cmd, u32 mcam_idx, u16 pcifunc)
{
struct npc_exact_table_entry *entry, *tmp, *iter;
struct npc_exact_table *table = rvu->hw->table;
struct list_head *lhead, *pprev;
WARN_ON(ways >= NPC_EXACT_TBL_MAX_WAYS);
if (!rvu_npc_exact_alloc_id(rvu, seq_id)) {
dev_err(rvu->dev, "%s: Generate seq id failed\n", __func__);
return -EFAULT;
}
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry) {
rvu_npc_exact_free_id(rvu, *seq_id);
dev_err(rvu->dev, "%s: Memory allocation failed\n", __func__);
return -ENOMEM;
}
mutex_lock(&table->lock);
switch (opc_type) {
case NPC_EXACT_OPC_CAM:
lhead = &table->lhead_cam_tbl_entry;
table->cam_tbl_entry_cnt++;
break;
case NPC_EXACT_OPC_MEM:
lhead = &table->lhead_mem_tbl_entry[ways];
table->mem_tbl_entry_cnt++;
break;
default:
mutex_unlock(&table->lock);
kfree(entry);
rvu_npc_exact_free_id(rvu, *seq_id);
dev_err(rvu->dev, "%s: Unknown opc type%d\n", __func__, opc_type);
return -EINVAL;
}
/* Add to global list */
INIT_LIST_HEAD(&entry->glist);
list_add_tail(&entry->glist, &table->lhead_gbl);
INIT_LIST_HEAD(&entry->list);
entry->index = index;
entry->ways = ways;
entry->opc_type = opc_type;
entry->pcifunc = pcifunc;
ether_addr_copy(entry->mac, mac_addr);
entry->chan = chan;
entry->ctype = ctype;
entry->cgx_id = cgx_id;
entry->lmac_id = lmac_id;
entry->seq_id = *seq_id;
entry->mcam_idx = mcam_idx;
entry->cmd = cmd;
pprev = lhead;
/* Insert entry in ascending order of index */
list_for_each_entry_safe(iter, tmp, lhead, list) {
if (index < iter->index)
break;
pprev = &iter->list;
}
/* Add to each table list */
list_add(&entry->list, pprev);
mutex_unlock(&table->lock);
return 0;
}
/**
* rvu_npc_exact_mem_table_write - Wrapper for register write
* @rvu: resource virtualization unit.
* @blkaddr: Block address
* @ways: ways for MEM table.
* @index: Index in MEM
* @mdata: Meta data to be written to register.
*/
static void rvu_npc_exact_mem_table_write(struct rvu *rvu, int blkaddr, u8 ways,
u32 index, u64 mdata)
{
rvu_write64(rvu, blkaddr, NPC_AF_EXACT_MEM_ENTRY(ways, index), mdata);
}
/**
* rvu_npc_exact_cam_table_write - Wrapper for register write
* @rvu: resource virtualization unit.
* @blkaddr: Block address
* @index: Index in MEM
* @mdata: Meta data to be written to register.
*/
static void rvu_npc_exact_cam_table_write(struct rvu *rvu, int blkaddr,
u32 index, u64 mdata)
{
rvu_write64(rvu, blkaddr, NPC_AF_EXACT_CAM_ENTRY(index), mdata);
}
/**
* rvu_npc_exact_dealloc_table_entry - dealloc table entry
* @rvu: resource virtualization unit.
* @opc_type: OPCODE for selection of table(MEM or CAM)
* @ways: ways if opc_type is MEM table.
* @index: Index of MEM or CAM table.
* Return: 0 upon success.
*/
static int rvu_npc_exact_dealloc_table_entry(struct rvu *rvu, enum npc_exact_opc_type opc_type,
u8 ways, u32 index)
{
int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
struct npc_exact_table *table;
u8 null_dmac[6] = { 0 };
int depth;
/* Prepare entry with all fields set to zero */
u64 null_mdata = rvu_exact_prepare_table_entry(rvu, false, 0, 0, null_dmac);
table = rvu->hw->table;
depth = table->mem_table.depth;
mutex_lock(&table->lock);
switch (opc_type) {
case NPC_EXACT_OPC_CAM:
/* Check whether entry is used already */
if (!test_bit(index, table->cam_table.bmap)) {
mutex_unlock(&table->lock);
dev_err(rvu->dev, "%s: Trying to free an unused entry ways=%d index=%d\n",
__func__, ways, index);
return -EINVAL;
}
rvu_npc_exact_cam_table_write(rvu, blkaddr, index, null_mdata);
clear_bit(index, table->cam_table.bmap);
break;
case NPC_EXACT_OPC_MEM:
/* Check whether entry is used already */
if (!test_bit(index + ways * depth, table->mem_table.bmap)) {
mutex_unlock(&table->lock);
dev_err(rvu->dev, "%s: Trying to free an unused entry index=%d\n",
__func__, index);
return -EINVAL;
}
rvu_npc_exact_mem_table_write(rvu, blkaddr, ways, index, null_mdata);
clear_bit(index + ways * depth, table->mem_table.bmap);
break;
default:
mutex_unlock(&table->lock);
dev_err(rvu->dev, "%s: invalid opc type %d", __func__, opc_type);
return -ENOSPC;
}
mutex_unlock(&table->lock);
dev_dbg(rvu->dev, "%s: Successfully deleted entry (index=%d, ways=%d opc_type=%d\n",
__func__, index, ways, opc_type);
return 0;
}
/**
* rvu_npc_exact_alloc_table_entry - Allociate an entry
* @rvu: resource virtualization unit.
* @mac: MAC address.
* @chan: Channel number.
* @ctype: Channel Type.
* @index: Index of MEM table or CAM table.
* @ways: Ways. Only valid for MEM table.
* @opc_type: OPCODE to select table (MEM or CAM)
*
* Try allocating a slot from MEM table. If all 4 ways
* slot are full for a hash index, check availability in
* 32-entry CAM table for allocation.
* Return: 0 upon success.
*/
static int rvu_npc_exact_alloc_table_entry(struct rvu *rvu, char *mac, u16 chan, u8 ctype,
u32 *index, u8 *ways, enum npc_exact_opc_type *opc_type)
{
struct npc_exact_table *table;
unsigned int hash;
int err;
table = rvu->hw->table;
/* Check in 4-ways mem entry for free slote */
hash = rvu_exact_calculate_hash(rvu, chan, ctype, mac, table->mem_table.mask,
table->mem_table.depth);
err = rvu_npc_exact_alloc_mem_table_entry(rvu, ways, index, hash);
if (!err) {
*opc_type = NPC_EXACT_OPC_MEM;
dev_dbg(rvu->dev, "%s: inserted in 4 ways hash table ways=%d, index=%d\n",
__func__, *ways, *index);
return 0;
}
dev_dbg(rvu->dev, "%s: failed to insert in 4 ways hash table\n", __func__);
/* wayss is 0 for cam table */
*ways = 0;
err = rvu_npc_exact_alloc_cam_table_entry(rvu, index);
if (!err) {
*opc_type = NPC_EXACT_OPC_CAM;
dev_dbg(rvu->dev, "%s: inserted in fully associative hash table index=%u\n",
__func__, *index);
return 0;
}
dev_err(rvu->dev, "%s: failed to insert in fully associative hash table\n", __func__);
return -ENOSPC;
}
/**
* rvu_npc_exact_save_drop_rule_chan_and_mask - Save drop rules info in data base.
* @rvu: resource virtualization unit.
* @drop_mcam_idx: Drop rule index in NPC mcam.
* @chan_val: Channel value.
* @chan_mask: Channel Mask.
* @pcifunc: pcifunc of interface.
* Return: True upon success.
*/
static bool rvu_npc_exact_save_drop_rule_chan_and_mask(struct rvu *rvu, int drop_mcam_idx,
u64 chan_val, u64 chan_mask, u16 pcifunc)
{
struct npc_exact_table *table;
int i;
table = rvu->hw->table;
for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) {
if (!table->drop_rule_map[i].valid)
break;
if (table->drop_rule_map[i].chan_val != (u16)chan_val)
continue;
if (table->drop_rule_map[i].chan_mask != (u16)chan_mask)
continue;
return false;
}
if (i == NPC_MCAM_DROP_RULE_MAX)
return false;
table->drop_rule_map[i].drop_rule_idx = drop_mcam_idx;
table->drop_rule_map[i].chan_val = (u16)chan_val;
table->drop_rule_map[i].chan_mask = (u16)chan_mask;
table->drop_rule_map[i].pcifunc = pcifunc;
table->drop_rule_map[i].valid = true;
return true;
}
/**
* rvu_npc_exact_calc_drop_rule_chan_and_mask - Calculate Channel number and mask.
* @rvu: resource virtualization unit.
* @intf_type: Interface type (SDK, LBK or CGX)
* @cgx_id: CGX identifier.
* @lmac_id: LAMC identifier.
* @val: Channel number.
* @mask: Channel mask.
* Return: True upon success.
*/
static bool rvu_npc_exact_calc_drop_rule_chan_and_mask(struct rvu *rvu, u8 intf_type,
u8 cgx_id, u8 lmac_id,
u64 *val, u64 *mask)
{
u16 chan_val, chan_mask;
/* No support for SDP and LBK */
if (intf_type != NIX_INTF_TYPE_CGX)
return false;
chan_val = rvu_nix_chan_cgx(rvu, cgx_id, lmac_id, 0);
chan_mask = 0xfff;
if (val)
*val = chan_val;
if (mask)
*mask = chan_mask;
return true;
}
/**
* rvu_npc_exact_drop_rule_to_pcifunc - Retrieve pcifunc
* @rvu: resource virtualization unit.
* @drop_rule_idx: Drop rule index in NPC mcam.
*
* Debugfs (exact_drop_cnt) entry displays pcifunc for interface
* by retrieving the pcifunc value from data base.
* Return: Drop rule index.
*/
u16 rvu_npc_exact_drop_rule_to_pcifunc(struct rvu *rvu, u32 drop_rule_idx)
{
struct npc_exact_table *table;
int i;
table = rvu->hw->table;
for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) {
if (!table->drop_rule_map[i].valid)
break;
if (table->drop_rule_map[i].drop_rule_idx != drop_rule_idx)
continue;
return table->drop_rule_map[i].pcifunc;
}
dev_err(rvu->dev, "%s: drop mcam rule index (%d) >= NPC_MCAM_DROP_RULE_MAX\n",
__func__, drop_rule_idx);
return -1;
}
/**
* rvu_npc_exact_get_drop_rule_info - Get drop rule information.
* @rvu: resource virtualization unit.
* @intf_type: Interface type (CGX, SDP or LBK)
* @cgx_id: CGX identifier.
* @lmac_id: LMAC identifier.
* @drop_mcam_idx: NPC mcam drop rule index.
* @val: Channel value.
* @mask: Channel mask.
* @pcifunc: pcifunc of interface corresponding to the drop rule.
* Return: True upon success.
*/
static bool rvu_npc_exact_get_drop_rule_info(struct rvu *rvu, u8 intf_type, u8 cgx_id,
u8 lmac_id, u32 *drop_mcam_idx, u64 *val,
u64 *mask, u16 *pcifunc)
{
struct npc_exact_table *table;
u64 chan_val, chan_mask;
bool rc;
int i;
table = rvu->hw->table;
if (intf_type != NIX_INTF_TYPE_CGX) {
dev_err(rvu->dev, "%s: No drop rule for LBK/SDP mode\n", __func__);
return false;
}
rc = rvu_npc_exact_calc_drop_rule_chan_and_mask(rvu, intf_type, cgx_id,
lmac_id, &chan_val, &chan_mask);
if (!rc)
return false;
for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) {
if (!table->drop_rule_map[i].valid)
break;
if (table->drop_rule_map[i].chan_val != (u16)chan_val)
continue;
if (val)
*val = table->drop_rule_map[i].chan_val;
if (mask)
*mask = table->drop_rule_map[i].chan_mask;
if (pcifunc)
*pcifunc = table->drop_rule_map[i].pcifunc;
*drop_mcam_idx = i;
return true;
}
if (i == NPC_MCAM_DROP_RULE_MAX) {
dev_err(rvu->dev, "%s: drop mcam rule index (%d) >= NPC_MCAM_DROP_RULE_MAX\n",
__func__, *drop_mcam_idx);
return false;
}
dev_err(rvu->dev, "%s: Could not retrieve for cgx=%d, lmac=%d\n",
__func__, cgx_id, lmac_id);
return false;
}
/**
* __rvu_npc_exact_cmd_rules_cnt_update - Update number dmac rules against a drop rule.
* @rvu: resource virtualization unit.
* @drop_mcam_idx: NPC mcam drop rule index.
* @val: +1 or -1.
* @enable_or_disable_cam: If no exact match rules against a drop rule, disable it.
*
* when first exact match entry against a drop rule is added, enable_or_disable_cam
* is set to true. When last exact match entry against a drop rule is deleted,
* enable_or_disable_cam is set to true.
* Return: Number of rules
*/
static u16 __rvu_npc_exact_cmd_rules_cnt_update(struct rvu *rvu, int drop_mcam_idx,
int val, bool *enable_or_disable_cam)
{
struct npc_exact_table *table;
u16 *cnt, old_cnt;
bool promisc;
table = rvu->hw->table;
promisc = table->promisc_mode[drop_mcam_idx];
cnt = &table->cnt_cmd_rules[drop_mcam_idx];
old_cnt = *cnt;
*cnt += val;
if (!enable_or_disable_cam)
goto done;
*enable_or_disable_cam = false;
if (promisc)
goto done;
/* If all rules are deleted and not already in promisc mode;
* disable cam
*/
if (!*cnt && val < 0) {
*enable_or_disable_cam = true;
goto done;
}
/* If rule got added and not already in promisc mode; enable cam */
if (!old_cnt && val > 0) {
*enable_or_disable_cam = true;
goto done;
}
done:
return *cnt;
}
/**
* rvu_npc_exact_del_table_entry_by_id - Delete and free table entry.
* @rvu: resource virtualization unit.
* @seq_id: Sequence identifier of the entry.
*
* Deletes entry from linked lists and free up slot in HW MEM or CAM
* table.
* Return: 0 upon success.
*/
static int rvu_npc_exact_del_table_entry_by_id(struct rvu *rvu, u32 seq_id)
{
struct npc_exact_table_entry *entry = NULL;
struct npc_exact_table *table;
bool disable_cam = false;
u32 drop_mcam_idx = -1;
int *cnt;
bool rc;
table = rvu->hw->table;
mutex_lock(&table->lock);
/* Lookup for entry which needs to be updated */
entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, seq_id);
if (!entry) {
dev_dbg(rvu->dev, "%s: failed to find entry for id=%d\n", __func__, seq_id);
mutex_unlock(&table->lock);
return -ENODATA;
}
cnt = (entry->opc_type == NPC_EXACT_OPC_CAM) ? &table->cam_tbl_entry_cnt :
&table->mem_tbl_entry_cnt;
/* delete from lists */
list_del_init(&entry->list);
list_del_init(&entry->glist);
(*cnt)--;
rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, entry->cgx_id,
entry->lmac_id, &drop_mcam_idx, NULL, NULL, NULL);
if (!rc) {
dev_dbg(rvu->dev, "%s: failed to retrieve drop info for id=0x%x\n",
__func__, seq_id);
mutex_unlock(&table->lock);
return -ENODATA;
}
if (entry->cmd)
__rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, -1, &disable_cam);
/* No dmac filter rules; disable drop on hit rule */
if (disable_cam) {
rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, false);
dev_dbg(rvu->dev, "%s: Disabling mcam idx %d\n",
__func__, drop_mcam_idx);
}
mutex_unlock(&table->lock);
rvu_npc_exact_dealloc_table_entry(rvu, entry->opc_type, entry->ways, entry->index);
rvu_npc_exact_free_id(rvu, seq_id);
dev_dbg(rvu->dev, "%s: delete entry success for id=0x%x, mca=%pM\n",
__func__, seq_id, entry->mac);
kfree(entry);
return 0;
}
/**
* rvu_npc_exact_add_table_entry - Adds a table entry
* @rvu: resource virtualization unit.
* @cgx_id: cgx identifier.
* @lmac_id: lmac identifier.
* @mac: MAC address.
* @chan: Channel number.
* @ctype: Channel Type.
* @seq_id: Sequence number.
* @cmd: Whether it is invoked by ethtool cmd.
* @mcam_idx: NPC mcam index corresponding to MAC
* @pcifunc: PCI func.
*
* Creates a new exact match table entry in either CAM or
* MEM table.
* Return: 0 upon success.
*/
static int rvu_npc_exact_add_table_entry(struct rvu *rvu, u8 cgx_id, u8 lmac_id, u8 *mac,
u16 chan, u8 ctype, u32 *seq_id, bool cmd,
u32 mcam_idx, u16 pcifunc)
{
int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
enum npc_exact_opc_type opc_type;
bool enable_cam = false;
u32 drop_mcam_idx;
u32 index;
u64 mdata;
bool rc;
int err;
u8 ways;
ctype = 0;
err = rvu_npc_exact_alloc_table_entry(rvu, mac, chan, ctype, &index, &ways, &opc_type);
if (err) {
dev_err(rvu->dev, "%s: Could not alloc in exact match table\n", __func__);
return err;
}
/* Write mdata to table */
mdata = rvu_exact_prepare_table_entry(rvu, true, ctype, chan, mac);
if (opc_type == NPC_EXACT_OPC_CAM)
rvu_npc_exact_cam_table_write(rvu, blkaddr, index, mdata);
else
rvu_npc_exact_mem_table_write(rvu, blkaddr, ways, index, mdata);
/* Insert entry to linked list */
err = rvu_npc_exact_add_to_list(rvu, opc_type, ways, index, cgx_id, lmac_id,
mac, chan, ctype, seq_id, cmd, mcam_idx, pcifunc);
if (err) {
rvu_npc_exact_dealloc_table_entry(rvu, opc_type, ways, index);
dev_err(rvu->dev, "%s: could not add to exact match table\n", __func__);
return err;
}
rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id,
&drop_mcam_idx, NULL, NULL, NULL);
if (!rc) {
rvu_npc_exact_dealloc_table_entry(rvu, opc_type, ways, index);
dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n",
__func__, cgx_id, lmac_id);
return -EINVAL;
}
if (cmd)
__rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, 1, &enable_cam);
/* First command rule; enable drop on hit rule */
if (enable_cam) {
rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, true);
dev_dbg(rvu->dev, "%s: Enabling mcam idx %d\n",
__func__, drop_mcam_idx);
}
dev_dbg(rvu->dev,
"%s: Successfully added entry (index=%d, dmac=%pM, ways=%d opc_type=%d\n",
__func__, index, mac, ways, opc_type);
return 0;
}
/**
* rvu_npc_exact_update_table_entry - Update exact match table.
* @rvu: resource virtualization unit.
* @cgx_id: CGX identifier.
* @lmac_id: LMAC identifier.
* @old_mac: Existing MAC address entry.
* @new_mac: New MAC address entry.
* @seq_id: Sequence identifier of the entry.
*
* Updates MAC address of an entry. If entry is in MEM table, new
* hash value may not match with old one.
* Return: 0 upon success.
*/
static int rvu_npc_exact_update_table_entry(struct rvu *rvu, u8 cgx_id, u8 lmac_id,
u8 *old_mac, u8 *new_mac, u32 *seq_id)
{
int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
struct npc_exact_table_entry *entry;
struct npc_exact_table *table;
u32 hash_index;
u64 mdata;
table = rvu->hw->table;
mutex_lock(&table->lock);
/* Lookup for entry which needs to be updated */
entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, *seq_id);
if (!entry) {
mutex_unlock(&table->lock);
dev_dbg(rvu->dev,
"%s: failed to find entry for cgx_id=%d lmac_id=%d old_mac=%pM\n",
__func__, cgx_id, lmac_id, old_mac);
return -ENODATA;
}
/* If entry is in mem table and new hash index is different than old
* hash index, we cannot update the entry. Fail in these scenarios.
*/
if (entry->opc_type == NPC_EXACT_OPC_MEM) {
hash_index = rvu_exact_calculate_hash(rvu, entry->chan, entry->ctype,
new_mac, table->mem_table.mask,
table->mem_table.depth);
if (hash_index != entry->index) {
dev_dbg(rvu->dev,
"%s: Update failed due to index mismatch(new=0x%x, old=%x)\n",
__func__, hash_index, entry->index);
mutex_unlock(&table->lock);
return -EINVAL;
}
}
mdata = rvu_exact_prepare_table_entry(rvu, true, entry->ctype, entry->chan, new_mac);
if (entry->opc_type == NPC_EXACT_OPC_MEM)
rvu_npc_exact_mem_table_write(rvu, blkaddr, entry->ways, entry->index, mdata);
else
rvu_npc_exact_cam_table_write(rvu, blkaddr, entry->index, mdata);
/* Update entry fields */
ether_addr_copy(entry->mac, new_mac);
*seq_id = entry->seq_id;
dev_dbg(rvu->dev,
"%s: Successfully updated entry (index=%d, dmac=%pM, ways=%d opc_type=%d\n",
__func__, entry->index, entry->mac, entry->ways, entry->opc_type);
dev_dbg(rvu->dev, "%s: Successfully updated entry (old mac=%pM new_mac=%pM\n",
__func__, old_mac, new_mac);
mutex_unlock(&table->lock);
return 0;
}
/**
* rvu_npc_exact_promisc_disable - Disable promiscuous mode.
* @rvu: resource virtualization unit.
* @pcifunc: pcifunc
*
* Drop rule is against each PF. We dont support DMAC filter for
* VF.
* Return: 0 upon success
*/
int rvu_npc_exact_promisc_disable(struct rvu *rvu, u16 pcifunc)
{
struct npc_exact_table *table;
int pf = rvu_get_pf(pcifunc);
u8 cgx_id, lmac_id;
u32 drop_mcam_idx;
bool *promisc;
bool rc;
table = rvu->hw->table;
rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id,
&drop_mcam_idx, NULL, NULL, NULL);
if (!rc) {
dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n",
__func__, cgx_id, lmac_id);
return -EINVAL;
}
mutex_lock(&table->lock);
promisc = &table->promisc_mode[drop_mcam_idx];
if (!*promisc) {
mutex_unlock(&table->lock);
dev_dbg(rvu->dev, "%s: Err Already promisc mode disabled (cgx=%d lmac=%d)\n",
__func__, cgx_id, lmac_id);
return LMAC_AF_ERR_INVALID_PARAM;
}
*promisc = false;
mutex_unlock(&table->lock);
/* Enable drop rule */
rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX,
true);
dev_dbg(rvu->dev, "%s: disabled promisc mode (cgx=%d lmac=%d)\n",
__func__, cgx_id, lmac_id);
return 0;
}
/**
* rvu_npc_exact_promisc_enable - Enable promiscuous mode.
* @rvu: resource virtualization unit.
* @pcifunc: pcifunc.
* Return: 0 upon success
*/
int rvu_npc_exact_promisc_enable(struct rvu *rvu, u16 pcifunc)
{
struct npc_exact_table *table;
int pf = rvu_get_pf(pcifunc);
u8 cgx_id, lmac_id;
u32 drop_mcam_idx;
bool *promisc;
bool rc;
table = rvu->hw->table;
rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id,
&drop_mcam_idx, NULL, NULL, NULL);
if (!rc) {
dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n",
__func__, cgx_id, lmac_id);
return -EINVAL;
}
mutex_lock(&table->lock);
promisc = &table->promisc_mode[drop_mcam_idx];
if (*promisc) {
mutex_unlock(&table->lock);
dev_dbg(rvu->dev, "%s: Already in promisc mode (cgx=%d lmac=%d)\n",
__func__, cgx_id, lmac_id);
return LMAC_AF_ERR_INVALID_PARAM;
}
*promisc = true;
mutex_unlock(&table->lock);
/* disable drop rule */
rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX,
false);
dev_dbg(rvu->dev, "%s: Enabled promisc mode (cgx=%d lmac=%d)\n",
__func__, cgx_id, lmac_id);
return 0;
}
/**
* rvu_npc_exact_mac_addr_reset - Delete PF mac address.
* @rvu: resource virtualization unit.
* @req: Reset request
* @rsp: Reset response.
* Return: 0 upon success
*/
int rvu_npc_exact_mac_addr_reset(struct rvu *rvu, struct cgx_mac_addr_reset_req *req,
struct msg_rsp *rsp)
{
int pf = rvu_get_pf(req->hdr.pcifunc);
u32 seq_id = req->index;
struct rvu_pfvf *pfvf;
u8 cgx_id, lmac_id;
int rc;
rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
rc = rvu_npc_exact_del_table_entry_by_id(rvu, seq_id);
if (rc) {
/* TODO: how to handle this error case ? */
dev_err(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", __func__, pfvf->mac_addr, pf);
return 0;
}
dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d success (seq_id=%u)\n",
__func__, pfvf->mac_addr, pf, seq_id);
return 0;
}
/**
* rvu_npc_exact_mac_addr_update - Update mac address field with new value.
* @rvu: resource virtualization unit.
* @req: Update request.
* @rsp: Update response.
* Return: 0 upon success
*/
int rvu_npc_exact_mac_addr_update(struct rvu *rvu,
struct cgx_mac_addr_update_req *req,
struct cgx_mac_addr_update_rsp *rsp)
{
int pf = rvu_get_pf(req->hdr.pcifunc);
struct npc_exact_table_entry *entry;
struct npc_exact_table *table;
struct rvu_pfvf *pfvf;
u32 seq_id, mcam_idx;
u8 old_mac[ETH_ALEN];
u8 cgx_id, lmac_id;
int rc;
if (!is_cgx_config_permitted(rvu, req->hdr.pcifunc))
return LMAC_AF_ERR_PERM_DENIED;
dev_dbg(rvu->dev, "%s: Update request for seq_id=%d, mac=%pM\n",
__func__, req->index, req->mac_addr);
rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
table = rvu->hw->table;
mutex_lock(&table->lock);
/* Lookup for entry which needs to be updated */
entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, req->index);
if (!entry) {
dev_err(rvu->dev, "%s: failed to find entry for id=0x%x\n", __func__, req->index);
mutex_unlock(&table->lock);
return LMAC_AF_ERR_EXACT_MATCH_TBL_LOOK_UP_FAILED;
}
ether_addr_copy(old_mac, entry->mac);
seq_id = entry->seq_id;
mcam_idx = entry->mcam_idx;
mutex_unlock(&table->lock);
rc = rvu_npc_exact_update_table_entry(rvu, cgx_id, lmac_id, old_mac,
req->mac_addr, &seq_id);
if (!rc) {
rsp->index = seq_id;
dev_dbg(rvu->dev, "%s mac:%pM (pfvf:%pM default:%pM) update to PF=%d success\n",
__func__, req->mac_addr, pfvf->mac_addr, pfvf->default_mac, pf);
ether_addr_copy(pfvf->mac_addr, req->mac_addr);
return 0;
}
/* Try deleting and adding it again */
rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index);
if (rc) {
/* This could be a new entry */
dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", __func__,
pfvf->mac_addr, pf);
}
rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr,
pfvf->rx_chan_base, 0, &seq_id, true,
mcam_idx, req->hdr.pcifunc);
if (rc) {
dev_err(rvu->dev, "%s MAC (%pM) add PF=%d failed\n", __func__,
req->mac_addr, pf);
return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED;
}
rsp->index = seq_id;
dev_dbg(rvu->dev,
"%s MAC (new:%pM, old=%pM default:%pM) del and add to PF=%d success (seq_id=%u)\n",
__func__, req->mac_addr, pfvf->mac_addr, pfvf->default_mac, pf, seq_id);
ether_addr_copy(pfvf->mac_addr, req->mac_addr);
return 0;
}
/**
* rvu_npc_exact_mac_addr_add - Adds MAC address to exact match table.
* @rvu: resource virtualization unit.
* @req: Add request.
* @rsp: Add response.
* Return: 0 upon success
*/
int rvu_npc_exact_mac_addr_add(struct rvu *rvu,
struct cgx_mac_addr_add_req *req,
struct cgx_mac_addr_add_rsp *rsp)
{
int pf = rvu_get_pf(req->hdr.pcifunc);
struct rvu_pfvf *pfvf;
u8 cgx_id, lmac_id;
int rc = 0;
u32 seq_id;
rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr,
pfvf->rx_chan_base, 0, &seq_id,
true, -1, req->hdr.pcifunc);
if (!rc) {
rsp->index = seq_id;
dev_dbg(rvu->dev, "%s MAC (%pM) add to PF=%d success (seq_id=%u)\n",
__func__, req->mac_addr, pf, seq_id);
return 0;
}
dev_err(rvu->dev, "%s MAC (%pM) add to PF=%d failed\n", __func__,
req->mac_addr, pf);
return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED;
}
/**
* rvu_npc_exact_mac_addr_del - Delete DMAC filter
* @rvu: resource virtualization unit.
* @req: Delete request.
* @rsp: Delete response.
* Return: 0 upon success
*/
int rvu_npc_exact_mac_addr_del(struct rvu *rvu,
struct cgx_mac_addr_del_req *req,
struct msg_rsp *rsp)
{
int pf = rvu_get_pf(req->hdr.pcifunc);
int rc;
rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index);
if (!rc) {
dev_dbg(rvu->dev, "%s del to PF=%d success (seq_id=%u)\n",
__func__, pf, req->index);
return 0;
}
dev_err(rvu->dev, "%s del to PF=%d failed (seq_id=%u)\n",
__func__, pf, req->index);
return LMAC_AF_ERR_EXACT_MATCH_TBL_DEL_FAILED;
}
/**
* rvu_npc_exact_mac_addr_set - Add PF mac address to dmac filter.
* @rvu: resource virtualization unit.
* @req: Set request.
* @rsp: Set response.
* Return: 0 upon success
*/
int rvu_npc_exact_mac_addr_set(struct rvu *rvu, struct cgx_mac_addr_set_or_get *req,
struct cgx_mac_addr_set_or_get *rsp)
{
int pf = rvu_get_pf(req->hdr.pcifunc);
u32 seq_id = req->index;
struct rvu_pfvf *pfvf;
u8 cgx_id, lmac_id;
u32 mcam_idx = -1;
int rc, nixlf;
rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id);
pfvf = &rvu->pf[pf];
/* If table does not have an entry; both update entry and del table entry API
* below fails. Those are not failure conditions.
*/
rc = rvu_npc_exact_update_table_entry(rvu, cgx_id, lmac_id, pfvf->mac_addr,
req->mac_addr, &seq_id);
if (!rc) {
rsp->index = seq_id;
ether_addr_copy(pfvf->mac_addr, req->mac_addr);
ether_addr_copy(rsp->mac_addr, req->mac_addr);
dev_dbg(rvu->dev, "%s MAC (%pM) update to PF=%d success\n",
__func__, req->mac_addr, pf);
return 0;
}
/* Try deleting and adding it again */
rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index);
if (rc) {
dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d failed\n",
__func__, pfvf->mac_addr, pf);
}
/* find mcam entry if exist */
rc = nix_get_nixlf(rvu, req->hdr.pcifunc, &nixlf, NULL);
if (!rc) {
mcam_idx = npc_get_nixlf_mcam_index(&rvu->hw->mcam, req->hdr.pcifunc,
nixlf, NIXLF_UCAST_ENTRY);
}
rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr,
pfvf->rx_chan_base, 0, &seq_id,
true, mcam_idx, req->hdr.pcifunc);
if (rc) {
dev_err(rvu->dev, "%s MAC (%pM) add PF=%d failed\n",
__func__, req->mac_addr, pf);
return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED;
}
rsp->index = seq_id;
ether_addr_copy(rsp->mac_addr, req->mac_addr);
ether_addr_copy(pfvf->mac_addr, req->mac_addr);
dev_dbg(rvu->dev,
"%s MAC (%pM) del and add to PF=%d success (seq_id=%u)\n",
__func__, req->mac_addr, pf, seq_id);
return 0;
}
/**
* rvu_npc_exact_can_disable_feature - Check if feature can be disabled.
* @rvu: resource virtualization unit.
* Return: True if exact match feature is supported.
*/
bool rvu_npc_exact_can_disable_feature(struct rvu *rvu)
{
struct npc_exact_table *table = rvu->hw->table;
bool empty;
if (!rvu->hw->cap.npc_exact_match_enabled)
return false;
mutex_lock(&table->lock);
empty = list_empty(&table->lhead_gbl);
mutex_unlock(&table->lock);
return empty;
}
/**
* rvu_npc_exact_disable_feature - Disable feature.
* @rvu: resource virtualization unit.
*/
void rvu_npc_exact_disable_feature(struct rvu *rvu)
{
rvu->hw->cap.npc_exact_match_enabled = false;
}
/**
* rvu_npc_exact_reset - Delete and free all entry which match pcifunc.
* @rvu: resource virtualization unit.
* @pcifunc: PCI func to match.
*/
void rvu_npc_exact_reset(struct rvu *rvu, u16 pcifunc)
{
struct npc_exact_table *table = rvu->hw->table;
struct npc_exact_table_entry *tmp, *iter;
u32 seq_id;
mutex_lock(&table->lock);
list_for_each_entry_safe(iter, tmp, &table->lhead_gbl, glist) {
if (pcifunc != iter->pcifunc)
continue;
seq_id = iter->seq_id;
dev_dbg(rvu->dev, "%s: resetting pcifun=%d seq_id=%u\n", __func__,
pcifunc, seq_id);
mutex_unlock(&table->lock);
rvu_npc_exact_del_table_entry_by_id(rvu, seq_id);
mutex_lock(&table->lock);
}
mutex_unlock(&table->lock);
}
/**
* rvu_npc_exact_init - initialize exact match table
* @rvu: resource virtualization unit.
*
* Initialize HW and SW resources to manage 4way-2K table and fully
* associative 32-entry mcam table.
* Return: 0 upon success.
*/
int rvu_npc_exact_init(struct rvu *rvu)
{
u64 bcast_mcast_val, bcast_mcast_mask;
struct npc_exact_table *table;
u64 exact_val, exact_mask;
u64 chan_val, chan_mask;
u8 cgx_id, lmac_id;
u32 *drop_mcam_idx;
u16 max_lmac_cnt;
u64 npc_const3;
int table_size;
int blkaddr;
u16 pcifunc;
int err, i;
u64 cfg;
bool rc;
/* Read NPC_AF_CONST3 and check for have exact
* match functionality is present
*/
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
if (blkaddr < 0) {
dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
return -EINVAL;
}
/* Check exact match feature is supported */
npc_const3 = rvu_read64(rvu, blkaddr, NPC_AF_CONST3);
if (!(npc_const3 & BIT_ULL(62)))
return 0;
/* Check if kex profile has enabled EXACT match nibble */
cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(NIX_INTF_RX));
if (!(cfg & NPC_EXACT_NIBBLE_HIT))
return 0;
/* Set capability to true */
rvu->hw->cap.npc_exact_match_enabled = true;
table = kzalloc(sizeof(*table), GFP_KERNEL);
if (!table)
return -ENOMEM;
dev_dbg(rvu->dev, "%s: Memory allocation for table success\n", __func__);
rvu->hw->table = table;
/* Read table size, ways and depth */
table->mem_table.ways = FIELD_GET(GENMASK_ULL(19, 16), npc_const3);
table->mem_table.depth = FIELD_GET(GENMASK_ULL(15, 0), npc_const3);
table->cam_table.depth = FIELD_GET(GENMASK_ULL(31, 24), npc_const3);
dev_dbg(rvu->dev, "%s: NPC exact match 4way_2k table(ways=%d, depth=%d)\n",
__func__, table->mem_table.ways, table->cam_table.depth);
/* Check if depth of table is not a sequre of 2
* TODO: why _builtin_popcount() is not working ?
*/
if ((table->mem_table.depth & (table->mem_table.depth - 1)) != 0) {
dev_err(rvu->dev,
"%s: NPC exact match 4way_2k table depth(%d) is not square of 2\n",
__func__, table->mem_table.depth);
return -EINVAL;
}
table_size = table->mem_table.depth * table->mem_table.ways;
/* Allocate bitmap for 4way 2K table */
table->mem_table.bmap = devm_bitmap_zalloc(rvu->dev, table_size,
GFP_KERNEL);
if (!table->mem_table.bmap)
return -ENOMEM;
dev_dbg(rvu->dev, "%s: Allocated bitmap for 4way 2K entry table\n", __func__);
/* Allocate bitmap for 32 entry mcam */
table->cam_table.bmap = devm_bitmap_zalloc(rvu->dev, 32, GFP_KERNEL);
if (!table->cam_table.bmap)
return -ENOMEM;
dev_dbg(rvu->dev, "%s: Allocated bitmap for 32 entry cam\n", __func__);
table->tot_ids = table_size + table->cam_table.depth;
table->id_bmap = devm_bitmap_zalloc(rvu->dev, table->tot_ids,
GFP_KERNEL);
if (!table->id_bmap)
return -ENOMEM;
dev_dbg(rvu->dev, "%s: Allocated bitmap for id map (total=%d)\n",
__func__, table->tot_ids);
/* Initialize list heads for npc_exact_table entries.
* This entry is used by debugfs to show entries in
* exact match table.
*/
for (i = 0; i < NPC_EXACT_TBL_MAX_WAYS; i++)
INIT_LIST_HEAD(&table->lhead_mem_tbl_entry[i]);
INIT_LIST_HEAD(&table->lhead_cam_tbl_entry);
INIT_LIST_HEAD(&table->lhead_gbl);
mutex_init(&table->lock);
rvu_exact_config_secret_key(rvu);
rvu_exact_config_search_key(rvu);
rvu_exact_config_table_mask(rvu);
rvu_exact_config_result_ctrl(rvu, table->mem_table.depth);
/* - No drop rule for LBK
* - Drop rules for SDP and each LMAC.
*/
exact_val = !NPC_EXACT_RESULT_HIT;
exact_mask = NPC_EXACT_RESULT_HIT;
/* nibble - 3 2 1 0
* L3B L3M L2B L2M
*/
bcast_mcast_val = 0b0000;
bcast_mcast_mask = 0b0011;
/* Install SDP drop rule */
drop_mcam_idx = &table->num_drop_rules;
max_lmac_cnt = rvu->cgx_cnt_max * rvu->hw->lmac_per_cgx +
PF_CGXMAP_BASE;
for (i = PF_CGXMAP_BASE; i < max_lmac_cnt; i++) {
if (rvu->pf2cgxlmac_map[i] == 0xFF)
continue;
rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[i], &cgx_id, &lmac_id);
rc = rvu_npc_exact_calc_drop_rule_chan_and_mask(rvu, NIX_INTF_TYPE_CGX, cgx_id,
lmac_id, &chan_val, &chan_mask);
if (!rc) {
dev_err(rvu->dev,
"%s: failed, info chan_val=0x%llx chan_mask=0x%llx rule_id=%d\n",
__func__, chan_val, chan_mask, *drop_mcam_idx);
return -EINVAL;
}
/* Filter rules are only for PF */
pcifunc = RVU_PFFUNC(i, 0);
dev_dbg(rvu->dev,
"%s:Drop rule cgx=%d lmac=%d chan(val=0x%llx, mask=0x%llx\n",
__func__, cgx_id, lmac_id, chan_val, chan_mask);
rc = rvu_npc_exact_save_drop_rule_chan_and_mask(rvu, table->num_drop_rules,
chan_val, chan_mask, pcifunc);
if (!rc) {
dev_err(rvu->dev,
"%s: failed to set drop info for cgx=%d, lmac=%d, chan=%llx\n",
__func__, cgx_id, lmac_id, chan_val);
return -EINVAL;
}
err = npc_install_mcam_drop_rule(rvu, *drop_mcam_idx,
&table->counter_idx[*drop_mcam_idx],
chan_val, chan_mask,
exact_val, exact_mask,
bcast_mcast_val, bcast_mcast_mask);
if (err) {
dev_err(rvu->dev,
"failed to configure drop rule (cgx=%d lmac=%d)\n",
cgx_id, lmac_id);
return err;
}
(*drop_mcam_idx)++;
}
dev_info(rvu->dev, "initialized exact match table successfully\n");
return 0;
}