// SPDX-License-Identifier: GPL-2.0+
/* Microchip Sparx5 Switch driver
*
* Copyright (c) 2021 Microchip Technology Inc. and its subsidiaries.
*
* The Sparx5 Chip Register Model can be browsed at this location:
* https://github.com/microchip-ung/sparx-5_reginfo
*/
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/dma-mapping.h>
#include "sparx5_main_regs.h"
#include "sparx5_main.h"
#include "sparx5_port.h"
#define FDMA_XTR_CHANNEL 6
#define FDMA_INJ_CHANNEL 0
#define FDMA_XTR_BUFFER_SIZE 2048
#define FDMA_WEIGHT 4
static int sparx5_fdma_tx_dataptr_cb(struct fdma *fdma, int dcb, int db,
u64 *dataptr)
{
*dataptr = fdma->dma + (sizeof(struct fdma_dcb) * fdma->n_dcbs) +
((dcb * fdma->n_dbs + db) * fdma->db_size);
return 0;
}
static int sparx5_fdma_rx_dataptr_cb(struct fdma *fdma, int dcb, int db,
u64 *dataptr)
{
struct sparx5 *sparx5 = fdma->priv;
struct sparx5_rx *rx = &sparx5->rx;
struct sk_buff *skb;
skb = __netdev_alloc_skb(rx->ndev, fdma->db_size, GFP_ATOMIC);
if (unlikely(!skb))
return -ENOMEM;
*dataptr = virt_to_phys(skb->data);
rx->skb[dcb][db] = skb;
return 0;
}
static void sparx5_fdma_rx_activate(struct sparx5 *sparx5, struct sparx5_rx *rx)
{
struct fdma *fdma = &rx->fdma;
/* Write the buffer address in the LLP and LLP1 regs */
spx5_wr(((u64)fdma->dma) & GENMASK(31, 0), sparx5,
FDMA_DCB_LLP(fdma->channel_id));
spx5_wr(((u64)fdma->dma) >> 32, sparx5,
FDMA_DCB_LLP1(fdma->channel_id));
/* Set the number of RX DBs to be used, and DB end-of-frame interrupt */
spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(fdma->n_dbs) |
FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
FDMA_CH_CFG_CH_INJ_PORT_SET(XTR_QUEUE),
sparx5, FDMA_CH_CFG(fdma->channel_id));
/* Set the RX Watermark to max */
spx5_rmw(FDMA_XTR_CFG_XTR_FIFO_WM_SET(31), FDMA_XTR_CFG_XTR_FIFO_WM,
sparx5,
FDMA_XTR_CFG);
/* Start RX fdma */
spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(0), FDMA_PORT_CTRL_XTR_STOP,
sparx5, FDMA_PORT_CTRL(0));
/* Enable RX channel DB interrupt */
spx5_rmw(BIT(fdma->channel_id),
BIT(fdma->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
sparx5, FDMA_INTR_DB_ENA);
/* Activate the RX channel */
spx5_wr(BIT(fdma->channel_id), sparx5, FDMA_CH_ACTIVATE);
}
static void sparx5_fdma_rx_deactivate(struct sparx5 *sparx5, struct sparx5_rx *rx)
{
struct fdma *fdma = &rx->fdma;
/* Deactivate the RX channel */
spx5_rmw(0, BIT(fdma->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
sparx5, FDMA_CH_ACTIVATE);
/* Disable RX channel DB interrupt */
spx5_rmw(0, BIT(fdma->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
sparx5, FDMA_INTR_DB_ENA);
/* Stop RX fdma */
spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(1), FDMA_PORT_CTRL_XTR_STOP,
sparx5, FDMA_PORT_CTRL(0));
}
static void sparx5_fdma_tx_activate(struct sparx5 *sparx5, struct sparx5_tx *tx)
{
struct fdma *fdma = &tx->fdma;
/* Write the buffer address in the LLP and LLP1 regs */
spx5_wr(((u64)fdma->dma) & GENMASK(31, 0), sparx5,
FDMA_DCB_LLP(fdma->channel_id));
spx5_wr(((u64)fdma->dma) >> 32, sparx5,
FDMA_DCB_LLP1(fdma->channel_id));
/* Set the number of TX DBs to be used, and DB end-of-frame interrupt */
spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(fdma->n_dbs) |
FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
FDMA_CH_CFG_CH_INJ_PORT_SET(INJ_QUEUE),
sparx5, FDMA_CH_CFG(fdma->channel_id));
/* Start TX fdma */
spx5_rmw(FDMA_PORT_CTRL_INJ_STOP_SET(0), FDMA_PORT_CTRL_INJ_STOP,
sparx5, FDMA_PORT_CTRL(0));
/* Activate the channel */
spx5_wr(BIT(fdma->channel_id), sparx5, FDMA_CH_ACTIVATE);
}
static void sparx5_fdma_tx_deactivate(struct sparx5 *sparx5, struct sparx5_tx *tx)
{
/* Disable the channel */
spx5_rmw(0, BIT(tx->fdma.channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
sparx5, FDMA_CH_ACTIVATE);
}
static void sparx5_fdma_reload(struct sparx5 *sparx5, struct fdma *fdma)
{
/* Reload the RX channel */
spx5_wr(BIT(fdma->channel_id), sparx5, FDMA_CH_RELOAD);
}
static bool sparx5_fdma_rx_get_frame(struct sparx5 *sparx5, struct sparx5_rx *rx)
{
struct fdma *fdma = &rx->fdma;
struct sparx5_port *port;
struct fdma_db *db_hw;
struct frame_info fi;
struct sk_buff *skb;
/* Check if the DCB is done */
db_hw = fdma_db_next_get(fdma);
if (unlikely(!fdma_db_is_done(db_hw)))
return false;
skb = rx->skb[fdma->dcb_index][fdma->db_index];
skb_put(skb, fdma_db_len_get(db_hw));
/* Now do the normal processing of the skb */
sparx5_ifh_parse((u32 *)skb->data, &fi);
/* Map to port netdev */
port = fi.src_port < SPX5_PORTS ? sparx5->ports[fi.src_port] : NULL;
if (!port || !port->ndev) {
dev_err(sparx5->dev, "Data on inactive port %d\n", fi.src_port);
sparx5_xtr_flush(sparx5, XTR_QUEUE);
return false;
}
skb->dev = port->ndev;
skb_pull(skb, IFH_LEN * sizeof(u32));
if (likely(!(skb->dev->features & NETIF_F_RXFCS)))
skb_trim(skb, skb->len - ETH_FCS_LEN);
sparx5_ptp_rxtstamp(sparx5, skb, fi.timestamp);
skb->protocol = eth_type_trans(skb, skb->dev);
/* Everything we see on an interface that is in the HW bridge
* has already been forwarded
*/
if (test_bit(port->portno, sparx5->bridge_mask))
skb->offload_fwd_mark = 1;
skb->dev->stats.rx_bytes += skb->len;
skb->dev->stats.rx_packets++;
rx->packets++;
netif_receive_skb(skb);
return true;
}
static int sparx5_fdma_napi_callback(struct napi_struct *napi, int weight)
{
struct sparx5_rx *rx = container_of(napi, struct sparx5_rx, napi);
struct sparx5 *sparx5 = container_of(rx, struct sparx5, rx);
struct fdma *fdma = &rx->fdma;
int counter = 0;
while (counter < weight && sparx5_fdma_rx_get_frame(sparx5, rx)) {
fdma_db_advance(fdma);
counter++;
/* Check if the DCB can be reused */
if (fdma_dcb_is_reusable(fdma))
continue;
fdma_dcb_add(fdma, fdma->dcb_index,
FDMA_DCB_INFO_DATAL(fdma->db_size),
FDMA_DCB_STATUS_INTR);
fdma_db_reset(fdma);
fdma_dcb_advance(fdma);
}
if (counter < weight) {
napi_complete_done(&rx->napi, counter);
spx5_rmw(BIT(fdma->channel_id),
BIT(fdma->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
sparx5, FDMA_INTR_DB_ENA);
}
if (counter)
sparx5_fdma_reload(sparx5, fdma);
return counter;
}
int sparx5_fdma_xmit(struct sparx5 *sparx5, u32 *ifh, struct sk_buff *skb)
{
struct sparx5_tx *tx = &sparx5->tx;
struct fdma *fdma = &tx->fdma;
static bool first_time = true;
void *virt_addr;
fdma_dcb_advance(fdma);
if (!fdma_db_is_done(fdma_db_get(fdma, fdma->dcb_index, 0)))
return -EINVAL;
/* Get the virtual address of the dataptr for the next DB */
virt_addr = ((u8 *)fdma->dcbs +
(sizeof(struct fdma_dcb) * fdma->n_dcbs) +
((fdma->dcb_index * fdma->n_dbs) * fdma->db_size));
memcpy(virt_addr, ifh, IFH_LEN * 4);
memcpy(virt_addr + IFH_LEN * 4, skb->data, skb->len);
fdma_dcb_add(fdma, fdma->dcb_index, 0,
FDMA_DCB_STATUS_SOF |
FDMA_DCB_STATUS_EOF |
FDMA_DCB_STATUS_BLOCKO(0) |
FDMA_DCB_STATUS_BLOCKL(skb->len + IFH_LEN * 4 + 4));
if (first_time) {
sparx5_fdma_tx_activate(sparx5, tx);
first_time = false;
} else {
sparx5_fdma_reload(sparx5, fdma);
}
return NETDEV_TX_OK;
}
static int sparx5_fdma_rx_alloc(struct sparx5 *sparx5)
{
struct sparx5_rx *rx = &sparx5->rx;
struct fdma *fdma = &rx->fdma;
int err;
err = fdma_alloc_phys(fdma);
if (err)
return err;
fdma_dcbs_init(fdma, FDMA_DCB_INFO_DATAL(fdma->db_size),
FDMA_DCB_STATUS_INTR);
netif_napi_add_weight(rx->ndev, &rx->napi, sparx5_fdma_napi_callback,
FDMA_WEIGHT);
napi_enable(&rx->napi);
sparx5_fdma_rx_activate(sparx5, rx);
return 0;
}
static int sparx5_fdma_tx_alloc(struct sparx5 *sparx5)
{
struct sparx5_tx *tx = &sparx5->tx;
struct fdma *fdma = &tx->fdma;
int err;
err = fdma_alloc_phys(fdma);
if (err)
return err;
fdma_dcbs_init(fdma, FDMA_DCB_INFO_DATAL(fdma->db_size),
FDMA_DCB_STATUS_DONE);
return 0;
}
static void sparx5_fdma_rx_init(struct sparx5 *sparx5,
struct sparx5_rx *rx, int channel)
{
struct fdma *fdma = &rx->fdma;
int idx;
fdma->channel_id = channel;
fdma->n_dcbs = FDMA_DCB_MAX;
fdma->n_dbs = FDMA_RX_DCB_MAX_DBS;
fdma->priv = sparx5;
fdma->db_size = ALIGN(FDMA_XTR_BUFFER_SIZE, PAGE_SIZE);
fdma->size = fdma_get_size(&sparx5->rx.fdma);
fdma->ops.dataptr_cb = &sparx5_fdma_rx_dataptr_cb;
fdma->ops.nextptr_cb = &fdma_nextptr_cb;
/* Fetch a netdev for SKB and NAPI use, any will do */
for (idx = 0; idx < SPX5_PORTS; ++idx) {
struct sparx5_port *port = sparx5->ports[idx];
if (port && port->ndev) {
rx->ndev = port->ndev;
break;
}
}
}
static void sparx5_fdma_tx_init(struct sparx5 *sparx5,
struct sparx5_tx *tx, int channel)
{
struct fdma *fdma = &tx->fdma;
fdma->channel_id = channel;
fdma->n_dcbs = FDMA_DCB_MAX;
fdma->n_dbs = FDMA_TX_DCB_MAX_DBS;
fdma->priv = sparx5;
fdma->db_size = ALIGN(FDMA_XTR_BUFFER_SIZE, PAGE_SIZE);
fdma->size = fdma_get_size_contiguous(&sparx5->tx.fdma);
fdma->ops.dataptr_cb = &sparx5_fdma_tx_dataptr_cb;
fdma->ops.nextptr_cb = &fdma_nextptr_cb;
}
irqreturn_t sparx5_fdma_handler(int irq, void *args)
{
struct sparx5 *sparx5 = args;
u32 db = 0, err = 0;
db = spx5_rd(sparx5, FDMA_INTR_DB);
err = spx5_rd(sparx5, FDMA_INTR_ERR);
/* Clear interrupt */
if (db) {
spx5_wr(0, sparx5, FDMA_INTR_DB_ENA);
spx5_wr(db, sparx5, FDMA_INTR_DB);
napi_schedule(&sparx5->rx.napi);
}
if (err) {
u32 err_type = spx5_rd(sparx5, FDMA_ERRORS);
dev_err_ratelimited(sparx5->dev,
"ERR: int: %#x, type: %#x\n",
err, err_type);
spx5_wr(err, sparx5, FDMA_INTR_ERR);
spx5_wr(err_type, sparx5, FDMA_ERRORS);
}
return IRQ_HANDLED;
}
static void sparx5_fdma_injection_mode(struct sparx5 *sparx5)
{
const int byte_swap = 1;
int portno;
int urgency;
/* Change mode to fdma extraction and injection */
spx5_wr(QS_XTR_GRP_CFG_MODE_SET(2) |
QS_XTR_GRP_CFG_STATUS_WORD_POS_SET(1) |
QS_XTR_GRP_CFG_BYTE_SWAP_SET(byte_swap),
sparx5, QS_XTR_GRP_CFG(XTR_QUEUE));
spx5_wr(QS_INJ_GRP_CFG_MODE_SET(2) |
QS_INJ_GRP_CFG_BYTE_SWAP_SET(byte_swap),
sparx5, QS_INJ_GRP_CFG(INJ_QUEUE));
/* CPU ports capture setup */
for (portno = SPX5_PORT_CPU_0; portno <= SPX5_PORT_CPU_1; portno++) {
/* ASM CPU port: No preamble, IFH, enable padding */
spx5_wr(ASM_PORT_CFG_PAD_ENA_SET(1) |
ASM_PORT_CFG_NO_PREAMBLE_ENA_SET(1) |
ASM_PORT_CFG_INJ_FORMAT_CFG_SET(1), /* 1 = IFH */
sparx5, ASM_PORT_CFG(portno));
/* Reset WM cnt to unclog queued frames */
spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR_SET(1),
DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR,
sparx5,
DSM_DEV_TX_STOP_WM_CFG(portno));
/* Set Disassembler Stop Watermark level */
spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM_SET(100),
DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM,
sparx5,
DSM_DEV_TX_STOP_WM_CFG(portno));
/* Enable port in queue system */
urgency = sparx5_port_fwd_urg(sparx5, SPEED_2500);
spx5_rmw(QFWD_SWITCH_PORT_MODE_PORT_ENA_SET(1) |
QFWD_SWITCH_PORT_MODE_FWD_URGENCY_SET(urgency),
QFWD_SWITCH_PORT_MODE_PORT_ENA |
QFWD_SWITCH_PORT_MODE_FWD_URGENCY,
sparx5,
QFWD_SWITCH_PORT_MODE(portno));
/* Disable Disassembler buffer underrun watchdog
* to avoid truncated packets in XTR
*/
spx5_rmw(DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS_SET(1),
DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS,
sparx5,
DSM_BUF_CFG(portno));
/* Disabling frame aging */
spx5_rmw(HSCH_PORT_MODE_AGE_DIS_SET(1),
HSCH_PORT_MODE_AGE_DIS,
sparx5,
HSCH_PORT_MODE(portno));
}
}
int sparx5_fdma_start(struct sparx5 *sparx5)
{
int err;
/* Reset FDMA state */
spx5_wr(FDMA_CTRL_NRESET_SET(0), sparx5, FDMA_CTRL);
spx5_wr(FDMA_CTRL_NRESET_SET(1), sparx5, FDMA_CTRL);
/* Force ACP caching but disable read/write allocation */
spx5_rmw(CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA_SET(1) |
CPU_PROC_CTRL_ACP_AWCACHE_SET(0) |
CPU_PROC_CTRL_ACP_ARCACHE_SET(0),
CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA |
CPU_PROC_CTRL_ACP_AWCACHE |
CPU_PROC_CTRL_ACP_ARCACHE,
sparx5, CPU_PROC_CTRL);
sparx5_fdma_injection_mode(sparx5);
sparx5_fdma_rx_init(sparx5, &sparx5->rx, FDMA_XTR_CHANNEL);
sparx5_fdma_tx_init(sparx5, &sparx5->tx, FDMA_INJ_CHANNEL);
err = sparx5_fdma_rx_alloc(sparx5);
if (err) {
dev_err(sparx5->dev, "Could not allocate RX buffers: %d\n", err);
return err;
}
err = sparx5_fdma_tx_alloc(sparx5);
if (err) {
dev_err(sparx5->dev, "Could not allocate TX buffers: %d\n", err);
return err;
}
return err;
}
static u32 sparx5_fdma_port_ctrl(struct sparx5 *sparx5)
{
return spx5_rd(sparx5, FDMA_PORT_CTRL(0));
}
int sparx5_fdma_stop(struct sparx5 *sparx5)
{
u32 val;
napi_disable(&sparx5->rx.napi);
/* Stop the fdma and channel interrupts */
sparx5_fdma_rx_deactivate(sparx5, &sparx5->rx);
sparx5_fdma_tx_deactivate(sparx5, &sparx5->tx);
/* Wait for the RX channel to stop */
read_poll_timeout(sparx5_fdma_port_ctrl, val,
FDMA_PORT_CTRL_XTR_BUF_IS_EMPTY_GET(val) == 0,
500, 10000, 0, sparx5);
fdma_free_phys(&sparx5->rx.fdma);
fdma_free_phys(&sparx5->tx.fdma);
return 0;
}