linux/drivers/net/ethernet/marvell/octeontx2/nic/otx2_flows.c

// SPDX-License-Identifier: GPL-2.0
/* Marvell RVU Ethernet driver
 *
 * Copyright (C) 2020 Marvell.
 *
 */

#include <net/ipv6.h>
#include <linux/sort.h>

#include "otx2_common.h"

#define OTX2_DEFAULT_ACTION	0x1

struct otx2_flow {
	struct ethtool_rx_flow_spec flow_spec;
	struct list_head list;
	u32 location;
	u32 entry;
	bool is_vf;
	u8 rss_ctx_id;
#define DMAC_FILTER_RULE		BIT(0)
#define PFC_FLOWCTRL_RULE		BIT(1)
	u16 rule_type;
	int vf;
};

enum dmac_req {
	DMAC_ADDR_UPDATE,
	DMAC_ADDR_DEL
};

static void otx2_clear_ntuple_flow_info(struct otx2_nic *pfvf, struct otx2_flow_config *flow_cfg)
{
	devm_kfree(pfvf->dev, flow_cfg->flow_ent);
	flow_cfg->flow_ent = NULL;
	flow_cfg->max_flows = 0;
}

static int otx2_free_ntuple_mcam_entries(struct otx2_nic *pfvf)
{
	struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
	struct npc_mcam_free_entry_req *req;
	int ent, err;

	if (!flow_cfg->max_flows)
		return 0;

	mutex_lock(&pfvf->mbox.lock);
	for (ent = 0; ent < flow_cfg->max_flows; ent++) {
		req = otx2_mbox_alloc_msg_npc_mcam_free_entry(&pfvf->mbox);
		if (!req)
			break;

		req->entry = flow_cfg->flow_ent[ent];

		/* Send message to AF to free MCAM entries */
		err = otx2_sync_mbox_msg(&pfvf->mbox);
		if (err)
			break;
	}
	mutex_unlock(&pfvf->mbox.lock);
	otx2_clear_ntuple_flow_info(pfvf, flow_cfg);
	return 0;
}

static int mcam_entry_cmp(const void *a, const void *b)
{
	return *(u16 *)a - *(u16 *)b;
}

int otx2_alloc_mcam_entries(struct otx2_nic *pfvf, u16 count)
{
	struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
	struct npc_mcam_alloc_entry_req *req;
	struct npc_mcam_alloc_entry_rsp *rsp;
	int ent, allocated = 0;

	/* Free current ones and allocate new ones with requested count */
	otx2_free_ntuple_mcam_entries(pfvf);

	if (!count)
		return 0;

	flow_cfg->flow_ent = devm_kmalloc_array(pfvf->dev, count,
						sizeof(u16), GFP_KERNEL);
	if (!flow_cfg->flow_ent) {
		netdev_err(pfvf->netdev,
			   "%s: Unable to allocate memory for flow entries\n",
			    __func__);
		return -ENOMEM;
	}

	mutex_lock(&pfvf->mbox.lock);

	/* In a single request a max of NPC_MAX_NONCONTIG_ENTRIES MCAM entries
	 * can only be allocated.
	 */
	while (allocated < count) {
		req = otx2_mbox_alloc_msg_npc_mcam_alloc_entry(&pfvf->mbox);
		if (!req)
			goto exit;

		req->contig = false;
		req->count = (count - allocated) > NPC_MAX_NONCONTIG_ENTRIES ?
				NPC_MAX_NONCONTIG_ENTRIES : count - allocated;

		/* Allocate higher priority entries for PFs, so that VF's entries
		 * will be on top of PF.
		 */
		if (!is_otx2_vf(pfvf->pcifunc)) {
			req->priority = NPC_MCAM_HIGHER_PRIO;
			req->ref_entry = flow_cfg->def_ent[0];
		}

		/* Send message to AF */
		if (otx2_sync_mbox_msg(&pfvf->mbox))
			goto exit;

		rsp = (struct npc_mcam_alloc_entry_rsp *)otx2_mbox_get_rsp
			(&pfvf->mbox.mbox, 0, &req->hdr);

		for (ent = 0; ent < rsp->count; ent++)
			flow_cfg->flow_ent[ent + allocated] = rsp->entry_list[ent];

		allocated += rsp->count;

		/* If this request is not fulfilled, no need to send
		 * further requests.
		 */
		if (rsp->count != req->count)
			break;
	}

	/* Multiple MCAM entry alloc requests could result in non-sequential
	 * MCAM entries in the flow_ent[] array. Sort them in an ascending order,
	 * otherwise user installed ntuple filter index and MCAM entry index will
	 * not be in sync.
	 */
	if (allocated)
		sort(&flow_cfg->flow_ent[0], allocated,
		     sizeof(flow_cfg->flow_ent[0]), mcam_entry_cmp, NULL);

exit:
	mutex_unlock(&pfvf->mbox.lock);

	flow_cfg->max_flows = allocated;

	if (allocated) {
		pfvf->flags |= OTX2_FLAG_MCAM_ENTRIES_ALLOC;
		pfvf->flags |= OTX2_FLAG_NTUPLE_SUPPORT;
	}

	if (allocated != count)
		netdev_info(pfvf->netdev,
			    "Unable to allocate %d MCAM entries, got only %d\n",
			    count, allocated);
	return allocated;
}
EXPORT_SYMBOL(otx2_alloc_mcam_entries);

int otx2_mcam_entry_init(struct otx2_nic *pfvf)
{
	struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
	struct npc_get_field_status_req *freq;
	struct npc_get_field_status_rsp *frsp;
	struct npc_mcam_alloc_entry_req *req;
	struct npc_mcam_alloc_entry_rsp *rsp;
	int vf_vlan_max_flows;
	int ent, count;

	vf_vlan_max_flows = pfvf->total_vfs * OTX2_PER_VF_VLAN_FLOWS;
	count = flow_cfg->ucast_flt_cnt +
			OTX2_MAX_VLAN_FLOWS + vf_vlan_max_flows;

	flow_cfg->def_ent = devm_kmalloc_array(pfvf->dev, count,
					       sizeof(u16), GFP_KERNEL);
	if (!flow_cfg->def_ent)
		return -ENOMEM;

	mutex_lock(&pfvf->mbox.lock);

	req = otx2_mbox_alloc_msg_npc_mcam_alloc_entry(&pfvf->mbox);
	if (!req) {
		mutex_unlock(&pfvf->mbox.lock);
		return -ENOMEM;
	}

	req->contig = false;
	req->count = count;

	/* Send message to AF */
	if (otx2_sync_mbox_msg(&pfvf->mbox)) {
		mutex_unlock(&pfvf->mbox.lock);
		return -EINVAL;
	}

	rsp = (struct npc_mcam_alloc_entry_rsp *)otx2_mbox_get_rsp
	       (&pfvf->mbox.mbox, 0, &req->hdr);

	if (rsp->count != req->count) {
		netdev_info(pfvf->netdev,
			    "Unable to allocate MCAM entries for ucast, vlan and vf_vlan\n");
		mutex_unlock(&pfvf->mbox.lock);
		devm_kfree(pfvf->dev, flow_cfg->def_ent);
		return 0;
	}

	for (ent = 0; ent < rsp->count; ent++)
		flow_cfg->def_ent[ent] = rsp->entry_list[ent];

	flow_cfg->vf_vlan_offset = 0;
	flow_cfg->unicast_offset = vf_vlan_max_flows;
	flow_cfg->rx_vlan_offset = flow_cfg->unicast_offset +
					flow_cfg->ucast_flt_cnt;
	pfvf->flags |= OTX2_FLAG_UCAST_FLTR_SUPPORT;

	/* Check if NPC_DMAC field is supported
	 * by the mkex profile before setting VLAN support flag.
	 */
	freq = otx2_mbox_alloc_msg_npc_get_field_status(&pfvf->mbox);
	if (!freq) {
		mutex_unlock(&pfvf->mbox.lock);
		return -ENOMEM;
	}

	freq->field = NPC_DMAC;
	if (otx2_sync_mbox_msg(&pfvf->mbox)) {
		mutex_unlock(&pfvf->mbox.lock);
		return -EINVAL;
	}

	frsp = (struct npc_get_field_status_rsp *)otx2_mbox_get_rsp
	       (&pfvf->mbox.mbox, 0, &freq->hdr);

	if (frsp->enable) {
		pfvf->flags |= OTX2_FLAG_RX_VLAN_SUPPORT;
		pfvf->flags |= OTX2_FLAG_VF_VLAN_SUPPORT;
	}

	pfvf->flags |= OTX2_FLAG_MCAM_ENTRIES_ALLOC;
	mutex_unlock(&pfvf->mbox.lock);

	/* Allocate entries for Ntuple filters */
	count = otx2_alloc_mcam_entries(pfvf, OTX2_DEFAULT_FLOWCOUNT);
	if (count <= 0) {
		otx2_clear_ntuple_flow_info(pfvf, flow_cfg);
		return 0;
	}

	pfvf->flags |= OTX2_FLAG_TC_FLOWER_SUPPORT;

	refcount_set(&flow_cfg->mark_flows, 1);
	return 0;
}
EXPORT_SYMBOL(otx2_mcam_entry_init);

/* TODO : revisit on size */
#define OTX2_DMAC_FLTR_BITMAP_SZ (4 * 2048 + 32)

int otx2vf_mcam_flow_init(struct otx2_nic *pfvf)
{
	struct otx2_flow_config *flow_cfg;

	pfvf->flow_cfg = devm_kzalloc(pfvf->dev,
				      sizeof(struct otx2_flow_config),
				      GFP_KERNEL);
	if (!pfvf->flow_cfg)
		return -ENOMEM;

	pfvf->flow_cfg->dmacflt_bmap = devm_kcalloc(pfvf->dev,
						    BITS_TO_LONGS(OTX2_DMAC_FLTR_BITMAP_SZ),
						    sizeof(long), GFP_KERNEL);
	if (!pfvf->flow_cfg->dmacflt_bmap)
		return -ENOMEM;

	flow_cfg = pfvf->flow_cfg;
	INIT_LIST_HEAD(&flow_cfg->flow_list);
	INIT_LIST_HEAD(&flow_cfg->flow_list_tc);
	flow_cfg->max_flows = 0;

	return 0;
}
EXPORT_SYMBOL(otx2vf_mcam_flow_init);

int otx2_mcam_flow_init(struct otx2_nic *pf)
{
	int err;

	pf->flow_cfg = devm_kzalloc(pf->dev, sizeof(struct otx2_flow_config),
				    GFP_KERNEL);
	if (!pf->flow_cfg)
		return -ENOMEM;

	pf->flow_cfg->dmacflt_bmap = devm_kcalloc(pf->dev,
						  BITS_TO_LONGS(OTX2_DMAC_FLTR_BITMAP_SZ),
						  sizeof(long), GFP_KERNEL);
	if (!pf->flow_cfg->dmacflt_bmap)
		return -ENOMEM;

	INIT_LIST_HEAD(&pf->flow_cfg->flow_list);
	INIT_LIST_HEAD(&pf->flow_cfg->flow_list_tc);

	pf->flow_cfg->ucast_flt_cnt = OTX2_DEFAULT_UNICAST_FLOWS;

	/* Allocate bare minimum number of MCAM entries needed for
	 * unicast and ntuple filters.
	 */
	err = otx2_mcam_entry_init(pf);
	if (err)
		return err;

	/* Check if MCAM entries are allocate or not */
	if (!(pf->flags & OTX2_FLAG_UCAST_FLTR_SUPPORT))
		return 0;

	pf->mac_table = devm_kzalloc(pf->dev, sizeof(struct otx2_mac_table)
					* pf->flow_cfg->ucast_flt_cnt, GFP_KERNEL);
	if (!pf->mac_table)
		return -ENOMEM;

	otx2_dmacflt_get_max_cnt(pf);

	/* DMAC filters are not allocated */
	if (!pf->flow_cfg->dmacflt_max_flows)
		return 0;

	pf->flow_cfg->bmap_to_dmacindex =
			devm_kzalloc(pf->dev, sizeof(u32) *
				     pf->flow_cfg->dmacflt_max_flows,
				     GFP_KERNEL);

	if (!pf->flow_cfg->bmap_to_dmacindex)
		return -ENOMEM;

	pf->flags |= OTX2_FLAG_DMACFLTR_SUPPORT;

	return 0;
}

void otx2_mcam_flow_del(struct otx2_nic *pf)
{
	otx2_destroy_mcam_flows(pf);
}
EXPORT_SYMBOL(otx2_mcam_flow_del);

/*  On success adds mcam entry
 *  On failure enable promisous mode
 */
static int otx2_do_add_macfilter(struct otx2_nic *pf, const u8 *mac)
{
	struct otx2_flow_config *flow_cfg = pf->flow_cfg;
	struct npc_install_flow_req *req;
	int err, i;

	if (!(pf->flags & OTX2_FLAG_UCAST_FLTR_SUPPORT))
		return -ENOMEM;

	/* dont have free mcam entries or uc list is greater than alloted */
	if (netdev_uc_count(pf->netdev) > pf->flow_cfg->ucast_flt_cnt)
		return -ENOMEM;

	mutex_lock(&pf->mbox.lock);
	req = otx2_mbox_alloc_msg_npc_install_flow(&pf->mbox);
	if (!req) {
		mutex_unlock(&pf->mbox.lock);
		return -ENOMEM;
	}

	/* unicast offset starts with 32 0..31 for ntuple */
	for (i = 0; i <  pf->flow_cfg->ucast_flt_cnt; i++) {
		if (pf->mac_table[i].inuse)
			continue;
		ether_addr_copy(pf->mac_table[i].addr, mac);
		pf->mac_table[i].inuse = true;
		pf->mac_table[i].mcam_entry =
			flow_cfg->def_ent[i + flow_cfg->unicast_offset];
		req->entry =  pf->mac_table[i].mcam_entry;
		break;
	}

	ether_addr_copy(req->packet.dmac, mac);
	eth_broadcast_addr((u8 *)&req->mask.dmac);
	req->features = BIT_ULL(NPC_DMAC);
	req->channel = pf->hw.rx_chan_base;
	req->intf = NIX_INTF_RX;
	req->op = NIX_RX_ACTION_DEFAULT;
	req->set_cntr = 1;

	err = otx2_sync_mbox_msg(&pf->mbox);
	mutex_unlock(&pf->mbox.lock);

	return err;
}

int otx2_add_macfilter(struct net_device *netdev, const u8 *mac)
{
	struct otx2_nic *pf = netdev_priv(netdev);

	if (!bitmap_empty(pf->flow_cfg->dmacflt_bmap,
			  pf->flow_cfg->dmacflt_max_flows))
		netdev_warn(netdev,
			    "Add %pM to CGX/RPM DMAC filters list as well\n",
			    mac);

	return otx2_do_add_macfilter(pf, mac);
}

static bool otx2_get_mcamentry_for_mac(struct otx2_nic *pf, const u8 *mac,
				       int *mcam_entry)
{
	int i;

	for (i = 0; i < pf->flow_cfg->ucast_flt_cnt; i++) {
		if (!pf->mac_table[i].inuse)
			continue;

		if (ether_addr_equal(pf->mac_table[i].addr, mac)) {
			*mcam_entry = pf->mac_table[i].mcam_entry;
			pf->mac_table[i].inuse = false;
			return true;
		}
	}
	return false;
}

int otx2_del_macfilter(struct net_device *netdev, const u8 *mac)
{
	struct otx2_nic *pf = netdev_priv(netdev);
	struct npc_delete_flow_req *req;
	int err, mcam_entry;

	/* check does mcam entry exists for given mac */
	if (!otx2_get_mcamentry_for_mac(pf, mac, &mcam_entry))
		return 0;

	mutex_lock(&pf->mbox.lock);
	req = otx2_mbox_alloc_msg_npc_delete_flow(&pf->mbox);
	if (!req) {
		mutex_unlock(&pf->mbox.lock);
		return -ENOMEM;
	}
	req->entry = mcam_entry;
	/* Send message to AF */
	err = otx2_sync_mbox_msg(&pf->mbox);
	mutex_unlock(&pf->mbox.lock);

	return err;
}

static struct otx2_flow *otx2_find_flow(struct otx2_nic *pfvf, u32 location)
{
	struct otx2_flow *iter;

	list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) {
		if (iter->location == location)
			return iter;
	}

	return NULL;
}

static void otx2_add_flow_to_list(struct otx2_nic *pfvf, struct otx2_flow *flow)
{
	struct list_head *head = &pfvf->flow_cfg->flow_list;
	struct otx2_flow *iter;

	list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) {
		if (iter->location > flow->location)
			break;
		head = &iter->list;
	}

	list_add(&flow->list, head);
}

int otx2_get_maxflows(struct otx2_flow_config *flow_cfg)
{
	if (!flow_cfg)
		return 0;

	if (flow_cfg->nr_flows == flow_cfg->max_flows ||
	    !bitmap_empty(flow_cfg->dmacflt_bmap,
			  flow_cfg->dmacflt_max_flows))
		return flow_cfg->max_flows + flow_cfg->dmacflt_max_flows;
	else
		return flow_cfg->max_flows;
}
EXPORT_SYMBOL(otx2_get_maxflows);

int otx2_get_flow(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc,
		  u32 location)
{
	struct otx2_flow *iter;

	if (location >= otx2_get_maxflows(pfvf->flow_cfg))
		return -EINVAL;

	list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) {
		if (iter->location == location) {
			nfc->fs = iter->flow_spec;
			nfc->rss_context = iter->rss_ctx_id;
			return 0;
		}
	}

	return -ENOENT;
}

int otx2_get_all_flows(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc,
		       u32 *rule_locs)
{
	u32 rule_cnt = nfc->rule_cnt;
	u32 location = 0;
	int idx = 0;
	int err = 0;

	nfc->data = otx2_get_maxflows(pfvf->flow_cfg);
	while ((!err || err == -ENOENT) && idx < rule_cnt) {
		err = otx2_get_flow(pfvf, nfc, location);
		if (!err)
			rule_locs[idx++] = location;
		location++;
	}
	nfc->rule_cnt = rule_cnt;

	return err;
}

static int otx2_prepare_ipv4_flow(struct ethtool_rx_flow_spec *fsp,
				  struct npc_install_flow_req *req,
				  u32 flow_type)
{
	struct ethtool_usrip4_spec *ipv4_usr_mask = &fsp->m_u.usr_ip4_spec;
	struct ethtool_usrip4_spec *ipv4_usr_hdr = &fsp->h_u.usr_ip4_spec;
	struct ethtool_tcpip4_spec *ipv4_l4_mask = &fsp->m_u.tcp_ip4_spec;
	struct ethtool_tcpip4_spec *ipv4_l4_hdr = &fsp->h_u.tcp_ip4_spec;
	struct ethtool_ah_espip4_spec *ah_esp_hdr = &fsp->h_u.ah_ip4_spec;
	struct ethtool_ah_espip4_spec *ah_esp_mask = &fsp->m_u.ah_ip4_spec;
	struct flow_msg *pmask = &req->mask;
	struct flow_msg *pkt = &req->packet;

	switch (flow_type) {
	case IP_USER_FLOW:
		if (ipv4_usr_mask->ip4src) {
			memcpy(&pkt->ip4src, &ipv4_usr_hdr->ip4src,
			       sizeof(pkt->ip4src));
			memcpy(&pmask->ip4src, &ipv4_usr_mask->ip4src,
			       sizeof(pmask->ip4src));
			req->features |= BIT_ULL(NPC_SIP_IPV4);
		}
		if (ipv4_usr_mask->ip4dst) {
			memcpy(&pkt->ip4dst, &ipv4_usr_hdr->ip4dst,
			       sizeof(pkt->ip4dst));
			memcpy(&pmask->ip4dst, &ipv4_usr_mask->ip4dst,
			       sizeof(pmask->ip4dst));
			req->features |= BIT_ULL(NPC_DIP_IPV4);
		}
		if (ipv4_usr_mask->tos) {
			pkt->tos = ipv4_usr_hdr->tos;
			pmask->tos = ipv4_usr_mask->tos;
			req->features |= BIT_ULL(NPC_TOS);
		}
		if (ipv4_usr_mask->proto) {
			switch (ipv4_usr_hdr->proto) {
			case IPPROTO_ICMP:
				req->features |= BIT_ULL(NPC_IPPROTO_ICMP);
				break;
			case IPPROTO_TCP:
				req->features |= BIT_ULL(NPC_IPPROTO_TCP);
				break;
			case IPPROTO_UDP:
				req->features |= BIT_ULL(NPC_IPPROTO_UDP);
				break;
			case IPPROTO_SCTP:
				req->features |= BIT_ULL(NPC_IPPROTO_SCTP);
				break;
			case IPPROTO_AH:
				req->features |= BIT_ULL(NPC_IPPROTO_AH);
				break;
			case IPPROTO_ESP:
				req->features |= BIT_ULL(NPC_IPPROTO_ESP);
				break;
			default:
				return -EOPNOTSUPP;
			}
		}
		pkt->etype = cpu_to_be16(ETH_P_IP);
		pmask->etype = cpu_to_be16(0xFFFF);
		req->features |= BIT_ULL(NPC_ETYPE);
		break;
	case TCP_V4_FLOW:
	case UDP_V4_FLOW:
	case SCTP_V4_FLOW:
		pkt->etype = cpu_to_be16(ETH_P_IP);
		pmask->etype = cpu_to_be16(0xFFFF);
		req->features |= BIT_ULL(NPC_ETYPE);
		if (ipv4_l4_mask->ip4src) {
			memcpy(&pkt->ip4src, &ipv4_l4_hdr->ip4src,
			       sizeof(pkt->ip4src));
			memcpy(&pmask->ip4src, &ipv4_l4_mask->ip4src,
			       sizeof(pmask->ip4src));
			req->features |= BIT_ULL(NPC_SIP_IPV4);
		}
		if (ipv4_l4_mask->ip4dst) {
			memcpy(&pkt->ip4dst, &ipv4_l4_hdr->ip4dst,
			       sizeof(pkt->ip4dst));
			memcpy(&pmask->ip4dst, &ipv4_l4_mask->ip4dst,
			       sizeof(pmask->ip4dst));
			req->features |= BIT_ULL(NPC_DIP_IPV4);
		}
		if (ipv4_l4_mask->tos) {
			pkt->tos = ipv4_l4_hdr->tos;
			pmask->tos = ipv4_l4_mask->tos;
			req->features |= BIT_ULL(NPC_TOS);
		}
		if (ipv4_l4_mask->psrc) {
			memcpy(&pkt->sport, &ipv4_l4_hdr->psrc,
			       sizeof(pkt->sport));
			memcpy(&pmask->sport, &ipv4_l4_mask->psrc,
			       sizeof(pmask->sport));
			if (flow_type == UDP_V4_FLOW)
				req->features |= BIT_ULL(NPC_SPORT_UDP);
			else if (flow_type == TCP_V4_FLOW)
				req->features |= BIT_ULL(NPC_SPORT_TCP);
			else
				req->features |= BIT_ULL(NPC_SPORT_SCTP);
		}
		if (ipv4_l4_mask->pdst) {
			memcpy(&pkt->dport, &ipv4_l4_hdr->pdst,
			       sizeof(pkt->dport));
			memcpy(&pmask->dport, &ipv4_l4_mask->pdst,
			       sizeof(pmask->dport));
			if (flow_type == UDP_V4_FLOW)
				req->features |= BIT_ULL(NPC_DPORT_UDP);
			else if (flow_type == TCP_V4_FLOW)
				req->features |= BIT_ULL(NPC_DPORT_TCP);
			else
				req->features |= BIT_ULL(NPC_DPORT_SCTP);
		}
		if (flow_type == UDP_V4_FLOW)
			req->features |= BIT_ULL(NPC_IPPROTO_UDP);
		else if (flow_type == TCP_V4_FLOW)
			req->features |= BIT_ULL(NPC_IPPROTO_TCP);
		else
			req->features |= BIT_ULL(NPC_IPPROTO_SCTP);
		break;
	case AH_V4_FLOW:
	case ESP_V4_FLOW:
		pkt->etype = cpu_to_be16(ETH_P_IP);
		pmask->etype = cpu_to_be16(0xFFFF);
		req->features |= BIT_ULL(NPC_ETYPE);
		if (ah_esp_mask->ip4src) {
			memcpy(&pkt->ip4src, &ah_esp_hdr->ip4src,
			       sizeof(pkt->ip4src));
			memcpy(&pmask->ip4src, &ah_esp_mask->ip4src,
			       sizeof(pmask->ip4src));
			req->features |= BIT_ULL(NPC_SIP_IPV4);
		}
		if (ah_esp_mask->ip4dst) {
			memcpy(&pkt->ip4dst, &ah_esp_hdr->ip4dst,
			       sizeof(pkt->ip4dst));
			memcpy(&pmask->ip4dst, &ah_esp_mask->ip4dst,
			       sizeof(pmask->ip4dst));
			req->features |= BIT_ULL(NPC_DIP_IPV4);
		}
		if (ah_esp_mask->tos) {
			pkt->tos = ah_esp_hdr->tos;
			pmask->tos = ah_esp_mask->tos;
			req->features |= BIT_ULL(NPC_TOS);
		}

		/* NPC profile doesn't extract AH/ESP header fields */
		if (ah_esp_mask->spi & ah_esp_hdr->spi)
			return -EOPNOTSUPP;

		if (flow_type == AH_V4_FLOW)
			req->features |= BIT_ULL(NPC_IPPROTO_AH);
		else
			req->features |= BIT_ULL(NPC_IPPROTO_ESP);
		break;
	default:
		break;
	}

	return 0;
}

static int otx2_prepare_ipv6_flow(struct ethtool_rx_flow_spec *fsp,
				  struct npc_install_flow_req *req,
				  u32 flow_type)
{
	struct ethtool_usrip6_spec *ipv6_usr_mask = &fsp->m_u.usr_ip6_spec;
	struct ethtool_usrip6_spec *ipv6_usr_hdr = &fsp->h_u.usr_ip6_spec;
	struct ethtool_tcpip6_spec *ipv6_l4_mask = &fsp->m_u.tcp_ip6_spec;
	struct ethtool_tcpip6_spec *ipv6_l4_hdr = &fsp->h_u.tcp_ip6_spec;
	struct ethtool_ah_espip6_spec *ah_esp_hdr = &fsp->h_u.ah_ip6_spec;
	struct ethtool_ah_espip6_spec *ah_esp_mask = &fsp->m_u.ah_ip6_spec;
	struct flow_msg *pmask = &req->mask;
	struct flow_msg *pkt = &req->packet;

	switch (flow_type) {
	case IPV6_USER_FLOW:
		if (!ipv6_addr_any((struct in6_addr *)ipv6_usr_mask->ip6src)) {
			memcpy(&pkt->ip6src, &ipv6_usr_hdr->ip6src,
			       sizeof(pkt->ip6src));
			memcpy(&pmask->ip6src, &ipv6_usr_mask->ip6src,
			       sizeof(pmask->ip6src));
			req->features |= BIT_ULL(NPC_SIP_IPV6);
		}
		if (!ipv6_addr_any((struct in6_addr *)ipv6_usr_mask->ip6dst)) {
			memcpy(&pkt->ip6dst, &ipv6_usr_hdr->ip6dst,
			       sizeof(pkt->ip6dst));
			memcpy(&pmask->ip6dst, &ipv6_usr_mask->ip6dst,
			       sizeof(pmask->ip6dst));
			req->features |= BIT_ULL(NPC_DIP_IPV6);
		}
		if (ipv6_usr_hdr->l4_proto == IPPROTO_FRAGMENT) {
			pkt->next_header = ipv6_usr_hdr->l4_proto;
			pmask->next_header = ipv6_usr_mask->l4_proto;
			req->features |= BIT_ULL(NPC_IPFRAG_IPV6);
		}
		pkt->etype = cpu_to_be16(ETH_P_IPV6);
		pmask->etype = cpu_to_be16(0xFFFF);
		req->features |= BIT_ULL(NPC_ETYPE);
		break;
	case TCP_V6_FLOW:
	case UDP_V6_FLOW:
	case SCTP_V6_FLOW:
		pkt->etype = cpu_to_be16(ETH_P_IPV6);
		pmask->etype = cpu_to_be16(0xFFFF);
		req->features |= BIT_ULL(NPC_ETYPE);
		if (!ipv6_addr_any((struct in6_addr *)ipv6_l4_mask->ip6src)) {
			memcpy(&pkt->ip6src, &ipv6_l4_hdr->ip6src,
			       sizeof(pkt->ip6src));
			memcpy(&pmask->ip6src, &ipv6_l4_mask->ip6src,
			       sizeof(pmask->ip6src));
			req->features |= BIT_ULL(NPC_SIP_IPV6);
		}
		if (!ipv6_addr_any((struct in6_addr *)ipv6_l4_mask->ip6dst)) {
			memcpy(&pkt->ip6dst, &ipv6_l4_hdr->ip6dst,
			       sizeof(pkt->ip6dst));
			memcpy(&pmask->ip6dst, &ipv6_l4_mask->ip6dst,
			       sizeof(pmask->ip6dst));
			req->features |= BIT_ULL(NPC_DIP_IPV6);
		}
		if (ipv6_l4_mask->psrc) {
			memcpy(&pkt->sport, &ipv6_l4_hdr->psrc,
			       sizeof(pkt->sport));
			memcpy(&pmask->sport, &ipv6_l4_mask->psrc,
			       sizeof(pmask->sport));
			if (flow_type == UDP_V6_FLOW)
				req->features |= BIT_ULL(NPC_SPORT_UDP);
			else if (flow_type == TCP_V6_FLOW)
				req->features |= BIT_ULL(NPC_SPORT_TCP);
			else
				req->features |= BIT_ULL(NPC_SPORT_SCTP);
		}
		if (ipv6_l4_mask->pdst) {
			memcpy(&pkt->dport, &ipv6_l4_hdr->pdst,
			       sizeof(pkt->dport));
			memcpy(&pmask->dport, &ipv6_l4_mask->pdst,
			       sizeof(pmask->dport));
			if (flow_type == UDP_V6_FLOW)
				req->features |= BIT_ULL(NPC_DPORT_UDP);
			else if (flow_type == TCP_V6_FLOW)
				req->features |= BIT_ULL(NPC_DPORT_TCP);
			else
				req->features |= BIT_ULL(NPC_DPORT_SCTP);
		}
		if (flow_type == UDP_V6_FLOW)
			req->features |= BIT_ULL(NPC_IPPROTO_UDP);
		else if (flow_type == TCP_V6_FLOW)
			req->features |= BIT_ULL(NPC_IPPROTO_TCP);
		else
			req->features |= BIT_ULL(NPC_IPPROTO_SCTP);
		break;
	case AH_V6_FLOW:
	case ESP_V6_FLOW:
		pkt->etype = cpu_to_be16(ETH_P_IPV6);
		pmask->etype = cpu_to_be16(0xFFFF);
		req->features |= BIT_ULL(NPC_ETYPE);
		if (!ipv6_addr_any((struct in6_addr *)ah_esp_hdr->ip6src)) {
			memcpy(&pkt->ip6src, &ah_esp_hdr->ip6src,
			       sizeof(pkt->ip6src));
			memcpy(&pmask->ip6src, &ah_esp_mask->ip6src,
			       sizeof(pmask->ip6src));
			req->features |= BIT_ULL(NPC_SIP_IPV6);
		}
		if (!ipv6_addr_any((struct in6_addr *)ah_esp_hdr->ip6dst)) {
			memcpy(&pkt->ip6dst, &ah_esp_hdr->ip6dst,
			       sizeof(pkt->ip6dst));
			memcpy(&pmask->ip6dst, &ah_esp_mask->ip6dst,
			       sizeof(pmask->ip6dst));
			req->features |= BIT_ULL(NPC_DIP_IPV6);
		}

		/* NPC profile doesn't extract AH/ESP header fields */
		if ((ah_esp_mask->spi & ah_esp_hdr->spi) ||
		    (ah_esp_mask->tclass & ah_esp_hdr->tclass))
			return -EOPNOTSUPP;

		if (flow_type == AH_V6_FLOW)
			req->features |= BIT_ULL(NPC_IPPROTO_AH);
		else
			req->features |= BIT_ULL(NPC_IPPROTO_ESP);
		break;
	default:
		break;
	}

	return 0;
}

static int otx2_prepare_flow_request(struct ethtool_rx_flow_spec *fsp,
			      struct npc_install_flow_req *req)
{
	struct ethhdr *eth_mask = &fsp->m_u.ether_spec;
	struct ethhdr *eth_hdr = &fsp->h_u.ether_spec;
	struct flow_msg *pmask = &req->mask;
	struct flow_msg *pkt = &req->packet;
	u32 flow_type;
	int ret;

	flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
	switch (flow_type) {
	/* bits not set in mask are don't care */
	case ETHER_FLOW:
		if (!is_zero_ether_addr(eth_mask->h_source)) {
			ether_addr_copy(pkt->smac, eth_hdr->h_source);
			ether_addr_copy(pmask->smac, eth_mask->h_source);
			req->features |= BIT_ULL(NPC_SMAC);
		}
		if (!is_zero_ether_addr(eth_mask->h_dest)) {
			ether_addr_copy(pkt->dmac, eth_hdr->h_dest);
			ether_addr_copy(pmask->dmac, eth_mask->h_dest);
			req->features |= BIT_ULL(NPC_DMAC);
		}
		if (eth_hdr->h_proto) {
			memcpy(&pkt->etype, &eth_hdr->h_proto,
			       sizeof(pkt->etype));
			memcpy(&pmask->etype, &eth_mask->h_proto,
			       sizeof(pmask->etype));
			req->features |= BIT_ULL(NPC_ETYPE);
		}
		break;
	case IP_USER_FLOW:
	case TCP_V4_FLOW:
	case UDP_V4_FLOW:
	case SCTP_V4_FLOW:
	case AH_V4_FLOW:
	case ESP_V4_FLOW:
		ret = otx2_prepare_ipv4_flow(fsp, req, flow_type);
		if (ret)
			return ret;
		break;
	case IPV6_USER_FLOW:
	case TCP_V6_FLOW:
	case UDP_V6_FLOW:
	case SCTP_V6_FLOW:
	case AH_V6_FLOW:
	case ESP_V6_FLOW:
		ret = otx2_prepare_ipv6_flow(fsp, req, flow_type);
		if (ret)
			return ret;
		break;
	default:
		return -EOPNOTSUPP;
	}
	if (fsp->flow_type & FLOW_EXT) {
		u16 vlan_etype;

		if (fsp->m_ext.vlan_etype) {
			/* Partial masks not supported */
			if (be16_to_cpu(fsp->m_ext.vlan_etype) != 0xFFFF)
				return -EINVAL;

			vlan_etype = be16_to_cpu(fsp->h_ext.vlan_etype);

			/* Drop rule with vlan_etype == 802.1Q
			 * and vlan_id == 0 is not supported
			 */
			if (vlan_etype == ETH_P_8021Q && !fsp->m_ext.vlan_tci &&
			    fsp->ring_cookie == RX_CLS_FLOW_DISC)
				return -EINVAL;

			/* Only ETH_P_8021Q and ETH_P_802AD types supported */
			if (vlan_etype != ETH_P_8021Q &&
			    vlan_etype != ETH_P_8021AD)
				return -EINVAL;

			memcpy(&pkt->vlan_etype, &fsp->h_ext.vlan_etype,
			       sizeof(pkt->vlan_etype));
			memcpy(&pmask->vlan_etype, &fsp->m_ext.vlan_etype,
			       sizeof(pmask->vlan_etype));

			if (vlan_etype == ETH_P_8021Q)
				req->features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG);
			else
				req->features |= BIT_ULL(NPC_VLAN_ETYPE_STAG);
		}

		if (fsp->m_ext.vlan_tci) {
			memcpy(&pkt->vlan_tci, &fsp->h_ext.vlan_tci,
			       sizeof(pkt->vlan_tci));
			memcpy(&pmask->vlan_tci, &fsp->m_ext.vlan_tci,
			       sizeof(pmask->vlan_tci));
			req->features |= BIT_ULL(NPC_OUTER_VID);
		}

		if (fsp->m_ext.data[1]) {
			if (flow_type == IP_USER_FLOW) {
				if (be32_to_cpu(fsp->h_ext.data[1]) != IPV4_FLAG_MORE)
					return -EINVAL;

				pkt->ip_flag = be32_to_cpu(fsp->h_ext.data[1]);
				pmask->ip_flag = be32_to_cpu(fsp->m_ext.data[1]);
				req->features |= BIT_ULL(NPC_IPFRAG_IPV4);
			} else if (fsp->h_ext.data[1] ==
					cpu_to_be32(OTX2_DEFAULT_ACTION)) {
				/* Not Drop/Direct to queue but use action
				 * in default entry
				 */
				req->op = NIX_RX_ACTION_DEFAULT;
			}
		}
	}

	if (fsp->flow_type & FLOW_MAC_EXT &&
	    !is_zero_ether_addr(fsp->m_ext.h_dest)) {
		ether_addr_copy(pkt->dmac, fsp->h_ext.h_dest);
		ether_addr_copy(pmask->dmac, fsp->m_ext.h_dest);
		req->features |= BIT_ULL(NPC_DMAC);
	}

	if (!req->features)
		return -EOPNOTSUPP;

	return 0;
}

static int otx2_is_flow_rule_dmacfilter(struct otx2_nic *pfvf,
					struct ethtool_rx_flow_spec *fsp)
{
	struct ethhdr *eth_mask = &fsp->m_u.ether_spec;
	struct ethhdr *eth_hdr = &fsp->h_u.ether_spec;
	u64 ring_cookie = fsp->ring_cookie;
	u32 flow_type;

	if (!(pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT))
		return false;

	flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);

	/* CGX/RPM block dmac filtering configured for white listing
	 * check for action other than DROP
	 */
	if (flow_type == ETHER_FLOW && ring_cookie != RX_CLS_FLOW_DISC &&
	    !ethtool_get_flow_spec_ring_vf(ring_cookie)) {
		if (is_zero_ether_addr(eth_mask->h_dest) &&
		    is_valid_ether_addr(eth_hdr->h_dest))
			return true;
	}

	return false;
}

static int otx2_add_flow_msg(struct otx2_nic *pfvf, struct otx2_flow *flow)
{
	u64 ring_cookie = flow->flow_spec.ring_cookie;
#ifdef CONFIG_DCB
	int vlan_prio, qidx, pfc_rule = 0;
#endif
	struct npc_install_flow_req *req;
	int err, vf = 0;

	mutex_lock(&pfvf->mbox.lock);
	req = otx2_mbox_alloc_msg_npc_install_flow(&pfvf->mbox);
	if (!req) {
		mutex_unlock(&pfvf->mbox.lock);
		return -ENOMEM;
	}

	err = otx2_prepare_flow_request(&flow->flow_spec, req);
	if (err) {
		/* free the allocated msg above */
		otx2_mbox_reset(&pfvf->mbox.mbox, 0);
		mutex_unlock(&pfvf->mbox.lock);
		return err;
	}

	req->entry = flow->entry;
	req->intf = NIX_INTF_RX;
	req->set_cntr = 1;
	req->channel = pfvf->hw.rx_chan_base;
	if (ring_cookie == RX_CLS_FLOW_DISC) {
		req->op = NIX_RX_ACTIONOP_DROP;
	} else {
		/* change to unicast only if action of default entry is not
		 * requested by user
		 */
		if (flow->flow_spec.flow_type & FLOW_RSS) {
			req->op = NIX_RX_ACTIONOP_RSS;
			req->index = flow->rss_ctx_id;
			req->flow_key_alg = pfvf->hw.flowkey_alg_idx;
		} else {
			req->op = NIX_RX_ACTIONOP_UCAST;
			req->index = ethtool_get_flow_spec_ring(ring_cookie);
		}
		vf = ethtool_get_flow_spec_ring_vf(ring_cookie);
		if (vf > pci_num_vf(pfvf->pdev)) {
			mutex_unlock(&pfvf->mbox.lock);
			return -EINVAL;
		}

#ifdef CONFIG_DCB
		/* Identify PFC rule if PFC enabled and ntuple rule is vlan */
		if (!vf && (req->features & BIT_ULL(NPC_OUTER_VID)) &&
		    pfvf->pfc_en && req->op != NIX_RX_ACTIONOP_RSS) {
			vlan_prio = ntohs(req->packet.vlan_tci) &
				    ntohs(req->mask.vlan_tci);

			/* Get the priority */
			vlan_prio >>= 13;
			flow->rule_type |= PFC_FLOWCTRL_RULE;
			/* Check if PFC enabled for this priority */
			if (pfvf->pfc_en & BIT(vlan_prio)) {
				pfc_rule = true;
				qidx = req->index;
			}
		}
#endif
	}

	/* ethtool ring_cookie has (VF + 1) for VF */
	if (vf) {
		req->vf = vf;
		flow->is_vf = true;
		flow->vf = vf;
	}

	/* Send message to AF */
	err = otx2_sync_mbox_msg(&pfvf->mbox);

#ifdef CONFIG_DCB
	if (!err && pfc_rule)
		otx2_update_bpid_in_rqctx(pfvf, vlan_prio, qidx, true);
#endif

	mutex_unlock(&pfvf->mbox.lock);
	return err;
}

static int otx2_add_flow_with_pfmac(struct otx2_nic *pfvf,
				    struct otx2_flow *flow)
{
	struct otx2_flow *pf_mac;
	struct ethhdr *eth_hdr;

	pf_mac = kzalloc(sizeof(*pf_mac), GFP_KERNEL);
	if (!pf_mac)
		return -ENOMEM;

	pf_mac->entry = 0;
	pf_mac->rule_type |= DMAC_FILTER_RULE;
	pf_mac->location = pfvf->flow_cfg->max_flows;
	memcpy(&pf_mac->flow_spec, &flow->flow_spec,
	       sizeof(struct ethtool_rx_flow_spec));
	pf_mac->flow_spec.location = pf_mac->location;

	/* Copy PF mac address */
	eth_hdr = &pf_mac->flow_spec.h_u.ether_spec;
	ether_addr_copy(eth_hdr->h_dest, pfvf->netdev->dev_addr);

	/* Install DMAC filter with PF mac address */
	otx2_dmacflt_add(pfvf, eth_hdr->h_dest, 0);

	otx2_add_flow_to_list(pfvf, pf_mac);
	pfvf->flow_cfg->nr_flows++;
	set_bit(0, pfvf->flow_cfg->dmacflt_bmap);

	return 0;
}

int otx2_add_flow(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc)
{
	struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
	struct ethtool_rx_flow_spec *fsp = &nfc->fs;
	struct otx2_flow *flow;
	struct ethhdr *eth_hdr;
	bool new = false;
	int err = 0;
	u64 vf_num;
	u32 ring;

	if (!flow_cfg->max_flows) {
		netdev_err(pfvf->netdev,
			   "Ntuple rule count is 0, allocate and retry\n");
		return -EINVAL;
	}

	ring = ethtool_get_flow_spec_ring(fsp->ring_cookie);
	if (!(pfvf->flags & OTX2_FLAG_NTUPLE_SUPPORT))
		return -ENOMEM;

	/* Number of queues on a VF can be greater or less than
	 * the PF's queue. Hence no need to check for the
	 * queue count. Hence no need to check queue count if PF
	 * is installing for its VF. Below is the expected vf_num value
	 * based on the ethtool commands.
	 *
	 * e.g.
	 * 1. ethtool -U <netdev> ... action -1  ==> vf_num:255
	 * 2. ethtool -U <netdev> ... action <queue_num>  ==> vf_num:0
	 * 3. ethtool -U <netdev> ... vf <vf_idx> queue <queue_num>  ==>
	 *    vf_num:vf_idx+1
	 */
	vf_num = ethtool_get_flow_spec_ring_vf(fsp->ring_cookie);
	if (!is_otx2_vf(pfvf->pcifunc) && !vf_num &&
	    ring >= pfvf->hw.rx_queues && fsp->ring_cookie != RX_CLS_FLOW_DISC)
		return -EINVAL;

	if (fsp->location >= otx2_get_maxflows(flow_cfg))
		return -EINVAL;

	flow = otx2_find_flow(pfvf, fsp->location);
	if (!flow) {
		flow = kzalloc(sizeof(*flow), GFP_KERNEL);
		if (!flow)
			return -ENOMEM;
		flow->location = fsp->location;
		flow->entry = flow_cfg->flow_ent[flow->location];
		new = true;
	}
	/* struct copy */
	flow->flow_spec = *fsp;

	if (fsp->flow_type & FLOW_RSS)
		flow->rss_ctx_id = nfc->rss_context;

	if (otx2_is_flow_rule_dmacfilter(pfvf, &flow->flow_spec)) {
		eth_hdr = &flow->flow_spec.h_u.ether_spec;

		/* Sync dmac filter table with updated fields */
		if (flow->rule_type & DMAC_FILTER_RULE)
			return otx2_dmacflt_update(pfvf, eth_hdr->h_dest,
						   flow->entry);

		if (bitmap_full(flow_cfg->dmacflt_bmap,
				flow_cfg->dmacflt_max_flows)) {
			netdev_warn(pfvf->netdev,
				    "Can't insert the rule %d as max allowed dmac filters are %d\n",
				    flow->location +
				    flow_cfg->dmacflt_max_flows,
				    flow_cfg->dmacflt_max_flows);
			err = -EINVAL;
			if (new)
				kfree(flow);
			return err;
		}

		/* Install PF mac address to DMAC filter list */
		if (!test_bit(0, flow_cfg->dmacflt_bmap))
			otx2_add_flow_with_pfmac(pfvf, flow);

		flow->rule_type |= DMAC_FILTER_RULE;
		flow->entry = find_first_zero_bit(flow_cfg->dmacflt_bmap,
						  flow_cfg->dmacflt_max_flows);
		fsp->location = flow_cfg->max_flows + flow->entry;
		flow->flow_spec.location = fsp->location;
		flow->location = fsp->location;

		set_bit(flow->entry, flow_cfg->dmacflt_bmap);
		otx2_dmacflt_add(pfvf, eth_hdr->h_dest, flow->entry);

	} else {
		if (flow->location >= pfvf->flow_cfg->max_flows) {
			netdev_warn(pfvf->netdev,
				    "Can't insert non dmac ntuple rule at %d, allowed range %d-0\n",
				    flow->location,
				    flow_cfg->max_flows - 1);
			err = -EINVAL;
		} else {
			err = otx2_add_flow_msg(pfvf, flow);
		}
	}

	if (err) {
		if (err == MBOX_MSG_INVALID)
			err = -EINVAL;
		if (new)
			kfree(flow);
		return err;
	}

	/* add the new flow installed to list */
	if (new) {
		otx2_add_flow_to_list(pfvf, flow);
		flow_cfg->nr_flows++;
	}

	if (flow->is_vf)
		netdev_info(pfvf->netdev,
			    "Make sure that VF's queue number is within its queue limit\n");
	return 0;
}

static int otx2_remove_flow_msg(struct otx2_nic *pfvf, u16 entry, bool all)
{
	struct npc_delete_flow_req *req;
	int err;

	mutex_lock(&pfvf->mbox.lock);
	req = otx2_mbox_alloc_msg_npc_delete_flow(&pfvf->mbox);
	if (!req) {
		mutex_unlock(&pfvf->mbox.lock);
		return -ENOMEM;
	}

	req->entry = entry;
	if (all)
		req->all = 1;

	/* Send message to AF */
	err = otx2_sync_mbox_msg(&pfvf->mbox);
	mutex_unlock(&pfvf->mbox.lock);
	return err;
}

static void otx2_update_rem_pfmac(struct otx2_nic *pfvf, int req)
{
	struct otx2_flow *iter;
	struct ethhdr *eth_hdr;
	bool found = false;

	list_for_each_entry(iter, &pfvf->flow_cfg->flow_list, list) {
		if ((iter->rule_type & DMAC_FILTER_RULE) && iter->entry == 0) {
			eth_hdr = &iter->flow_spec.h_u.ether_spec;
			if (req == DMAC_ADDR_DEL) {
				otx2_dmacflt_remove(pfvf, eth_hdr->h_dest,
						    0);
				clear_bit(0, pfvf->flow_cfg->dmacflt_bmap);
				found = true;
			} else {
				ether_addr_copy(eth_hdr->h_dest,
						pfvf->netdev->dev_addr);

				otx2_dmacflt_update(pfvf, eth_hdr->h_dest, 0);
			}
			break;
		}
	}

	if (found) {
		list_del(&iter->list);
		kfree(iter);
		pfvf->flow_cfg->nr_flows--;
	}
}

int otx2_remove_flow(struct otx2_nic *pfvf, u32 location)
{
	struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
	struct otx2_flow *flow;
	int err;

	if (location >= otx2_get_maxflows(flow_cfg))
		return -EINVAL;

	flow = otx2_find_flow(pfvf, location);
	if (!flow)
		return -ENOENT;

	if (flow->rule_type & DMAC_FILTER_RULE) {
		struct ethhdr *eth_hdr = &flow->flow_spec.h_u.ether_spec;

		/* user not allowed to remove dmac filter with interface mac */
		if (ether_addr_equal(pfvf->netdev->dev_addr, eth_hdr->h_dest))
			return -EPERM;

		err = otx2_dmacflt_remove(pfvf, eth_hdr->h_dest,
					  flow->entry);
		clear_bit(flow->entry, flow_cfg->dmacflt_bmap);
		/* If all dmac filters are removed delete macfilter with
		 * interface mac address and configure CGX/RPM block in
		 * promiscuous mode
		 */
		if (bitmap_weight(flow_cfg->dmacflt_bmap,
				  flow_cfg->dmacflt_max_flows) == 1)
			otx2_update_rem_pfmac(pfvf, DMAC_ADDR_DEL);
	} else {
#ifdef CONFIG_DCB
		if (flow->rule_type & PFC_FLOWCTRL_RULE)
			otx2_update_bpid_in_rqctx(pfvf, 0,
						  flow->flow_spec.ring_cookie,
						  false);
#endif

		err = otx2_remove_flow_msg(pfvf, flow->entry, false);
	}

	if (err)
		return err;

	list_del(&flow->list);
	kfree(flow);
	flow_cfg->nr_flows--;

	return 0;
}

void otx2_rss_ctx_flow_del(struct otx2_nic *pfvf, int ctx_id)
{
	struct otx2_flow *flow, *tmp;
	int err;

	list_for_each_entry_safe(flow, tmp, &pfvf->flow_cfg->flow_list, list) {
		if (flow->rss_ctx_id != ctx_id)
			continue;
		err = otx2_remove_flow(pfvf, flow->location);
		if (err)
			netdev_warn(pfvf->netdev,
				    "Can't delete the rule %d associated with this rss group err:%d",
				    flow->location, err);
	}
}

int otx2_destroy_ntuple_flows(struct otx2_nic *pfvf)
{
	struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
	struct npc_delete_flow_req *req;
	struct otx2_flow *iter, *tmp;
	int err;

	if (!(pfvf->flags & OTX2_FLAG_NTUPLE_SUPPORT))
		return 0;

	if (!flow_cfg->max_flows)
		return 0;

	mutex_lock(&pfvf->mbox.lock);
	req = otx2_mbox_alloc_msg_npc_delete_flow(&pfvf->mbox);
	if (!req) {
		mutex_unlock(&pfvf->mbox.lock);
		return -ENOMEM;
	}

	req->start = flow_cfg->flow_ent[0];
	req->end   = flow_cfg->flow_ent[flow_cfg->max_flows - 1];
	err = otx2_sync_mbox_msg(&pfvf->mbox);
	mutex_unlock(&pfvf->mbox.lock);

	list_for_each_entry_safe(iter, tmp, &flow_cfg->flow_list, list) {
		list_del(&iter->list);
		kfree(iter);
		flow_cfg->nr_flows--;
	}
	return err;
}

int otx2_destroy_mcam_flows(struct otx2_nic *pfvf)
{
	struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
	struct npc_mcam_free_entry_req *req;
	struct otx2_flow *iter, *tmp;
	int err;

	if (!(pfvf->flags & OTX2_FLAG_MCAM_ENTRIES_ALLOC))
		return 0;

	/* remove all flows */
	err = otx2_remove_flow_msg(pfvf, 0, true);
	if (err)
		return err;

	list_for_each_entry_safe(iter, tmp, &flow_cfg->flow_list, list) {
		list_del(&iter->list);
		kfree(iter);
		flow_cfg->nr_flows--;
	}

	mutex_lock(&pfvf->mbox.lock);
	req = otx2_mbox_alloc_msg_npc_mcam_free_entry(&pfvf->mbox);
	if (!req) {
		mutex_unlock(&pfvf->mbox.lock);
		return -ENOMEM;
	}

	req->all = 1;
	/* Send message to AF to free MCAM entries */
	err = otx2_sync_mbox_msg(&pfvf->mbox);
	if (err) {
		mutex_unlock(&pfvf->mbox.lock);
		return err;
	}

	pfvf->flags &= ~OTX2_FLAG_MCAM_ENTRIES_ALLOC;
	flow_cfg->max_flows = 0;
	mutex_unlock(&pfvf->mbox.lock);

	return 0;
}

int otx2_install_rxvlan_offload_flow(struct otx2_nic *pfvf)
{
	struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
	struct npc_install_flow_req *req;
	int err;

	mutex_lock(&pfvf->mbox.lock);
	req = otx2_mbox_alloc_msg_npc_install_flow(&pfvf->mbox);
	if (!req) {
		mutex_unlock(&pfvf->mbox.lock);
		return -ENOMEM;
	}

	req->entry = flow_cfg->def_ent[flow_cfg->rx_vlan_offset];
	req->intf = NIX_INTF_RX;
	ether_addr_copy(req->packet.dmac, pfvf->netdev->dev_addr);
	eth_broadcast_addr((u8 *)&req->mask.dmac);
	req->channel = pfvf->hw.rx_chan_base;
	req->op = NIX_RX_ACTION_DEFAULT;
	req->features = BIT_ULL(NPC_OUTER_VID) | BIT_ULL(NPC_DMAC);
	req->vtag0_valid = true;
	req->vtag0_type = NIX_AF_LFX_RX_VTAG_TYPE0;

	/* Send message to AF */
	err = otx2_sync_mbox_msg(&pfvf->mbox);
	mutex_unlock(&pfvf->mbox.lock);
	return err;
}

static int otx2_delete_rxvlan_offload_flow(struct otx2_nic *pfvf)
{
	struct otx2_flow_config *flow_cfg = pfvf->flow_cfg;
	struct npc_delete_flow_req *req;
	int err;

	mutex_lock(&pfvf->mbox.lock);
	req = otx2_mbox_alloc_msg_npc_delete_flow(&pfvf->mbox);
	if (!req) {
		mutex_unlock(&pfvf->mbox.lock);
		return -ENOMEM;
	}

	req->entry = flow_cfg->def_ent[flow_cfg->rx_vlan_offset];
	/* Send message to AF */
	err = otx2_sync_mbox_msg(&pfvf->mbox);
	mutex_unlock(&pfvf->mbox.lock);
	return err;
}

int otx2_enable_rxvlan(struct otx2_nic *pf, bool enable)
{
	struct nix_vtag_config *req;
	struct mbox_msghdr *rsp_hdr;
	int err;

	/* Dont have enough mcam entries */
	if (!(pf->flags & OTX2_FLAG_RX_VLAN_SUPPORT))
		return -ENOMEM;

	if (enable) {
		err = otx2_install_rxvlan_offload_flow(pf);
		if (err)
			return err;
	} else {
		err = otx2_delete_rxvlan_offload_flow(pf);
		if (err)
			return err;
	}

	mutex_lock(&pf->mbox.lock);
	req = otx2_mbox_alloc_msg_nix_vtag_cfg(&pf->mbox);
	if (!req) {
		mutex_unlock(&pf->mbox.lock);
		return -ENOMEM;
	}

	/* config strip, capture and size */
	req->vtag_size = VTAGSIZE_T4;
	req->cfg_type = 1; /* rx vlan cfg */
	req->rx.vtag_type = NIX_AF_LFX_RX_VTAG_TYPE0;
	req->rx.strip_vtag = enable;
	req->rx.capture_vtag = enable;

	err = otx2_sync_mbox_msg(&pf->mbox);
	if (err) {
		mutex_unlock(&pf->mbox.lock);
		return err;
	}

	rsp_hdr = otx2_mbox_get_rsp(&pf->mbox.mbox, 0, &req->hdr);
	if (IS_ERR(rsp_hdr)) {
		mutex_unlock(&pf->mbox.lock);
		return PTR_ERR(rsp_hdr);
	}

	mutex_unlock(&pf->mbox.lock);
	return rsp_hdr->rc;
}

void otx2_dmacflt_reinstall_flows(struct otx2_nic *pf)
{
	struct otx2_flow *iter;
	struct ethhdr *eth_hdr;

	list_for_each_entry(iter, &pf->flow_cfg->flow_list, list) {
		if (iter->rule_type & DMAC_FILTER_RULE) {
			eth_hdr = &iter->flow_spec.h_u.ether_spec;
			otx2_dmacflt_add(pf, eth_hdr->h_dest,
					 iter->entry);
		}
	}
}

void otx2_dmacflt_update_pfmac_flow(struct otx2_nic *pfvf)
{
	otx2_update_rem_pfmac(pfvf, DMAC_ADDR_UPDATE);
}