// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/*
* Microsemi SoCs FDMA driver
*
* Copyright (c) 2021 Microchip
*
* Page recycling code is mostly taken from gianfar driver.
*/
#include <linux/align.h>
#include <linux/bitops.h>
#include <linux/dmapool.h>
#include <linux/dsa/ocelot.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include "ocelot_fdma.h"
#include "ocelot_qs.h"
DEFINE_STATIC_KEY_FALSE(ocelot_fdma_enabled);
static void ocelot_fdma_writel(struct ocelot *ocelot, u32 reg, u32 data)
{
regmap_write(ocelot->targets[FDMA], reg, data);
}
static u32 ocelot_fdma_readl(struct ocelot *ocelot, u32 reg)
{
u32 retval;
regmap_read(ocelot->targets[FDMA], reg, &retval);
return retval;
}
static dma_addr_t ocelot_fdma_idx_dma(dma_addr_t base, u16 idx)
{
return base + idx * sizeof(struct ocelot_fdma_dcb);
}
static u16 ocelot_fdma_dma_idx(dma_addr_t base, dma_addr_t dma)
{
return (dma - base) / sizeof(struct ocelot_fdma_dcb);
}
static u16 ocelot_fdma_idx_next(u16 idx, u16 ring_sz)
{
return unlikely(idx == ring_sz - 1) ? 0 : idx + 1;
}
static u16 ocelot_fdma_idx_prev(u16 idx, u16 ring_sz)
{
return unlikely(idx == 0) ? ring_sz - 1 : idx - 1;
}
static int ocelot_fdma_rx_ring_free(struct ocelot_fdma *fdma)
{
struct ocelot_fdma_rx_ring *rx_ring = &fdma->rx_ring;
if (rx_ring->next_to_use >= rx_ring->next_to_clean)
return OCELOT_FDMA_RX_RING_SIZE -
(rx_ring->next_to_use - rx_ring->next_to_clean) - 1;
else
return rx_ring->next_to_clean - rx_ring->next_to_use - 1;
}
static int ocelot_fdma_tx_ring_free(struct ocelot_fdma *fdma)
{
struct ocelot_fdma_tx_ring *tx_ring = &fdma->tx_ring;
if (tx_ring->next_to_use >= tx_ring->next_to_clean)
return OCELOT_FDMA_TX_RING_SIZE -
(tx_ring->next_to_use - tx_ring->next_to_clean) - 1;
else
return tx_ring->next_to_clean - tx_ring->next_to_use - 1;
}
static bool ocelot_fdma_tx_ring_empty(struct ocelot_fdma *fdma)
{
struct ocelot_fdma_tx_ring *tx_ring = &fdma->tx_ring;
return tx_ring->next_to_clean == tx_ring->next_to_use;
}
static void ocelot_fdma_activate_chan(struct ocelot *ocelot, dma_addr_t dma,
int chan)
{
ocelot_fdma_writel(ocelot, MSCC_FDMA_DCB_LLP(chan), dma);
/* Barrier to force memory writes to DCB to be completed before starting
* the channel.
*/
wmb();
ocelot_fdma_writel(ocelot, MSCC_FDMA_CH_ACTIVATE, BIT(chan));
}
static u32 ocelot_fdma_read_ch_safe(struct ocelot *ocelot)
{
return ocelot_fdma_readl(ocelot, MSCC_FDMA_CH_SAFE);
}
static int ocelot_fdma_wait_chan_safe(struct ocelot *ocelot, int chan)
{
u32 safe;
return readx_poll_timeout_atomic(ocelot_fdma_read_ch_safe, ocelot, safe,
safe & BIT(chan), 0,
OCELOT_FDMA_CH_SAFE_TIMEOUT_US);
}
static void ocelot_fdma_dcb_set_data(struct ocelot_fdma_dcb *dcb,
dma_addr_t dma_addr,
size_t size)
{
u32 offset = dma_addr & 0x3;
dcb->llp = 0;
dcb->datap = ALIGN_DOWN(dma_addr, 4);
dcb->datal = ALIGN_DOWN(size, 4);
dcb->stat = MSCC_FDMA_DCB_STAT_BLOCKO(offset);
}
static bool ocelot_fdma_rx_alloc_page(struct ocelot *ocelot,
struct ocelot_fdma_rx_buf *rxb)
{
dma_addr_t mapping;
struct page *page;
page = dev_alloc_page();
if (unlikely(!page))
return false;
mapping = dma_map_page(ocelot->dev, page, 0, PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(ocelot->dev, mapping))) {
__free_page(page);
return false;
}
rxb->page = page;
rxb->page_offset = 0;
rxb->dma_addr = mapping;
return true;
}
static int ocelot_fdma_alloc_rx_buffs(struct ocelot *ocelot, u16 alloc_cnt)
{
struct ocelot_fdma *fdma = ocelot->fdma;
struct ocelot_fdma_rx_ring *rx_ring;
struct ocelot_fdma_rx_buf *rxb;
struct ocelot_fdma_dcb *dcb;
dma_addr_t dma_addr;
int ret = 0;
u16 idx;
rx_ring = &fdma->rx_ring;
idx = rx_ring->next_to_use;
while (alloc_cnt--) {
rxb = &rx_ring->bufs[idx];
/* try reuse page */
if (unlikely(!rxb->page)) {
if (unlikely(!ocelot_fdma_rx_alloc_page(ocelot, rxb))) {
dev_err_ratelimited(ocelot->dev,
"Failed to allocate rx\n");
ret = -ENOMEM;
break;
}
}
dcb = &rx_ring->dcbs[idx];
dma_addr = rxb->dma_addr + rxb->page_offset;
ocelot_fdma_dcb_set_data(dcb, dma_addr, OCELOT_FDMA_RXB_SIZE);
idx = ocelot_fdma_idx_next(idx, OCELOT_FDMA_RX_RING_SIZE);
/* Chain the DCB to the next one */
dcb->llp = ocelot_fdma_idx_dma(rx_ring->dcbs_dma, idx);
}
rx_ring->next_to_use = idx;
rx_ring->next_to_alloc = idx;
return ret;
}
static bool ocelot_fdma_tx_dcb_set_skb(struct ocelot *ocelot,
struct ocelot_fdma_tx_buf *tx_buf,
struct ocelot_fdma_dcb *dcb,
struct sk_buff *skb)
{
dma_addr_t mapping;
mapping = dma_map_single(ocelot->dev, skb->data, skb->len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(ocelot->dev, mapping)))
return false;
dma_unmap_addr_set(tx_buf, dma_addr, mapping);
ocelot_fdma_dcb_set_data(dcb, mapping, OCELOT_FDMA_RX_SIZE);
tx_buf->skb = skb;
dcb->stat |= MSCC_FDMA_DCB_STAT_BLOCKL(skb->len);
dcb->stat |= MSCC_FDMA_DCB_STAT_SOF | MSCC_FDMA_DCB_STAT_EOF;
return true;
}
static bool ocelot_fdma_check_stop_rx(struct ocelot *ocelot)
{
u32 llp;
/* Check if the FDMA hits the DCB with LLP == NULL */
llp = ocelot_fdma_readl(ocelot, MSCC_FDMA_DCB_LLP(MSCC_FDMA_XTR_CHAN));
if (unlikely(llp))
return false;
ocelot_fdma_writel(ocelot, MSCC_FDMA_CH_DISABLE,
BIT(MSCC_FDMA_XTR_CHAN));
return true;
}
static void ocelot_fdma_rx_set_llp(struct ocelot_fdma_rx_ring *rx_ring)
{
struct ocelot_fdma_dcb *dcb;
unsigned int idx;
idx = ocelot_fdma_idx_prev(rx_ring->next_to_use,
OCELOT_FDMA_RX_RING_SIZE);
dcb = &rx_ring->dcbs[idx];
dcb->llp = 0;
}
static void ocelot_fdma_rx_restart(struct ocelot *ocelot)
{
struct ocelot_fdma *fdma = ocelot->fdma;
struct ocelot_fdma_rx_ring *rx_ring;
const u8 chan = MSCC_FDMA_XTR_CHAN;
dma_addr_t new_llp, dma_base;
unsigned int idx;
u32 llp_prev;
int ret;
rx_ring = &fdma->rx_ring;
ret = ocelot_fdma_wait_chan_safe(ocelot, chan);
if (ret) {
dev_err_ratelimited(ocelot->dev,
"Unable to stop RX channel\n");
return;
}
ocelot_fdma_rx_set_llp(rx_ring);
/* FDMA stopped on the last DCB that contained a NULL LLP, since
* we processed some DCBs in RX, there is free space, and we must set
* DCB_LLP to point to the next DCB
*/
llp_prev = ocelot_fdma_readl(ocelot, MSCC_FDMA_DCB_LLP_PREV(chan));
dma_base = rx_ring->dcbs_dma;
/* Get the next DMA addr located after LLP == NULL DCB */
idx = ocelot_fdma_dma_idx(dma_base, llp_prev);
idx = ocelot_fdma_idx_next(idx, OCELOT_FDMA_RX_RING_SIZE);
new_llp = ocelot_fdma_idx_dma(dma_base, idx);
/* Finally reactivate the channel */
ocelot_fdma_activate_chan(ocelot, new_llp, chan);
}
static bool ocelot_fdma_add_rx_frag(struct ocelot_fdma_rx_buf *rxb, u32 stat,
struct sk_buff *skb, bool first)
{
int size = MSCC_FDMA_DCB_STAT_BLOCKL(stat);
struct page *page = rxb->page;
if (likely(first)) {
skb_put(skb, size);
} else {
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
rxb->page_offset, size, OCELOT_FDMA_RX_SIZE);
}
/* Try to reuse page */
if (unlikely(page_ref_count(page) != 1 || page_is_pfmemalloc(page)))
return false;
/* Change offset to the other half */
rxb->page_offset ^= OCELOT_FDMA_RX_SIZE;
page_ref_inc(page);
return true;
}
static void ocelot_fdma_reuse_rx_page(struct ocelot *ocelot,
struct ocelot_fdma_rx_buf *old_rxb)
{
struct ocelot_fdma_rx_ring *rx_ring = &ocelot->fdma->rx_ring;
struct ocelot_fdma_rx_buf *new_rxb;
new_rxb = &rx_ring->bufs[rx_ring->next_to_alloc];
rx_ring->next_to_alloc = ocelot_fdma_idx_next(rx_ring->next_to_alloc,
OCELOT_FDMA_RX_RING_SIZE);
/* Copy page reference */
*new_rxb = *old_rxb;
/* Sync for use by the device */
dma_sync_single_range_for_device(ocelot->dev, old_rxb->dma_addr,
old_rxb->page_offset,
OCELOT_FDMA_RX_SIZE, DMA_FROM_DEVICE);
}
static struct sk_buff *ocelot_fdma_get_skb(struct ocelot *ocelot, u32 stat,
struct ocelot_fdma_rx_buf *rxb,
struct sk_buff *skb)
{
bool first = false;
/* Allocate skb head and data */
if (likely(!skb)) {
void *buff_addr = page_address(rxb->page) +
rxb->page_offset;
skb = build_skb(buff_addr, OCELOT_FDMA_SKBFRAG_SIZE);
if (unlikely(!skb)) {
dev_err_ratelimited(ocelot->dev,
"build_skb failed !\n");
return NULL;
}
first = true;
}
dma_sync_single_range_for_cpu(ocelot->dev, rxb->dma_addr,
rxb->page_offset, OCELOT_FDMA_RX_SIZE,
DMA_FROM_DEVICE);
if (ocelot_fdma_add_rx_frag(rxb, stat, skb, first)) {
/* Reuse the free half of the page for the next_to_alloc DCB*/
ocelot_fdma_reuse_rx_page(ocelot, rxb);
} else {
/* page cannot be reused, unmap it */
dma_unmap_page(ocelot->dev, rxb->dma_addr, PAGE_SIZE,
DMA_FROM_DEVICE);
}
/* clear rx buff content */
rxb->page = NULL;
return skb;
}
static bool ocelot_fdma_receive_skb(struct ocelot *ocelot, struct sk_buff *skb)
{
struct net_device *ndev;
void *xfh = skb->data;
u64 timestamp;
u64 src_port;
skb_pull(skb, OCELOT_TAG_LEN);
ocelot_xfh_get_src_port(xfh, &src_port);
if (unlikely(src_port >= ocelot->num_phys_ports))
return false;
ndev = ocelot_port_to_netdev(ocelot, src_port);
if (unlikely(!ndev))
return false;
if (pskb_trim(skb, skb->len - ETH_FCS_LEN))
return false;
skb->dev = ndev;
skb->protocol = eth_type_trans(skb, skb->dev);
skb->dev->stats.rx_bytes += skb->len;
skb->dev->stats.rx_packets++;
if (ocelot->ptp) {
ocelot_xfh_get_rew_val(xfh, ×tamp);
ocelot_ptp_rx_timestamp(ocelot, skb, timestamp);
}
if (likely(!skb_defer_rx_timestamp(skb)))
netif_receive_skb(skb);
return true;
}
static int ocelot_fdma_rx_get(struct ocelot *ocelot, int budget)
{
struct ocelot_fdma *fdma = ocelot->fdma;
struct ocelot_fdma_rx_ring *rx_ring;
struct ocelot_fdma_rx_buf *rxb;
struct ocelot_fdma_dcb *dcb;
struct sk_buff *skb;
int work_done = 0;
int cleaned_cnt;
u32 stat;
u16 idx;
cleaned_cnt = ocelot_fdma_rx_ring_free(fdma);
rx_ring = &fdma->rx_ring;
skb = rx_ring->skb;
while (budget--) {
idx = rx_ring->next_to_clean;
dcb = &rx_ring->dcbs[idx];
stat = dcb->stat;
if (MSCC_FDMA_DCB_STAT_BLOCKL(stat) == 0)
break;
/* New packet is a start of frame but we already got a skb set,
* we probably lost an EOF packet, free skb
*/
if (unlikely(skb && (stat & MSCC_FDMA_DCB_STAT_SOF))) {
dev_kfree_skb(skb);
skb = NULL;
}
rxb = &rx_ring->bufs[idx];
/* Fetch next to clean buffer from the rx_ring */
skb = ocelot_fdma_get_skb(ocelot, stat, rxb, skb);
if (unlikely(!skb))
break;
work_done++;
cleaned_cnt++;
idx = ocelot_fdma_idx_next(idx, OCELOT_FDMA_RX_RING_SIZE);
rx_ring->next_to_clean = idx;
if (unlikely(stat & MSCC_FDMA_DCB_STAT_ABORT ||
stat & MSCC_FDMA_DCB_STAT_PD)) {
dev_err_ratelimited(ocelot->dev,
"DCB aborted or pruned\n");
dev_kfree_skb(skb);
skb = NULL;
continue;
}
/* We still need to process the other fragment of the packet
* before delivering it to the network stack
*/
if (!(stat & MSCC_FDMA_DCB_STAT_EOF))
continue;
if (unlikely(!ocelot_fdma_receive_skb(ocelot, skb)))
dev_kfree_skb(skb);
skb = NULL;
}
rx_ring->skb = skb;
if (cleaned_cnt)
ocelot_fdma_alloc_rx_buffs(ocelot, cleaned_cnt);
return work_done;
}
static void ocelot_fdma_wakeup_netdev(struct ocelot *ocelot)
{
struct ocelot_port_private *priv;
struct ocelot_port *ocelot_port;
struct net_device *dev;
int port;
for (port = 0; port < ocelot->num_phys_ports; port++) {
ocelot_port = ocelot->ports[port];
if (!ocelot_port)
continue;
priv = container_of(ocelot_port, struct ocelot_port_private,
port);
dev = priv->dev;
if (unlikely(netif_queue_stopped(dev)))
netif_wake_queue(dev);
}
}
static void ocelot_fdma_tx_cleanup(struct ocelot *ocelot, int budget)
{
struct ocelot_fdma *fdma = ocelot->fdma;
struct ocelot_fdma_tx_ring *tx_ring;
struct ocelot_fdma_tx_buf *buf;
unsigned int new_null_llp_idx;
struct ocelot_fdma_dcb *dcb;
bool end_of_list = false;
struct sk_buff *skb;
dma_addr_t dma;
u32 dcb_llp;
u16 ntc;
int ret;
tx_ring = &fdma->tx_ring;
/* Purge the TX packets that have been sent up to the NULL llp or the
* end of done list.
*/
while (!ocelot_fdma_tx_ring_empty(fdma)) {
ntc = tx_ring->next_to_clean;
dcb = &tx_ring->dcbs[ntc];
if (!(dcb->stat & MSCC_FDMA_DCB_STAT_PD))
break;
buf = &tx_ring->bufs[ntc];
skb = buf->skb;
dma_unmap_single(ocelot->dev, dma_unmap_addr(buf, dma_addr),
skb->len, DMA_TO_DEVICE);
napi_consume_skb(skb, budget);
dcb_llp = dcb->llp;
/* Only update after accessing all dcb fields */
tx_ring->next_to_clean = ocelot_fdma_idx_next(ntc,
OCELOT_FDMA_TX_RING_SIZE);
/* If we hit the NULL LLP, stop, we might need to reload FDMA */
if (dcb_llp == 0) {
end_of_list = true;
break;
}
}
/* No need to try to wake if there were no TX cleaned_cnt up. */
if (ocelot_fdma_tx_ring_free(fdma))
ocelot_fdma_wakeup_netdev(ocelot);
/* If there is still some DCBs to be processed by the FDMA or if the
* pending list is empty, there is no need to restart the FDMA.
*/
if (!end_of_list || ocelot_fdma_tx_ring_empty(fdma))
return;
ret = ocelot_fdma_wait_chan_safe(ocelot, MSCC_FDMA_INJ_CHAN);
if (ret) {
dev_warn(ocelot->dev,
"Failed to wait for TX channel to stop\n");
return;
}
/* Set NULL LLP to be the last DCB used */
new_null_llp_idx = ocelot_fdma_idx_prev(tx_ring->next_to_use,
OCELOT_FDMA_TX_RING_SIZE);
dcb = &tx_ring->dcbs[new_null_llp_idx];
dcb->llp = 0;
dma = ocelot_fdma_idx_dma(tx_ring->dcbs_dma, tx_ring->next_to_clean);
ocelot_fdma_activate_chan(ocelot, dma, MSCC_FDMA_INJ_CHAN);
}
static int ocelot_fdma_napi_poll(struct napi_struct *napi, int budget)
{
struct ocelot_fdma *fdma = container_of(napi, struct ocelot_fdma, napi);
struct ocelot *ocelot = fdma->ocelot;
int work_done = 0;
bool rx_stopped;
ocelot_fdma_tx_cleanup(ocelot, budget);
rx_stopped = ocelot_fdma_check_stop_rx(ocelot);
work_done = ocelot_fdma_rx_get(ocelot, budget);
if (rx_stopped)
ocelot_fdma_rx_restart(ocelot);
if (work_done < budget) {
napi_complete_done(&fdma->napi, work_done);
ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_ENA,
BIT(MSCC_FDMA_INJ_CHAN) |
BIT(MSCC_FDMA_XTR_CHAN));
}
return work_done;
}
static irqreturn_t ocelot_fdma_interrupt(int irq, void *dev_id)
{
u32 ident, llp, frm, err, err_code;
struct ocelot *ocelot = dev_id;
ident = ocelot_fdma_readl(ocelot, MSCC_FDMA_INTR_IDENT);
frm = ocelot_fdma_readl(ocelot, MSCC_FDMA_INTR_FRM);
llp = ocelot_fdma_readl(ocelot, MSCC_FDMA_INTR_LLP);
ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_LLP, llp & ident);
ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_FRM, frm & ident);
if (frm || llp) {
ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_ENA, 0);
napi_schedule(&ocelot->fdma->napi);
}
err = ocelot_fdma_readl(ocelot, MSCC_FDMA_EVT_ERR);
if (unlikely(err)) {
err_code = ocelot_fdma_readl(ocelot, MSCC_FDMA_EVT_ERR_CODE);
dev_err_ratelimited(ocelot->dev,
"Error ! chans mask: %#x, code: %#x\n",
err, err_code);
ocelot_fdma_writel(ocelot, MSCC_FDMA_EVT_ERR, err);
ocelot_fdma_writel(ocelot, MSCC_FDMA_EVT_ERR_CODE, err_code);
}
return IRQ_HANDLED;
}
static void ocelot_fdma_send_skb(struct ocelot *ocelot,
struct ocelot_fdma *fdma, struct sk_buff *skb)
{
struct ocelot_fdma_tx_ring *tx_ring = &fdma->tx_ring;
struct ocelot_fdma_tx_buf *tx_buf;
struct ocelot_fdma_dcb *dcb;
dma_addr_t dma;
u16 next_idx;
dcb = &tx_ring->dcbs[tx_ring->next_to_use];
tx_buf = &tx_ring->bufs[tx_ring->next_to_use];
if (!ocelot_fdma_tx_dcb_set_skb(ocelot, tx_buf, dcb, skb)) {
dev_kfree_skb_any(skb);
return;
}
next_idx = ocelot_fdma_idx_next(tx_ring->next_to_use,
OCELOT_FDMA_TX_RING_SIZE);
skb_tx_timestamp(skb);
/* If the FDMA TX chan is empty, then enqueue the DCB directly */
if (ocelot_fdma_tx_ring_empty(fdma)) {
dma = ocelot_fdma_idx_dma(tx_ring->dcbs_dma,
tx_ring->next_to_use);
ocelot_fdma_activate_chan(ocelot, dma, MSCC_FDMA_INJ_CHAN);
} else {
/* Chain the DCBs */
dcb->llp = ocelot_fdma_idx_dma(tx_ring->dcbs_dma, next_idx);
}
tx_ring->next_to_use = next_idx;
}
static int ocelot_fdma_prepare_skb(struct ocelot *ocelot, int port, u32 rew_op,
struct sk_buff *skb, struct net_device *dev)
{
int needed_headroom = max_t(int, OCELOT_TAG_LEN - skb_headroom(skb), 0);
int needed_tailroom = max_t(int, ETH_FCS_LEN - skb_tailroom(skb), 0);
void *ifh;
int err;
if (unlikely(needed_headroom || needed_tailroom ||
skb_header_cloned(skb))) {
err = pskb_expand_head(skb, needed_headroom, needed_tailroom,
GFP_ATOMIC);
if (unlikely(err)) {
dev_kfree_skb_any(skb);
return 1;
}
}
err = skb_linearize(skb);
if (err) {
net_err_ratelimited("%s: skb_linearize error (%d)!\n",
dev->name, err);
dev_kfree_skb_any(skb);
return 1;
}
ifh = skb_push(skb, OCELOT_TAG_LEN);
skb_put(skb, ETH_FCS_LEN);
ocelot_ifh_set_basic(ifh, ocelot, port, rew_op, skb);
return 0;
}
int ocelot_fdma_inject_frame(struct ocelot *ocelot, int port, u32 rew_op,
struct sk_buff *skb, struct net_device *dev)
{
struct ocelot_fdma *fdma = ocelot->fdma;
int ret = NETDEV_TX_OK;
spin_lock(&fdma->tx_ring.xmit_lock);
if (ocelot_fdma_tx_ring_free(fdma) == 0) {
netif_stop_queue(dev);
ret = NETDEV_TX_BUSY;
goto out;
}
if (ocelot_fdma_prepare_skb(ocelot, port, rew_op, skb, dev))
goto out;
ocelot_fdma_send_skb(ocelot, fdma, skb);
out:
spin_unlock(&fdma->tx_ring.xmit_lock);
return ret;
}
static void ocelot_fdma_free_rx_ring(struct ocelot *ocelot)
{
struct ocelot_fdma *fdma = ocelot->fdma;
struct ocelot_fdma_rx_ring *rx_ring;
struct ocelot_fdma_rx_buf *rxb;
u16 idx;
rx_ring = &fdma->rx_ring;
idx = rx_ring->next_to_clean;
/* Free the pages held in the RX ring */
while (idx != rx_ring->next_to_use) {
rxb = &rx_ring->bufs[idx];
dma_unmap_page(ocelot->dev, rxb->dma_addr, PAGE_SIZE,
DMA_FROM_DEVICE);
__free_page(rxb->page);
idx = ocelot_fdma_idx_next(idx, OCELOT_FDMA_RX_RING_SIZE);
}
if (fdma->rx_ring.skb)
dev_kfree_skb_any(fdma->rx_ring.skb);
}
static void ocelot_fdma_free_tx_ring(struct ocelot *ocelot)
{
struct ocelot_fdma *fdma = ocelot->fdma;
struct ocelot_fdma_tx_ring *tx_ring;
struct ocelot_fdma_tx_buf *txb;
struct sk_buff *skb;
u16 idx;
tx_ring = &fdma->tx_ring;
idx = tx_ring->next_to_clean;
while (idx != tx_ring->next_to_use) {
txb = &tx_ring->bufs[idx];
skb = txb->skb;
dma_unmap_single(ocelot->dev, dma_unmap_addr(txb, dma_addr),
skb->len, DMA_TO_DEVICE);
dev_kfree_skb_any(skb);
idx = ocelot_fdma_idx_next(idx, OCELOT_FDMA_TX_RING_SIZE);
}
}
static int ocelot_fdma_rings_alloc(struct ocelot *ocelot)
{
struct ocelot_fdma *fdma = ocelot->fdma;
struct ocelot_fdma_dcb *dcbs;
unsigned int adjust;
dma_addr_t dcbs_dma;
int ret;
/* Create a pool of consistent memory blocks for hardware descriptors */
fdma->dcbs_base = dmam_alloc_coherent(ocelot->dev,
OCELOT_DCBS_HW_ALLOC_SIZE,
&fdma->dcbs_dma_base, GFP_KERNEL);
if (!fdma->dcbs_base)
return -ENOMEM;
/* DCBs must be aligned on a 32bit boundary */
dcbs = fdma->dcbs_base;
dcbs_dma = fdma->dcbs_dma_base;
if (!IS_ALIGNED(dcbs_dma, 4)) {
adjust = dcbs_dma & 0x3;
dcbs_dma = ALIGN(dcbs_dma, 4);
dcbs = (void *)dcbs + adjust;
}
/* TX queue */
fdma->tx_ring.dcbs = dcbs;
fdma->tx_ring.dcbs_dma = dcbs_dma;
spin_lock_init(&fdma->tx_ring.xmit_lock);
/* RX queue */
fdma->rx_ring.dcbs = dcbs + OCELOT_FDMA_TX_RING_SIZE;
fdma->rx_ring.dcbs_dma = dcbs_dma + OCELOT_FDMA_TX_DCB_SIZE;
ret = ocelot_fdma_alloc_rx_buffs(ocelot,
ocelot_fdma_tx_ring_free(fdma));
if (ret) {
ocelot_fdma_free_rx_ring(ocelot);
return ret;
}
/* Set the last DCB LLP as NULL, this is normally done when restarting
* the RX chan, but this is for the first run
*/
ocelot_fdma_rx_set_llp(&fdma->rx_ring);
return 0;
}
void ocelot_fdma_netdev_init(struct ocelot *ocelot, struct net_device *dev)
{
struct ocelot_fdma *fdma = ocelot->fdma;
dev->needed_headroom = OCELOT_TAG_LEN;
dev->needed_tailroom = ETH_FCS_LEN;
if (fdma->ndev)
return;
fdma->ndev = dev;
netif_napi_add_weight(dev, &fdma->napi, ocelot_fdma_napi_poll,
OCELOT_FDMA_WEIGHT);
}
void ocelot_fdma_netdev_deinit(struct ocelot *ocelot, struct net_device *dev)
{
struct ocelot_fdma *fdma = ocelot->fdma;
if (fdma->ndev == dev) {
netif_napi_del(&fdma->napi);
fdma->ndev = NULL;
}
}
void ocelot_fdma_init(struct platform_device *pdev, struct ocelot *ocelot)
{
struct device *dev = ocelot->dev;
struct ocelot_fdma *fdma;
int ret;
fdma = devm_kzalloc(dev, sizeof(*fdma), GFP_KERNEL);
if (!fdma)
return;
ocelot->fdma = fdma;
ocelot->dev->coherent_dma_mask = DMA_BIT_MASK(32);
ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_ENA, 0);
fdma->ocelot = ocelot;
fdma->irq = platform_get_irq_byname(pdev, "fdma");
ret = devm_request_irq(dev, fdma->irq, ocelot_fdma_interrupt, 0,
dev_name(dev), ocelot);
if (ret)
goto err_free_fdma;
ret = ocelot_fdma_rings_alloc(ocelot);
if (ret)
goto err_free_irq;
static_branch_enable(&ocelot_fdma_enabled);
return;
err_free_irq:
devm_free_irq(dev, fdma->irq, fdma);
err_free_fdma:
devm_kfree(dev, fdma);
ocelot->fdma = NULL;
}
void ocelot_fdma_start(struct ocelot *ocelot)
{
struct ocelot_fdma *fdma = ocelot->fdma;
/* Reconfigure for extraction and injection using DMA */
ocelot_write_rix(ocelot, QS_INJ_GRP_CFG_MODE(2), QS_INJ_GRP_CFG, 0);
ocelot_write_rix(ocelot, QS_INJ_CTRL_GAP_SIZE(0), QS_INJ_CTRL, 0);
ocelot_write_rix(ocelot, QS_XTR_GRP_CFG_MODE(2), QS_XTR_GRP_CFG, 0);
ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_LLP, 0xffffffff);
ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_FRM, 0xffffffff);
ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_LLP_ENA,
BIT(MSCC_FDMA_INJ_CHAN) | BIT(MSCC_FDMA_XTR_CHAN));
ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_FRM_ENA,
BIT(MSCC_FDMA_XTR_CHAN));
ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_ENA,
BIT(MSCC_FDMA_INJ_CHAN) | BIT(MSCC_FDMA_XTR_CHAN));
napi_enable(&fdma->napi);
ocelot_fdma_activate_chan(ocelot, ocelot->fdma->rx_ring.dcbs_dma,
MSCC_FDMA_XTR_CHAN);
}
void ocelot_fdma_deinit(struct ocelot *ocelot)
{
struct ocelot_fdma *fdma = ocelot->fdma;
ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_ENA, 0);
ocelot_fdma_writel(ocelot, MSCC_FDMA_CH_FORCEDIS,
BIT(MSCC_FDMA_XTR_CHAN));
ocelot_fdma_writel(ocelot, MSCC_FDMA_CH_FORCEDIS,
BIT(MSCC_FDMA_INJ_CHAN));
napi_synchronize(&fdma->napi);
napi_disable(&fdma->napi);
ocelot_fdma_free_rx_ring(ocelot);
ocelot_fdma_free_tx_ring(ocelot);
}