/* SPDX-License-Identifier: GPL-2.0 */
/* Marvell RVU Ethernet driver
*
* Copyright (C) 2020 Marvell.
*
*/
#ifndef OTX2_COMMON_H
#define OTX2_COMMON_H
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/iommu.h>
#include <linux/net_tstamp.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/timecounter.h>
#include <linux/soc/marvell/octeontx2/asm.h>
#include <net/macsec.h>
#include <net/pkt_cls.h>
#include <net/devlink.h>
#include <linux/time64.h>
#include <linux/dim.h>
#include <uapi/linux/if_macsec.h>
#include <mbox.h>
#include <npc.h>
#include "otx2_reg.h"
#include "otx2_txrx.h"
#include "otx2_devlink.h"
#include <rvu_trace.h>
#include "qos.h"
/* IPv4 flag more fragment bit */
#define IPV4_FLAG_MORE 0x20
/* PCI device IDs */
#define PCI_DEVID_OCTEONTX2_RVU_PF 0xA063
#define PCI_DEVID_OCTEONTX2_RVU_VF 0xA064
#define PCI_DEVID_OCTEONTX2_RVU_AFVF 0xA0F8
#define PCI_SUBSYS_DEVID_96XX_RVU_PFVF 0xB200
#define PCI_SUBSYS_DEVID_CN10K_B_RVU_PFVF 0xBD00
/* PCI BAR nos */
#define PCI_CFG_REG_BAR_NUM 2
#define PCI_MBOX_BAR_NUM 4
#define NAME_SIZE 32
#ifdef CONFIG_DCB
/* Max priority supported for PFC */
#define NIX_PF_PFC_PRIO_MAX 8
#endif
enum arua_mapped_qtypes {
AURA_NIX_RQ,
AURA_NIX_SQ,
};
/* NIX LF interrupts range*/
#define NIX_LF_QINT_VEC_START 0x00
#define NIX_LF_CINT_VEC_START 0x40
#define NIX_LF_GINT_VEC 0x80
#define NIX_LF_ERR_VEC 0x81
#define NIX_LF_POISON_VEC 0x82
/* Send skid of 2000 packets required for CQ size of 4K CQEs. */
#define SEND_CQ_SKID 2000
#define OTX2_GET_RX_STATS(reg) \
otx2_read64(pfvf, NIX_LF_RX_STATX(reg))
#define OTX2_GET_TX_STATS(reg) \
otx2_read64(pfvf, NIX_LF_TX_STATX(reg))
struct otx2_lmt_info {
u64 lmt_addr;
u16 lmt_id;
};
/* RSS configuration */
struct otx2_rss_ctx {
u8 ind_tbl[MAX_RSS_INDIR_TBL_SIZE];
};
struct otx2_rss_info {
u8 enable;
u32 flowkey_cfg;
u16 rss_size;
#define RSS_HASH_KEY_SIZE 44 /* 352 bit key */
u8 key[RSS_HASH_KEY_SIZE];
struct otx2_rss_ctx *rss_ctx[MAX_RSS_GROUPS];
};
/* NIX (or NPC) RX errors */
enum otx2_errlvl {
NPC_ERRLVL_RE,
NPC_ERRLVL_LID_LA,
NPC_ERRLVL_LID_LB,
NPC_ERRLVL_LID_LC,
NPC_ERRLVL_LID_LD,
NPC_ERRLVL_LID_LE,
NPC_ERRLVL_LID_LF,
NPC_ERRLVL_LID_LG,
NPC_ERRLVL_LID_LH,
NPC_ERRLVL_NIX = 0x0F,
};
enum otx2_errcodes_re {
/* NPC_ERRLVL_RE errcodes */
ERRCODE_FCS = 0x7,
ERRCODE_FCS_RCV = 0x8,
ERRCODE_UNDERSIZE = 0x10,
ERRCODE_OVERSIZE = 0x11,
ERRCODE_OL2_LEN_MISMATCH = 0x12,
/* NPC_ERRLVL_NIX errcodes */
ERRCODE_OL3_LEN = 0x10,
ERRCODE_OL4_LEN = 0x11,
ERRCODE_OL4_CSUM = 0x12,
ERRCODE_IL3_LEN = 0x20,
ERRCODE_IL4_LEN = 0x21,
ERRCODE_IL4_CSUM = 0x22,
};
/* NIX TX stats */
enum nix_stat_lf_tx {
TX_UCAST = 0x0,
TX_BCAST = 0x1,
TX_MCAST = 0x2,
TX_DROP = 0x3,
TX_OCTS = 0x4,
TX_STATS_ENUM_LAST,
};
/* NIX RX stats */
enum nix_stat_lf_rx {
RX_OCTS = 0x0,
RX_UCAST = 0x1,
RX_BCAST = 0x2,
RX_MCAST = 0x3,
RX_DROP = 0x4,
RX_DROP_OCTS = 0x5,
RX_FCS = 0x6,
RX_ERR = 0x7,
RX_DRP_BCAST = 0x8,
RX_DRP_MCAST = 0x9,
RX_DRP_L3BCAST = 0xa,
RX_DRP_L3MCAST = 0xb,
RX_STATS_ENUM_LAST,
};
struct otx2_dev_stats {
u64 rx_bytes;
u64 rx_frames;
u64 rx_ucast_frames;
u64 rx_bcast_frames;
u64 rx_mcast_frames;
u64 rx_drops;
u64 tx_bytes;
u64 tx_frames;
u64 tx_ucast_frames;
u64 tx_bcast_frames;
u64 tx_mcast_frames;
u64 tx_drops;
};
/* Driver counted stats */
struct otx2_drv_stats {
atomic_t rx_fcs_errs;
atomic_t rx_oversize_errs;
atomic_t rx_undersize_errs;
atomic_t rx_csum_errs;
atomic_t rx_len_errs;
atomic_t rx_other_errs;
};
struct mbox {
struct otx2_mbox mbox;
struct work_struct mbox_wrk;
struct otx2_mbox mbox_up;
struct work_struct mbox_up_wrk;
struct otx2_nic *pfvf;
void *bbuf_base; /* Bounce buffer for mbox memory */
struct mutex lock; /* serialize mailbox access */
int num_msgs; /* mbox number of messages */
int up_num_msgs; /* mbox_up number of messages */
};
/* Egress rate limiting definitions */
#define MAX_BURST_EXPONENT 0x0FULL
#define MAX_BURST_MANTISSA 0xFFULL
#define MAX_BURST_SIZE 130816ULL
#define MAX_RATE_DIVIDER_EXPONENT 12ULL
#define MAX_RATE_EXPONENT 0x0FULL
#define MAX_RATE_MANTISSA 0xFFULL
/* Bitfields in NIX_TLX_PIR register */
#define TLX_RATE_MANTISSA GENMASK_ULL(8, 1)
#define TLX_RATE_EXPONENT GENMASK_ULL(12, 9)
#define TLX_RATE_DIVIDER_EXPONENT GENMASK_ULL(16, 13)
#define TLX_BURST_MANTISSA GENMASK_ULL(36, 29)
#define TLX_BURST_EXPONENT GENMASK_ULL(40, 37)
struct otx2_hw {
struct pci_dev *pdev;
struct otx2_rss_info rss_info;
u16 rx_queues;
u16 tx_queues;
u16 xdp_queues;
u16 tc_tx_queues;
u16 non_qos_queues; /* tx queues plus xdp queues */
u16 max_queues;
u16 pool_cnt;
u16 rqpool_cnt;
u16 sqpool_cnt;
#define OTX2_DEFAULT_RBUF_LEN 2048
u16 rbuf_len;
u32 xqe_size;
/* NPA */
u32 stack_pg_ptrs; /* No of ptrs per stack page */
u32 stack_pg_bytes; /* Size of stack page */
u16 sqb_size;
/* NIX */
u8 txschq_link_cfg_lvl;
u8 txschq_aggr_lvl_rr_prio;
u16 txschq_list[NIX_TXSCH_LVL_CNT][MAX_TXSCHQ_PER_FUNC];
u16 matchall_ipolicer;
u32 dwrr_mtu;
u8 smq_link_type;
/* HW settings, coalescing etc */
u16 rx_chan_base;
u16 tx_chan_base;
u16 cq_qcount_wait;
u16 cq_ecount_wait;
u16 rq_skid;
u8 cq_time_wait;
/* Segmentation */
u8 lso_tsov4_idx;
u8 lso_tsov6_idx;
u8 lso_udpv4_idx;
u8 lso_udpv6_idx;
/* RSS */
u8 flowkey_alg_idx;
/* MSI-X */
u8 cint_cnt; /* CQ interrupt count */
u16 npa_msixoff; /* Offset of NPA vectors */
u16 nix_msixoff; /* Offset of NIX vectors */
char *irq_name;
cpumask_var_t *affinity_mask;
/* Stats */
struct otx2_dev_stats dev_stats;
struct otx2_drv_stats drv_stats;
u64 cgx_rx_stats[CGX_RX_STATS_COUNT];
u64 cgx_tx_stats[CGX_TX_STATS_COUNT];
u64 cgx_fec_corr_blks;
u64 cgx_fec_uncorr_blks;
u8 cgx_links; /* No. of CGX links present in HW */
u8 lbk_links; /* No. of LBK links present in HW */
u8 tx_link; /* Transmit channel link number */
#define HW_TSO 0
#define CN10K_MBOX 1
#define CN10K_LMTST 2
#define CN10K_RPM 3
#define CN10K_PTP_ONESTEP 4
#define CN10K_HW_MACSEC 5
#define QOS_CIR_PIR_SUPPORT 6
unsigned long cap_flag;
#define LMT_LINE_SIZE 128
#define LMT_BURST_SIZE 32 /* 32 LMTST lines for burst SQE flush */
u64 *lmt_base;
struct otx2_lmt_info __percpu *lmt_info;
};
enum vfperm {
OTX2_RESET_VF_PERM,
OTX2_TRUSTED_VF,
};
struct otx2_vf_config {
struct otx2_nic *pf;
struct delayed_work link_event_work;
bool intf_down; /* interface was either configured or not */
u8 mac[ETH_ALEN];
u16 vlan;
int tx_vtag_idx;
bool trusted;
};
struct flr_work {
struct work_struct work;
struct otx2_nic *pf;
};
struct refill_work {
struct delayed_work pool_refill_work;
struct otx2_nic *pf;
struct napi_struct *napi;
};
/* PTPv2 originTimestamp structure */
struct ptpv2_tstamp {
__be16 seconds_msb; /* 16 bits + */
__be32 seconds_lsb; /* 32 bits = 48 bits*/
__be32 nanoseconds;
} __packed;
struct otx2_ptp {
struct ptp_clock_info ptp_info;
struct ptp_clock *ptp_clock;
struct otx2_nic *nic;
struct cyclecounter cycle_counter;
struct timecounter time_counter;
struct delayed_work extts_work;
u64 last_extts;
u64 thresh;
struct ptp_pin_desc extts_config;
u64 (*convert_rx_ptp_tstmp)(u64 timestamp);
u64 (*convert_tx_ptp_tstmp)(u64 timestamp);
u64 (*ptp_tstamp2nsec)(const struct timecounter *time_counter, u64 timestamp);
struct delayed_work synctstamp_work;
u64 tstamp;
u32 base_ns;
};
#define OTX2_HW_TIMESTAMP_LEN 8
struct otx2_mac_table {
u8 addr[ETH_ALEN];
u16 mcam_entry;
bool inuse;
};
struct otx2_flow_config {
u16 *flow_ent;
u16 *def_ent;
u16 nr_flows;
#define OTX2_DEFAULT_FLOWCOUNT 16
#define OTX2_DEFAULT_UNICAST_FLOWS 4
#define OTX2_MAX_VLAN_FLOWS 1
#define OTX2_MAX_TC_FLOWS OTX2_DEFAULT_FLOWCOUNT
u16 unicast_offset;
u16 rx_vlan_offset;
u16 vf_vlan_offset;
#define OTX2_PER_VF_VLAN_FLOWS 2 /* Rx + Tx per VF */
#define OTX2_VF_VLAN_RX_INDEX 0
#define OTX2_VF_VLAN_TX_INDEX 1
u32 *bmap_to_dmacindex;
unsigned long *dmacflt_bmap;
struct list_head flow_list;
u32 dmacflt_max_flows;
u16 max_flows;
refcount_t mark_flows;
struct list_head flow_list_tc;
u8 ucast_flt_cnt;
bool ntuple;
};
struct dev_hw_ops {
int (*sq_aq_init)(void *dev, u16 qidx, u16 sqb_aura);
void (*sqe_flush)(void *dev, struct otx2_snd_queue *sq,
int size, int qidx);
int (*refill_pool_ptrs)(void *dev, struct otx2_cq_queue *cq);
void (*aura_freeptr)(void *dev, int aura, u64 buf);
};
#define CN10K_MCS_SA_PER_SC 4
/* Stats which need to be accumulated in software because
* of shared counters in hardware.
*/
struct cn10k_txsc_stats {
u64 InPktsUntagged;
u64 InPktsNoTag;
u64 InPktsBadTag;
u64 InPktsUnknownSCI;
u64 InPktsNoSCI;
u64 InPktsOverrun;
};
struct cn10k_rxsc_stats {
u64 InOctetsValidated;
u64 InOctetsDecrypted;
u64 InPktsUnchecked;
u64 InPktsDelayed;
u64 InPktsOK;
u64 InPktsInvalid;
u64 InPktsLate;
u64 InPktsNotValid;
u64 InPktsNotUsingSA;
u64 InPktsUnusedSA;
};
struct cn10k_mcs_txsc {
struct macsec_secy *sw_secy;
struct cn10k_txsc_stats stats;
struct list_head entry;
enum macsec_validation_type last_validate_frames;
bool last_replay_protect;
u16 hw_secy_id_tx;
u16 hw_secy_id_rx;
u16 hw_flow_id;
u16 hw_sc_id;
u16 hw_sa_id[CN10K_MCS_SA_PER_SC];
u8 sa_bmap;
u8 sa_key[CN10K_MCS_SA_PER_SC][MACSEC_MAX_KEY_LEN];
u8 encoding_sa;
u8 salt[CN10K_MCS_SA_PER_SC][MACSEC_SALT_LEN];
ssci_t ssci[CN10K_MCS_SA_PER_SC];
bool vlan_dev; /* macsec running on VLAN ? */
};
struct cn10k_mcs_rxsc {
struct macsec_secy *sw_secy;
struct macsec_rx_sc *sw_rxsc;
struct cn10k_rxsc_stats stats;
struct list_head entry;
u16 hw_flow_id;
u16 hw_sc_id;
u16 hw_sa_id[CN10K_MCS_SA_PER_SC];
u8 sa_bmap;
u8 sa_key[CN10K_MCS_SA_PER_SC][MACSEC_MAX_KEY_LEN];
u8 salt[CN10K_MCS_SA_PER_SC][MACSEC_SALT_LEN];
ssci_t ssci[CN10K_MCS_SA_PER_SC];
};
struct cn10k_mcs_cfg {
struct list_head txsc_list;
struct list_head rxsc_list;
};
struct otx2_nic {
void __iomem *reg_base;
struct net_device *netdev;
struct dev_hw_ops *hw_ops;
void *iommu_domain;
u16 tx_max_pktlen;
u16 rbsize; /* Receive buffer size */
#define OTX2_FLAG_RX_TSTAMP_ENABLED BIT_ULL(0)
#define OTX2_FLAG_TX_TSTAMP_ENABLED BIT_ULL(1)
#define OTX2_FLAG_INTF_DOWN BIT_ULL(2)
#define OTX2_FLAG_MCAM_ENTRIES_ALLOC BIT_ULL(3)
#define OTX2_FLAG_NTUPLE_SUPPORT BIT_ULL(4)
#define OTX2_FLAG_UCAST_FLTR_SUPPORT BIT_ULL(5)
#define OTX2_FLAG_RX_VLAN_SUPPORT BIT_ULL(6)
#define OTX2_FLAG_VF_VLAN_SUPPORT BIT_ULL(7)
#define OTX2_FLAG_PF_SHUTDOWN BIT_ULL(8)
#define OTX2_FLAG_RX_PAUSE_ENABLED BIT_ULL(9)
#define OTX2_FLAG_TX_PAUSE_ENABLED BIT_ULL(10)
#define OTX2_FLAG_TC_FLOWER_SUPPORT BIT_ULL(11)
#define OTX2_FLAG_TC_MATCHALL_EGRESS_ENABLED BIT_ULL(12)
#define OTX2_FLAG_TC_MATCHALL_INGRESS_ENABLED BIT_ULL(13)
#define OTX2_FLAG_DMACFLTR_SUPPORT BIT_ULL(14)
#define OTX2_FLAG_PTP_ONESTEP_SYNC BIT_ULL(15)
#define OTX2_FLAG_ADPTV_INT_COAL_ENABLED BIT_ULL(16)
#define OTX2_FLAG_TC_MARK_ENABLED BIT_ULL(17)
u64 flags;
u64 *cq_op_addr;
struct bpf_prog *xdp_prog;
struct otx2_qset qset;
struct otx2_hw hw;
struct pci_dev *pdev;
struct device *dev;
/* Mbox */
struct mbox mbox;
struct mbox *mbox_pfvf;
struct workqueue_struct *mbox_wq;
struct workqueue_struct *mbox_pfvf_wq;
u8 total_vfs;
u16 pcifunc; /* RVU PF_FUNC */
u16 bpid[NIX_MAX_BPID_CHAN];
struct otx2_vf_config *vf_configs;
struct cgx_link_user_info linfo;
/* NPC MCAM */
struct otx2_flow_config *flow_cfg;
struct otx2_mac_table *mac_table;
u64 reset_count;
struct work_struct reset_task;
struct workqueue_struct *flr_wq;
struct flr_work *flr_wrk;
struct refill_work *refill_wrk;
struct workqueue_struct *otx2_wq;
struct work_struct rx_mode_work;
/* Ethtool stuff */
u32 msg_enable;
/* Block address of NIX either BLKADDR_NIX0 or BLKADDR_NIX1 */
int nix_blkaddr;
/* LMTST Lines info */
struct qmem *dync_lmt;
u16 tot_lmt_lines;
u16 npa_lmt_lines;
u32 nix_lmt_size;
struct otx2_ptp *ptp;
struct hwtstamp_config tstamp;
unsigned long rq_bmap;
/* Devlink */
struct otx2_devlink *dl;
#ifdef CONFIG_DCB
/* PFC */
u8 pfc_en;
u8 *queue_to_pfc_map;
u16 pfc_schq_list[NIX_TXSCH_LVL_CNT][MAX_TXSCHQ_PER_FUNC];
bool pfc_alloc_status[NIX_PF_PFC_PRIO_MAX];
#endif
/* qos */
struct otx2_qos qos;
/* napi event count. It is needed for adaptive irq coalescing. */
u32 napi_events;
#if IS_ENABLED(CONFIG_MACSEC)
struct cn10k_mcs_cfg *macsec_cfg;
#endif
};
static inline bool is_otx2_lbkvf(struct pci_dev *pdev)
{
return pdev->device == PCI_DEVID_OCTEONTX2_RVU_AFVF;
}
static inline bool is_96xx_A0(struct pci_dev *pdev)
{
return (pdev->revision == 0x00) &&
(pdev->subsystem_device == PCI_SUBSYS_DEVID_96XX_RVU_PFVF);
}
static inline bool is_96xx_B0(struct pci_dev *pdev)
{
return (pdev->revision == 0x01) &&
(pdev->subsystem_device == PCI_SUBSYS_DEVID_96XX_RVU_PFVF);
}
/* REVID for PCIe devices.
* Bits 0..1: minor pass, bit 3..2: major pass
* bits 7..4: midr id
*/
#define PCI_REVISION_ID_96XX 0x00
#define PCI_REVISION_ID_95XX 0x10
#define PCI_REVISION_ID_95XXN 0x20
#define PCI_REVISION_ID_98XX 0x30
#define PCI_REVISION_ID_95XXMM 0x40
#define PCI_REVISION_ID_95XXO 0xE0
static inline bool is_dev_otx2(struct pci_dev *pdev)
{
u8 midr = pdev->revision & 0xF0;
return (midr == PCI_REVISION_ID_96XX || midr == PCI_REVISION_ID_95XX ||
midr == PCI_REVISION_ID_95XXN || midr == PCI_REVISION_ID_98XX ||
midr == PCI_REVISION_ID_95XXMM || midr == PCI_REVISION_ID_95XXO);
}
static inline bool is_dev_cn10kb(struct pci_dev *pdev)
{
return pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_B_RVU_PFVF;
}
static inline void otx2_setup_dev_hw_settings(struct otx2_nic *pfvf)
{
struct otx2_hw *hw = &pfvf->hw;
pfvf->hw.cq_time_wait = CQ_TIMER_THRESH_DEFAULT;
pfvf->hw.cq_ecount_wait = CQ_CQE_THRESH_DEFAULT;
pfvf->hw.cq_qcount_wait = CQ_QCOUNT_DEFAULT;
__set_bit(HW_TSO, &hw->cap_flag);
if (is_96xx_A0(pfvf->pdev)) {
__clear_bit(HW_TSO, &hw->cap_flag);
/* Time based irq coalescing is not supported */
pfvf->hw.cq_qcount_wait = 0x0;
/* Due to HW issue previous silicons required minimum
* 600 unused CQE to avoid CQ overflow.
*/
pfvf->hw.rq_skid = 600;
pfvf->qset.rqe_cnt = Q_COUNT(Q_SIZE_1K);
}
if (is_96xx_B0(pfvf->pdev))
__clear_bit(HW_TSO, &hw->cap_flag);
if (!is_dev_otx2(pfvf->pdev)) {
__set_bit(CN10K_MBOX, &hw->cap_flag);
__set_bit(CN10K_LMTST, &hw->cap_flag);
__set_bit(CN10K_RPM, &hw->cap_flag);
__set_bit(CN10K_PTP_ONESTEP, &hw->cap_flag);
__set_bit(QOS_CIR_PIR_SUPPORT, &hw->cap_flag);
}
if (is_dev_cn10kb(pfvf->pdev))
__set_bit(CN10K_HW_MACSEC, &hw->cap_flag);
}
/* Register read/write APIs */
static inline void __iomem *otx2_get_regaddr(struct otx2_nic *nic, u64 offset)
{
u64 blkaddr;
switch ((offset >> RVU_FUNC_BLKADDR_SHIFT) & RVU_FUNC_BLKADDR_MASK) {
case BLKTYPE_NIX:
blkaddr = nic->nix_blkaddr;
break;
case BLKTYPE_NPA:
blkaddr = BLKADDR_NPA;
break;
default:
blkaddr = BLKADDR_RVUM;
break;
}
offset &= ~(RVU_FUNC_BLKADDR_MASK << RVU_FUNC_BLKADDR_SHIFT);
offset |= (blkaddr << RVU_FUNC_BLKADDR_SHIFT);
return nic->reg_base + offset;
}
static inline void otx2_write64(struct otx2_nic *nic, u64 offset, u64 val)
{
void __iomem *addr = otx2_get_regaddr(nic, offset);
writeq(val, addr);
}
static inline u64 otx2_read64(struct otx2_nic *nic, u64 offset)
{
void __iomem *addr = otx2_get_regaddr(nic, offset);
return readq(addr);
}
/* Mbox bounce buffer APIs */
static inline int otx2_mbox_bbuf_init(struct mbox *mbox, struct pci_dev *pdev)
{
struct otx2_mbox *otx2_mbox;
struct otx2_mbox_dev *mdev;
mbox->bbuf_base = devm_kmalloc(&pdev->dev, MBOX_SIZE, GFP_KERNEL);
if (!mbox->bbuf_base)
return -ENOMEM;
/* Overwrite mbox mbase to point to bounce buffer, so that PF/VF
* prepare all mbox messages in bounce buffer instead of directly
* in hw mbox memory.
*/
otx2_mbox = &mbox->mbox;
mdev = &otx2_mbox->dev[0];
mdev->mbase = mbox->bbuf_base;
otx2_mbox = &mbox->mbox_up;
mdev = &otx2_mbox->dev[0];
mdev->mbase = mbox->bbuf_base;
return 0;
}
static inline void otx2_sync_mbox_bbuf(struct otx2_mbox *mbox, int devid)
{
u16 msgs_offset = ALIGN(sizeof(struct mbox_hdr), MBOX_MSG_ALIGN);
void *hw_mbase = mbox->hwbase + (devid * MBOX_SIZE);
struct otx2_mbox_dev *mdev = &mbox->dev[devid];
struct mbox_hdr *hdr;
u64 msg_size;
if (mdev->mbase == hw_mbase)
return;
hdr = hw_mbase + mbox->rx_start;
msg_size = hdr->msg_size;
if (msg_size > mbox->rx_size - msgs_offset)
msg_size = mbox->rx_size - msgs_offset;
/* Copy mbox messages from mbox memory to bounce buffer */
memcpy(mdev->mbase + mbox->rx_start,
hw_mbase + mbox->rx_start, msg_size + msgs_offset);
}
/* With the absence of API for 128-bit IO memory access for arm64,
* implement required operations at place.
*/
#if defined(CONFIG_ARM64)
static inline void otx2_write128(u64 lo, u64 hi, void __iomem *addr)
{
__asm__ volatile("stp %x[x0], %x[x1], [%x[p1],#0]!"
::[x0]"r"(lo), [x1]"r"(hi), [p1]"r"(addr));
}
static inline u64 otx2_atomic64_add(u64 incr, u64 *ptr)
{
u64 result;
__asm__ volatile(".cpu generic+lse\n"
"ldadd %x[i], %x[r], [%[b]]"
: [r]"=r"(result), "+m"(*ptr)
: [i]"r"(incr), [b]"r"(ptr)
: "memory");
return result;
}
#else
#define otx2_write128(lo, hi, addr) writeq((hi) | (lo), addr)
#define otx2_atomic64_add(incr, ptr) ({ *ptr += incr; })
#endif
static inline void __cn10k_aura_freeptr(struct otx2_nic *pfvf, u64 aura,
u64 *ptrs, u64 num_ptrs)
{
struct otx2_lmt_info *lmt_info;
u64 size = 0, count_eot = 0;
u64 tar_addr, val = 0;
lmt_info = per_cpu_ptr(pfvf->hw.lmt_info, smp_processor_id());
tar_addr = (__force u64)otx2_get_regaddr(pfvf, NPA_LF_AURA_BATCH_FREE0);
/* LMTID is same as AURA Id */
val = (lmt_info->lmt_id & 0x7FF) | BIT_ULL(63);
/* Set if [127:64] of last 128bit word has a valid pointer */
count_eot = (num_ptrs % 2) ? 0ULL : 1ULL;
/* Set AURA ID to free pointer */
ptrs[0] = (count_eot << 32) | (aura & 0xFFFFF);
/* Target address for LMTST flush tells HW how many 128bit
* words are valid from NPA_LF_AURA_BATCH_FREE0.
*
* tar_addr[6:4] is LMTST size-1 in units of 128b.
*/
if (num_ptrs > 2) {
size = (sizeof(u64) * num_ptrs) / 16;
if (!count_eot)
size++;
tar_addr |= ((size - 1) & 0x7) << 4;
}
dma_wmb();
memcpy((u64 *)lmt_info->lmt_addr, ptrs, sizeof(u64) * num_ptrs);
/* Perform LMTST flush */
cn10k_lmt_flush(val, tar_addr);
}
static inline void cn10k_aura_freeptr(void *dev, int aura, u64 buf)
{
struct otx2_nic *pfvf = dev;
u64 ptrs[2];
ptrs[1] = buf;
get_cpu();
/* Free only one buffer at time during init and teardown */
__cn10k_aura_freeptr(pfvf, aura, ptrs, 2);
put_cpu();
}
/* Alloc pointer from pool/aura */
static inline u64 otx2_aura_allocptr(struct otx2_nic *pfvf, int aura)
{
u64 *ptr = (__force u64 *)otx2_get_regaddr(pfvf, NPA_LF_AURA_OP_ALLOCX(0));
u64 incr = (u64)aura | BIT_ULL(63);
return otx2_atomic64_add(incr, ptr);
}
/* Free pointer to a pool/aura */
static inline void otx2_aura_freeptr(void *dev, int aura, u64 buf)
{
struct otx2_nic *pfvf = dev;
void __iomem *addr = otx2_get_regaddr(pfvf, NPA_LF_AURA_OP_FREE0);
otx2_write128(buf, (u64)aura | BIT_ULL(63), addr);
}
static inline int otx2_get_pool_idx(struct otx2_nic *pfvf, int type, int idx)
{
if (type == AURA_NIX_SQ)
return pfvf->hw.rqpool_cnt + idx;
/* AURA_NIX_RQ */
return idx;
}
/* Mbox APIs */
static inline int otx2_sync_mbox_msg(struct mbox *mbox)
{
int err;
if (!otx2_mbox_nonempty(&mbox->mbox, 0))
return 0;
otx2_mbox_msg_send(&mbox->mbox, 0);
err = otx2_mbox_wait_for_rsp(&mbox->mbox, 0);
if (err)
return err;
return otx2_mbox_check_rsp_msgs(&mbox->mbox, 0);
}
static inline int otx2_sync_mbox_up_msg(struct mbox *mbox, int devid)
{
int err;
if (!otx2_mbox_nonempty(&mbox->mbox_up, devid))
return 0;
otx2_mbox_msg_send_up(&mbox->mbox_up, devid);
err = otx2_mbox_wait_for_rsp(&mbox->mbox_up, devid);
if (err)
return err;
return otx2_mbox_check_rsp_msgs(&mbox->mbox_up, devid);
}
/* Use this API to send mbox msgs in atomic context
* where sleeping is not allowed
*/
static inline int otx2_sync_mbox_msg_busy_poll(struct mbox *mbox)
{
int err;
if (!otx2_mbox_nonempty(&mbox->mbox, 0))
return 0;
otx2_mbox_msg_send(&mbox->mbox, 0);
err = otx2_mbox_busy_poll_for_rsp(&mbox->mbox, 0);
if (err)
return err;
return otx2_mbox_check_rsp_msgs(&mbox->mbox, 0);
}
#define M(_name, _id, _fn_name, _req_type, _rsp_type) \
static struct _req_type __maybe_unused \
*otx2_mbox_alloc_msg_ ## _fn_name(struct mbox *mbox) \
{ \
struct _req_type *req; \
\
req = (struct _req_type *)otx2_mbox_alloc_msg_rsp( \
&mbox->mbox, 0, sizeof(struct _req_type), \
sizeof(struct _rsp_type)); \
if (!req) \
return NULL; \
req->hdr.sig = OTX2_MBOX_REQ_SIG; \
req->hdr.id = _id; \
trace_otx2_msg_alloc(mbox->mbox.pdev, _id, sizeof(*req)); \
return req; \
}
MBOX_MESSAGES
#undef M
#define M(_name, _id, _fn_name, _req_type, _rsp_type) \
int \
otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \
struct _req_type *req, \
struct _rsp_type *rsp); \
MBOX_UP_CGX_MESSAGES
MBOX_UP_MCS_MESSAGES
#undef M
/* Time to wait before watchdog kicks off */
#define OTX2_TX_TIMEOUT (100 * HZ)
#define RVU_PFVF_PF_SHIFT 10
#define RVU_PFVF_PF_MASK 0x3F
#define RVU_PFVF_FUNC_SHIFT 0
#define RVU_PFVF_FUNC_MASK 0x3FF
static inline bool is_otx2_vf(u16 pcifunc)
{
return !!(pcifunc & RVU_PFVF_FUNC_MASK);
}
static inline int rvu_get_pf(u16 pcifunc)
{
return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
}
static inline dma_addr_t otx2_dma_map_page(struct otx2_nic *pfvf,
struct page *page,
size_t offset, size_t size,
enum dma_data_direction dir)
{
dma_addr_t iova;
iova = dma_map_page_attrs(pfvf->dev, page,
offset, size, dir, DMA_ATTR_SKIP_CPU_SYNC);
if (unlikely(dma_mapping_error(pfvf->dev, iova)))
return (dma_addr_t)NULL;
return iova;
}
static inline void otx2_dma_unmap_page(struct otx2_nic *pfvf,
dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
dma_unmap_page_attrs(pfvf->dev, addr, size,
dir, DMA_ATTR_SKIP_CPU_SYNC);
}
static inline u16 otx2_get_smq_idx(struct otx2_nic *pfvf, u16 qidx)
{
u16 smq;
#ifdef CONFIG_DCB
if (qidx < NIX_PF_PFC_PRIO_MAX && pfvf->pfc_alloc_status[qidx])
return pfvf->pfc_schq_list[NIX_TXSCH_LVL_SMQ][qidx];
#endif
/* check if qidx falls under QOS queues */
if (qidx >= pfvf->hw.non_qos_queues)
smq = pfvf->qos.qid_to_sqmap[qidx - pfvf->hw.non_qos_queues];
else
smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
return smq;
}
static inline u16 otx2_get_total_tx_queues(struct otx2_nic *pfvf)
{
return pfvf->hw.non_qos_queues + pfvf->hw.tc_tx_queues;
}
static inline u64 otx2_convert_rate(u64 rate)
{
u64 converted_rate;
/* Convert bytes per second to Mbps */
converted_rate = rate * 8;
converted_rate = max_t(u64, converted_rate / 1000000, 1);
return converted_rate;
}
static inline int otx2_tc_flower_rule_cnt(struct otx2_nic *pfvf)
{
/* return here if MCAM entries not allocated */
if (!pfvf->flow_cfg)
return 0;
return pfvf->flow_cfg->nr_flows;
}
/* MSI-X APIs */
void otx2_free_cints(struct otx2_nic *pfvf, int n);
void otx2_set_cints_affinity(struct otx2_nic *pfvf);
int otx2_set_mac_address(struct net_device *netdev, void *p);
int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu);
void otx2_tx_timeout(struct net_device *netdev, unsigned int txq);
void otx2_get_mac_from_af(struct net_device *netdev);
void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx);
int otx2_config_pause_frm(struct otx2_nic *pfvf);
void otx2_setup_segmentation(struct otx2_nic *pfvf);
int otx2_reset_mac_stats(struct otx2_nic *pfvf);
/* RVU block related APIs */
int otx2_attach_npa_nix(struct otx2_nic *pfvf);
int otx2_detach_resources(struct mbox *mbox);
int otx2_config_npa(struct otx2_nic *pfvf);
int otx2_sq_aura_pool_init(struct otx2_nic *pfvf);
int otx2_rq_aura_pool_init(struct otx2_nic *pfvf);
void otx2_aura_pool_free(struct otx2_nic *pfvf);
void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type);
void otx2_sq_free_sqbs(struct otx2_nic *pfvf);
int otx2_config_nix(struct otx2_nic *pfvf);
int otx2_config_nix_queues(struct otx2_nic *pfvf);
int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool pfc_en);
int otx2_txsch_alloc(struct otx2_nic *pfvf);
void otx2_txschq_stop(struct otx2_nic *pfvf);
void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq);
void otx2_free_pending_sqe(struct otx2_nic *pfvf);
void otx2_sqb_flush(struct otx2_nic *pfvf);
int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
dma_addr_t *dma);
int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable);
void otx2_ctx_disable(struct mbox *mbox, int type, bool npa);
int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable);
void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, int qidx);
void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq);
int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura);
int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura);
int cn10k_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura);
int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
dma_addr_t *dma);
int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
int stack_pages, int numptrs, int buf_size, int type);
int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
int pool_id, int numptrs);
/* RSS configuration APIs*/
int otx2_rss_init(struct otx2_nic *pfvf);
int otx2_set_flowkey_cfg(struct otx2_nic *pfvf);
void otx2_set_rss_key(struct otx2_nic *pfvf);
int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id);
/* Mbox handlers */
void mbox_handler_msix_offset(struct otx2_nic *pfvf,
struct msix_offset_rsp *rsp);
void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
struct npa_lf_alloc_rsp *rsp);
void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
struct nix_lf_alloc_rsp *rsp);
void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
struct nix_txsch_alloc_rsp *rsp);
void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
struct cgx_stats_rsp *rsp);
void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
struct cgx_fec_stats_rsp *rsp);
void otx2_set_fec_stats_count(struct otx2_nic *pfvf);
void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
struct nix_bp_cfg_rsp *rsp);
/* Device stats APIs */
void otx2_get_dev_stats(struct otx2_nic *pfvf);
void otx2_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats);
void otx2_update_lmac_stats(struct otx2_nic *pfvf);
void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf);
int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx);
int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx);
void otx2_set_ethtool_ops(struct net_device *netdev);
void otx2vf_set_ethtool_ops(struct net_device *netdev);
int otx2_open(struct net_device *netdev);
int otx2_stop(struct net_device *netdev);
int otx2_set_real_num_queues(struct net_device *netdev,
int tx_queues, int rx_queues);
int otx2_ioctl(struct net_device *netdev, struct ifreq *req, int cmd);
int otx2_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr);
/* MCAM filter related APIs */
int otx2_mcam_flow_init(struct otx2_nic *pf);
int otx2vf_mcam_flow_init(struct otx2_nic *pfvf);
int otx2_alloc_mcam_entries(struct otx2_nic *pfvf, u16 count);
void otx2_mcam_flow_del(struct otx2_nic *pf);
int otx2_destroy_ntuple_flows(struct otx2_nic *pf);
int otx2_destroy_mcam_flows(struct otx2_nic *pfvf);
int otx2_get_flow(struct otx2_nic *pfvf,
struct ethtool_rxnfc *nfc, u32 location);
int otx2_get_all_flows(struct otx2_nic *pfvf,
struct ethtool_rxnfc *nfc, u32 *rule_locs);
int otx2_add_flow(struct otx2_nic *pfvf,
struct ethtool_rxnfc *nfc);
int otx2_remove_flow(struct otx2_nic *pfvf, u32 location);
int otx2_get_maxflows(struct otx2_flow_config *flow_cfg);
void otx2_rss_ctx_flow_del(struct otx2_nic *pfvf, int ctx_id);
int otx2_del_macfilter(struct net_device *netdev, const u8 *mac);
int otx2_add_macfilter(struct net_device *netdev, const u8 *mac);
int otx2_enable_rxvlan(struct otx2_nic *pf, bool enable);
int otx2_install_rxvlan_offload_flow(struct otx2_nic *pfvf);
bool otx2_xdp_sq_append_pkt(struct otx2_nic *pfvf, u64 iova, int len, u16 qidx);
u16 otx2_get_max_mtu(struct otx2_nic *pfvf);
int otx2_handle_ntuple_tc_features(struct net_device *netdev,
netdev_features_t features);
int otx2_smq_flush(struct otx2_nic *pfvf, int smq);
void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool,
u64 iova, int size);
int otx2_mcam_entry_init(struct otx2_nic *pfvf);
/* tc support */
int otx2_init_tc(struct otx2_nic *nic);
void otx2_shutdown_tc(struct otx2_nic *nic);
int otx2_setup_tc(struct net_device *netdev, enum tc_setup_type type,
void *type_data);
void otx2_tc_apply_ingress_police_rules(struct otx2_nic *nic);
/* CGX/RPM DMAC filters support */
int otx2_dmacflt_get_max_cnt(struct otx2_nic *pf);
int otx2_dmacflt_add(struct otx2_nic *pf, const u8 *mac, u32 bit_pos);
int otx2_dmacflt_remove(struct otx2_nic *pf, const u8 *mac, u32 bit_pos);
int otx2_dmacflt_update(struct otx2_nic *pf, u8 *mac, u32 bit_pos);
void otx2_dmacflt_reinstall_flows(struct otx2_nic *pf);
void otx2_dmacflt_update_pfmac_flow(struct otx2_nic *pfvf);
#ifdef CONFIG_DCB
/* DCB support*/
void otx2_update_bpid_in_rqctx(struct otx2_nic *pfvf, int vlan_prio, int qidx, bool pfc_enable);
int otx2_config_priority_flow_ctrl(struct otx2_nic *pfvf);
int otx2_dcbnl_set_ops(struct net_device *dev);
/* PFC support */
int otx2_pfc_txschq_config(struct otx2_nic *pfvf);
int otx2_pfc_txschq_alloc(struct otx2_nic *pfvf);
int otx2_pfc_txschq_update(struct otx2_nic *pfvf);
int otx2_pfc_txschq_stop(struct otx2_nic *pfvf);
#endif
#if IS_ENABLED(CONFIG_MACSEC)
/* MACSEC offload support */
int cn10k_mcs_init(struct otx2_nic *pfvf);
void cn10k_mcs_free(struct otx2_nic *pfvf);
void cn10k_handle_mcs_event(struct otx2_nic *pfvf, struct mcs_intr_info *event);
#else
static inline int cn10k_mcs_init(struct otx2_nic *pfvf) { return 0; }
static inline void cn10k_mcs_free(struct otx2_nic *pfvf) {}
static inline void cn10k_handle_mcs_event(struct otx2_nic *pfvf,
struct mcs_intr_info *event)
{}
#endif /* CONFIG_MACSEC */
/* qos support */
static inline void otx2_qos_init(struct otx2_nic *pfvf, int qos_txqs)
{
struct otx2_hw *hw = &pfvf->hw;
hw->tc_tx_queues = qos_txqs;
INIT_LIST_HEAD(&pfvf->qos.qos_tree);
mutex_init(&pfvf->qos.qos_lock);
}
static inline void otx2_shutdown_qos(struct otx2_nic *pfvf)
{
mutex_destroy(&pfvf->qos.qos_lock);
}
u16 otx2_select_queue(struct net_device *netdev, struct sk_buff *skb,
struct net_device *sb_dev);
int otx2_get_txq_by_classid(struct otx2_nic *pfvf, u16 classid);
void otx2_qos_config_txschq(struct otx2_nic *pfvf);
void otx2_clean_qos_queues(struct otx2_nic *pfvf);
#endif /* OTX2_COMMON_H */