// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2015-2018 Netronome Systems, Inc. */
/*
* nfp6000_pcie.c
* Authors: Jakub Kicinski <[email protected]>
* Jason McMullan <[email protected]>
* Rolf Neugebauer <[email protected]>
*
* Multiplexes the NFP BARs between NFP internal resources and
* implements the PCIe specific interface for generic CPP bus access.
*
* The BARs are managed with refcounts and are allocated/acquired
* using target, token and offset/size matching. The generic CPP bus
* abstraction builds upon this BAR interface.
*/
#include <linux/unaligned.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kref.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sort.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/pci.h>
#include "nfp_cpp.h"
#include "nfp_dev.h"
#include "nfp6000/nfp6000.h"
#include "nfp6000_pcie.h"
#define NFP_PCIE_BAR(_pf) (0x30000 + ((_pf) & 7) * 0xc0)
#define NFP_PCIE_BAR_EXPLICIT_BAR0(_x, _y) \
(0x00000080 + (0x40 * ((_x) & 0x3)) + (0x10 * ((_y) & 0x3)))
#define NFP_PCIE_BAR_EXPLICIT_BAR0_SignalType(_x) (((_x) & 0x3) << 30)
#define NFP_PCIE_BAR_EXPLICIT_BAR0_SignalType_of(_x) (((_x) >> 30) & 0x3)
#define NFP_PCIE_BAR_EXPLICIT_BAR0_Token(_x) (((_x) & 0x3) << 28)
#define NFP_PCIE_BAR_EXPLICIT_BAR0_Token_of(_x) (((_x) >> 28) & 0x3)
#define NFP_PCIE_BAR_EXPLICIT_BAR0_Address(_x) (((_x) & 0xffffff) << 0)
#define NFP_PCIE_BAR_EXPLICIT_BAR0_Address_of(_x) (((_x) >> 0) & 0xffffff)
#define NFP_PCIE_BAR_EXPLICIT_BAR1(_x, _y) \
(0x00000084 + (0x40 * ((_x) & 0x3)) + (0x10 * ((_y) & 0x3)))
#define NFP_PCIE_BAR_EXPLICIT_BAR1_SignalRef(_x) (((_x) & 0x7f) << 24)
#define NFP_PCIE_BAR_EXPLICIT_BAR1_SignalRef_of(_x) (((_x) >> 24) & 0x7f)
#define NFP_PCIE_BAR_EXPLICIT_BAR1_DataMaster(_x) (((_x) & 0x3ff) << 14)
#define NFP_PCIE_BAR_EXPLICIT_BAR1_DataMaster_of(_x) (((_x) >> 14) & 0x3ff)
#define NFP_PCIE_BAR_EXPLICIT_BAR1_DataRef(_x) (((_x) & 0x3fff) << 0)
#define NFP_PCIE_BAR_EXPLICIT_BAR1_DataRef_of(_x) (((_x) >> 0) & 0x3fff)
#define NFP_PCIE_BAR_EXPLICIT_BAR2(_x, _y) \
(0x00000088 + (0x40 * ((_x) & 0x3)) + (0x10 * ((_y) & 0x3)))
#define NFP_PCIE_BAR_EXPLICIT_BAR2_Target(_x) (((_x) & 0xf) << 28)
#define NFP_PCIE_BAR_EXPLICIT_BAR2_Target_of(_x) (((_x) >> 28) & 0xf)
#define NFP_PCIE_BAR_EXPLICIT_BAR2_Action(_x) (((_x) & 0x1f) << 23)
#define NFP_PCIE_BAR_EXPLICIT_BAR2_Action_of(_x) (((_x) >> 23) & 0x1f)
#define NFP_PCIE_BAR_EXPLICIT_BAR2_Length(_x) (((_x) & 0x1f) << 18)
#define NFP_PCIE_BAR_EXPLICIT_BAR2_Length_of(_x) (((_x) >> 18) & 0x1f)
#define NFP_PCIE_BAR_EXPLICIT_BAR2_ByteMask(_x) (((_x) & 0xff) << 10)
#define NFP_PCIE_BAR_EXPLICIT_BAR2_ByteMask_of(_x) (((_x) >> 10) & 0xff)
#define NFP_PCIE_BAR_EXPLICIT_BAR2_SignalMaster(_x) (((_x) & 0x3ff) << 0)
#define NFP_PCIE_BAR_EXPLICIT_BAR2_SignalMaster_of(_x) (((_x) >> 0) & 0x3ff)
#define NFP_PCIE_BAR_PCIE2CPP_Action_BaseAddress(_x) (((_x) & 0x1f) << 16)
#define NFP_PCIE_BAR_PCIE2CPP_Action_BaseAddress_of(_x) (((_x) >> 16) & 0x1f)
#define NFP_PCIE_BAR_PCIE2CPP_BaseAddress(_x) (((_x) & 0xffff) << 0)
#define NFP_PCIE_BAR_PCIE2CPP_BaseAddress_of(_x) (((_x) >> 0) & 0xffff)
#define NFP_PCIE_BAR_PCIE2CPP_LengthSelect(_x) (((_x) & 0x3) << 27)
#define NFP_PCIE_BAR_PCIE2CPP_LengthSelect_of(_x) (((_x) >> 27) & 0x3)
#define NFP_PCIE_BAR_PCIE2CPP_LengthSelect_32BIT 0
#define NFP_PCIE_BAR_PCIE2CPP_LengthSelect_64BIT 1
#define NFP_PCIE_BAR_PCIE2CPP_LengthSelect_0BYTE 3
#define NFP_PCIE_BAR_PCIE2CPP_MapType(_x) (((_x) & 0x7) << 29)
#define NFP_PCIE_BAR_PCIE2CPP_MapType_of(_x) (((_x) >> 29) & 0x7)
#define NFP_PCIE_BAR_PCIE2CPP_MapType_FIXED 0
#define NFP_PCIE_BAR_PCIE2CPP_MapType_BULK 1
#define NFP_PCIE_BAR_PCIE2CPP_MapType_TARGET 2
#define NFP_PCIE_BAR_PCIE2CPP_MapType_GENERAL 3
#define NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT0 4
#define NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT1 5
#define NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT2 6
#define NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT3 7
#define NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress(_x) (((_x) & 0xf) << 23)
#define NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress_of(_x) (((_x) >> 23) & 0xf)
#define NFP_PCIE_BAR_PCIE2CPP_Token_BaseAddress(_x) (((_x) & 0x3) << 21)
#define NFP_PCIE_BAR_PCIE2CPP_Token_BaseAddress_of(_x) (((_x) >> 21) & 0x3)
#define NFP_PCIE_EM 0x020000
#define NFP_PCIE_SRAM 0x000000
/* Minimal size of the PCIe cfg memory we depend on being mapped,
* queue controller and DMA controller don't have to be covered.
*/
#define NFP_PCI_MIN_MAP_SIZE 0x080000
#define NFP_PCIE_P2C_FIXED_SIZE(bar) (1 << (bar)->bitsize)
#define NFP_PCIE_P2C_BULK_SIZE(bar) (1 << (bar)->bitsize)
#define NFP_PCIE_P2C_GENERAL_TARGET_OFFSET(bar, x) ((x) << ((bar)->bitsize - 2))
#define NFP_PCIE_P2C_GENERAL_TOKEN_OFFSET(bar, x) ((x) << ((bar)->bitsize - 4))
#define NFP_PCIE_P2C_GENERAL_SIZE(bar) (1 << ((bar)->bitsize - 4))
#define NFP_PCIE_P2C_EXPBAR_OFFSET(bar_index) ((bar_index) * 4)
/* The number of explicit BARs to reserve.
* Minimum is 0, maximum is 4 on the NFP6000.
* The NFP3800 can have only one per PF.
*/
#define NFP_PCIE_EXPLICIT_BARS 2
struct nfp6000_pcie;
struct nfp6000_area_priv;
/**
* struct nfp_bar - describes BAR configuration and usage
* @nfp: backlink to owner
* @barcfg: cached contents of BAR config CSR
* @base: the BAR's base CPP offset
* @mask: mask for the BAR aperture (read only)
* @bitsize: bitsize of BAR aperture (read only)
* @index: index of the BAR
* @refcnt: number of current users
* @iomem: mapped IO memory
* @resource: iomem resource window
*/
struct nfp_bar {
struct nfp6000_pcie *nfp;
u32 barcfg;
u64 base; /* CPP address base */
u64 mask; /* Bit mask of the bar */
u32 bitsize; /* Bit size of the bar */
int index;
atomic_t refcnt;
void __iomem *iomem;
struct resource *resource;
};
#define NFP_PCI_BAR_MAX (PCI_64BIT_BAR_COUNT * 8)
struct nfp6000_pcie {
struct pci_dev *pdev;
struct device *dev;
const struct nfp_dev_info *dev_info;
/* PCI BAR management */
spinlock_t bar_lock; /* Protect the PCI2CPP BAR cache */
int bars;
struct nfp_bar bar[NFP_PCI_BAR_MAX];
wait_queue_head_t bar_waiters;
/* Reserved BAR access */
struct {
void __iomem *csr;
void __iomem *em;
void __iomem *expl[4];
} iomem;
/* Explicit IO access */
struct {
struct mutex mutex; /* Lock access to this explicit group */
u8 master_id;
u8 signal_ref;
void __iomem *data;
struct {
void __iomem *addr;
int bitsize;
int free[4];
} group[4];
} expl;
};
static u32 nfp_bar_maptype(struct nfp_bar *bar)
{
return NFP_PCIE_BAR_PCIE2CPP_MapType_of(bar->barcfg);
}
static resource_size_t nfp_bar_resource_len(struct nfp_bar *bar)
{
return pci_resource_len(bar->nfp->pdev, (bar->index / 8) * 2) / 8;
}
static resource_size_t nfp_bar_resource_start(struct nfp_bar *bar)
{
return pci_resource_start(bar->nfp->pdev, (bar->index / 8) * 2)
+ nfp_bar_resource_len(bar) * (bar->index & 7);
}
#define TARGET_WIDTH_32 4
#define TARGET_WIDTH_64 8
static int
compute_bar(const struct nfp6000_pcie *nfp, const struct nfp_bar *bar,
u32 *bar_config, u64 *bar_base,
int tgt, int act, int tok, u64 offset, size_t size, int width)
{
int bitsize;
u32 newcfg;
if (tgt >= NFP_CPP_NUM_TARGETS)
return -EINVAL;
switch (width) {
case 8:
newcfg = NFP_PCIE_BAR_PCIE2CPP_LengthSelect(
NFP_PCIE_BAR_PCIE2CPP_LengthSelect_64BIT);
break;
case 4:
newcfg = NFP_PCIE_BAR_PCIE2CPP_LengthSelect(
NFP_PCIE_BAR_PCIE2CPP_LengthSelect_32BIT);
break;
case 0:
newcfg = NFP_PCIE_BAR_PCIE2CPP_LengthSelect(
NFP_PCIE_BAR_PCIE2CPP_LengthSelect_0BYTE);
break;
default:
return -EINVAL;
}
if (act != NFP_CPP_ACTION_RW && act != 0) {
/* Fixed CPP mapping with specific action */
u64 mask = ~(NFP_PCIE_P2C_FIXED_SIZE(bar) - 1);
newcfg |= NFP_PCIE_BAR_PCIE2CPP_MapType(
NFP_PCIE_BAR_PCIE2CPP_MapType_FIXED);
newcfg |= NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress(tgt);
newcfg |= NFP_PCIE_BAR_PCIE2CPP_Action_BaseAddress(act);
newcfg |= NFP_PCIE_BAR_PCIE2CPP_Token_BaseAddress(tok);
if ((offset & mask) != ((offset + size - 1) & mask))
return -EINVAL;
offset &= mask;
bitsize = 40 - 16;
} else {
u64 mask = ~(NFP_PCIE_P2C_BULK_SIZE(bar) - 1);
/* Bulk mapping */
newcfg |= NFP_PCIE_BAR_PCIE2CPP_MapType(
NFP_PCIE_BAR_PCIE2CPP_MapType_BULK);
newcfg |= NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress(tgt);
newcfg |= NFP_PCIE_BAR_PCIE2CPP_Token_BaseAddress(tok);
if ((offset & mask) != ((offset + size - 1) & mask))
return -EINVAL;
offset &= mask;
bitsize = 40 - 21;
}
if (bar->bitsize < bitsize)
return -EINVAL;
newcfg |= offset >> bitsize;
if (bar_base)
*bar_base = offset;
if (bar_config)
*bar_config = newcfg;
return 0;
}
static int
nfp6000_bar_write(struct nfp6000_pcie *nfp, struct nfp_bar *bar, u32 newcfg)
{
unsigned int xbar;
xbar = NFP_PCIE_P2C_EXPBAR_OFFSET(bar->index);
if (nfp->iomem.csr) {
writel(newcfg, nfp->iomem.csr + xbar);
/* Readback to ensure BAR is flushed */
readl(nfp->iomem.csr + xbar);
} else {
xbar += nfp->dev_info->pcie_cfg_expbar_offset;
pci_write_config_dword(nfp->pdev, xbar, newcfg);
}
bar->barcfg = newcfg;
return 0;
}
static int
reconfigure_bar(struct nfp6000_pcie *nfp, struct nfp_bar *bar,
int tgt, int act, int tok, u64 offset, size_t size, int width)
{
u64 newbase;
u32 newcfg;
int err;
err = compute_bar(nfp, bar, &newcfg, &newbase,
tgt, act, tok, offset, size, width);
if (err)
return err;
bar->base = newbase;
return nfp6000_bar_write(nfp, bar, newcfg);
}
/* Check if BAR can be used with the given parameters. */
static int matching_bar(struct nfp_bar *bar, u32 tgt, u32 act, u32 tok,
u64 offset, size_t size, int width)
{
int bartgt, baract, bartok;
int barwidth;
u32 maptype;
maptype = NFP_PCIE_BAR_PCIE2CPP_MapType_of(bar->barcfg);
bartgt = NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress_of(bar->barcfg);
bartok = NFP_PCIE_BAR_PCIE2CPP_Token_BaseAddress_of(bar->barcfg);
baract = NFP_PCIE_BAR_PCIE2CPP_Action_BaseAddress_of(bar->barcfg);
barwidth = NFP_PCIE_BAR_PCIE2CPP_LengthSelect_of(bar->barcfg);
switch (barwidth) {
case NFP_PCIE_BAR_PCIE2CPP_LengthSelect_32BIT:
barwidth = 4;
break;
case NFP_PCIE_BAR_PCIE2CPP_LengthSelect_64BIT:
barwidth = 8;
break;
case NFP_PCIE_BAR_PCIE2CPP_LengthSelect_0BYTE:
barwidth = 0;
break;
default:
barwidth = -1;
break;
}
switch (maptype) {
case NFP_PCIE_BAR_PCIE2CPP_MapType_TARGET:
bartok = -1;
fallthrough;
case NFP_PCIE_BAR_PCIE2CPP_MapType_BULK:
baract = NFP_CPP_ACTION_RW;
if (act == 0)
act = NFP_CPP_ACTION_RW;
fallthrough;
case NFP_PCIE_BAR_PCIE2CPP_MapType_FIXED:
break;
default:
/* We don't match explicit bars through the area interface */
return 0;
}
/* Make sure to match up the width */
if (barwidth != width)
return 0;
if ((bartgt < 0 || bartgt == tgt) &&
(bartok < 0 || bartok == tok) &&
(baract == act) &&
bar->base <= offset &&
(bar->base + (1 << bar->bitsize)) >= (offset + size))
return 1;
/* No match */
return 0;
}
static int
find_matching_bar(struct nfp6000_pcie *nfp,
u32 tgt, u32 act, u32 tok, u64 offset, size_t size, int width)
{
int n;
for (n = 0; n < nfp->bars; n++) {
struct nfp_bar *bar = &nfp->bar[n];
if (matching_bar(bar, tgt, act, tok, offset, size, width))
return n;
}
return -1;
}
/* Return EAGAIN if no resource is available */
static int
find_unused_bar_noblock(const struct nfp6000_pcie *nfp,
int tgt, int act, int tok,
u64 offset, size_t size, int width)
{
int n, busy = 0;
for (n = 0; n < nfp->bars; n++) {
const struct nfp_bar *bar = &nfp->bar[n];
int err;
if (!bar->bitsize)
continue;
/* Just check to see if we can make it fit... */
err = compute_bar(nfp, bar, NULL, NULL,
tgt, act, tok, offset, size, width);
if (err)
continue;
if (!atomic_read(&bar->refcnt))
return n;
busy++;
}
if (WARN(!busy, "No suitable BAR found for request tgt:0x%x act:0x%x tok:0x%x off:0x%llx size:%zd width:%d\n",
tgt, act, tok, offset, size, width))
return -EINVAL;
return -EAGAIN;
}
static int
find_unused_bar_and_lock(struct nfp6000_pcie *nfp,
int tgt, int act, int tok,
u64 offset, size_t size, int width)
{
unsigned long flags;
int n;
spin_lock_irqsave(&nfp->bar_lock, flags);
n = find_unused_bar_noblock(nfp, tgt, act, tok, offset, size, width);
if (n < 0)
spin_unlock_irqrestore(&nfp->bar_lock, flags);
else
__release(&nfp->bar_lock);
return n;
}
static void nfp_bar_get(struct nfp6000_pcie *nfp, struct nfp_bar *bar)
{
atomic_inc(&bar->refcnt);
}
static void nfp_bar_put(struct nfp6000_pcie *nfp, struct nfp_bar *bar)
{
if (atomic_dec_and_test(&bar->refcnt))
wake_up_interruptible(&nfp->bar_waiters);
}
static int
nfp_wait_for_bar(struct nfp6000_pcie *nfp, int *barnum,
u32 tgt, u32 act, u32 tok, u64 offset, size_t size, int width)
{
return wait_event_interruptible(nfp->bar_waiters,
(*barnum = find_unused_bar_and_lock(nfp, tgt, act, tok,
offset, size, width))
!= -EAGAIN);
}
static int
nfp_alloc_bar(struct nfp6000_pcie *nfp,
u32 tgt, u32 act, u32 tok,
u64 offset, size_t size, int width, int nonblocking)
{
unsigned long irqflags;
int barnum, retval;
if (size > (1 << 24))
return -EINVAL;
spin_lock_irqsave(&nfp->bar_lock, irqflags);
barnum = find_matching_bar(nfp, tgt, act, tok, offset, size, width);
if (barnum >= 0) {
/* Found a perfect match. */
nfp_bar_get(nfp, &nfp->bar[barnum]);
spin_unlock_irqrestore(&nfp->bar_lock, irqflags);
return barnum;
}
barnum = find_unused_bar_noblock(nfp, tgt, act, tok,
offset, size, width);
if (barnum < 0) {
if (nonblocking)
goto err_nobar;
/* Wait until a BAR becomes available. The
* find_unused_bar function will reclaim the bar_lock
* if a free BAR is found.
*/
spin_unlock_irqrestore(&nfp->bar_lock, irqflags);
retval = nfp_wait_for_bar(nfp, &barnum, tgt, act, tok,
offset, size, width);
if (retval)
return retval;
__acquire(&nfp->bar_lock);
}
nfp_bar_get(nfp, &nfp->bar[barnum]);
retval = reconfigure_bar(nfp, &nfp->bar[barnum],
tgt, act, tok, offset, size, width);
if (retval < 0) {
nfp_bar_put(nfp, &nfp->bar[barnum]);
barnum = retval;
}
err_nobar:
spin_unlock_irqrestore(&nfp->bar_lock, irqflags);
return barnum;
}
static void disable_bars(struct nfp6000_pcie *nfp);
static int bar_cmp(const void *aptr, const void *bptr)
{
const struct nfp_bar *a = aptr, *b = bptr;
if (a->bitsize == b->bitsize)
return a->index - b->index;
else
return a->bitsize - b->bitsize;
}
/* Map all PCI bars and fetch the actual BAR configurations from the
* board. We assume that the BAR with the PCIe config block is
* already mapped.
*
* BAR0.0: Reserved for General Mapping (for MSI-X access to PCIe SRAM)
* BAR0.1: Reserved for XPB access (for MSI-X access to PCIe PBA)
* BAR0.2: --
* BAR0.3: --
* BAR0.4: Reserved for Explicit 0.0-0.3 access
* BAR0.5: Reserved for Explicit 1.0-1.3 access
* BAR0.6: Reserved for Explicit 2.0-2.3 access
* BAR0.7: Reserved for Explicit 3.0-3.3 access
*
* BAR1.0-BAR1.7: --
* BAR2.0-BAR2.7: --
*/
static int enable_bars(struct nfp6000_pcie *nfp, u16 interface)
{
const u32 barcfg_msix_general =
NFP_PCIE_BAR_PCIE2CPP_MapType(
NFP_PCIE_BAR_PCIE2CPP_MapType_GENERAL) |
NFP_PCIE_BAR_PCIE2CPP_LengthSelect(
NFP_PCIE_BAR_PCIE2CPP_LengthSelect_32BIT);
const u32 barcfg_msix_xpb =
NFP_PCIE_BAR_PCIE2CPP_MapType(
NFP_PCIE_BAR_PCIE2CPP_MapType_BULK) |
NFP_PCIE_BAR_PCIE2CPP_LengthSelect(
NFP_PCIE_BAR_PCIE2CPP_LengthSelect_32BIT) |
NFP_PCIE_BAR_PCIE2CPP_Target_BaseAddress(
NFP_CPP_TARGET_ISLAND_XPB);
const u32 barcfg_explicit[4] = {
NFP_PCIE_BAR_PCIE2CPP_MapType(
NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT0),
NFP_PCIE_BAR_PCIE2CPP_MapType(
NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT1),
NFP_PCIE_BAR_PCIE2CPP_MapType(
NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT2),
NFP_PCIE_BAR_PCIE2CPP_MapType(
NFP_PCIE_BAR_PCIE2CPP_MapType_EXPLICIT3),
};
char status_msg[196] = {};
int i, err, bars_free;
struct nfp_bar *bar;
int expl_groups;
char *msg, *end;
msg = status_msg +
snprintf(status_msg, sizeof(status_msg) - 1, "RESERVED BARs: ");
end = status_msg + sizeof(status_msg) - 1;
bar = &nfp->bar[0];
for (i = 0; i < ARRAY_SIZE(nfp->bar); i++, bar++) {
struct resource *res;
res = &nfp->pdev->resource[(i >> 3) * 2];
/* Skip over BARs that are not IORESOURCE_MEM */
if (!(resource_type(res) & IORESOURCE_MEM)) {
bar--;
continue;
}
bar->resource = res;
bar->barcfg = 0;
bar->nfp = nfp;
bar->index = i;
bar->mask = nfp_bar_resource_len(bar) - 1;
bar->bitsize = fls(bar->mask);
bar->base = 0;
bar->iomem = NULL;
}
nfp->bars = bar - &nfp->bar[0];
if (nfp->bars < 8) {
dev_err(nfp->dev, "No usable BARs found!\n");
return -EINVAL;
}
bars_free = nfp->bars;
/* Convert unit ID (0..3) to signal master/data master ID (0x40..0x70)
*/
mutex_init(&nfp->expl.mutex);
nfp->expl.master_id = ((NFP_CPP_INTERFACE_UNIT_of(interface) & 3) + 4)
<< 4;
nfp->expl.signal_ref = 0x10;
/* Configure, and lock, BAR0.0 for General Target use (MSI-X SRAM) */
bar = &nfp->bar[0];
if (nfp_bar_resource_len(bar) >= NFP_PCI_MIN_MAP_SIZE)
bar->iomem = ioremap(nfp_bar_resource_start(bar),
nfp_bar_resource_len(bar));
if (bar->iomem) {
int pf;
msg += scnprintf(msg, end - msg, "0.0: General/MSI-X SRAM, ");
atomic_inc(&bar->refcnt);
bars_free--;
nfp6000_bar_write(nfp, bar, barcfg_msix_general);
nfp->expl.data = bar->iomem + NFP_PCIE_SRAM +
nfp->dev_info->pcie_expl_offset;
switch (nfp->pdev->device) {
case PCI_DEVICE_ID_NFP3800:
pf = nfp->pdev->devfn & 7;
nfp->iomem.csr = bar->iomem + NFP_PCIE_BAR(pf);
break;
case PCI_DEVICE_ID_NFP4000:
case PCI_DEVICE_ID_NFP5000:
case PCI_DEVICE_ID_NFP6000:
nfp->iomem.csr = bar->iomem + NFP_PCIE_BAR(0);
break;
default:
dev_err(nfp->dev, "Unsupported device ID: %04hx!\n",
nfp->pdev->device);
err = -EINVAL;
goto err_unmap_bar0;
}
nfp->iomem.em = bar->iomem + NFP_PCIE_EM;
}
switch (nfp->pdev->device) {
case PCI_DEVICE_ID_NFP3800:
expl_groups = 1;
break;
case PCI_DEVICE_ID_NFP4000:
case PCI_DEVICE_ID_NFP5000:
case PCI_DEVICE_ID_NFP6000:
expl_groups = 4;
break;
default:
dev_err(nfp->dev, "Unsupported device ID: %04hx!\n",
nfp->pdev->device);
err = -EINVAL;
goto err_unmap_bar0;
}
/* Configure, and lock, BAR0.1 for PCIe XPB (MSI-X PBA) */
bar = &nfp->bar[1];
msg += scnprintf(msg, end - msg, "0.1: PCIe XPB/MSI-X PBA, ");
atomic_inc(&bar->refcnt);
bars_free--;
nfp6000_bar_write(nfp, bar, barcfg_msix_xpb);
/* Use BAR0.4..BAR0.7 for EXPL IO */
for (i = 0; i < 4; i++) {
int j;
if (i >= NFP_PCIE_EXPLICIT_BARS || i >= expl_groups) {
nfp->expl.group[i].bitsize = 0;
continue;
}
bar = &nfp->bar[4 + i];
bar->iomem = ioremap(nfp_bar_resource_start(bar),
nfp_bar_resource_len(bar));
if (bar->iomem) {
msg += scnprintf(msg, end - msg,
"0.%d: Explicit%d, ", 4 + i, i);
atomic_inc(&bar->refcnt);
bars_free--;
nfp->expl.group[i].bitsize = bar->bitsize;
nfp->expl.group[i].addr = bar->iomem;
nfp6000_bar_write(nfp, bar, barcfg_explicit[i]);
for (j = 0; j < 4; j++)
nfp->expl.group[i].free[j] = true;
}
nfp->iomem.expl[i] = bar->iomem;
}
/* Sort bars by bit size - use the smallest possible first. */
sort(&nfp->bar[0], nfp->bars, sizeof(nfp->bar[0]),
bar_cmp, NULL);
dev_info(nfp->dev, "%sfree: %d/%d\n", status_msg, bars_free, nfp->bars);
return 0;
err_unmap_bar0:
if (nfp->bar[0].iomem)
iounmap(nfp->bar[0].iomem);
return err;
}
static void disable_bars(struct nfp6000_pcie *nfp)
{
struct nfp_bar *bar = &nfp->bar[0];
int n;
for (n = 0; n < nfp->bars; n++, bar++) {
if (bar->iomem) {
iounmap(bar->iomem);
bar->iomem = NULL;
}
}
}
/*
* Generic CPP bus access interface.
*/
struct nfp6000_area_priv {
atomic_t refcnt;
struct nfp_bar *bar;
u32 bar_offset;
u32 target;
u32 action;
u32 token;
u64 offset;
struct {
int read;
int write;
int bar;
} width;
size_t size;
void __iomem *iomem;
phys_addr_t phys;
struct resource resource;
};
static int nfp6000_area_init(struct nfp_cpp_area *area, u32 dest,
unsigned long long address, unsigned long size)
{
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
u32 target = NFP_CPP_ID_TARGET_of(dest);
u32 action = NFP_CPP_ID_ACTION_of(dest);
u32 token = NFP_CPP_ID_TOKEN_of(dest);
int pp;
pp = nfp_target_pushpull(NFP_CPP_ID(target, action, token), address);
if (pp < 0)
return pp;
priv->width.read = PUSH_WIDTH(pp);
priv->width.write = PULL_WIDTH(pp);
if (priv->width.read > 0 &&
priv->width.write > 0 &&
priv->width.read != priv->width.write) {
return -EINVAL;
}
if (priv->width.read > 0)
priv->width.bar = priv->width.read;
else
priv->width.bar = priv->width.write;
atomic_set(&priv->refcnt, 0);
priv->bar = NULL;
priv->target = target;
priv->action = action;
priv->token = token;
priv->offset = address;
priv->size = size;
memset(&priv->resource, 0, sizeof(priv->resource));
return 0;
}
static void nfp6000_area_cleanup(struct nfp_cpp_area *area)
{
}
static void priv_area_get(struct nfp_cpp_area *area)
{
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
atomic_inc(&priv->refcnt);
}
static int priv_area_put(struct nfp_cpp_area *area)
{
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
if (WARN_ON(!atomic_read(&priv->refcnt)))
return 0;
return atomic_dec_and_test(&priv->refcnt);
}
static int nfp6000_area_acquire(struct nfp_cpp_area *area)
{
struct nfp6000_pcie *nfp = nfp_cpp_priv(nfp_cpp_area_cpp(area));
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
int barnum, err;
if (priv->bar) {
/* Already allocated. */
priv_area_get(area);
return 0;
}
barnum = nfp_alloc_bar(nfp, priv->target, priv->action, priv->token,
priv->offset, priv->size, priv->width.bar, 1);
if (barnum < 0) {
err = barnum;
goto err_alloc_bar;
}
priv->bar = &nfp->bar[barnum];
/* Calculate offset into BAR. */
if (nfp_bar_maptype(priv->bar) ==
NFP_PCIE_BAR_PCIE2CPP_MapType_GENERAL) {
priv->bar_offset = priv->offset &
(NFP_PCIE_P2C_GENERAL_SIZE(priv->bar) - 1);
priv->bar_offset += NFP_PCIE_P2C_GENERAL_TARGET_OFFSET(
priv->bar, priv->target);
priv->bar_offset += NFP_PCIE_P2C_GENERAL_TOKEN_OFFSET(
priv->bar, priv->token);
} else {
priv->bar_offset = priv->offset & priv->bar->mask;
}
/* We don't actually try to acquire the resource area using
* request_resource. This would prevent sharing the mapped
* BAR between multiple CPP areas and prevent us from
* effectively utilizing the limited amount of BAR resources.
*/
priv->phys = nfp_bar_resource_start(priv->bar) + priv->bar_offset;
priv->resource.name = nfp_cpp_area_name(area);
priv->resource.start = priv->phys;
priv->resource.end = priv->resource.start + priv->size - 1;
priv->resource.flags = IORESOURCE_MEM;
/* If the bar is already mapped in, use its mapping */
if (priv->bar->iomem)
priv->iomem = priv->bar->iomem + priv->bar_offset;
else
/* Must have been too big. Sub-allocate. */
priv->iomem = ioremap(priv->phys, priv->size);
if (IS_ERR_OR_NULL(priv->iomem)) {
dev_err(nfp->dev, "Can't ioremap() a %d byte region of BAR %d\n",
(int)priv->size, priv->bar->index);
err = !priv->iomem ? -ENOMEM : PTR_ERR(priv->iomem);
priv->iomem = NULL;
goto err_iomem_remap;
}
priv_area_get(area);
return 0;
err_iomem_remap:
nfp_bar_put(nfp, priv->bar);
priv->bar = NULL;
err_alloc_bar:
return err;
}
static void nfp6000_area_release(struct nfp_cpp_area *area)
{
struct nfp6000_pcie *nfp = nfp_cpp_priv(nfp_cpp_area_cpp(area));
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
if (!priv_area_put(area))
return;
if (!priv->bar->iomem)
iounmap(priv->iomem);
nfp_bar_put(nfp, priv->bar);
priv->bar = NULL;
priv->iomem = NULL;
}
static phys_addr_t nfp6000_area_phys(struct nfp_cpp_area *area)
{
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
return priv->phys;
}
static void __iomem *nfp6000_area_iomem(struct nfp_cpp_area *area)
{
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
return priv->iomem;
}
static struct resource *nfp6000_area_resource(struct nfp_cpp_area *area)
{
/* Use the BAR resource as the resource for the CPP area.
* This enables us to share the BAR among multiple CPP areas
* without resource conflicts.
*/
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
return priv->bar->resource;
}
static int nfp6000_area_read(struct nfp_cpp_area *area, void *kernel_vaddr,
unsigned long offset, unsigned int length)
{
u64 __maybe_unused *wrptr64 = kernel_vaddr;
const u64 __iomem __maybe_unused *rdptr64;
struct nfp6000_area_priv *priv;
u32 *wrptr32 = kernel_vaddr;
const u32 __iomem *rdptr32;
int n, width;
priv = nfp_cpp_area_priv(area);
rdptr64 = priv->iomem + offset;
rdptr32 = priv->iomem + offset;
if (offset + length > priv->size)
return -EFAULT;
width = priv->width.read;
if (width <= 0)
return -EINVAL;
/* MU reads via a PCIe2CPP BAR support 32bit (and other) lengths */
if (priv->target == (NFP_CPP_TARGET_MU & NFP_CPP_TARGET_ID_MASK) &&
priv->action == NFP_CPP_ACTION_RW &&
(offset % sizeof(u64) == 4 || length % sizeof(u64) == 4))
width = TARGET_WIDTH_32;
/* Unaligned? Translate to an explicit access */
if ((priv->offset + offset) & (width - 1))
return nfp_cpp_explicit_read(nfp_cpp_area_cpp(area),
NFP_CPP_ID(priv->target,
priv->action,
priv->token),
priv->offset + offset,
kernel_vaddr, length, width);
if (WARN_ON(!priv->bar))
return -EFAULT;
switch (width) {
case TARGET_WIDTH_32:
if (offset % sizeof(u32) != 0 || length % sizeof(u32) != 0)
return -EINVAL;
for (n = 0; n < length; n += sizeof(u32))
*wrptr32++ = __raw_readl(rdptr32++);
return n;
#ifdef __raw_readq
case TARGET_WIDTH_64:
if (offset % sizeof(u64) != 0 || length % sizeof(u64) != 0)
return -EINVAL;
for (n = 0; n < length; n += sizeof(u64))
*wrptr64++ = __raw_readq(rdptr64++);
return n;
#endif
default:
return -EINVAL;
}
}
static int
nfp6000_area_write(struct nfp_cpp_area *area,
const void *kernel_vaddr,
unsigned long offset, unsigned int length)
{
const u64 __maybe_unused *rdptr64 = kernel_vaddr;
u64 __iomem __maybe_unused *wrptr64;
const u32 *rdptr32 = kernel_vaddr;
struct nfp6000_area_priv *priv;
u32 __iomem *wrptr32;
int n, width;
priv = nfp_cpp_area_priv(area);
wrptr64 = priv->iomem + offset;
wrptr32 = priv->iomem + offset;
if (offset + length > priv->size)
return -EFAULT;
width = priv->width.write;
if (width <= 0)
return -EINVAL;
/* MU writes via a PCIe2CPP BAR support 32bit (and other) lengths */
if (priv->target == (NFP_CPP_TARGET_ID_MASK & NFP_CPP_TARGET_MU) &&
priv->action == NFP_CPP_ACTION_RW &&
(offset % sizeof(u64) == 4 || length % sizeof(u64) == 4))
width = TARGET_WIDTH_32;
/* Unaligned? Translate to an explicit access */
if ((priv->offset + offset) & (width - 1))
return nfp_cpp_explicit_write(nfp_cpp_area_cpp(area),
NFP_CPP_ID(priv->target,
priv->action,
priv->token),
priv->offset + offset,
kernel_vaddr, length, width);
if (WARN_ON(!priv->bar))
return -EFAULT;
switch (width) {
case TARGET_WIDTH_32:
if (offset % sizeof(u32) != 0 || length % sizeof(u32) != 0)
return -EINVAL;
for (n = 0; n < length; n += sizeof(u32)) {
__raw_writel(*rdptr32++, wrptr32++);
wmb();
}
return n;
#ifdef __raw_writeq
case TARGET_WIDTH_64:
if (offset % sizeof(u64) != 0 || length % sizeof(u64) != 0)
return -EINVAL;
for (n = 0; n < length; n += sizeof(u64)) {
__raw_writeq(*rdptr64++, wrptr64++);
wmb();
}
return n;
#endif
default:
return -EINVAL;
}
}
struct nfp6000_explicit_priv {
struct nfp6000_pcie *nfp;
struct {
int group;
int area;
} bar;
int bitsize;
void __iomem *data;
void __iomem *addr;
};
static int nfp6000_explicit_acquire(struct nfp_cpp_explicit *expl)
{
struct nfp6000_pcie *nfp = nfp_cpp_priv(nfp_cpp_explicit_cpp(expl));
struct nfp6000_explicit_priv *priv = nfp_cpp_explicit_priv(expl);
int i, j;
mutex_lock(&nfp->expl.mutex);
for (i = 0; i < ARRAY_SIZE(nfp->expl.group); i++) {
if (!nfp->expl.group[i].bitsize)
continue;
for (j = 0; j < ARRAY_SIZE(nfp->expl.group[i].free); j++) {
u16 data_offset;
if (!nfp->expl.group[i].free[j])
continue;
priv->nfp = nfp;
priv->bar.group = i;
priv->bar.area = j;
priv->bitsize = nfp->expl.group[i].bitsize - 2;
data_offset = (priv->bar.group << 9) +
(priv->bar.area << 7);
priv->data = nfp->expl.data + data_offset;
priv->addr = nfp->expl.group[i].addr +
(priv->bar.area << priv->bitsize);
nfp->expl.group[i].free[j] = false;
mutex_unlock(&nfp->expl.mutex);
return 0;
}
}
mutex_unlock(&nfp->expl.mutex);
return -EAGAIN;
}
static void nfp6000_explicit_release(struct nfp_cpp_explicit *expl)
{
struct nfp6000_explicit_priv *priv = nfp_cpp_explicit_priv(expl);
struct nfp6000_pcie *nfp = priv->nfp;
mutex_lock(&nfp->expl.mutex);
nfp->expl.group[priv->bar.group].free[priv->bar.area] = true;
mutex_unlock(&nfp->expl.mutex);
}
static int nfp6000_explicit_put(struct nfp_cpp_explicit *expl,
const void *buff, size_t len)
{
struct nfp6000_explicit_priv *priv = nfp_cpp_explicit_priv(expl);
const u32 *src = buff;
size_t i;
for (i = 0; i < len; i += sizeof(u32))
writel(*(src++), priv->data + i);
return i;
}
static int
nfp6000_explicit_do(struct nfp_cpp_explicit *expl,
const struct nfp_cpp_explicit_command *cmd, u64 address)
{
struct nfp6000_explicit_priv *priv = nfp_cpp_explicit_priv(expl);
u8 signal_master, signal_ref, data_master;
struct nfp6000_pcie *nfp = priv->nfp;
int sigmask = 0;
u16 data_ref;
u32 csr[3];
if (cmd->siga_mode)
sigmask |= 1 << cmd->siga;
if (cmd->sigb_mode)
sigmask |= 1 << cmd->sigb;
signal_master = cmd->signal_master;
if (!signal_master)
signal_master = nfp->expl.master_id;
signal_ref = cmd->signal_ref;
if (signal_master == nfp->expl.master_id)
signal_ref = nfp->expl.signal_ref +
((priv->bar.group * 4 + priv->bar.area) << 1);
data_master = cmd->data_master;
if (!data_master)
data_master = nfp->expl.master_id;
data_ref = cmd->data_ref;
if (data_master == nfp->expl.master_id)
data_ref = 0x1000 +
(priv->bar.group << 9) + (priv->bar.area << 7);
csr[0] = NFP_PCIE_BAR_EXPLICIT_BAR0_SignalType(sigmask) |
NFP_PCIE_BAR_EXPLICIT_BAR0_Token(
NFP_CPP_ID_TOKEN_of(cmd->cpp_id)) |
NFP_PCIE_BAR_EXPLICIT_BAR0_Address(address >> 16);
csr[1] = NFP_PCIE_BAR_EXPLICIT_BAR1_SignalRef(signal_ref) |
NFP_PCIE_BAR_EXPLICIT_BAR1_DataMaster(data_master) |
NFP_PCIE_BAR_EXPLICIT_BAR1_DataRef(data_ref);
csr[2] = NFP_PCIE_BAR_EXPLICIT_BAR2_Target(
NFP_CPP_ID_TARGET_of(cmd->cpp_id)) |
NFP_PCIE_BAR_EXPLICIT_BAR2_Action(
NFP_CPP_ID_ACTION_of(cmd->cpp_id)) |
NFP_PCIE_BAR_EXPLICIT_BAR2_Length(cmd->len) |
NFP_PCIE_BAR_EXPLICIT_BAR2_ByteMask(cmd->byte_mask) |
NFP_PCIE_BAR_EXPLICIT_BAR2_SignalMaster(signal_master);
if (nfp->iomem.csr) {
writel(csr[0], nfp->iomem.csr +
NFP_PCIE_BAR_EXPLICIT_BAR0(priv->bar.group,
priv->bar.area));
writel(csr[1], nfp->iomem.csr +
NFP_PCIE_BAR_EXPLICIT_BAR1(priv->bar.group,
priv->bar.area));
writel(csr[2], nfp->iomem.csr +
NFP_PCIE_BAR_EXPLICIT_BAR2(priv->bar.group,
priv->bar.area));
/* Readback to ensure BAR is flushed */
readl(nfp->iomem.csr +
NFP_PCIE_BAR_EXPLICIT_BAR0(priv->bar.group,
priv->bar.area));
readl(nfp->iomem.csr +
NFP_PCIE_BAR_EXPLICIT_BAR1(priv->bar.group,
priv->bar.area));
readl(nfp->iomem.csr +
NFP_PCIE_BAR_EXPLICIT_BAR2(priv->bar.group,
priv->bar.area));
} else {
pci_write_config_dword(nfp->pdev, 0x400 +
NFP_PCIE_BAR_EXPLICIT_BAR0(
priv->bar.group, priv->bar.area),
csr[0]);
pci_write_config_dword(nfp->pdev, 0x400 +
NFP_PCIE_BAR_EXPLICIT_BAR1(
priv->bar.group, priv->bar.area),
csr[1]);
pci_write_config_dword(nfp->pdev, 0x400 +
NFP_PCIE_BAR_EXPLICIT_BAR2(
priv->bar.group, priv->bar.area),
csr[2]);
}
/* Issue the 'kickoff' transaction */
readb(priv->addr + (address & ((1 << priv->bitsize) - 1)));
return sigmask;
}
static int nfp6000_explicit_get(struct nfp_cpp_explicit *expl,
void *buff, size_t len)
{
struct nfp6000_explicit_priv *priv = nfp_cpp_explicit_priv(expl);
u32 *dst = buff;
size_t i;
for (i = 0; i < len; i += sizeof(u32))
*(dst++) = readl(priv->data + i);
return i;
}
static int nfp6000_init(struct nfp_cpp *cpp)
{
nfp_cpp_area_cache_add(cpp, SZ_64K);
nfp_cpp_area_cache_add(cpp, SZ_64K);
nfp_cpp_area_cache_add(cpp, SZ_256K);
return 0;
}
static void nfp6000_free(struct nfp_cpp *cpp)
{
struct nfp6000_pcie *nfp = nfp_cpp_priv(cpp);
disable_bars(nfp);
kfree(nfp);
}
static int nfp6000_read_serial(struct device *dev, u8 *serial)
{
struct pci_dev *pdev = to_pci_dev(dev);
u64 dsn;
dsn = pci_get_dsn(pdev);
if (!dsn) {
dev_err(dev, "can't find PCIe Serial Number Capability\n");
return -EINVAL;
}
put_unaligned_be32((u32)(dsn >> 32), serial);
put_unaligned_be16((u16)(dsn >> 16), serial + 4);
return 0;
}
static int nfp6000_get_interface(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
u64 dsn;
dsn = pci_get_dsn(pdev);
if (!dsn) {
dev_err(dev, "can't find PCIe Serial Number Capability\n");
return -EINVAL;
}
return dsn & 0xffff;
}
static const struct nfp_cpp_operations nfp6000_pcie_ops = {
.owner = THIS_MODULE,
.init = nfp6000_init,
.free = nfp6000_free,
.read_serial = nfp6000_read_serial,
.get_interface = nfp6000_get_interface,
.area_priv_size = sizeof(struct nfp6000_area_priv),
.area_init = nfp6000_area_init,
.area_cleanup = nfp6000_area_cleanup,
.area_acquire = nfp6000_area_acquire,
.area_release = nfp6000_area_release,
.area_phys = nfp6000_area_phys,
.area_iomem = nfp6000_area_iomem,
.area_resource = nfp6000_area_resource,
.area_read = nfp6000_area_read,
.area_write = nfp6000_area_write,
.explicit_priv_size = sizeof(struct nfp6000_explicit_priv),
.explicit_acquire = nfp6000_explicit_acquire,
.explicit_release = nfp6000_explicit_release,
.explicit_put = nfp6000_explicit_put,
.explicit_do = nfp6000_explicit_do,
.explicit_get = nfp6000_explicit_get,
};
/**
* nfp_cpp_from_nfp6000_pcie() - Build a NFP CPP bus from a NFP6000 PCI device
* @pdev: NFP6000 PCI device
* @dev_info: NFP ASIC params
*
* Return: NFP CPP handle
*/
struct nfp_cpp *
nfp_cpp_from_nfp6000_pcie(struct pci_dev *pdev, const struct nfp_dev_info *dev_info)
{
struct nfp6000_pcie *nfp;
u16 interface;
int err;
/* Finished with card initialization. */
dev_info(&pdev->dev, "Network Flow Processor %s PCIe Card Probe\n",
dev_info->chip_names);
pcie_print_link_status(pdev);
nfp = kzalloc(sizeof(*nfp), GFP_KERNEL);
if (!nfp) {
err = -ENOMEM;
goto err_ret;
}
nfp->dev = &pdev->dev;
nfp->pdev = pdev;
nfp->dev_info = dev_info;
init_waitqueue_head(&nfp->bar_waiters);
spin_lock_init(&nfp->bar_lock);
interface = nfp6000_get_interface(&pdev->dev);
if (NFP_CPP_INTERFACE_TYPE_of(interface) !=
NFP_CPP_INTERFACE_TYPE_PCI) {
dev_err(&pdev->dev,
"Interface type %d is not the expected %d\n",
NFP_CPP_INTERFACE_TYPE_of(interface),
NFP_CPP_INTERFACE_TYPE_PCI);
err = -ENODEV;
goto err_free_nfp;
}
if (NFP_CPP_INTERFACE_CHANNEL_of(interface) !=
NFP_CPP_INTERFACE_CHANNEL_PEROPENER) {
dev_err(&pdev->dev, "Interface channel %d is not the expected %d\n",
NFP_CPP_INTERFACE_CHANNEL_of(interface),
NFP_CPP_INTERFACE_CHANNEL_PEROPENER);
err = -ENODEV;
goto err_free_nfp;
}
err = enable_bars(nfp, interface);
if (err)
goto err_free_nfp;
/* Probe for all the common NFP devices */
return nfp_cpp_from_operations(&nfp6000_pcie_ops, &pdev->dev, nfp);
err_free_nfp:
kfree(nfp);
err_ret:
dev_err(&pdev->dev, "NFP6000 PCI setup failed\n");
return ERR_PTR(err);
}