// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2020 MediaTek Corporation
* Copyright (c) 2020 BayLibre SAS
*
* Author: Bartosz Golaszewski <[email protected]>
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/compiler.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/regmap.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#define MTK_STAR_DRVNAME "mtk_star_emac"
#define MTK_STAR_WAIT_TIMEOUT 300
#define MTK_STAR_MAX_FRAME_SIZE 1514
#define MTK_STAR_SKB_ALIGNMENT 16
#define MTK_STAR_HASHTABLE_MC_LIMIT 256
#define MTK_STAR_HASHTABLE_SIZE_MAX 512
#define MTK_STAR_DESC_NEEDED (MAX_SKB_FRAGS + 4)
/* Normally we'd use NET_IP_ALIGN but on arm64 its value is 0 and it doesn't
* work for this controller.
*/
#define MTK_STAR_IP_ALIGN 2
static const char *const mtk_star_clk_names[] = { "core", "reg", "trans" };
#define MTK_STAR_NCLKS ARRAY_SIZE(mtk_star_clk_names)
/* PHY Control Register 0 */
#define MTK_STAR_REG_PHY_CTRL0 0x0000
#define MTK_STAR_BIT_PHY_CTRL0_WTCMD BIT(13)
#define MTK_STAR_BIT_PHY_CTRL0_RDCMD BIT(14)
#define MTK_STAR_BIT_PHY_CTRL0_RWOK BIT(15)
#define MTK_STAR_MSK_PHY_CTRL0_PREG GENMASK(12, 8)
#define MTK_STAR_OFF_PHY_CTRL0_PREG 8
#define MTK_STAR_MSK_PHY_CTRL0_RWDATA GENMASK(31, 16)
#define MTK_STAR_OFF_PHY_CTRL0_RWDATA 16
/* PHY Control Register 1 */
#define MTK_STAR_REG_PHY_CTRL1 0x0004
#define MTK_STAR_BIT_PHY_CTRL1_LINK_ST BIT(0)
#define MTK_STAR_BIT_PHY_CTRL1_AN_EN BIT(8)
#define MTK_STAR_OFF_PHY_CTRL1_FORCE_SPD 9
#define MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_10M 0x00
#define MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_100M 0x01
#define MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_1000M 0x02
#define MTK_STAR_BIT_PHY_CTRL1_FORCE_DPX BIT(11)
#define MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_RX BIT(12)
#define MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_TX BIT(13)
/* MAC Configuration Register */
#define MTK_STAR_REG_MAC_CFG 0x0008
#define MTK_STAR_OFF_MAC_CFG_IPG 10
#define MTK_STAR_VAL_MAC_CFG_IPG_96BIT GENMASK(4, 0)
#define MTK_STAR_BIT_MAC_CFG_MAXLEN_1522 BIT(16)
#define MTK_STAR_BIT_MAC_CFG_AUTO_PAD BIT(19)
#define MTK_STAR_BIT_MAC_CFG_CRC_STRIP BIT(20)
#define MTK_STAR_BIT_MAC_CFG_VLAN_STRIP BIT(22)
#define MTK_STAR_BIT_MAC_CFG_NIC_PD BIT(31)
/* Flow-Control Configuration Register */
#define MTK_STAR_REG_FC_CFG 0x000c
#define MTK_STAR_BIT_FC_CFG_BP_EN BIT(7)
#define MTK_STAR_BIT_FC_CFG_UC_PAUSE_DIR BIT(8)
#define MTK_STAR_OFF_FC_CFG_SEND_PAUSE_TH 16
#define MTK_STAR_MSK_FC_CFG_SEND_PAUSE_TH GENMASK(27, 16)
#define MTK_STAR_VAL_FC_CFG_SEND_PAUSE_TH_2K 0x800
/* ARL Configuration Register */
#define MTK_STAR_REG_ARL_CFG 0x0010
#define MTK_STAR_BIT_ARL_CFG_HASH_ALG BIT(0)
#define MTK_STAR_BIT_ARL_CFG_MISC_MODE BIT(4)
/* MAC High and Low Bytes Registers */
#define MTK_STAR_REG_MY_MAC_H 0x0014
#define MTK_STAR_REG_MY_MAC_L 0x0018
/* Hash Table Control Register */
#define MTK_STAR_REG_HASH_CTRL 0x001c
#define MTK_STAR_MSK_HASH_CTRL_HASH_BIT_ADDR GENMASK(8, 0)
#define MTK_STAR_BIT_HASH_CTRL_HASH_BIT_DATA BIT(12)
#define MTK_STAR_BIT_HASH_CTRL_ACC_CMD BIT(13)
#define MTK_STAR_BIT_HASH_CTRL_CMD_START BIT(14)
#define MTK_STAR_BIT_HASH_CTRL_BIST_OK BIT(16)
#define MTK_STAR_BIT_HASH_CTRL_BIST_DONE BIT(17)
#define MTK_STAR_BIT_HASH_CTRL_BIST_EN BIT(31)
/* TX DMA Control Register */
#define MTK_STAR_REG_TX_DMA_CTRL 0x0034
#define MTK_STAR_BIT_TX_DMA_CTRL_START BIT(0)
#define MTK_STAR_BIT_TX_DMA_CTRL_STOP BIT(1)
#define MTK_STAR_BIT_TX_DMA_CTRL_RESUME BIT(2)
/* RX DMA Control Register */
#define MTK_STAR_REG_RX_DMA_CTRL 0x0038
#define MTK_STAR_BIT_RX_DMA_CTRL_START BIT(0)
#define MTK_STAR_BIT_RX_DMA_CTRL_STOP BIT(1)
#define MTK_STAR_BIT_RX_DMA_CTRL_RESUME BIT(2)
/* DMA Address Registers */
#define MTK_STAR_REG_TX_DPTR 0x003c
#define MTK_STAR_REG_RX_DPTR 0x0040
#define MTK_STAR_REG_TX_BASE_ADDR 0x0044
#define MTK_STAR_REG_RX_BASE_ADDR 0x0048
/* Interrupt Status Register */
#define MTK_STAR_REG_INT_STS 0x0050
#define MTK_STAR_REG_INT_STS_PORT_STS_CHG BIT(2)
#define MTK_STAR_REG_INT_STS_MIB_CNT_TH BIT(3)
#define MTK_STAR_BIT_INT_STS_FNRC BIT(6)
#define MTK_STAR_BIT_INT_STS_TNTC BIT(8)
/* Interrupt Mask Register */
#define MTK_STAR_REG_INT_MASK 0x0054
#define MTK_STAR_BIT_INT_MASK_FNRC BIT(6)
/* Delay-Macro Register */
#define MTK_STAR_REG_TEST0 0x0058
#define MTK_STAR_BIT_INV_RX_CLK BIT(30)
#define MTK_STAR_BIT_INV_TX_CLK BIT(31)
/* Misc. Config Register */
#define MTK_STAR_REG_TEST1 0x005c
#define MTK_STAR_BIT_TEST1_RST_HASH_MBIST BIT(31)
/* Extended Configuration Register */
#define MTK_STAR_REG_EXT_CFG 0x0060
#define MTK_STAR_OFF_EXT_CFG_SND_PAUSE_RLS 16
#define MTK_STAR_MSK_EXT_CFG_SND_PAUSE_RLS GENMASK(26, 16)
#define MTK_STAR_VAL_EXT_CFG_SND_PAUSE_RLS_1K 0x400
/* EthSys Configuration Register */
#define MTK_STAR_REG_SYS_CONF 0x0094
#define MTK_STAR_BIT_MII_PAD_OUT_ENABLE BIT(0)
#define MTK_STAR_BIT_EXT_MDC_MODE BIT(1)
#define MTK_STAR_BIT_SWC_MII_MODE BIT(2)
/* MAC Clock Configuration Register */
#define MTK_STAR_REG_MAC_CLK_CONF 0x00ac
#define MTK_STAR_MSK_MAC_CLK_CONF GENMASK(7, 0)
#define MTK_STAR_BIT_CLK_DIV_10 0x0a
#define MTK_STAR_BIT_CLK_DIV_50 0x32
/* Counter registers. */
#define MTK_STAR_REG_C_RXOKPKT 0x0100
#define MTK_STAR_REG_C_RXOKBYTE 0x0104
#define MTK_STAR_REG_C_RXRUNT 0x0108
#define MTK_STAR_REG_C_RXLONG 0x010c
#define MTK_STAR_REG_C_RXDROP 0x0110
#define MTK_STAR_REG_C_RXCRC 0x0114
#define MTK_STAR_REG_C_RXARLDROP 0x0118
#define MTK_STAR_REG_C_RXVLANDROP 0x011c
#define MTK_STAR_REG_C_RXCSERR 0x0120
#define MTK_STAR_REG_C_RXPAUSE 0x0124
#define MTK_STAR_REG_C_TXOKPKT 0x0128
#define MTK_STAR_REG_C_TXOKBYTE 0x012c
#define MTK_STAR_REG_C_TXPAUSECOL 0x0130
#define MTK_STAR_REG_C_TXRTY 0x0134
#define MTK_STAR_REG_C_TXSKIP 0x0138
#define MTK_STAR_REG_C_TX_ARP 0x013c
#define MTK_STAR_REG_C_RX_RERR 0x01d8
#define MTK_STAR_REG_C_RX_UNI 0x01dc
#define MTK_STAR_REG_C_RX_MULTI 0x01e0
#define MTK_STAR_REG_C_RX_BROAD 0x01e4
#define MTK_STAR_REG_C_RX_ALIGNERR 0x01e8
#define MTK_STAR_REG_C_TX_UNI 0x01ec
#define MTK_STAR_REG_C_TX_MULTI 0x01f0
#define MTK_STAR_REG_C_TX_BROAD 0x01f4
#define MTK_STAR_REG_C_TX_TIMEOUT 0x01f8
#define MTK_STAR_REG_C_TX_LATECOL 0x01fc
#define MTK_STAR_REG_C_RX_LENGTHERR 0x0214
#define MTK_STAR_REG_C_RX_TWIST 0x0218
/* Ethernet CFG Control */
#define MTK_PERICFG_REG_NIC_CFG0_CON 0x03c4
#define MTK_PERICFG_REG_NIC_CFG1_CON 0x03c8
#define MTK_PERICFG_REG_NIC_CFG_CON_V2 0x0c10
#define MTK_PERICFG_REG_NIC_CFG_CON_CFG_INTF GENMASK(3, 0)
#define MTK_PERICFG_BIT_NIC_CFG_CON_MII 0
#define MTK_PERICFG_BIT_NIC_CFG_CON_RMII 1
#define MTK_PERICFG_BIT_NIC_CFG_CON_CLK BIT(0)
#define MTK_PERICFG_BIT_NIC_CFG_CON_CLK_V2 BIT(8)
/* Represents the actual structure of descriptors used by the MAC. We can
* reuse the same structure for both TX and RX - the layout is the same, only
* the flags differ slightly.
*/
struct mtk_star_ring_desc {
/* Contains both the status flags as well as packet length. */
u32 status;
u32 data_ptr;
u32 vtag;
u32 reserved;
};
#define MTK_STAR_DESC_MSK_LEN GENMASK(15, 0)
#define MTK_STAR_DESC_BIT_RX_CRCE BIT(24)
#define MTK_STAR_DESC_BIT_RX_OSIZE BIT(25)
#define MTK_STAR_DESC_BIT_INT BIT(27)
#define MTK_STAR_DESC_BIT_LS BIT(28)
#define MTK_STAR_DESC_BIT_FS BIT(29)
#define MTK_STAR_DESC_BIT_EOR BIT(30)
#define MTK_STAR_DESC_BIT_COWN BIT(31)
/* Helper structure for storing data read from/written to descriptors in order
* to limit reads from/writes to DMA memory.
*/
struct mtk_star_ring_desc_data {
unsigned int len;
unsigned int flags;
dma_addr_t dma_addr;
struct sk_buff *skb;
};
#define MTK_STAR_RING_NUM_DESCS 512
#define MTK_STAR_TX_THRESH (MTK_STAR_RING_NUM_DESCS / 4)
#define MTK_STAR_NUM_TX_DESCS MTK_STAR_RING_NUM_DESCS
#define MTK_STAR_NUM_RX_DESCS MTK_STAR_RING_NUM_DESCS
#define MTK_STAR_NUM_DESCS_TOTAL (MTK_STAR_RING_NUM_DESCS * 2)
#define MTK_STAR_DMA_SIZE \
(MTK_STAR_NUM_DESCS_TOTAL * sizeof(struct mtk_star_ring_desc))
struct mtk_star_ring {
struct mtk_star_ring_desc *descs;
struct sk_buff *skbs[MTK_STAR_RING_NUM_DESCS];
dma_addr_t dma_addrs[MTK_STAR_RING_NUM_DESCS];
unsigned int head;
unsigned int tail;
};
struct mtk_star_compat {
int (*set_interface_mode)(struct net_device *ndev);
unsigned char bit_clk_div;
};
struct mtk_star_priv {
struct net_device *ndev;
struct regmap *regs;
struct regmap *pericfg;
struct clk_bulk_data clks[MTK_STAR_NCLKS];
void *ring_base;
struct mtk_star_ring_desc *descs_base;
dma_addr_t dma_addr;
struct mtk_star_ring tx_ring;
struct mtk_star_ring rx_ring;
struct mii_bus *mii;
struct napi_struct tx_napi;
struct napi_struct rx_napi;
struct device_node *phy_node;
phy_interface_t phy_intf;
struct phy_device *phydev;
unsigned int link;
int speed;
int duplex;
int pause;
bool rmii_rxc;
bool rx_inv;
bool tx_inv;
const struct mtk_star_compat *compat_data;
/* Protects against concurrent descriptor access. */
spinlock_t lock;
struct rtnl_link_stats64 stats;
};
static struct device *mtk_star_get_dev(struct mtk_star_priv *priv)
{
return priv->ndev->dev.parent;
}
static const struct regmap_config mtk_star_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.disable_locking = true,
};
static void mtk_star_ring_init(struct mtk_star_ring *ring,
struct mtk_star_ring_desc *descs)
{
memset(ring, 0, sizeof(*ring));
ring->descs = descs;
ring->head = 0;
ring->tail = 0;
}
static int mtk_star_ring_pop_tail(struct mtk_star_ring *ring,
struct mtk_star_ring_desc_data *desc_data)
{
struct mtk_star_ring_desc *desc = &ring->descs[ring->tail];
unsigned int status;
status = READ_ONCE(desc->status);
dma_rmb(); /* Make sure we read the status bits before checking it. */
if (!(status & MTK_STAR_DESC_BIT_COWN))
return -1;
desc_data->len = status & MTK_STAR_DESC_MSK_LEN;
desc_data->flags = status & ~MTK_STAR_DESC_MSK_LEN;
desc_data->dma_addr = ring->dma_addrs[ring->tail];
desc_data->skb = ring->skbs[ring->tail];
ring->dma_addrs[ring->tail] = 0;
ring->skbs[ring->tail] = NULL;
status &= MTK_STAR_DESC_BIT_COWN | MTK_STAR_DESC_BIT_EOR;
WRITE_ONCE(desc->data_ptr, 0);
WRITE_ONCE(desc->status, status);
ring->tail = (ring->tail + 1) % MTK_STAR_RING_NUM_DESCS;
return 0;
}
static void mtk_star_ring_push_head(struct mtk_star_ring *ring,
struct mtk_star_ring_desc_data *desc_data,
unsigned int flags)
{
struct mtk_star_ring_desc *desc = &ring->descs[ring->head];
unsigned int status;
status = READ_ONCE(desc->status);
ring->skbs[ring->head] = desc_data->skb;
ring->dma_addrs[ring->head] = desc_data->dma_addr;
status |= desc_data->len;
if (flags)
status |= flags;
WRITE_ONCE(desc->data_ptr, desc_data->dma_addr);
WRITE_ONCE(desc->status, status);
status &= ~MTK_STAR_DESC_BIT_COWN;
/* Flush previous modifications before ownership change. */
dma_wmb();
WRITE_ONCE(desc->status, status);
ring->head = (ring->head + 1) % MTK_STAR_RING_NUM_DESCS;
}
static void
mtk_star_ring_push_head_rx(struct mtk_star_ring *ring,
struct mtk_star_ring_desc_data *desc_data)
{
mtk_star_ring_push_head(ring, desc_data, 0);
}
static void
mtk_star_ring_push_head_tx(struct mtk_star_ring *ring,
struct mtk_star_ring_desc_data *desc_data)
{
static const unsigned int flags = MTK_STAR_DESC_BIT_FS |
MTK_STAR_DESC_BIT_LS |
MTK_STAR_DESC_BIT_INT;
mtk_star_ring_push_head(ring, desc_data, flags);
}
static unsigned int mtk_star_tx_ring_avail(struct mtk_star_ring *ring)
{
u32 avail;
if (ring->tail > ring->head)
avail = ring->tail - ring->head - 1;
else
avail = MTK_STAR_RING_NUM_DESCS - ring->head + ring->tail - 1;
return avail;
}
static dma_addr_t mtk_star_dma_map_rx(struct mtk_star_priv *priv,
struct sk_buff *skb)
{
struct device *dev = mtk_star_get_dev(priv);
/* Data pointer for the RX DMA descriptor must be aligned to 4N + 2. */
return dma_map_single(dev, skb_tail_pointer(skb) - 2,
skb_tailroom(skb), DMA_FROM_DEVICE);
}
static void mtk_star_dma_unmap_rx(struct mtk_star_priv *priv,
struct mtk_star_ring_desc_data *desc_data)
{
struct device *dev = mtk_star_get_dev(priv);
dma_unmap_single(dev, desc_data->dma_addr,
skb_tailroom(desc_data->skb), DMA_FROM_DEVICE);
}
static dma_addr_t mtk_star_dma_map_tx(struct mtk_star_priv *priv,
struct sk_buff *skb)
{
struct device *dev = mtk_star_get_dev(priv);
return dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
}
static void mtk_star_dma_unmap_tx(struct mtk_star_priv *priv,
struct mtk_star_ring_desc_data *desc_data)
{
struct device *dev = mtk_star_get_dev(priv);
return dma_unmap_single(dev, desc_data->dma_addr,
skb_headlen(desc_data->skb), DMA_TO_DEVICE);
}
static void mtk_star_nic_disable_pd(struct mtk_star_priv *priv)
{
regmap_clear_bits(priv->regs, MTK_STAR_REG_MAC_CFG,
MTK_STAR_BIT_MAC_CFG_NIC_PD);
}
static void mtk_star_enable_dma_irq(struct mtk_star_priv *priv,
bool rx, bool tx)
{
u32 value;
regmap_read(priv->regs, MTK_STAR_REG_INT_MASK, &value);
if (tx)
value &= ~MTK_STAR_BIT_INT_STS_TNTC;
if (rx)
value &= ~MTK_STAR_BIT_INT_STS_FNRC;
regmap_write(priv->regs, MTK_STAR_REG_INT_MASK, value);
}
static void mtk_star_disable_dma_irq(struct mtk_star_priv *priv,
bool rx, bool tx)
{
u32 value;
regmap_read(priv->regs, MTK_STAR_REG_INT_MASK, &value);
if (tx)
value |= MTK_STAR_BIT_INT_STS_TNTC;
if (rx)
value |= MTK_STAR_BIT_INT_STS_FNRC;
regmap_write(priv->regs, MTK_STAR_REG_INT_MASK, value);
}
/* Unmask the three interrupts we care about, mask all others. */
static void mtk_star_intr_enable(struct mtk_star_priv *priv)
{
unsigned int val = MTK_STAR_BIT_INT_STS_TNTC |
MTK_STAR_BIT_INT_STS_FNRC |
MTK_STAR_REG_INT_STS_MIB_CNT_TH;
regmap_write(priv->regs, MTK_STAR_REG_INT_MASK, ~val);
}
static void mtk_star_intr_disable(struct mtk_star_priv *priv)
{
regmap_write(priv->regs, MTK_STAR_REG_INT_MASK, ~0);
}
static unsigned int mtk_star_intr_ack_all(struct mtk_star_priv *priv)
{
unsigned int val;
regmap_read(priv->regs, MTK_STAR_REG_INT_STS, &val);
regmap_write(priv->regs, MTK_STAR_REG_INT_STS, val);
return val;
}
static void mtk_star_dma_init(struct mtk_star_priv *priv)
{
struct mtk_star_ring_desc *desc;
unsigned int val;
int i;
priv->descs_base = (struct mtk_star_ring_desc *)priv->ring_base;
for (i = 0; i < MTK_STAR_NUM_DESCS_TOTAL; i++) {
desc = &priv->descs_base[i];
memset(desc, 0, sizeof(*desc));
desc->status = MTK_STAR_DESC_BIT_COWN;
if ((i == MTK_STAR_NUM_TX_DESCS - 1) ||
(i == MTK_STAR_NUM_DESCS_TOTAL - 1))
desc->status |= MTK_STAR_DESC_BIT_EOR;
}
mtk_star_ring_init(&priv->tx_ring, priv->descs_base);
mtk_star_ring_init(&priv->rx_ring,
priv->descs_base + MTK_STAR_NUM_TX_DESCS);
/* Set DMA pointers. */
val = (unsigned int)priv->dma_addr;
regmap_write(priv->regs, MTK_STAR_REG_TX_BASE_ADDR, val);
regmap_write(priv->regs, MTK_STAR_REG_TX_DPTR, val);
val += sizeof(struct mtk_star_ring_desc) * MTK_STAR_NUM_TX_DESCS;
regmap_write(priv->regs, MTK_STAR_REG_RX_BASE_ADDR, val);
regmap_write(priv->regs, MTK_STAR_REG_RX_DPTR, val);
}
static void mtk_star_dma_start(struct mtk_star_priv *priv)
{
regmap_set_bits(priv->regs, MTK_STAR_REG_TX_DMA_CTRL,
MTK_STAR_BIT_TX_DMA_CTRL_START);
regmap_set_bits(priv->regs, MTK_STAR_REG_RX_DMA_CTRL,
MTK_STAR_BIT_RX_DMA_CTRL_START);
}
static void mtk_star_dma_stop(struct mtk_star_priv *priv)
{
regmap_write(priv->regs, MTK_STAR_REG_TX_DMA_CTRL,
MTK_STAR_BIT_TX_DMA_CTRL_STOP);
regmap_write(priv->regs, MTK_STAR_REG_RX_DMA_CTRL,
MTK_STAR_BIT_RX_DMA_CTRL_STOP);
}
static void mtk_star_dma_disable(struct mtk_star_priv *priv)
{
int i;
mtk_star_dma_stop(priv);
/* Take back all descriptors. */
for (i = 0; i < MTK_STAR_NUM_DESCS_TOTAL; i++)
priv->descs_base[i].status |= MTK_STAR_DESC_BIT_COWN;
}
static void mtk_star_dma_resume_rx(struct mtk_star_priv *priv)
{
regmap_set_bits(priv->regs, MTK_STAR_REG_RX_DMA_CTRL,
MTK_STAR_BIT_RX_DMA_CTRL_RESUME);
}
static void mtk_star_dma_resume_tx(struct mtk_star_priv *priv)
{
regmap_set_bits(priv->regs, MTK_STAR_REG_TX_DMA_CTRL,
MTK_STAR_BIT_TX_DMA_CTRL_RESUME);
}
static void mtk_star_set_mac_addr(struct net_device *ndev)
{
struct mtk_star_priv *priv = netdev_priv(ndev);
const u8 *mac_addr = ndev->dev_addr;
unsigned int high, low;
high = mac_addr[0] << 8 | mac_addr[1] << 0;
low = mac_addr[2] << 24 | mac_addr[3] << 16 |
mac_addr[4] << 8 | mac_addr[5];
regmap_write(priv->regs, MTK_STAR_REG_MY_MAC_H, high);
regmap_write(priv->regs, MTK_STAR_REG_MY_MAC_L, low);
}
static void mtk_star_reset_counters(struct mtk_star_priv *priv)
{
static const unsigned int counter_regs[] = {
MTK_STAR_REG_C_RXOKPKT,
MTK_STAR_REG_C_RXOKBYTE,
MTK_STAR_REG_C_RXRUNT,
MTK_STAR_REG_C_RXLONG,
MTK_STAR_REG_C_RXDROP,
MTK_STAR_REG_C_RXCRC,
MTK_STAR_REG_C_RXARLDROP,
MTK_STAR_REG_C_RXVLANDROP,
MTK_STAR_REG_C_RXCSERR,
MTK_STAR_REG_C_RXPAUSE,
MTK_STAR_REG_C_TXOKPKT,
MTK_STAR_REG_C_TXOKBYTE,
MTK_STAR_REG_C_TXPAUSECOL,
MTK_STAR_REG_C_TXRTY,
MTK_STAR_REG_C_TXSKIP,
MTK_STAR_REG_C_TX_ARP,
MTK_STAR_REG_C_RX_RERR,
MTK_STAR_REG_C_RX_UNI,
MTK_STAR_REG_C_RX_MULTI,
MTK_STAR_REG_C_RX_BROAD,
MTK_STAR_REG_C_RX_ALIGNERR,
MTK_STAR_REG_C_TX_UNI,
MTK_STAR_REG_C_TX_MULTI,
MTK_STAR_REG_C_TX_BROAD,
MTK_STAR_REG_C_TX_TIMEOUT,
MTK_STAR_REG_C_TX_LATECOL,
MTK_STAR_REG_C_RX_LENGTHERR,
MTK_STAR_REG_C_RX_TWIST,
};
unsigned int i, val;
for (i = 0; i < ARRAY_SIZE(counter_regs); i++)
regmap_read(priv->regs, counter_regs[i], &val);
}
static void mtk_star_update_stat(struct mtk_star_priv *priv,
unsigned int reg, u64 *stat)
{
unsigned int val;
regmap_read(priv->regs, reg, &val);
*stat += val;
}
/* Try to get as many stats as possible from the internal registers instead
* of tracking them ourselves.
*/
static void mtk_star_update_stats(struct mtk_star_priv *priv)
{
struct rtnl_link_stats64 *stats = &priv->stats;
/* OK packets and bytes. */
mtk_star_update_stat(priv, MTK_STAR_REG_C_RXOKPKT, &stats->rx_packets);
mtk_star_update_stat(priv, MTK_STAR_REG_C_TXOKPKT, &stats->tx_packets);
mtk_star_update_stat(priv, MTK_STAR_REG_C_RXOKBYTE, &stats->rx_bytes);
mtk_star_update_stat(priv, MTK_STAR_REG_C_TXOKBYTE, &stats->tx_bytes);
/* RX & TX multicast. */
mtk_star_update_stat(priv, MTK_STAR_REG_C_RX_MULTI, &stats->multicast);
mtk_star_update_stat(priv, MTK_STAR_REG_C_TX_MULTI, &stats->multicast);
/* Collisions. */
mtk_star_update_stat(priv, MTK_STAR_REG_C_TXPAUSECOL,
&stats->collisions);
mtk_star_update_stat(priv, MTK_STAR_REG_C_TX_LATECOL,
&stats->collisions);
mtk_star_update_stat(priv, MTK_STAR_REG_C_RXRUNT, &stats->collisions);
/* RX Errors. */
mtk_star_update_stat(priv, MTK_STAR_REG_C_RX_LENGTHERR,
&stats->rx_length_errors);
mtk_star_update_stat(priv, MTK_STAR_REG_C_RXLONG,
&stats->rx_over_errors);
mtk_star_update_stat(priv, MTK_STAR_REG_C_RXCRC, &stats->rx_crc_errors);
mtk_star_update_stat(priv, MTK_STAR_REG_C_RX_ALIGNERR,
&stats->rx_frame_errors);
mtk_star_update_stat(priv, MTK_STAR_REG_C_RXDROP,
&stats->rx_fifo_errors);
/* Sum of the general RX error counter + all of the above. */
mtk_star_update_stat(priv, MTK_STAR_REG_C_RX_RERR, &stats->rx_errors);
stats->rx_errors += stats->rx_length_errors;
stats->rx_errors += stats->rx_over_errors;
stats->rx_errors += stats->rx_crc_errors;
stats->rx_errors += stats->rx_frame_errors;
stats->rx_errors += stats->rx_fifo_errors;
}
static struct sk_buff *mtk_star_alloc_skb(struct net_device *ndev)
{
uintptr_t tail, offset;
struct sk_buff *skb;
skb = dev_alloc_skb(MTK_STAR_MAX_FRAME_SIZE);
if (!skb)
return NULL;
/* Align to 16 bytes. */
tail = (uintptr_t)skb_tail_pointer(skb);
if (tail & (MTK_STAR_SKB_ALIGNMENT - 1)) {
offset = tail & (MTK_STAR_SKB_ALIGNMENT - 1);
skb_reserve(skb, MTK_STAR_SKB_ALIGNMENT - offset);
}
/* Ensure 16-byte alignment of the skb pointer: eth_type_trans() will
* extract the Ethernet header (14 bytes) so we need two more bytes.
*/
skb_reserve(skb, MTK_STAR_IP_ALIGN);
return skb;
}
static int mtk_star_prepare_rx_skbs(struct net_device *ndev)
{
struct mtk_star_priv *priv = netdev_priv(ndev);
struct mtk_star_ring *ring = &priv->rx_ring;
struct device *dev = mtk_star_get_dev(priv);
struct mtk_star_ring_desc *desc;
struct sk_buff *skb;
dma_addr_t dma_addr;
int i;
for (i = 0; i < MTK_STAR_NUM_RX_DESCS; i++) {
skb = mtk_star_alloc_skb(ndev);
if (!skb)
return -ENOMEM;
dma_addr = mtk_star_dma_map_rx(priv, skb);
if (dma_mapping_error(dev, dma_addr)) {
dev_kfree_skb(skb);
return -ENOMEM;
}
desc = &ring->descs[i];
desc->data_ptr = dma_addr;
desc->status |= skb_tailroom(skb) & MTK_STAR_DESC_MSK_LEN;
desc->status &= ~MTK_STAR_DESC_BIT_COWN;
ring->skbs[i] = skb;
ring->dma_addrs[i] = dma_addr;
}
return 0;
}
static void
mtk_star_ring_free_skbs(struct mtk_star_priv *priv, struct mtk_star_ring *ring,
void (*unmap_func)(struct mtk_star_priv *,
struct mtk_star_ring_desc_data *))
{
struct mtk_star_ring_desc_data desc_data;
int i;
for (i = 0; i < MTK_STAR_RING_NUM_DESCS; i++) {
if (!ring->dma_addrs[i])
continue;
desc_data.dma_addr = ring->dma_addrs[i];
desc_data.skb = ring->skbs[i];
unmap_func(priv, &desc_data);
dev_kfree_skb(desc_data.skb);
}
}
static void mtk_star_free_rx_skbs(struct mtk_star_priv *priv)
{
struct mtk_star_ring *ring = &priv->rx_ring;
mtk_star_ring_free_skbs(priv, ring, mtk_star_dma_unmap_rx);
}
static void mtk_star_free_tx_skbs(struct mtk_star_priv *priv)
{
struct mtk_star_ring *ring = &priv->tx_ring;
mtk_star_ring_free_skbs(priv, ring, mtk_star_dma_unmap_tx);
}
/**
* mtk_star_handle_irq - Interrupt Handler.
* @irq: interrupt number.
* @data: pointer to a network interface device structure.
* Description : this is the driver interrupt service routine.
* it mainly handles:
* 1. tx complete interrupt for frame transmission.
* 2. rx complete interrupt for frame reception.
* 3. MAC Management Counter interrupt to avoid counter overflow.
**/
static irqreturn_t mtk_star_handle_irq(int irq, void *data)
{
struct net_device *ndev = data;
struct mtk_star_priv *priv = netdev_priv(ndev);
unsigned int intr_status = mtk_star_intr_ack_all(priv);
bool rx, tx;
rx = (intr_status & MTK_STAR_BIT_INT_STS_FNRC) &&
napi_schedule_prep(&priv->rx_napi);
tx = (intr_status & MTK_STAR_BIT_INT_STS_TNTC) &&
napi_schedule_prep(&priv->tx_napi);
if (rx || tx) {
spin_lock(&priv->lock);
/* mask Rx and TX Complete interrupt */
mtk_star_disable_dma_irq(priv, rx, tx);
spin_unlock(&priv->lock);
if (rx)
__napi_schedule(&priv->rx_napi);
if (tx)
__napi_schedule(&priv->tx_napi);
}
/* interrupt is triggered once any counters reach 0x8000000 */
if (intr_status & MTK_STAR_REG_INT_STS_MIB_CNT_TH) {
mtk_star_update_stats(priv);
mtk_star_reset_counters(priv);
}
return IRQ_HANDLED;
}
/* Wait for the completion of any previous command - CMD_START bit must be
* cleared by hardware.
*/
static int mtk_star_hash_wait_cmd_start(struct mtk_star_priv *priv)
{
unsigned int val;
return regmap_read_poll_timeout_atomic(priv->regs,
MTK_STAR_REG_HASH_CTRL, val,
!(val & MTK_STAR_BIT_HASH_CTRL_CMD_START),
10, MTK_STAR_WAIT_TIMEOUT);
}
static int mtk_star_hash_wait_ok(struct mtk_star_priv *priv)
{
unsigned int val;
int ret;
/* Wait for BIST_DONE bit. */
ret = regmap_read_poll_timeout_atomic(priv->regs,
MTK_STAR_REG_HASH_CTRL, val,
val & MTK_STAR_BIT_HASH_CTRL_BIST_DONE,
10, MTK_STAR_WAIT_TIMEOUT);
if (ret)
return ret;
/* Check the BIST_OK bit. */
if (!regmap_test_bits(priv->regs, MTK_STAR_REG_HASH_CTRL,
MTK_STAR_BIT_HASH_CTRL_BIST_OK))
return -EIO;
return 0;
}
static int mtk_star_set_hashbit(struct mtk_star_priv *priv,
unsigned int hash_addr)
{
unsigned int val;
int ret;
ret = mtk_star_hash_wait_cmd_start(priv);
if (ret)
return ret;
val = hash_addr & MTK_STAR_MSK_HASH_CTRL_HASH_BIT_ADDR;
val |= MTK_STAR_BIT_HASH_CTRL_ACC_CMD;
val |= MTK_STAR_BIT_HASH_CTRL_CMD_START;
val |= MTK_STAR_BIT_HASH_CTRL_BIST_EN;
val |= MTK_STAR_BIT_HASH_CTRL_HASH_BIT_DATA;
regmap_write(priv->regs, MTK_STAR_REG_HASH_CTRL, val);
return mtk_star_hash_wait_ok(priv);
}
static int mtk_star_reset_hash_table(struct mtk_star_priv *priv)
{
int ret;
ret = mtk_star_hash_wait_cmd_start(priv);
if (ret)
return ret;
regmap_set_bits(priv->regs, MTK_STAR_REG_HASH_CTRL,
MTK_STAR_BIT_HASH_CTRL_BIST_EN);
regmap_set_bits(priv->regs, MTK_STAR_REG_TEST1,
MTK_STAR_BIT_TEST1_RST_HASH_MBIST);
return mtk_star_hash_wait_ok(priv);
}
static void mtk_star_phy_config(struct mtk_star_priv *priv)
{
unsigned int val;
if (priv->speed == SPEED_1000)
val = MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_1000M;
else if (priv->speed == SPEED_100)
val = MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_100M;
else
val = MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_10M;
val <<= MTK_STAR_OFF_PHY_CTRL1_FORCE_SPD;
val |= MTK_STAR_BIT_PHY_CTRL1_AN_EN;
if (priv->pause) {
val |= MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_RX;
val |= MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_TX;
val |= MTK_STAR_BIT_PHY_CTRL1_FORCE_DPX;
} else {
val &= ~MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_RX;
val &= ~MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_TX;
val &= ~MTK_STAR_BIT_PHY_CTRL1_FORCE_DPX;
}
regmap_write(priv->regs, MTK_STAR_REG_PHY_CTRL1, val);
val = MTK_STAR_VAL_FC_CFG_SEND_PAUSE_TH_2K;
val <<= MTK_STAR_OFF_FC_CFG_SEND_PAUSE_TH;
val |= MTK_STAR_BIT_FC_CFG_UC_PAUSE_DIR;
regmap_update_bits(priv->regs, MTK_STAR_REG_FC_CFG,
MTK_STAR_MSK_FC_CFG_SEND_PAUSE_TH |
MTK_STAR_BIT_FC_CFG_UC_PAUSE_DIR, val);
val = MTK_STAR_VAL_EXT_CFG_SND_PAUSE_RLS_1K;
val <<= MTK_STAR_OFF_EXT_CFG_SND_PAUSE_RLS;
regmap_update_bits(priv->regs, MTK_STAR_REG_EXT_CFG,
MTK_STAR_MSK_EXT_CFG_SND_PAUSE_RLS, val);
}
static void mtk_star_adjust_link(struct net_device *ndev)
{
struct mtk_star_priv *priv = netdev_priv(ndev);
struct phy_device *phydev = priv->phydev;
bool new_state = false;
if (phydev->link) {
if (!priv->link) {
priv->link = phydev->link;
new_state = true;
}
if (priv->speed != phydev->speed) {
priv->speed = phydev->speed;
new_state = true;
}
if (priv->pause != phydev->pause) {
priv->pause = phydev->pause;
new_state = true;
}
} else {
if (priv->link) {
priv->link = phydev->link;
new_state = true;
}
}
if (new_state) {
if (phydev->link)
mtk_star_phy_config(priv);
phy_print_status(ndev->phydev);
}
}
static void mtk_star_init_config(struct mtk_star_priv *priv)
{
unsigned int val;
val = (MTK_STAR_BIT_MII_PAD_OUT_ENABLE |
MTK_STAR_BIT_EXT_MDC_MODE |
MTK_STAR_BIT_SWC_MII_MODE);
regmap_write(priv->regs, MTK_STAR_REG_SYS_CONF, val);
regmap_update_bits(priv->regs, MTK_STAR_REG_MAC_CLK_CONF,
MTK_STAR_MSK_MAC_CLK_CONF,
priv->compat_data->bit_clk_div);
}
static int mtk_star_enable(struct net_device *ndev)
{
struct mtk_star_priv *priv = netdev_priv(ndev);
unsigned int val;
int ret;
mtk_star_nic_disable_pd(priv);
mtk_star_intr_disable(priv);
mtk_star_dma_stop(priv);
mtk_star_set_mac_addr(ndev);
/* Configure the MAC */
val = MTK_STAR_VAL_MAC_CFG_IPG_96BIT;
val <<= MTK_STAR_OFF_MAC_CFG_IPG;
val |= MTK_STAR_BIT_MAC_CFG_MAXLEN_1522;
val |= MTK_STAR_BIT_MAC_CFG_AUTO_PAD;
val |= MTK_STAR_BIT_MAC_CFG_CRC_STRIP;
regmap_write(priv->regs, MTK_STAR_REG_MAC_CFG, val);
/* Enable Hash Table BIST and reset it */
ret = mtk_star_reset_hash_table(priv);
if (ret)
return ret;
/* Setup the hashing algorithm */
regmap_clear_bits(priv->regs, MTK_STAR_REG_ARL_CFG,
MTK_STAR_BIT_ARL_CFG_HASH_ALG |
MTK_STAR_BIT_ARL_CFG_MISC_MODE);
/* Don't strip VLAN tags */
regmap_clear_bits(priv->regs, MTK_STAR_REG_MAC_CFG,
MTK_STAR_BIT_MAC_CFG_VLAN_STRIP);
/* Setup DMA */
mtk_star_dma_init(priv);
ret = mtk_star_prepare_rx_skbs(ndev);
if (ret)
goto err_out;
/* Request the interrupt */
ret = request_irq(ndev->irq, mtk_star_handle_irq,
IRQF_TRIGGER_NONE, ndev->name, ndev);
if (ret)
goto err_free_skbs;
napi_enable(&priv->tx_napi);
napi_enable(&priv->rx_napi);
mtk_star_intr_ack_all(priv);
mtk_star_intr_enable(priv);
/* Connect to and start PHY */
priv->phydev = of_phy_connect(ndev, priv->phy_node,
mtk_star_adjust_link, 0, priv->phy_intf);
if (!priv->phydev) {
netdev_err(ndev, "failed to connect to PHY\n");
ret = -ENODEV;
goto err_free_irq;
}
mtk_star_dma_start(priv);
phy_start(priv->phydev);
netif_start_queue(ndev);
return 0;
err_free_irq:
napi_disable(&priv->rx_napi);
napi_disable(&priv->tx_napi);
free_irq(ndev->irq, ndev);
err_free_skbs:
mtk_star_free_rx_skbs(priv);
err_out:
return ret;
}
static void mtk_star_disable(struct net_device *ndev)
{
struct mtk_star_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
napi_disable(&priv->tx_napi);
napi_disable(&priv->rx_napi);
mtk_star_intr_disable(priv);
mtk_star_dma_disable(priv);
mtk_star_intr_ack_all(priv);
phy_stop(priv->phydev);
phy_disconnect(priv->phydev);
free_irq(ndev->irq, ndev);
mtk_star_free_rx_skbs(priv);
mtk_star_free_tx_skbs(priv);
}
static int mtk_star_netdev_open(struct net_device *ndev)
{
return mtk_star_enable(ndev);
}
static int mtk_star_netdev_stop(struct net_device *ndev)
{
mtk_star_disable(ndev);
return 0;
}
static int mtk_star_netdev_ioctl(struct net_device *ndev,
struct ifreq *req, int cmd)
{
if (!netif_running(ndev))
return -EINVAL;
return phy_mii_ioctl(ndev->phydev, req, cmd);
}
static int __mtk_star_maybe_stop_tx(struct mtk_star_priv *priv, u16 size)
{
netif_stop_queue(priv->ndev);
/* Might race with mtk_star_tx_poll, check again */
smp_mb();
if (likely(mtk_star_tx_ring_avail(&priv->tx_ring) < size))
return -EBUSY;
netif_start_queue(priv->ndev);
return 0;
}
static inline int mtk_star_maybe_stop_tx(struct mtk_star_priv *priv, u16 size)
{
if (likely(mtk_star_tx_ring_avail(&priv->tx_ring) >= size))
return 0;
return __mtk_star_maybe_stop_tx(priv, size);
}
static netdev_tx_t mtk_star_netdev_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct mtk_star_priv *priv = netdev_priv(ndev);
struct mtk_star_ring *ring = &priv->tx_ring;
struct device *dev = mtk_star_get_dev(priv);
struct mtk_star_ring_desc_data desc_data;
int nfrags = skb_shinfo(skb)->nr_frags;
if (unlikely(mtk_star_tx_ring_avail(ring) < nfrags + 1)) {
if (!netif_queue_stopped(ndev)) {
netif_stop_queue(ndev);
/* This is a hard error, log it. */
pr_err_ratelimited("Tx ring full when queue awake\n");
}
return NETDEV_TX_BUSY;
}
desc_data.dma_addr = mtk_star_dma_map_tx(priv, skb);
if (dma_mapping_error(dev, desc_data.dma_addr))
goto err_drop_packet;
desc_data.skb = skb;
desc_data.len = skb->len;
mtk_star_ring_push_head_tx(ring, &desc_data);
netdev_sent_queue(ndev, skb->len);
mtk_star_maybe_stop_tx(priv, MTK_STAR_DESC_NEEDED);
mtk_star_dma_resume_tx(priv);
return NETDEV_TX_OK;
err_drop_packet:
dev_kfree_skb(skb);
ndev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
/* Returns the number of bytes sent or a negative number on the first
* descriptor owned by DMA.
*/
static int mtk_star_tx_complete_one(struct mtk_star_priv *priv)
{
struct mtk_star_ring *ring = &priv->tx_ring;
struct mtk_star_ring_desc_data desc_data;
int ret;
ret = mtk_star_ring_pop_tail(ring, &desc_data);
if (ret)
return ret;
mtk_star_dma_unmap_tx(priv, &desc_data);
ret = desc_data.skb->len;
dev_kfree_skb_irq(desc_data.skb);
return ret;
}
static int mtk_star_tx_poll(struct napi_struct *napi, int budget)
{
struct mtk_star_priv *priv = container_of(napi, struct mtk_star_priv,
tx_napi);
int ret = 0, pkts_compl = 0, bytes_compl = 0, count = 0;
struct mtk_star_ring *ring = &priv->tx_ring;
struct net_device *ndev = priv->ndev;
unsigned int head = ring->head;
unsigned int entry = ring->tail;
while (entry != head && count < (MTK_STAR_RING_NUM_DESCS - 1)) {
ret = mtk_star_tx_complete_one(priv);
if (ret < 0)
break;
count++;
pkts_compl++;
bytes_compl += ret;
entry = ring->tail;
}
netdev_completed_queue(ndev, pkts_compl, bytes_compl);
if (unlikely(netif_queue_stopped(ndev)) &&
(mtk_star_tx_ring_avail(ring) > MTK_STAR_TX_THRESH))
netif_wake_queue(ndev);
if (napi_complete(napi)) {
spin_lock(&priv->lock);
mtk_star_enable_dma_irq(priv, false, true);
spin_unlock(&priv->lock);
}
return 0;
}
static void mtk_star_netdev_get_stats64(struct net_device *ndev,
struct rtnl_link_stats64 *stats)
{
struct mtk_star_priv *priv = netdev_priv(ndev);
mtk_star_update_stats(priv);
memcpy(stats, &priv->stats, sizeof(*stats));
}
static void mtk_star_set_rx_mode(struct net_device *ndev)
{
struct mtk_star_priv *priv = netdev_priv(ndev);
struct netdev_hw_addr *hw_addr;
unsigned int hash_addr, i;
int ret;
if (ndev->flags & IFF_PROMISC) {
regmap_set_bits(priv->regs, MTK_STAR_REG_ARL_CFG,
MTK_STAR_BIT_ARL_CFG_MISC_MODE);
} else if (netdev_mc_count(ndev) > MTK_STAR_HASHTABLE_MC_LIMIT ||
ndev->flags & IFF_ALLMULTI) {
for (i = 0; i < MTK_STAR_HASHTABLE_SIZE_MAX; i++) {
ret = mtk_star_set_hashbit(priv, i);
if (ret)
goto hash_fail;
}
} else {
/* Clear previous settings. */
ret = mtk_star_reset_hash_table(priv);
if (ret)
goto hash_fail;
netdev_for_each_mc_addr(hw_addr, ndev) {
hash_addr = (hw_addr->addr[0] & 0x01) << 8;
hash_addr += hw_addr->addr[5];
ret = mtk_star_set_hashbit(priv, hash_addr);
if (ret)
goto hash_fail;
}
}
return;
hash_fail:
if (ret == -ETIMEDOUT)
netdev_err(ndev, "setting hash bit timed out\n");
else
/* Should be -EIO */
netdev_err(ndev, "unable to set hash bit");
}
static const struct net_device_ops mtk_star_netdev_ops = {
.ndo_open = mtk_star_netdev_open,
.ndo_stop = mtk_star_netdev_stop,
.ndo_start_xmit = mtk_star_netdev_start_xmit,
.ndo_get_stats64 = mtk_star_netdev_get_stats64,
.ndo_set_rx_mode = mtk_star_set_rx_mode,
.ndo_eth_ioctl = mtk_star_netdev_ioctl,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static void mtk_star_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strscpy(info->driver, MTK_STAR_DRVNAME, sizeof(info->driver));
}
/* TODO Add ethtool stats. */
static const struct ethtool_ops mtk_star_ethtool_ops = {
.get_drvinfo = mtk_star_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
static int mtk_star_rx(struct mtk_star_priv *priv, int budget)
{
struct mtk_star_ring *ring = &priv->rx_ring;
struct device *dev = mtk_star_get_dev(priv);
struct mtk_star_ring_desc_data desc_data;
struct net_device *ndev = priv->ndev;
struct sk_buff *curr_skb, *new_skb;
dma_addr_t new_dma_addr;
int ret, count = 0;
while (count < budget) {
ret = mtk_star_ring_pop_tail(ring, &desc_data);
if (ret)
return -1;
curr_skb = desc_data.skb;
if ((desc_data.flags & MTK_STAR_DESC_BIT_RX_CRCE) ||
(desc_data.flags & MTK_STAR_DESC_BIT_RX_OSIZE)) {
/* Error packet -> drop and reuse skb. */
new_skb = curr_skb;
goto push_new_skb;
}
/* Prepare new skb before receiving the current one.
* Reuse the current skb if we fail at any point.
*/
new_skb = mtk_star_alloc_skb(ndev);
if (!new_skb) {
ndev->stats.rx_dropped++;
new_skb = curr_skb;
goto push_new_skb;
}
new_dma_addr = mtk_star_dma_map_rx(priv, new_skb);
if (dma_mapping_error(dev, new_dma_addr)) {
ndev->stats.rx_dropped++;
dev_kfree_skb(new_skb);
new_skb = curr_skb;
netdev_err(ndev, "DMA mapping error of RX descriptor\n");
goto push_new_skb;
}
/* We can't fail anymore at this point:
* it's safe to unmap the skb.
*/
mtk_star_dma_unmap_rx(priv, &desc_data);
skb_put(desc_data.skb, desc_data.len);
desc_data.skb->ip_summed = CHECKSUM_NONE;
desc_data.skb->protocol = eth_type_trans(desc_data.skb, ndev);
desc_data.skb->dev = ndev;
netif_receive_skb(desc_data.skb);
/* update dma_addr for new skb */
desc_data.dma_addr = new_dma_addr;
push_new_skb:
count++;
desc_data.len = skb_tailroom(new_skb);
desc_data.skb = new_skb;
mtk_star_ring_push_head_rx(ring, &desc_data);
}
mtk_star_dma_resume_rx(priv);
return count;
}
static int mtk_star_rx_poll(struct napi_struct *napi, int budget)
{
struct mtk_star_priv *priv;
int work_done = 0;
priv = container_of(napi, struct mtk_star_priv, rx_napi);
work_done = mtk_star_rx(priv, budget);
if (work_done < budget) {
napi_complete_done(napi, work_done);
spin_lock(&priv->lock);
mtk_star_enable_dma_irq(priv, true, false);
spin_unlock(&priv->lock);
}
return work_done;
}
static void mtk_star_mdio_rwok_clear(struct mtk_star_priv *priv)
{
regmap_write(priv->regs, MTK_STAR_REG_PHY_CTRL0,
MTK_STAR_BIT_PHY_CTRL0_RWOK);
}
static int mtk_star_mdio_rwok_wait(struct mtk_star_priv *priv)
{
unsigned int val;
return regmap_read_poll_timeout(priv->regs, MTK_STAR_REG_PHY_CTRL0,
val, val & MTK_STAR_BIT_PHY_CTRL0_RWOK,
10, MTK_STAR_WAIT_TIMEOUT);
}
static int mtk_star_mdio_read(struct mii_bus *mii, int phy_id, int regnum)
{
struct mtk_star_priv *priv = mii->priv;
unsigned int val, data;
int ret;
mtk_star_mdio_rwok_clear(priv);
val = (regnum << MTK_STAR_OFF_PHY_CTRL0_PREG);
val &= MTK_STAR_MSK_PHY_CTRL0_PREG;
val |= MTK_STAR_BIT_PHY_CTRL0_RDCMD;
regmap_write(priv->regs, MTK_STAR_REG_PHY_CTRL0, val);
ret = mtk_star_mdio_rwok_wait(priv);
if (ret)
return ret;
regmap_read(priv->regs, MTK_STAR_REG_PHY_CTRL0, &data);
data &= MTK_STAR_MSK_PHY_CTRL0_RWDATA;
data >>= MTK_STAR_OFF_PHY_CTRL0_RWDATA;
return data;
}
static int mtk_star_mdio_write(struct mii_bus *mii, int phy_id,
int regnum, u16 data)
{
struct mtk_star_priv *priv = mii->priv;
unsigned int val;
mtk_star_mdio_rwok_clear(priv);
val = data;
val <<= MTK_STAR_OFF_PHY_CTRL0_RWDATA;
val &= MTK_STAR_MSK_PHY_CTRL0_RWDATA;
regnum <<= MTK_STAR_OFF_PHY_CTRL0_PREG;
regnum &= MTK_STAR_MSK_PHY_CTRL0_PREG;
val |= regnum;
val |= MTK_STAR_BIT_PHY_CTRL0_WTCMD;
regmap_write(priv->regs, MTK_STAR_REG_PHY_CTRL0, val);
return mtk_star_mdio_rwok_wait(priv);
}
static int mtk_star_mdio_init(struct net_device *ndev)
{
struct mtk_star_priv *priv = netdev_priv(ndev);
struct device *dev = mtk_star_get_dev(priv);
struct device_node *of_node, *mdio_node;
int ret;
of_node = dev->of_node;
mdio_node = of_get_child_by_name(of_node, "mdio");
if (!mdio_node)
return -ENODEV;
if (!of_device_is_available(mdio_node)) {
ret = -ENODEV;
goto out_put_node;
}
priv->mii = devm_mdiobus_alloc(dev);
if (!priv->mii) {
ret = -ENOMEM;
goto out_put_node;
}
snprintf(priv->mii->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
priv->mii->name = "mtk-mac-mdio";
priv->mii->parent = dev;
priv->mii->read = mtk_star_mdio_read;
priv->mii->write = mtk_star_mdio_write;
priv->mii->priv = priv;
ret = devm_of_mdiobus_register(dev, priv->mii, mdio_node);
out_put_node:
of_node_put(mdio_node);
return ret;
}
static __maybe_unused int mtk_star_suspend(struct device *dev)
{
struct mtk_star_priv *priv;
struct net_device *ndev;
ndev = dev_get_drvdata(dev);
priv = netdev_priv(ndev);
if (netif_running(ndev))
mtk_star_disable(ndev);
clk_bulk_disable_unprepare(MTK_STAR_NCLKS, priv->clks);
return 0;
}
static __maybe_unused int mtk_star_resume(struct device *dev)
{
struct mtk_star_priv *priv;
struct net_device *ndev;
int ret;
ndev = dev_get_drvdata(dev);
priv = netdev_priv(ndev);
ret = clk_bulk_prepare_enable(MTK_STAR_NCLKS, priv->clks);
if (ret)
return ret;
if (netif_running(ndev)) {
ret = mtk_star_enable(ndev);
if (ret)
clk_bulk_disable_unprepare(MTK_STAR_NCLKS, priv->clks);
}
return ret;
}
static void mtk_star_clk_disable_unprepare(void *data)
{
struct mtk_star_priv *priv = data;
clk_bulk_disable_unprepare(MTK_STAR_NCLKS, priv->clks);
}
static int mtk_star_set_timing(struct mtk_star_priv *priv)
{
struct device *dev = mtk_star_get_dev(priv);
unsigned int delay_val = 0;
switch (priv->phy_intf) {
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_RMII:
delay_val |= FIELD_PREP(MTK_STAR_BIT_INV_RX_CLK, priv->rx_inv);
delay_val |= FIELD_PREP(MTK_STAR_BIT_INV_TX_CLK, priv->tx_inv);
break;
default:
dev_err(dev, "This interface not supported\n");
return -EINVAL;
}
return regmap_write(priv->regs, MTK_STAR_REG_TEST0, delay_val);
}
static int mtk_star_probe(struct platform_device *pdev)
{
struct device_node *of_node;
struct mtk_star_priv *priv;
struct phy_device *phydev;
struct net_device *ndev;
struct device *dev;
void __iomem *base;
int ret, i;
dev = &pdev->dev;
of_node = dev->of_node;
ndev = devm_alloc_etherdev(dev, sizeof(*priv));
if (!ndev)
return -ENOMEM;
priv = netdev_priv(ndev);
priv->ndev = ndev;
priv->compat_data = of_device_get_match_data(&pdev->dev);
SET_NETDEV_DEV(ndev, dev);
platform_set_drvdata(pdev, ndev);
ndev->min_mtu = ETH_ZLEN;
ndev->max_mtu = MTK_STAR_MAX_FRAME_SIZE;
spin_lock_init(&priv->lock);
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
/* We won't be checking the return values of regmap read & write
* functions. They can only fail for mmio if there's a clock attached
* to regmap which is not the case here.
*/
priv->regs = devm_regmap_init_mmio(dev, base,
&mtk_star_regmap_config);
if (IS_ERR(priv->regs))
return PTR_ERR(priv->regs);
priv->pericfg = syscon_regmap_lookup_by_phandle(of_node,
"mediatek,pericfg");
if (IS_ERR(priv->pericfg)) {
dev_err(dev, "Failed to lookup the PERICFG syscon\n");
return PTR_ERR(priv->pericfg);
}
ndev->irq = platform_get_irq(pdev, 0);
if (ndev->irq < 0)
return ndev->irq;
for (i = 0; i < MTK_STAR_NCLKS; i++)
priv->clks[i].id = mtk_star_clk_names[i];
ret = devm_clk_bulk_get(dev, MTK_STAR_NCLKS, priv->clks);
if (ret)
return ret;
ret = clk_bulk_prepare_enable(MTK_STAR_NCLKS, priv->clks);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev,
mtk_star_clk_disable_unprepare, priv);
if (ret)
return ret;
ret = of_get_phy_mode(of_node, &priv->phy_intf);
if (ret) {
return ret;
} else if (priv->phy_intf != PHY_INTERFACE_MODE_RMII &&
priv->phy_intf != PHY_INTERFACE_MODE_MII) {
dev_err(dev, "unsupported phy mode: %s\n",
phy_modes(priv->phy_intf));
return -EINVAL;
}
priv->phy_node = of_parse_phandle(of_node, "phy-handle", 0);
if (!priv->phy_node) {
dev_err(dev, "failed to retrieve the phy handle from device tree\n");
return -ENODEV;
}
priv->rmii_rxc = of_property_read_bool(of_node, "mediatek,rmii-rxc");
priv->rx_inv = of_property_read_bool(of_node, "mediatek,rxc-inverse");
priv->tx_inv = of_property_read_bool(of_node, "mediatek,txc-inverse");
if (priv->compat_data->set_interface_mode) {
ret = priv->compat_data->set_interface_mode(ndev);
if (ret) {
dev_err(dev, "Failed to set phy interface, err = %d\n", ret);
return -EINVAL;
}
}
ret = mtk_star_set_timing(priv);
if (ret) {
dev_err(dev, "Failed to set timing, err = %d\n", ret);
return -EINVAL;
}
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(dev, "unsupported DMA mask\n");
return ret;
}
priv->ring_base = dmam_alloc_coherent(dev, MTK_STAR_DMA_SIZE,
&priv->dma_addr,
GFP_KERNEL | GFP_DMA);
if (!priv->ring_base)
return -ENOMEM;
mtk_star_nic_disable_pd(priv);
mtk_star_init_config(priv);
ret = mtk_star_mdio_init(ndev);
if (ret)
return ret;
ret = platform_get_ethdev_address(dev, ndev);
if (ret || !is_valid_ether_addr(ndev->dev_addr))
eth_hw_addr_random(ndev);
ndev->netdev_ops = &mtk_star_netdev_ops;
ndev->ethtool_ops = &mtk_star_ethtool_ops;
netif_napi_add(ndev, &priv->rx_napi, mtk_star_rx_poll);
netif_napi_add_tx(ndev, &priv->tx_napi, mtk_star_tx_poll);
phydev = of_phy_find_device(priv->phy_node);
if (phydev) {
phydev->mac_managed_pm = true;
put_device(&phydev->mdio.dev);
}
return devm_register_netdev(dev, ndev);
}
#ifdef CONFIG_OF
static int mt8516_set_interface_mode(struct net_device *ndev)
{
struct mtk_star_priv *priv = netdev_priv(ndev);
struct device *dev = mtk_star_get_dev(priv);
unsigned int intf_val, ret, rmii_rxc;
switch (priv->phy_intf) {
case PHY_INTERFACE_MODE_MII:
intf_val = MTK_PERICFG_BIT_NIC_CFG_CON_MII;
rmii_rxc = 0;
break;
case PHY_INTERFACE_MODE_RMII:
intf_val = MTK_PERICFG_BIT_NIC_CFG_CON_RMII;
rmii_rxc = priv->rmii_rxc ? 0 : MTK_PERICFG_BIT_NIC_CFG_CON_CLK;
break;
default:
dev_err(dev, "This interface not supported\n");
return -EINVAL;
}
ret = regmap_update_bits(priv->pericfg,
MTK_PERICFG_REG_NIC_CFG1_CON,
MTK_PERICFG_BIT_NIC_CFG_CON_CLK,
rmii_rxc);
if (ret)
return ret;
return regmap_update_bits(priv->pericfg,
MTK_PERICFG_REG_NIC_CFG0_CON,
MTK_PERICFG_REG_NIC_CFG_CON_CFG_INTF,
intf_val);
}
static int mt8365_set_interface_mode(struct net_device *ndev)
{
struct mtk_star_priv *priv = netdev_priv(ndev);
struct device *dev = mtk_star_get_dev(priv);
unsigned int intf_val;
switch (priv->phy_intf) {
case PHY_INTERFACE_MODE_MII:
intf_val = MTK_PERICFG_BIT_NIC_CFG_CON_MII;
break;
case PHY_INTERFACE_MODE_RMII:
intf_val = MTK_PERICFG_BIT_NIC_CFG_CON_RMII;
intf_val |= priv->rmii_rxc ? 0 : MTK_PERICFG_BIT_NIC_CFG_CON_CLK_V2;
break;
default:
dev_err(dev, "This interface not supported\n");
return -EINVAL;
}
return regmap_update_bits(priv->pericfg,
MTK_PERICFG_REG_NIC_CFG_CON_V2,
MTK_PERICFG_REG_NIC_CFG_CON_CFG_INTF |
MTK_PERICFG_BIT_NIC_CFG_CON_CLK_V2,
intf_val);
}
static const struct mtk_star_compat mtk_star_mt8516_compat = {
.set_interface_mode = mt8516_set_interface_mode,
.bit_clk_div = MTK_STAR_BIT_CLK_DIV_10,
};
static const struct mtk_star_compat mtk_star_mt8365_compat = {
.set_interface_mode = mt8365_set_interface_mode,
.bit_clk_div = MTK_STAR_BIT_CLK_DIV_50,
};
static const struct of_device_id mtk_star_of_match[] = {
{ .compatible = "mediatek,mt8516-eth",
.data = &mtk_star_mt8516_compat },
{ .compatible = "mediatek,mt8518-eth",
.data = &mtk_star_mt8516_compat },
{ .compatible = "mediatek,mt8175-eth",
.data = &mtk_star_mt8516_compat },
{ .compatible = "mediatek,mt8365-eth",
.data = &mtk_star_mt8365_compat },
{ }
};
MODULE_DEVICE_TABLE(of, mtk_star_of_match);
#endif
static SIMPLE_DEV_PM_OPS(mtk_star_pm_ops,
mtk_star_suspend, mtk_star_resume);
static struct platform_driver mtk_star_driver = {
.driver = {
.name = MTK_STAR_DRVNAME,
.pm = &mtk_star_pm_ops,
.of_match_table = of_match_ptr(mtk_star_of_match),
},
.probe = mtk_star_probe,
};
module_platform_driver(mtk_star_driver);
MODULE_AUTHOR("Bartosz Golaszewski <[email protected]>");
MODULE_DESCRIPTION("Mediatek STAR Ethernet MAC Driver");
MODULE_LICENSE("GPL");