// SPDX-License-Identifier: GPL-2.0
/* Marvell RVU Ethernet driver
*
* Copyright (C) 2020 Marvell.
*
*/
#include <linux/etherdevice.h>
#include <net/ip.h>
#include <net/tso.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <net/ip6_checksum.h>
#include "otx2_reg.h"
#include "otx2_common.h"
#include "otx2_struct.h"
#include "otx2_txrx.h"
#include "otx2_ptp.h"
#include "cn10k.h"
#define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx)))
#define PTP_PORT 0x13F
/* PTPv2 header Original Timestamp starts at byte offset 34 and
* contains 6 byte seconds field and 4 byte nano seconds field.
*/
#define PTP_SYNC_SEC_OFFSET 34
static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf,
struct bpf_prog *prog,
struct nix_cqe_rx_s *cqe,
struct otx2_cq_queue *cq,
bool *need_xdp_flush);
static int otx2_nix_cq_op_status(struct otx2_nic *pfvf,
struct otx2_cq_queue *cq)
{
u64 incr = (u64)(cq->cq_idx) << 32;
u64 status;
status = otx2_atomic64_fetch_add(incr, pfvf->cq_op_addr);
if (unlikely(status & BIT_ULL(CQ_OP_STAT_OP_ERR) ||
status & BIT_ULL(CQ_OP_STAT_CQ_ERR))) {
dev_err(pfvf->dev, "CQ stopped due to error");
return -EINVAL;
}
cq->cq_tail = status & 0xFFFFF;
cq->cq_head = (status >> 20) & 0xFFFFF;
if (cq->cq_tail < cq->cq_head)
cq->pend_cqe = (cq->cqe_cnt - cq->cq_head) +
cq->cq_tail;
else
cq->pend_cqe = cq->cq_tail - cq->cq_head;
return 0;
}
static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq)
{
struct nix_cqe_hdr_s *cqe_hdr;
cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head);
if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID)
return NULL;
cq->cq_head++;
cq->cq_head &= (cq->cqe_cnt - 1);
return cqe_hdr;
}
static unsigned int frag_num(unsigned int i)
{
#ifdef __BIG_ENDIAN
return (i & ~3) + 3 - (i & 3);
#else
return i;
#endif
}
static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
struct sk_buff *skb, int seg, int *len)
{
const skb_frag_t *frag;
struct page *page;
int offset;
/* First segment is always skb->data */
if (!seg) {
page = virt_to_page(skb->data);
offset = offset_in_page(skb->data);
*len = skb_headlen(skb);
} else {
frag = &skb_shinfo(skb)->frags[seg - 1];
page = skb_frag_page(frag);
offset = skb_frag_off(frag);
*len = skb_frag_size(frag);
}
return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE);
}
static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
{
int seg;
for (seg = 0; seg < sg->num_segs; seg++) {
otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
sg->size[seg], DMA_TO_DEVICE);
}
sg->num_segs = 0;
}
static void otx2_xdp_snd_pkt_handler(struct otx2_nic *pfvf,
struct otx2_snd_queue *sq,
struct nix_cqe_tx_s *cqe)
{
struct nix_send_comp_s *snd_comp = &cqe->comp;
struct sg_list *sg;
struct page *page;
u64 pa;
sg = &sq->sg[snd_comp->sqe_id];
pa = otx2_iova_to_phys(pfvf->iommu_domain, sg->dma_addr[0]);
otx2_dma_unmap_page(pfvf, sg->dma_addr[0],
sg->size[0], DMA_TO_DEVICE);
page = virt_to_page(phys_to_virt(pa));
put_page(page);
}
static void otx2_snd_pkt_handler(struct otx2_nic *pfvf,
struct otx2_cq_queue *cq,
struct otx2_snd_queue *sq,
struct nix_cqe_tx_s *cqe,
int budget, int *tx_pkts, int *tx_bytes)
{
struct nix_send_comp_s *snd_comp = &cqe->comp;
struct skb_shared_hwtstamps ts;
struct sk_buff *skb = NULL;
u64 timestamp, tsns;
struct sg_list *sg;
int err;
if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf))
net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n",
pfvf->netdev->name, cq->cint_idx,
snd_comp->status);
sg = &sq->sg[snd_comp->sqe_id];
skb = (struct sk_buff *)sg->skb;
if (unlikely(!skb))
return;
if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
timestamp = ((u64 *)sq->timestamps->base)[snd_comp->sqe_id];
if (timestamp != 1) {
timestamp = pfvf->ptp->convert_tx_ptp_tstmp(timestamp);
err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns);
if (!err) {
memset(&ts, 0, sizeof(ts));
ts.hwtstamp = ns_to_ktime(tsns);
skb_tstamp_tx(skb, &ts);
}
}
}
*tx_bytes += skb->len;
(*tx_pkts)++;
otx2_dma_unmap_skb_frags(pfvf, sg);
napi_consume_skb(skb, budget);
sg->skb = (u64)NULL;
}
static void otx2_set_rxtstamp(struct otx2_nic *pfvf,
struct sk_buff *skb, void *data)
{
u64 timestamp, tsns;
int err;
if (!(pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED))
return;
timestamp = pfvf->ptp->convert_rx_ptp_tstmp(*(u64 *)data);
/* The first 8 bytes is the timestamp */
err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns);
if (err)
return;
skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(tsns);
}
static bool otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb,
u64 iova, int len, struct nix_rx_parse_s *parse,
int qidx)
{
struct page *page;
int off = 0;
void *va;
va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova));
if (likely(!skb_shinfo(skb)->nr_frags)) {
/* Check if data starts at some nonzero offset
* from the start of the buffer. For now the
* only possible offset is 8 bytes in the case
* where packet is prepended by a timestamp.
*/
if (parse->laptr) {
otx2_set_rxtstamp(pfvf, skb, va);
off = OTX2_HW_TIMESTAMP_LEN;
}
}
page = virt_to_page(va);
if (likely(skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS)) {
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
va - page_address(page) + off,
len - off, pfvf->rbsize);
return true;
}
/* If more than MAX_SKB_FRAGS fragments are received then
* give back those buffer pointers to hardware for reuse.
*/
pfvf->hw_ops->aura_freeptr(pfvf, qidx, iova & ~0x07ULL);
return false;
}
static void otx2_set_rxhash(struct otx2_nic *pfvf,
struct nix_cqe_rx_s *cqe, struct sk_buff *skb)
{
enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
struct otx2_rss_info *rss;
u32 hash = 0;
if (!(pfvf->netdev->features & NETIF_F_RXHASH))
return;
rss = &pfvf->hw.rss_info;
if (rss->flowkey_cfg) {
if (rss->flowkey_cfg &
~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6))
hash_type = PKT_HASH_TYPE_L4;
else
hash_type = PKT_HASH_TYPE_L3;
hash = cqe->hdr.flow_tag;
}
skb_set_hash(skb, hash, hash_type);
}
static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe,
int qidx)
{
struct nix_rx_sg_s *sg = &cqe->sg;
void *end, *start;
u64 *seg_addr;
int seg;
start = (void *)sg;
end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
while (start < end) {
sg = (struct nix_rx_sg_s *)start;
seg_addr = &sg->seg_addr;
for (seg = 0; seg < sg->segs; seg++, seg_addr++)
pfvf->hw_ops->aura_freeptr(pfvf, qidx,
*seg_addr & ~0x07ULL);
start += sizeof(*sg);
}
}
static bool otx2_check_rcv_errors(struct otx2_nic *pfvf,
struct nix_cqe_rx_s *cqe, int qidx)
{
struct otx2_drv_stats *stats = &pfvf->hw.drv_stats;
struct nix_rx_parse_s *parse = &cqe->parse;
if (netif_msg_rx_err(pfvf))
netdev_err(pfvf->netdev,
"RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n",
qidx, parse->errlev, parse->errcode);
if (parse->errlev == NPC_ERRLVL_RE) {
switch (parse->errcode) {
case ERRCODE_FCS:
case ERRCODE_FCS_RCV:
atomic_inc(&stats->rx_fcs_errs);
break;
case ERRCODE_UNDERSIZE:
atomic_inc(&stats->rx_undersize_errs);
break;
case ERRCODE_OVERSIZE:
atomic_inc(&stats->rx_oversize_errs);
break;
case ERRCODE_OL2_LEN_MISMATCH:
atomic_inc(&stats->rx_len_errs);
break;
default:
atomic_inc(&stats->rx_other_errs);
break;
}
} else if (parse->errlev == NPC_ERRLVL_NIX) {
switch (parse->errcode) {
case ERRCODE_OL3_LEN:
case ERRCODE_OL4_LEN:
case ERRCODE_IL3_LEN:
case ERRCODE_IL4_LEN:
atomic_inc(&stats->rx_len_errs);
break;
case ERRCODE_OL4_CSUM:
case ERRCODE_IL4_CSUM:
atomic_inc(&stats->rx_csum_errs);
break;
default:
atomic_inc(&stats->rx_other_errs);
break;
}
} else {
atomic_inc(&stats->rx_other_errs);
/* For now ignore all the NPC parser errors and
* pass the packets to stack.
*/
return false;
}
/* If RXALL is enabled pass on packets to stack. */
if (pfvf->netdev->features & NETIF_F_RXALL)
return false;
/* Free buffer back to pool */
if (cqe->sg.segs)
otx2_free_rcv_seg(pfvf, cqe, qidx);
return true;
}
static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf,
struct napi_struct *napi,
struct otx2_cq_queue *cq,
struct nix_cqe_rx_s *cqe, bool *need_xdp_flush)
{
struct nix_rx_parse_s *parse = &cqe->parse;
struct nix_rx_sg_s *sg = &cqe->sg;
struct sk_buff *skb = NULL;
void *end, *start;
u64 *seg_addr;
u16 *seg_size;
int seg;
if (unlikely(parse->errlev || parse->errcode)) {
if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx))
return;
}
if (pfvf->xdp_prog)
if (otx2_xdp_rcv_pkt_handler(pfvf, pfvf->xdp_prog, cqe, cq, need_xdp_flush))
return;
skb = napi_get_frags(napi);
if (unlikely(!skb))
return;
start = (void *)sg;
end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
while (start < end) {
sg = (struct nix_rx_sg_s *)start;
seg_addr = &sg->seg_addr;
seg_size = (void *)sg;
for (seg = 0; seg < sg->segs; seg++, seg_addr++) {
if (otx2_skb_add_frag(pfvf, skb, *seg_addr,
seg_size[seg], parse, cq->cq_idx))
cq->pool_ptrs++;
}
start += sizeof(*sg);
}
otx2_set_rxhash(pfvf, cqe, skb);
skb_record_rx_queue(skb, cq->cq_idx);
if (pfvf->netdev->features & NETIF_F_RXCSUM)
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (pfvf->flags & OTX2_FLAG_TC_MARK_ENABLED)
skb->mark = parse->match_id;
skb_mark_for_recycle(skb);
napi_gro_frags(napi);
}
static int otx2_rx_napi_handler(struct otx2_nic *pfvf,
struct napi_struct *napi,
struct otx2_cq_queue *cq, int budget)
{
bool need_xdp_flush = false;
struct nix_cqe_rx_s *cqe;
int processed_cqe = 0;
if (cq->pend_cqe >= budget)
goto process_cqe;
if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
return 0;
process_cqe:
while (likely(processed_cqe < budget) && cq->pend_cqe) {
cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head);
if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID ||
!cqe->sg.seg_addr) {
if (!processed_cqe)
return 0;
break;
}
cq->cq_head++;
cq->cq_head &= (cq->cqe_cnt - 1);
otx2_rcv_pkt_handler(pfvf, napi, cq, cqe, &need_xdp_flush);
cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
cqe->sg.seg_addr = 0x00;
processed_cqe++;
cq->pend_cqe--;
}
if (need_xdp_flush)
xdp_do_flush();
/* Free CQEs to HW */
otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
((u64)cq->cq_idx << 32) | processed_cqe);
return processed_cqe;
}
int otx2_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq)
{
struct otx2_nic *pfvf = dev;
int cnt = cq->pool_ptrs;
dma_addr_t bufptr;
while (cq->pool_ptrs) {
if (otx2_alloc_buffer(pfvf, cq, &bufptr))
break;
otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM);
cq->pool_ptrs--;
}
return cnt - cq->pool_ptrs;
}
static int otx2_tx_napi_handler(struct otx2_nic *pfvf,
struct otx2_cq_queue *cq, int budget)
{
int tx_pkts = 0, tx_bytes = 0, qidx;
struct otx2_snd_queue *sq;
struct nix_cqe_tx_s *cqe;
int processed_cqe = 0;
if (cq->pend_cqe >= budget)
goto process_cqe;
if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
return 0;
process_cqe:
qidx = cq->cq_idx - pfvf->hw.rx_queues;
sq = &pfvf->qset.sq[qidx];
while (likely(processed_cqe < budget) && cq->pend_cqe) {
cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq);
if (unlikely(!cqe)) {
if (!processed_cqe)
return 0;
break;
}
qidx = cq->cq_idx - pfvf->hw.rx_queues;
if (cq->cq_type == CQ_XDP)
otx2_xdp_snd_pkt_handler(pfvf, sq, cqe);
else
otx2_snd_pkt_handler(pfvf, cq, &pfvf->qset.sq[qidx],
cqe, budget, &tx_pkts, &tx_bytes);
cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
processed_cqe++;
cq->pend_cqe--;
sq->cons_head++;
sq->cons_head &= (sq->sqe_cnt - 1);
}
/* Free CQEs to HW */
otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
((u64)cq->cq_idx << 32) | processed_cqe);
if (likely(tx_pkts)) {
struct netdev_queue *txq;
qidx = cq->cq_idx - pfvf->hw.rx_queues;
if (qidx >= pfvf->hw.tx_queues)
qidx -= pfvf->hw.xdp_queues;
txq = netdev_get_tx_queue(pfvf->netdev, qidx);
netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
/* Check if queue was stopped earlier due to ring full */
smp_mb();
if (netif_tx_queue_stopped(txq) &&
netif_carrier_ok(pfvf->netdev))
netif_tx_wake_queue(txq);
}
return 0;
}
static void otx2_adjust_adaptive_coalese(struct otx2_nic *pfvf, struct otx2_cq_poll *cq_poll)
{
struct dim_sample dim_sample = { 0 };
u64 rx_frames, rx_bytes;
u64 tx_frames, tx_bytes;
rx_frames = OTX2_GET_RX_STATS(RX_BCAST) + OTX2_GET_RX_STATS(RX_MCAST) +
OTX2_GET_RX_STATS(RX_UCAST);
rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
tx_frames = OTX2_GET_TX_STATS(TX_UCAST);
dim_update_sample(pfvf->napi_events,
rx_frames + tx_frames,
rx_bytes + tx_bytes,
&dim_sample);
net_dim(&cq_poll->dim, dim_sample);
}
int otx2_napi_handler(struct napi_struct *napi, int budget)
{
struct otx2_cq_queue *rx_cq = NULL;
struct otx2_cq_poll *cq_poll;
int workdone = 0, cq_idx, i;
struct otx2_cq_queue *cq;
struct otx2_qset *qset;
struct otx2_nic *pfvf;
int filled_cnt = -1;
cq_poll = container_of(napi, struct otx2_cq_poll, napi);
pfvf = (struct otx2_nic *)cq_poll->dev;
qset = &pfvf->qset;
for (i = 0; i < CQS_PER_CINT; i++) {
cq_idx = cq_poll->cq_ids[i];
if (unlikely(cq_idx == CINT_INVALID_CQ))
continue;
cq = &qset->cq[cq_idx];
if (cq->cq_type == CQ_RX) {
rx_cq = cq;
workdone += otx2_rx_napi_handler(pfvf, napi,
cq, budget);
} else {
workdone += otx2_tx_napi_handler(pfvf, cq, budget);
}
}
if (rx_cq && rx_cq->pool_ptrs)
filled_cnt = pfvf->hw_ops->refill_pool_ptrs(pfvf, rx_cq);
/* Clear the IRQ */
otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0));
if (workdone < budget && napi_complete_done(napi, workdone)) {
/* If interface is going down, don't re-enable IRQ */
if (pfvf->flags & OTX2_FLAG_INTF_DOWN)
return workdone;
/* Adjust irq coalese using net_dim */
if (pfvf->flags & OTX2_FLAG_ADPTV_INT_COAL_ENABLED)
otx2_adjust_adaptive_coalese(pfvf, cq_poll);
if (unlikely(!filled_cnt)) {
struct refill_work *work;
struct delayed_work *dwork;
work = &pfvf->refill_wrk[cq->cq_idx];
dwork = &work->pool_refill_work;
/* Schedule a task if no other task is running */
if (!cq->refill_task_sched) {
work->napi = napi;
cq->refill_task_sched = true;
schedule_delayed_work(dwork,
msecs_to_jiffies(100));
}
} else {
/* Re-enable interrupts */
otx2_write64(pfvf,
NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx),
BIT_ULL(0));
}
}
return workdone;
}
void otx2_sqe_flush(void *dev, struct otx2_snd_queue *sq,
int size, int qidx)
{
u64 status;
/* Packet data stores should finish before SQE is flushed to HW */
dma_wmb();
do {
memcpy(sq->lmt_addr, sq->sqe_base, size);
status = otx2_lmt_flush(sq->io_addr);
} while (status == 0);
sq->head++;
sq->head &= (sq->sqe_cnt - 1);
}
#define MAX_SEGS_PER_SG 3
/* Add SQE scatter/gather subdescriptor structure */
static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
struct sk_buff *skb, int num_segs, int *offset)
{
struct nix_sqe_sg_s *sg = NULL;
u64 dma_addr, *iova = NULL;
u16 *sg_lens = NULL;
int seg, len;
sq->sg[sq->head].num_segs = 0;
for (seg = 0; seg < num_segs; seg++) {
if ((seg % MAX_SEGS_PER_SG) == 0) {
sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
sg->ld_type = NIX_SEND_LDTYPE_LDD;
sg->subdc = NIX_SUBDC_SG;
sg->segs = 0;
sg_lens = (void *)sg;
iova = (void *)sg + sizeof(*sg);
/* Next subdc always starts at a 16byte boundary.
* So if sg->segs is whether 2 or 3, offset += 16bytes.
*/
if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
*offset += sizeof(*sg) + (3 * sizeof(u64));
else
*offset += sizeof(*sg) + sizeof(u64);
}
dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
if (dma_mapping_error(pfvf->dev, dma_addr))
return false;
sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len;
sg->segs++;
*iova++ = dma_addr;
/* Save DMA mapping info for later unmapping */
sq->sg[sq->head].dma_addr[seg] = dma_addr;
sq->sg[sq->head].size[seg] = len;
sq->sg[sq->head].num_segs++;
}
sq->sg[sq->head].skb = (u64)skb;
return true;
}
/* Add SQE extended header subdescriptor */
static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
struct sk_buff *skb, int *offset)
{
struct nix_sqe_ext_s *ext;
ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset);
ext->subdc = NIX_SUBDC_EXT;
if (skb_shinfo(skb)->gso_size) {
ext->lso = 1;
ext->lso_sb = skb_tcp_all_headers(skb);
ext->lso_mps = skb_shinfo(skb)->gso_size;
/* Only TSOv4 and TSOv6 GSO offloads are supported */
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
ext->lso_format = pfvf->hw.lso_tsov4_idx;
/* HW adds payload size to 'ip_hdr->tot_len' while
* sending TSO segment, hence set payload length
* in IP header of the packet to just header length.
*/
ip_hdr(skb)->tot_len =
htons(ext->lso_sb - skb_network_offset(skb));
} else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
ext->lso_format = pfvf->hw.lso_tsov6_idx;
ipv6_hdr(skb)->payload_len = htons(tcp_hdrlen(skb));
} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
__be16 l3_proto = vlan_get_protocol(skb);
struct udphdr *udph = udp_hdr(skb);
__be16 iplen;
ext->lso_sb = skb_transport_offset(skb) +
sizeof(struct udphdr);
/* HW adds payload size to length fields in IP and
* UDP headers while segmentation, hence adjust the
* lengths to just header sizes.
*/
iplen = htons(ext->lso_sb - skb_network_offset(skb));
if (l3_proto == htons(ETH_P_IP)) {
ip_hdr(skb)->tot_len = iplen;
ext->lso_format = pfvf->hw.lso_udpv4_idx;
} else {
ipv6_hdr(skb)->payload_len = iplen;
ext->lso_format = pfvf->hw.lso_udpv6_idx;
}
udph->len = htons(sizeof(struct udphdr));
}
} else if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
ext->tstmp = 1;
}
#define OTX2_VLAN_PTR_OFFSET (ETH_HLEN - ETH_TLEN)
if (skb_vlan_tag_present(skb)) {
if (skb->vlan_proto == htons(ETH_P_8021Q)) {
ext->vlan1_ins_ena = 1;
ext->vlan1_ins_ptr = OTX2_VLAN_PTR_OFFSET;
ext->vlan1_ins_tci = skb_vlan_tag_get(skb);
} else if (skb->vlan_proto == htons(ETH_P_8021AD)) {
ext->vlan0_ins_ena = 1;
ext->vlan0_ins_ptr = OTX2_VLAN_PTR_OFFSET;
ext->vlan0_ins_tci = skb_vlan_tag_get(skb);
}
}
*offset += sizeof(*ext);
}
static void otx2_sqe_add_mem(struct otx2_snd_queue *sq, int *offset,
int alg, u64 iova, int ptp_offset,
u64 base_ns, bool udp_csum_crt)
{
struct nix_sqe_mem_s *mem;
mem = (struct nix_sqe_mem_s *)(sq->sqe_base + *offset);
mem->subdc = NIX_SUBDC_MEM;
mem->alg = alg;
mem->wmem = 1; /* wait for the memory operation */
mem->addr = iova;
if (ptp_offset) {
mem->start_offset = ptp_offset;
mem->udp_csum_crt = !!udp_csum_crt;
mem->base_ns = base_ns;
mem->step_type = 1;
}
*offset += sizeof(*mem);
}
/* Add SQE header subdescriptor structure */
static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
struct nix_sqe_hdr_s *sqe_hdr,
struct sk_buff *skb, u16 qidx)
{
int proto = 0;
/* Check if SQE was framed before, if yes then no need to
* set these constants again and again.
*/
if (!sqe_hdr->total) {
/* Don't free Tx buffers to Aura */
sqe_hdr->df = 1;
sqe_hdr->aura = sq->aura_id;
/* Post a CQE Tx after pkt transmission */
sqe_hdr->pnc = 1;
sqe_hdr->sq = (qidx >= pfvf->hw.tx_queues) ?
qidx + pfvf->hw.xdp_queues : qidx;
}
sqe_hdr->total = skb->len;
/* Set SQE identifier which will be used later for freeing SKB */
sqe_hdr->sqe_id = sq->head;
/* Offload TCP/UDP checksum to HW */
if (skb->ip_summed == CHECKSUM_PARTIAL) {
sqe_hdr->ol3ptr = skb_network_offset(skb);
sqe_hdr->ol4ptr = skb_transport_offset(skb);
/* get vlan protocol Ethertype */
if (eth_type_vlan(skb->protocol))
skb->protocol = vlan_get_protocol(skb);
if (skb->protocol == htons(ETH_P_IP)) {
proto = ip_hdr(skb)->protocol;
/* In case of TSO, HW needs this to be explicitly set.
* So set this always, instead of adding a check.
*/
sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM;
} else if (skb->protocol == htons(ETH_P_IPV6)) {
proto = ipv6_hdr(skb)->nexthdr;
sqe_hdr->ol3type = NIX_SENDL3TYPE_IP6;
}
if (proto == IPPROTO_TCP)
sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM;
else if (proto == IPPROTO_UDP)
sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM;
}
}
static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf,
struct otx2_snd_queue *sq,
struct sk_buff *skb, int sqe, int hdr_len)
{
int num_segs = skb_shinfo(skb)->nr_frags + 1;
struct sg_list *sg = &sq->sg[sqe];
u64 dma_addr;
int seg, len;
sg->num_segs = 0;
/* Get payload length at skb->data */
len = skb_headlen(skb) - hdr_len;
for (seg = 0; seg < num_segs; seg++) {
/* Skip skb->data, if there is no payload */
if (!seg && !len)
continue;
dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
if (dma_mapping_error(pfvf->dev, dma_addr))
goto unmap;
/* Save DMA mapping info for later unmapping */
sg->dma_addr[sg->num_segs] = dma_addr;
sg->size[sg->num_segs] = len;
sg->num_segs++;
}
return 0;
unmap:
otx2_dma_unmap_skb_frags(pfvf, sg);
return -EINVAL;
}
static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq,
struct sk_buff *skb, int seg,
u64 seg_addr, int hdr_len, int sqe)
{
struct sg_list *sg = &sq->sg[sqe];
const skb_frag_t *frag;
int offset;
if (seg < 0)
return sg->dma_addr[0] + (seg_addr - (u64)skb->data);
frag = &skb_shinfo(skb)->frags[seg];
offset = seg_addr - (u64)skb_frag_address(frag);
if (skb_headlen(skb) - hdr_len)
seg++;
return sg->dma_addr[seg] + offset;
}
static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq,
struct sg_list *list, int *offset)
{
struct nix_sqe_sg_s *sg = NULL;
u16 *sg_lens = NULL;
u64 *iova = NULL;
int seg;
/* Add SG descriptors with buffer addresses */
for (seg = 0; seg < list->num_segs; seg++) {
if ((seg % MAX_SEGS_PER_SG) == 0) {
sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
sg->ld_type = NIX_SEND_LDTYPE_LDD;
sg->subdc = NIX_SUBDC_SG;
sg->segs = 0;
sg_lens = (void *)sg;
iova = (void *)sg + sizeof(*sg);
/* Next subdc always starts at a 16byte boundary.
* So if sg->segs is whether 2 or 3, offset += 16bytes.
*/
if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
*offset += sizeof(*sg) + (3 * sizeof(u64));
else
*offset += sizeof(*sg) + sizeof(u64);
}
sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg];
*iova++ = list->dma_addr[seg];
sg->segs++;
}
}
static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
struct sk_buff *skb, u16 qidx)
{
struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx);
int hdr_len, tcp_data, seg_len, pkt_len, offset;
struct nix_sqe_hdr_s *sqe_hdr;
int first_sqe = sq->head;
struct sg_list list;
struct tso_t tso;
hdr_len = tso_start(skb, &tso);
/* Map SKB's fragments to DMA.
* It's done here to avoid mapping for every TSO segment's packet.
*/
if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) {
dev_kfree_skb_any(skb);
return;
}
netdev_tx_sent_queue(txq, skb->len);
tcp_data = skb->len - hdr_len;
while (tcp_data > 0) {
char *hdr;
seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data);
tcp_data -= seg_len;
/* Set SQE's SEND_HDR */
memset(sq->sqe_base, 0, sq->sqe_size);
sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
offset = sizeof(*sqe_hdr);
/* Add TSO segment's pkt header */
hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE);
tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0);
list.dma_addr[0] =
sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE);
list.size[0] = hdr_len;
list.num_segs = 1;
/* Add TSO segment's payload data fragments */
pkt_len = hdr_len;
while (seg_len > 0) {
int size;
size = min_t(int, tso.size, seg_len);
list.size[list.num_segs] = size;
list.dma_addr[list.num_segs] =
otx2_tso_frag_dma_addr(sq, skb,
tso.next_frag_idx - 1,
(u64)tso.data, hdr_len,
first_sqe);
list.num_segs++;
pkt_len += size;
seg_len -= size;
tso_build_data(skb, &tso, size);
}
sqe_hdr->total = pkt_len;
otx2_sqe_tso_add_sg(sq, &list, &offset);
/* DMA mappings and skb needs to be freed only after last
* TSO segment is transmitted out. So set 'PNC' only for
* last segment. Also point last segment's sqe_id to first
* segment's SQE index where skb address and DMA mappings
* are saved.
*/
if (!tcp_data) {
sqe_hdr->pnc = 1;
sqe_hdr->sqe_id = first_sqe;
sq->sg[first_sqe].skb = (u64)skb;
} else {
sqe_hdr->pnc = 0;
}
sqe_hdr->sizem1 = (offset / 16) - 1;
/* Flush SQE to HW */
pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
}
}
static bool is_hw_tso_supported(struct otx2_nic *pfvf,
struct sk_buff *skb)
{
int payload_len, last_seg_size;
if (test_bit(HW_TSO, &pfvf->hw.cap_flag))
return true;
/* On 96xx A0, HW TSO not supported */
if (!is_96xx_B0(pfvf->pdev))
return false;
/* HW has an issue due to which when the payload of the last LSO
* segment is shorter than 16 bytes, some header fields may not
* be correctly modified, hence don't offload such TSO segments.
*/
payload_len = skb->len - skb_tcp_all_headers(skb);
last_seg_size = payload_len % skb_shinfo(skb)->gso_size;
if (last_seg_size && last_seg_size < 16)
return false;
return true;
}
static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb)
{
if (!skb_shinfo(skb)->gso_size)
return 1;
/* HW TSO */
if (is_hw_tso_supported(pfvf, skb))
return 1;
/* SW TSO */
return skb_shinfo(skb)->gso_segs;
}
static bool otx2_validate_network_transport(struct sk_buff *skb)
{
if ((ip_hdr(skb)->protocol == IPPROTO_UDP) ||
(ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)) {
struct udphdr *udph = udp_hdr(skb);
if (udph->source == htons(PTP_PORT) &&
udph->dest == htons(PTP_PORT))
return true;
}
return false;
}
static bool otx2_ptp_is_sync(struct sk_buff *skb, int *offset, bool *udp_csum_crt)
{
struct ethhdr *eth = (struct ethhdr *)(skb->data);
u16 nix_offload_hlen = 0, inner_vhlen = 0;
bool udp_hdr_present = false, is_sync;
u8 *data = skb->data, *msgtype;
__be16 proto = eth->h_proto;
int network_depth = 0;
/* NIX is programmed to offload outer VLAN header
* in case of single vlan protocol field holds Network header ETH_IP/V6
* in case of stacked vlan protocol field holds Inner vlan (8100)
*/
if (skb->dev->features & NETIF_F_HW_VLAN_CTAG_TX &&
skb->dev->features & NETIF_F_HW_VLAN_STAG_TX) {
if (skb->vlan_proto == htons(ETH_P_8021AD)) {
/* Get vlan protocol */
proto = __vlan_get_protocol(skb, eth->h_proto, NULL);
/* SKB APIs like skb_transport_offset does not include
* offloaded vlan header length. Need to explicitly add
* the length
*/
nix_offload_hlen = VLAN_HLEN;
inner_vhlen = VLAN_HLEN;
} else if (skb->vlan_proto == htons(ETH_P_8021Q)) {
nix_offload_hlen = VLAN_HLEN;
}
} else if (eth_type_vlan(eth->h_proto)) {
proto = __vlan_get_protocol(skb, eth->h_proto, &network_depth);
}
switch (ntohs(proto)) {
case ETH_P_1588:
if (network_depth)
*offset = network_depth;
else
*offset = ETH_HLEN + nix_offload_hlen +
inner_vhlen;
break;
case ETH_P_IP:
case ETH_P_IPV6:
if (!otx2_validate_network_transport(skb))
return false;
*offset = nix_offload_hlen + skb_transport_offset(skb) +
sizeof(struct udphdr);
udp_hdr_present = true;
}
msgtype = data + *offset;
/* Check PTP messageId is SYNC or not */
is_sync = !(*msgtype & 0xf);
if (is_sync)
*udp_csum_crt = udp_hdr_present;
else
*offset = 0;
return is_sync;
}
static void otx2_set_txtstamp(struct otx2_nic *pfvf, struct sk_buff *skb,
struct otx2_snd_queue *sq, int *offset)
{
struct ethhdr *eth = (struct ethhdr *)(skb->data);
struct ptpv2_tstamp *origin_tstamp;
bool udp_csum_crt = false;
unsigned int udphoff;
struct timespec64 ts;
int ptp_offset = 0;
__wsum skb_csum;
u64 iova;
if (unlikely(!skb_shinfo(skb)->gso_size &&
(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) {
if (unlikely(pfvf->flags & OTX2_FLAG_PTP_ONESTEP_SYNC &&
otx2_ptp_is_sync(skb, &ptp_offset, &udp_csum_crt))) {
origin_tstamp = (struct ptpv2_tstamp *)
((u8 *)skb->data + ptp_offset +
PTP_SYNC_SEC_OFFSET);
ts = ns_to_timespec64(pfvf->ptp->tstamp);
origin_tstamp->seconds_msb = htons((ts.tv_sec >> 32) & 0xffff);
origin_tstamp->seconds_lsb = htonl(ts.tv_sec & 0xffffffff);
origin_tstamp->nanoseconds = htonl(ts.tv_nsec);
/* Point to correction field in PTP packet */
ptp_offset += 8;
/* When user disables hw checksum, stack calculates the csum,
* but it does not cover ptp timestamp which is added later.
* Recalculate the checksum manually considering the timestamp.
*/
if (udp_csum_crt) {
struct udphdr *uh = udp_hdr(skb);
if (skb->ip_summed != CHECKSUM_PARTIAL && uh->check != 0) {
udphoff = skb_transport_offset(skb);
uh->check = 0;
skb_csum = skb_checksum(skb, udphoff, skb->len - udphoff,
0);
if (ntohs(eth->h_proto) == ETH_P_IPV6)
uh->check = csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
skb->len - udphoff,
ipv6_hdr(skb)->nexthdr,
skb_csum);
else
uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr,
skb->len - udphoff,
IPPROTO_UDP,
skb_csum);
}
}
} else {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
}
iova = sq->timestamps->iova + (sq->head * sizeof(u64));
otx2_sqe_add_mem(sq, offset, NIX_SENDMEMALG_E_SETTSTMP, iova,
ptp_offset, pfvf->ptp->base_ns, udp_csum_crt);
} else {
skb_tx_timestamp(skb);
}
}
bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq,
struct sk_buff *skb, u16 qidx)
{
struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx);
struct otx2_nic *pfvf = netdev_priv(netdev);
int offset, num_segs, free_desc;
struct nix_sqe_hdr_s *sqe_hdr;
/* Check if there is enough room between producer
* and consumer index.
*/
free_desc = (sq->cons_head - sq->head - 1 + sq->sqe_cnt) & (sq->sqe_cnt - 1);
if (free_desc < sq->sqe_thresh)
return false;
if (free_desc < otx2_get_sqe_count(pfvf, skb))
return false;
num_segs = skb_shinfo(skb)->nr_frags + 1;
/* If SKB doesn't fit in a single SQE, linearize it.
* TODO: Consider adding JUMP descriptor instead.
*/
if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) {
if (__skb_linearize(skb)) {
dev_kfree_skb_any(skb);
return true;
}
num_segs = skb_shinfo(skb)->nr_frags + 1;
}
if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) {
/* Insert vlan tag before giving pkt to tso */
if (skb_vlan_tag_present(skb)) {
skb = __vlan_hwaccel_push_inside(skb);
if (!skb)
return true;
}
otx2_sq_append_tso(pfvf, sq, skb, qidx);
return true;
}
/* Set SQE's SEND_HDR.
* Do not clear the first 64bit as it contains constant info.
*/
memset(sq->sqe_base + 8, 0, sq->sqe_size - 8);
sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
offset = sizeof(*sqe_hdr);
/* Add extended header if needed */
otx2_sqe_add_ext(pfvf, sq, skb, &offset);
/* Add SG subdesc with data frags */
if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) {
otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]);
return false;
}
otx2_set_txtstamp(pfvf, skb, sq, &offset);
sqe_hdr->sizem1 = (offset / 16) - 1;
netdev_tx_sent_queue(txq, skb->len);
/* Flush SQE to HW */
pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
return true;
}
EXPORT_SYMBOL(otx2_sq_append_skb);
void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, int qidx)
{
struct nix_cqe_rx_s *cqe;
struct otx2_pool *pool;
int processed_cqe = 0;
u16 pool_id;
u64 iova;
if (pfvf->xdp_prog)
xdp_rxq_info_unreg(&cq->xdp_rxq);
if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
return;
pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
pool = &pfvf->qset.pool[pool_id];
while (cq->pend_cqe) {
cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq);
processed_cqe++;
cq->pend_cqe--;
if (!cqe)
continue;
if (cqe->sg.segs > 1) {
otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx);
continue;
}
iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM;
otx2_free_bufs(pfvf, pool, iova, pfvf->rbsize);
}
/* Free CQEs to HW */
otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
((u64)cq->cq_idx << 32) | processed_cqe);
}
void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq)
{
int tx_pkts = 0, tx_bytes = 0;
struct sk_buff *skb = NULL;
struct otx2_snd_queue *sq;
struct nix_cqe_tx_s *cqe;
struct netdev_queue *txq;
int processed_cqe = 0;
struct sg_list *sg;
int qidx;
qidx = cq->cq_idx - pfvf->hw.rx_queues;
sq = &pfvf->qset.sq[qidx];
if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
return;
while (cq->pend_cqe) {
cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq);
processed_cqe++;
cq->pend_cqe--;
if (!cqe)
continue;
sg = &sq->sg[cqe->comp.sqe_id];
skb = (struct sk_buff *)sg->skb;
if (skb) {
tx_bytes += skb->len;
tx_pkts++;
otx2_dma_unmap_skb_frags(pfvf, sg);
dev_kfree_skb_any(skb);
sg->skb = (u64)NULL;
}
}
if (likely(tx_pkts)) {
if (qidx >= pfvf->hw.tx_queues)
qidx -= pfvf->hw.xdp_queues;
txq = netdev_get_tx_queue(pfvf->netdev, qidx);
netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
}
/* Free CQEs to HW */
otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
((u64)cq->cq_idx << 32) | processed_cqe);
}
int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable)
{
struct msg_req *msg;
int err;
mutex_lock(&pfvf->mbox.lock);
if (enable)
msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox);
else
msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox);
if (!msg) {
mutex_unlock(&pfvf->mbox.lock);
return -ENOMEM;
}
err = otx2_sync_mbox_msg(&pfvf->mbox);
mutex_unlock(&pfvf->mbox.lock);
return err;
}
void otx2_free_pending_sqe(struct otx2_nic *pfvf)
{
int tx_pkts = 0, tx_bytes = 0;
struct sk_buff *skb = NULL;
struct otx2_snd_queue *sq;
struct netdev_queue *txq;
struct sg_list *sg;
int sq_idx, sqe;
for (sq_idx = 0; sq_idx < pfvf->hw.tx_queues; sq_idx++) {
sq = &pfvf->qset.sq[sq_idx];
for (sqe = 0; sqe < sq->sqe_cnt; sqe++) {
sg = &sq->sg[sqe];
skb = (struct sk_buff *)sg->skb;
if (skb) {
tx_bytes += skb->len;
tx_pkts++;
otx2_dma_unmap_skb_frags(pfvf, sg);
dev_kfree_skb_any(skb);
sg->skb = (u64)NULL;
}
}
if (!tx_pkts)
continue;
txq = netdev_get_tx_queue(pfvf->netdev, sq_idx);
netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
tx_pkts = 0;
tx_bytes = 0;
}
}
static void otx2_xdp_sqe_add_sg(struct otx2_snd_queue *sq, u64 dma_addr,
int len, int *offset)
{
struct nix_sqe_sg_s *sg = NULL;
u64 *iova = NULL;
sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
sg->ld_type = NIX_SEND_LDTYPE_LDD;
sg->subdc = NIX_SUBDC_SG;
sg->segs = 1;
sg->seg1_size = len;
iova = (void *)sg + sizeof(*sg);
*iova = dma_addr;
*offset += sizeof(*sg) + sizeof(u64);
sq->sg[sq->head].dma_addr[0] = dma_addr;
sq->sg[sq->head].size[0] = len;
sq->sg[sq->head].num_segs = 1;
}
bool otx2_xdp_sq_append_pkt(struct otx2_nic *pfvf, u64 iova, int len, u16 qidx)
{
struct nix_sqe_hdr_s *sqe_hdr;
struct otx2_snd_queue *sq;
int offset, free_sqe;
sq = &pfvf->qset.sq[qidx];
free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb;
if (free_sqe < sq->sqe_thresh)
return false;
memset(sq->sqe_base + 8, 0, sq->sqe_size - 8);
sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
if (!sqe_hdr->total) {
sqe_hdr->aura = sq->aura_id;
sqe_hdr->df = 1;
sqe_hdr->sq = qidx;
sqe_hdr->pnc = 1;
}
sqe_hdr->total = len;
sqe_hdr->sqe_id = sq->head;
offset = sizeof(*sqe_hdr);
otx2_xdp_sqe_add_sg(sq, iova, len, &offset);
sqe_hdr->sizem1 = (offset / 16) - 1;
pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
return true;
}
static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf,
struct bpf_prog *prog,
struct nix_cqe_rx_s *cqe,
struct otx2_cq_queue *cq,
bool *need_xdp_flush)
{
unsigned char *hard_start;
int qidx = cq->cq_idx;
struct xdp_buff xdp;
struct page *page;
u64 iova, pa;
u32 act;
int err;
iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM;
pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
page = virt_to_page(phys_to_virt(pa));
xdp_init_buff(&xdp, pfvf->rbsize, &cq->xdp_rxq);
hard_start = (unsigned char *)phys_to_virt(pa);
xdp_prepare_buff(&xdp, hard_start, OTX2_HEAD_ROOM,
cqe->sg.seg_size, false);
act = bpf_prog_run_xdp(prog, &xdp);
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
qidx += pfvf->hw.tx_queues;
cq->pool_ptrs++;
return otx2_xdp_sq_append_pkt(pfvf, iova,
cqe->sg.seg_size, qidx);
case XDP_REDIRECT:
cq->pool_ptrs++;
err = xdp_do_redirect(pfvf->netdev, &xdp, prog);
otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize,
DMA_FROM_DEVICE);
if (!err) {
*need_xdp_flush = true;
return true;
}
put_page(page);
break;
default:
bpf_warn_invalid_xdp_action(pfvf->netdev, prog, act);
break;
case XDP_ABORTED:
trace_xdp_exception(pfvf->netdev, prog, act);
break;
case XDP_DROP:
otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize,
DMA_FROM_DEVICE);
put_page(page);
cq->pool_ptrs++;
return true;
}
return false;
}