// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2015-2018 Netronome Systems, Inc. */
/*
* nfp_cppcore.c
* Provides low-level access to the NFP's internal CPP bus
* Authors: Jakub Kicinski <[email protected]>
* Jason McMullan <[email protected]>
* Rolf Neugebauer <[email protected]>
*/
#include <linux/unaligned.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include "nfp_arm.h"
#include "nfp_cpp.h"
#include "nfp6000/nfp6000.h"
#define NFP_ARM_GCSR_SOFTMODEL2 0x0000014c
#define NFP_ARM_GCSR_SOFTMODEL3 0x00000150
struct nfp_cpp_resource {
struct list_head list;
const char *name;
u32 cpp_id;
u64 start;
u64 end;
};
/**
* struct nfp_cpp - main nfpcore device structure
* Following fields are read-only after probe() exits or netdevs are spawned.
* @dev: embedded device structure
* @op: low-level implementation ops
* @priv: private data of the low-level implementation
* @model: chip model
* @interface: chip interface id we are using to reach it
* @serial: chip serial number
* @imb_cat_table: CPP Mapping Table
* @mu_locality_lsb: MU access type bit offset
*
* Following fields use explicit locking:
* @resource_list: NFP CPP resource list
* @resource_lock: protects @resource_list
*
* @area_cache_list: cached areas for cpp/xpb read/write speed up
* @area_cache_mutex: protects @area_cache_list
*
* @waitq: area wait queue
*/
struct nfp_cpp {
struct device dev;
void *priv;
u32 model;
u16 interface;
u8 serial[NFP_SERIAL_LEN];
const struct nfp_cpp_operations *op;
struct list_head resource_list;
rwlock_t resource_lock;
wait_queue_head_t waitq;
u32 imb_cat_table[16];
unsigned int mu_locality_lsb;
struct mutex area_cache_mutex;
struct list_head area_cache_list;
};
/* Element of the area_cache_list */
struct nfp_cpp_area_cache {
struct list_head entry;
u32 id;
u64 addr;
u32 size;
struct nfp_cpp_area *area;
};
struct nfp_cpp_area {
struct nfp_cpp *cpp;
struct kref kref;
atomic_t refcount;
struct mutex mutex; /* Lock for the area's refcount */
unsigned long long offset;
unsigned long size;
struct nfp_cpp_resource resource;
void __iomem *iomem;
/* Here follows the 'priv' part of nfp_cpp_area. */
};
struct nfp_cpp_explicit {
struct nfp_cpp *cpp;
struct nfp_cpp_explicit_command cmd;
/* Here follows the 'priv' part of nfp_cpp_area. */
};
static void __resource_add(struct list_head *head, struct nfp_cpp_resource *res)
{
struct nfp_cpp_resource *tmp;
struct list_head *pos;
list_for_each(pos, head) {
tmp = container_of(pos, struct nfp_cpp_resource, list);
if (tmp->cpp_id > res->cpp_id)
break;
if (tmp->cpp_id == res->cpp_id && tmp->start > res->start)
break;
}
list_add_tail(&res->list, pos);
}
static void __resource_del(struct nfp_cpp_resource *res)
{
list_del_init(&res->list);
}
static void __release_cpp_area(struct kref *kref)
{
struct nfp_cpp_area *area =
container_of(kref, struct nfp_cpp_area, kref);
struct nfp_cpp *cpp = nfp_cpp_area_cpp(area);
if (area->cpp->op->area_cleanup)
area->cpp->op->area_cleanup(area);
write_lock(&cpp->resource_lock);
__resource_del(&area->resource);
write_unlock(&cpp->resource_lock);
kfree(area);
}
static void nfp_cpp_area_put(struct nfp_cpp_area *area)
{
kref_put(&area->kref, __release_cpp_area);
}
static struct nfp_cpp_area *nfp_cpp_area_get(struct nfp_cpp_area *area)
{
kref_get(&area->kref);
return area;
}
/**
* nfp_cpp_free() - free the CPP handle
* @cpp: CPP handle
*/
void nfp_cpp_free(struct nfp_cpp *cpp)
{
struct nfp_cpp_area_cache *cache, *ctmp;
struct nfp_cpp_resource *res, *rtmp;
/* Remove all caches */
list_for_each_entry_safe(cache, ctmp, &cpp->area_cache_list, entry) {
list_del(&cache->entry);
if (cache->id)
nfp_cpp_area_release(cache->area);
nfp_cpp_area_free(cache->area);
kfree(cache);
}
/* There should be no dangling areas at this point */
WARN_ON(!list_empty(&cpp->resource_list));
/* .. but if they weren't, try to clean up. */
list_for_each_entry_safe(res, rtmp, &cpp->resource_list, list) {
struct nfp_cpp_area *area = container_of(res,
struct nfp_cpp_area,
resource);
dev_err(cpp->dev.parent, "Dangling area: %d:%d:%d:0x%0llx-0x%0llx%s%s\n",
NFP_CPP_ID_TARGET_of(res->cpp_id),
NFP_CPP_ID_ACTION_of(res->cpp_id),
NFP_CPP_ID_TOKEN_of(res->cpp_id),
res->start, res->end,
res->name ? " " : "",
res->name ? res->name : "");
if (area->cpp->op->area_release)
area->cpp->op->area_release(area);
__release_cpp_area(&area->kref);
}
if (cpp->op->free)
cpp->op->free(cpp);
device_unregister(&cpp->dev);
kfree(cpp);
}
/**
* nfp_cpp_model() - Retrieve the Model ID of the NFP
* @cpp: NFP CPP handle
*
* Return: NFP CPP Model ID
*/
u32 nfp_cpp_model(struct nfp_cpp *cpp)
{
return cpp->model;
}
/**
* nfp_cpp_interface() - Retrieve the Interface ID of the NFP
* @cpp: NFP CPP handle
*
* Return: NFP CPP Interface ID
*/
u16 nfp_cpp_interface(struct nfp_cpp *cpp)
{
return cpp->interface;
}
/**
* nfp_cpp_serial() - Retrieve the Serial ID of the NFP
* @cpp: NFP CPP handle
* @serial: Pointer to NFP serial number
*
* Return: Length of NFP serial number
*/
int nfp_cpp_serial(struct nfp_cpp *cpp, const u8 **serial)
{
*serial = &cpp->serial[0];
return sizeof(cpp->serial);
}
#define NFP_IMB_TGTADDRESSMODECFG_MODE_of(_x) (((_x) >> 13) & 0x7)
#define NFP_IMB_TGTADDRESSMODECFG_ADDRMODE BIT(12)
#define NFP_IMB_TGTADDRESSMODECFG_ADDRMODE_32_BIT 0
#define NFP_IMB_TGTADDRESSMODECFG_ADDRMODE_40_BIT BIT(12)
static int nfp_cpp_set_mu_locality_lsb(struct nfp_cpp *cpp)
{
unsigned int mode, addr40;
u32 imbcppat;
int res;
imbcppat = cpp->imb_cat_table[NFP_CPP_TARGET_MU];
mode = NFP_IMB_TGTADDRESSMODECFG_MODE_of(imbcppat);
addr40 = !!(imbcppat & NFP_IMB_TGTADDRESSMODECFG_ADDRMODE);
res = nfp_cppat_mu_locality_lsb(mode, addr40);
if (res < 0)
return res;
cpp->mu_locality_lsb = res;
return 0;
}
unsigned int nfp_cpp_mu_locality_lsb(struct nfp_cpp *cpp)
{
return cpp->mu_locality_lsb;
}
/**
* nfp_cpp_area_alloc_with_name() - allocate a new CPP area
* @cpp: CPP device handle
* @dest: NFP CPP ID
* @name: Name of region
* @address: Address of region
* @size: Size of region
*
* Allocate and initialize a CPP area structure. The area must later
* be locked down with an 'acquire' before it can be safely accessed.
*
* NOTE: @address and @size must be 32-bit aligned values.
*
* Return: NFP CPP area handle, or NULL
*/
struct nfp_cpp_area *
nfp_cpp_area_alloc_with_name(struct nfp_cpp *cpp, u32 dest, const char *name,
unsigned long long address, unsigned long size)
{
struct nfp_cpp_area *area;
u64 tmp64 = address;
int err, name_len;
/* Remap from cpp_island to cpp_target */
err = nfp_target_cpp(dest, tmp64, &dest, &tmp64, cpp->imb_cat_table);
if (err < 0)
return NULL;
address = tmp64;
if (!name)
name = "(reserved)";
name_len = strlen(name) + 1;
area = kzalloc(sizeof(*area) + cpp->op->area_priv_size + name_len,
GFP_KERNEL);
if (!area)
return NULL;
area->cpp = cpp;
area->resource.name = (void *)area + sizeof(*area) +
cpp->op->area_priv_size;
memcpy((char *)area->resource.name, name, name_len);
area->resource.cpp_id = dest;
area->resource.start = address;
area->resource.end = area->resource.start + size - 1;
INIT_LIST_HEAD(&area->resource.list);
atomic_set(&area->refcount, 0);
kref_init(&area->kref);
mutex_init(&area->mutex);
if (cpp->op->area_init) {
int err;
err = cpp->op->area_init(area, dest, address, size);
if (err < 0) {
kfree(area);
return NULL;
}
}
write_lock(&cpp->resource_lock);
__resource_add(&cpp->resource_list, &area->resource);
write_unlock(&cpp->resource_lock);
area->offset = address;
area->size = size;
return area;
}
/**
* nfp_cpp_area_alloc() - allocate a new CPP area
* @cpp: CPP handle
* @dest: CPP id
* @address: Start address on CPP target
* @size: Size of area in bytes
*
* Allocate and initialize a CPP area structure. The area must later
* be locked down with an 'acquire' before it can be safely accessed.
*
* NOTE: @address and @size must be 32-bit aligned values.
*
* Return: NFP CPP Area handle, or NULL
*/
struct nfp_cpp_area *
nfp_cpp_area_alloc(struct nfp_cpp *cpp, u32 dest,
unsigned long long address, unsigned long size)
{
return nfp_cpp_area_alloc_with_name(cpp, dest, NULL, address, size);
}
/**
* nfp_cpp_area_alloc_acquire() - allocate a new CPP area and lock it down
* @cpp: CPP handle
* @name: Name of region
* @dest: CPP id
* @address: Start address on CPP target
* @size: Size of area
*
* Allocate and initialize a CPP area structure, and lock it down so
* that it can be accessed directly.
*
* NOTE: @address and @size must be 32-bit aligned values.
* The area must also be 'released' when the structure is freed.
*
* Return: NFP CPP Area handle, or NULL
*/
struct nfp_cpp_area *
nfp_cpp_area_alloc_acquire(struct nfp_cpp *cpp, const char *name, u32 dest,
unsigned long long address, unsigned long size)
{
struct nfp_cpp_area *area;
area = nfp_cpp_area_alloc_with_name(cpp, dest, name, address, size);
if (!area)
return NULL;
if (nfp_cpp_area_acquire(area)) {
nfp_cpp_area_free(area);
return NULL;
}
return area;
}
/**
* nfp_cpp_area_free() - free up the CPP area
* @area: CPP area handle
*
* Frees up memory resources held by the CPP area.
*/
void nfp_cpp_area_free(struct nfp_cpp_area *area)
{
if (atomic_read(&area->refcount))
nfp_warn(area->cpp, "Warning: freeing busy area\n");
nfp_cpp_area_put(area);
}
static bool nfp_cpp_area_acquire_try(struct nfp_cpp_area *area, int *status)
{
*status = area->cpp->op->area_acquire(area);
return *status != -EAGAIN;
}
static int __nfp_cpp_area_acquire(struct nfp_cpp_area *area)
{
int err, status;
if (atomic_inc_return(&area->refcount) > 1)
return 0;
if (!area->cpp->op->area_acquire)
return 0;
err = wait_event_interruptible(area->cpp->waitq,
nfp_cpp_area_acquire_try(area, &status));
if (!err)
err = status;
if (err) {
nfp_warn(area->cpp, "Warning: area wait failed: %d\n", err);
atomic_dec(&area->refcount);
return err;
}
nfp_cpp_area_get(area);
return 0;
}
/**
* nfp_cpp_area_acquire() - lock down a CPP area for access
* @area: CPP area handle
*
* Locks down the CPP area for a potential long term activity. Area
* must always be locked down before being accessed.
*
* Return: 0, or -ERRNO
*/
int nfp_cpp_area_acquire(struct nfp_cpp_area *area)
{
int ret;
mutex_lock(&area->mutex);
ret = __nfp_cpp_area_acquire(area);
mutex_unlock(&area->mutex);
return ret;
}
/**
* nfp_cpp_area_acquire_nonblocking() - lock down a CPP area for access
* @area: CPP area handle
*
* Locks down the CPP area for a potential long term activity. Area
* must always be locked down before being accessed.
*
* NOTE: Returns -EAGAIN is no area is available
*
* Return: 0, or -ERRNO
*/
int nfp_cpp_area_acquire_nonblocking(struct nfp_cpp_area *area)
{
mutex_lock(&area->mutex);
if (atomic_inc_return(&area->refcount) == 1) {
if (area->cpp->op->area_acquire) {
int err;
err = area->cpp->op->area_acquire(area);
if (err < 0) {
atomic_dec(&area->refcount);
mutex_unlock(&area->mutex);
return err;
}
}
}
mutex_unlock(&area->mutex);
nfp_cpp_area_get(area);
return 0;
}
/**
* nfp_cpp_area_release() - release a locked down CPP area
* @area: CPP area handle
*
* Releases a previously locked down CPP area.
*/
void nfp_cpp_area_release(struct nfp_cpp_area *area)
{
mutex_lock(&area->mutex);
/* Only call the release on refcount == 0 */
if (atomic_dec_and_test(&area->refcount)) {
if (area->cpp->op->area_release) {
area->cpp->op->area_release(area);
/* Let anyone waiting for a BAR try to get one.. */
wake_up_interruptible_all(&area->cpp->waitq);
}
}
mutex_unlock(&area->mutex);
nfp_cpp_area_put(area);
}
/**
* nfp_cpp_area_release_free() - release CPP area and free it
* @area: CPP area handle
*
* Releases CPP area and frees up memory resources held by the it.
*/
void nfp_cpp_area_release_free(struct nfp_cpp_area *area)
{
nfp_cpp_area_release(area);
nfp_cpp_area_free(area);
}
/**
* nfp_cpp_area_read() - read data from CPP area
* @area: CPP area handle
* @offset: offset into CPP area
* @kernel_vaddr: kernel address to put data into
* @length: number of bytes to read
*
* Read data from indicated CPP region.
*
* NOTE: @offset and @length must be 32-bit aligned values.
* Area must have been locked down with an 'acquire'.
*
* Return: length of io, or -ERRNO
*/
int nfp_cpp_area_read(struct nfp_cpp_area *area,
unsigned long offset, void *kernel_vaddr,
size_t length)
{
return area->cpp->op->area_read(area, kernel_vaddr, offset, length);
}
/**
* nfp_cpp_area_write() - write data to CPP area
* @area: CPP area handle
* @offset: offset into CPP area
* @kernel_vaddr: kernel address to read data from
* @length: number of bytes to write
*
* Write data to indicated CPP region.
*
* NOTE: @offset and @length must be 32-bit aligned values.
* Area must have been locked down with an 'acquire'.
*
* Return: length of io, or -ERRNO
*/
int nfp_cpp_area_write(struct nfp_cpp_area *area,
unsigned long offset, const void *kernel_vaddr,
size_t length)
{
return area->cpp->op->area_write(area, kernel_vaddr, offset, length);
}
/**
* nfp_cpp_area_size() - return size of a CPP area
* @cpp_area: CPP area handle
*
* Return: Size of the area
*/
size_t nfp_cpp_area_size(struct nfp_cpp_area *cpp_area)
{
return cpp_area->size;
}
/**
* nfp_cpp_area_name() - return name of a CPP area
* @cpp_area: CPP area handle
*
* Return: Name of the area, or NULL
*/
const char *nfp_cpp_area_name(struct nfp_cpp_area *cpp_area)
{
return cpp_area->resource.name;
}
/**
* nfp_cpp_area_priv() - return private struct for CPP area
* @cpp_area: CPP area handle
*
* Return: Private data for the CPP area
*/
void *nfp_cpp_area_priv(struct nfp_cpp_area *cpp_area)
{
return &cpp_area[1];
}
/**
* nfp_cpp_area_cpp() - return CPP handle for CPP area
* @cpp_area: CPP area handle
*
* Return: NFP CPP handle
*/
struct nfp_cpp *nfp_cpp_area_cpp(struct nfp_cpp_area *cpp_area)
{
return cpp_area->cpp;
}
/**
* nfp_cpp_area_resource() - get resource
* @area: CPP area handle
*
* NOTE: Area must have been locked down with an 'acquire'.
*
* Return: struct resource pointer, or NULL
*/
struct resource *nfp_cpp_area_resource(struct nfp_cpp_area *area)
{
struct resource *res = NULL;
if (area->cpp->op->area_resource)
res = area->cpp->op->area_resource(area);
return res;
}
/**
* nfp_cpp_area_phys() - get physical address of CPP area
* @area: CPP area handle
*
* NOTE: Area must have been locked down with an 'acquire'.
*
* Return: phy_addr_t of the area, or NULL
*/
phys_addr_t nfp_cpp_area_phys(struct nfp_cpp_area *area)
{
phys_addr_t addr = ~0;
if (area->cpp->op->area_phys)
addr = area->cpp->op->area_phys(area);
return addr;
}
/**
* nfp_cpp_area_iomem() - get IOMEM region for CPP area
* @area: CPP area handle
*
* Returns an iomem pointer for use with readl()/writel() style
* operations.
*
* NOTE: Area must have been locked down with an 'acquire'.
*
* Return: __iomem pointer to the area, or NULL
*/
void __iomem *nfp_cpp_area_iomem(struct nfp_cpp_area *area)
{
void __iomem *iomem = NULL;
if (area->cpp->op->area_iomem)
iomem = area->cpp->op->area_iomem(area);
return iomem;
}
/**
* nfp_cpp_area_readl() - Read a u32 word from an area
* @area: CPP Area handle
* @offset: Offset into area
* @value: Pointer to read buffer
*
* Return: 0 on success, or -ERRNO
*/
int nfp_cpp_area_readl(struct nfp_cpp_area *area,
unsigned long offset, u32 *value)
{
u8 tmp[4];
int n;
n = nfp_cpp_area_read(area, offset, &tmp, sizeof(tmp));
if (n != sizeof(tmp))
return n < 0 ? n : -EIO;
*value = get_unaligned_le32(tmp);
return 0;
}
/**
* nfp_cpp_area_writel() - Write a u32 word to an area
* @area: CPP Area handle
* @offset: Offset into area
* @value: Value to write
*
* Return: 0 on success, or -ERRNO
*/
int nfp_cpp_area_writel(struct nfp_cpp_area *area,
unsigned long offset, u32 value)
{
u8 tmp[4];
int n;
put_unaligned_le32(value, tmp);
n = nfp_cpp_area_write(area, offset, &tmp, sizeof(tmp));
return n == sizeof(tmp) ? 0 : n < 0 ? n : -EIO;
}
/**
* nfp_cpp_area_readq() - Read a u64 word from an area
* @area: CPP Area handle
* @offset: Offset into area
* @value: Pointer to read buffer
*
* Return: 0 on success, or -ERRNO
*/
int nfp_cpp_area_readq(struct nfp_cpp_area *area,
unsigned long offset, u64 *value)
{
u8 tmp[8];
int n;
n = nfp_cpp_area_read(area, offset, &tmp, sizeof(tmp));
if (n != sizeof(tmp))
return n < 0 ? n : -EIO;
*value = get_unaligned_le64(tmp);
return 0;
}
/**
* nfp_cpp_area_writeq() - Write a u64 word to an area
* @area: CPP Area handle
* @offset: Offset into area
* @value: Value to write
*
* Return: 0 on success, or -ERRNO
*/
int nfp_cpp_area_writeq(struct nfp_cpp_area *area,
unsigned long offset, u64 value)
{
u8 tmp[8];
int n;
put_unaligned_le64(value, tmp);
n = nfp_cpp_area_write(area, offset, &tmp, sizeof(tmp));
return n == sizeof(tmp) ? 0 : n < 0 ? n : -EIO;
}
/**
* nfp_cpp_area_fill() - fill a CPP area with a value
* @area: CPP area
* @offset: offset into CPP area
* @value: value to fill with
* @length: length of area to fill
*
* Fill indicated area with given value.
*
* Return: length of io, or -ERRNO
*/
int nfp_cpp_area_fill(struct nfp_cpp_area *area,
unsigned long offset, u32 value, size_t length)
{
u8 tmp[4];
size_t i;
int k;
put_unaligned_le32(value, tmp);
if (offset % sizeof(tmp) || length % sizeof(tmp))
return -EINVAL;
for (i = 0; i < length; i += sizeof(tmp)) {
k = nfp_cpp_area_write(area, offset + i, &tmp, sizeof(tmp));
if (k < 0)
return k;
}
return i;
}
/**
* nfp_cpp_area_cache_add() - Permanently reserve and area for the hot cache
* @cpp: NFP CPP handle
* @size: Size of the area - MUST BE A POWER OF 2.
*/
int nfp_cpp_area_cache_add(struct nfp_cpp *cpp, size_t size)
{
struct nfp_cpp_area_cache *cache;
struct nfp_cpp_area *area;
/* Allocate an area - we use the MU target's base as a placeholder,
* as all supported chips have a MU.
*/
area = nfp_cpp_area_alloc(cpp, NFP_CPP_ID(7, NFP_CPP_ACTION_RW, 0),
0, size);
if (!area)
return -ENOMEM;
cache = kzalloc(sizeof(*cache), GFP_KERNEL);
if (!cache) {
nfp_cpp_area_free(area);
return -ENOMEM;
}
cache->id = 0;
cache->addr = 0;
cache->size = size;
cache->area = area;
mutex_lock(&cpp->area_cache_mutex);
list_add_tail(&cache->entry, &cpp->area_cache_list);
mutex_unlock(&cpp->area_cache_mutex);
return 0;
}
static struct nfp_cpp_area_cache *
area_cache_get(struct nfp_cpp *cpp, u32 id,
u64 addr, unsigned long *offset, size_t length)
{
struct nfp_cpp_area_cache *cache;
int err;
/* Early exit when length == 0, which prevents
* the need for special case code below when
* checking against available cache size.
*/
if (length == 0 || id == 0)
return NULL;
/* Remap from cpp_island to cpp_target */
err = nfp_target_cpp(id, addr, &id, &addr, cpp->imb_cat_table);
if (err < 0)
return NULL;
mutex_lock(&cpp->area_cache_mutex);
if (list_empty(&cpp->area_cache_list)) {
mutex_unlock(&cpp->area_cache_mutex);
return NULL;
}
addr += *offset;
/* See if we have a match */
list_for_each_entry(cache, &cpp->area_cache_list, entry) {
if (id == cache->id &&
addr >= cache->addr &&
addr + length <= cache->addr + cache->size)
goto exit;
}
/* No matches - inspect the tail of the LRU */
cache = list_entry(cpp->area_cache_list.prev,
struct nfp_cpp_area_cache, entry);
/* Can we fit in the cache entry? */
if (round_down(addr + length - 1, cache->size) !=
round_down(addr, cache->size)) {
mutex_unlock(&cpp->area_cache_mutex);
return NULL;
}
/* If id != 0, we will need to release it */
if (cache->id) {
nfp_cpp_area_release(cache->area);
cache->id = 0;
cache->addr = 0;
}
/* Adjust the start address to be cache size aligned */
cache->addr = addr & ~(u64)(cache->size - 1);
/* Re-init to the new ID and address */
if (cpp->op->area_init) {
err = cpp->op->area_init(cache->area,
id, cache->addr, cache->size);
if (err < 0) {
mutex_unlock(&cpp->area_cache_mutex);
return NULL;
}
}
/* Attempt to acquire */
err = nfp_cpp_area_acquire(cache->area);
if (err < 0) {
mutex_unlock(&cpp->area_cache_mutex);
return NULL;
}
cache->id = id;
exit:
/* Adjust offset */
*offset = addr - cache->addr;
return cache;
}
static void
area_cache_put(struct nfp_cpp *cpp, struct nfp_cpp_area_cache *cache)
{
if (!cache)
return;
/* Move to front of LRU */
list_move(&cache->entry, &cpp->area_cache_list);
mutex_unlock(&cpp->area_cache_mutex);
}
static int __nfp_cpp_read(struct nfp_cpp *cpp, u32 destination,
unsigned long long address, void *kernel_vaddr,
size_t length)
{
struct nfp_cpp_area_cache *cache;
struct nfp_cpp_area *area;
unsigned long offset = 0;
int err;
cache = area_cache_get(cpp, destination, address, &offset, length);
if (cache) {
area = cache->area;
} else {
area = nfp_cpp_area_alloc(cpp, destination, address, length);
if (!area)
return -ENOMEM;
err = nfp_cpp_area_acquire(area);
if (err) {
nfp_cpp_area_free(area);
return err;
}
}
err = nfp_cpp_area_read(area, offset, kernel_vaddr, length);
if (cache)
area_cache_put(cpp, cache);
else
nfp_cpp_area_release_free(area);
return err;
}
/**
* nfp_cpp_read() - read from CPP target
* @cpp: CPP handle
* @destination: CPP id
* @address: offset into CPP target
* @kernel_vaddr: kernel buffer for result
* @length: number of bytes to read
*
* Return: length of io, or -ERRNO
*/
int nfp_cpp_read(struct nfp_cpp *cpp, u32 destination,
unsigned long long address, void *kernel_vaddr,
size_t length)
{
size_t n, offset;
int ret;
for (offset = 0; offset < length; offset += n) {
unsigned long long r_addr = address + offset;
/* make first read smaller to align to safe window */
n = min_t(size_t, length - offset,
ALIGN(r_addr + 1, NFP_CPP_SAFE_AREA_SIZE) - r_addr);
ret = __nfp_cpp_read(cpp, destination, address + offset,
kernel_vaddr + offset, n);
if (ret < 0)
return ret;
if (ret != n)
return offset + n;
}
return length;
}
static int __nfp_cpp_write(struct nfp_cpp *cpp, u32 destination,
unsigned long long address,
const void *kernel_vaddr, size_t length)
{
struct nfp_cpp_area_cache *cache;
struct nfp_cpp_area *area;
unsigned long offset = 0;
int err;
cache = area_cache_get(cpp, destination, address, &offset, length);
if (cache) {
area = cache->area;
} else {
area = nfp_cpp_area_alloc(cpp, destination, address, length);
if (!area)
return -ENOMEM;
err = nfp_cpp_area_acquire(area);
if (err) {
nfp_cpp_area_free(area);
return err;
}
}
err = nfp_cpp_area_write(area, offset, kernel_vaddr, length);
if (cache)
area_cache_put(cpp, cache);
else
nfp_cpp_area_release_free(area);
return err;
}
/**
* nfp_cpp_write() - write to CPP target
* @cpp: CPP handle
* @destination: CPP id
* @address: offset into CPP target
* @kernel_vaddr: kernel buffer to read from
* @length: number of bytes to write
*
* Return: length of io, or -ERRNO
*/
int nfp_cpp_write(struct nfp_cpp *cpp, u32 destination,
unsigned long long address,
const void *kernel_vaddr, size_t length)
{
size_t n, offset;
int ret;
for (offset = 0; offset < length; offset += n) {
unsigned long long w_addr = address + offset;
/* make first write smaller to align to safe window */
n = min_t(size_t, length - offset,
ALIGN(w_addr + 1, NFP_CPP_SAFE_AREA_SIZE) - w_addr);
ret = __nfp_cpp_write(cpp, destination, address + offset,
kernel_vaddr + offset, n);
if (ret < 0)
return ret;
if (ret != n)
return offset + n;
}
return length;
}
/* Return the correct CPP address, and fixup xpb_addr as needed. */
static u32 nfp_xpb_to_cpp(struct nfp_cpp *cpp, u32 *xpb_addr)
{
int island;
u32 xpb;
xpb = NFP_CPP_ID(14, NFP_CPP_ACTION_RW, 0);
/* Ensure that non-local XPB accesses go
* out through the global XPBM bus.
*/
island = (*xpb_addr >> 24) & 0x3f;
if (!island)
return xpb;
if (island != 1) {
*xpb_addr |= 1 << 30;
return xpb;
}
/* Accesses to the ARM Island overlay uses Island 0 / Global Bit */
*xpb_addr &= ~0x7f000000;
if (*xpb_addr < 0x60000) {
*xpb_addr |= 1 << 30;
} else {
/* And only non-ARM interfaces use the island id = 1 */
if (NFP_CPP_INTERFACE_TYPE_of(nfp_cpp_interface(cpp))
!= NFP_CPP_INTERFACE_TYPE_ARM)
*xpb_addr |= 1 << 24;
}
return xpb;
}
/**
* nfp_xpb_readl() - Read a u32 word from a XPB location
* @cpp: CPP device handle
* @xpb_addr: Address for operation
* @value: Pointer to read buffer
*
* Return: 0 on success, or -ERRNO
*/
int nfp_xpb_readl(struct nfp_cpp *cpp, u32 xpb_addr, u32 *value)
{
u32 cpp_dest = nfp_xpb_to_cpp(cpp, &xpb_addr);
return nfp_cpp_readl(cpp, cpp_dest, xpb_addr, value);
}
/**
* nfp_xpb_writel() - Write a u32 word to a XPB location
* @cpp: CPP device handle
* @xpb_addr: Address for operation
* @value: Value to write
*
* Return: 0 on success, or -ERRNO
*/
int nfp_xpb_writel(struct nfp_cpp *cpp, u32 xpb_addr, u32 value)
{
u32 cpp_dest = nfp_xpb_to_cpp(cpp, &xpb_addr);
return nfp_cpp_writel(cpp, cpp_dest, xpb_addr, value);
}
/**
* nfp_xpb_writelm() - Modify bits of a 32-bit value from the XPB bus
* @cpp: NFP CPP device handle
* @xpb_tgt: XPB target and address
* @mask: mask of bits to alter
* @value: value to modify
*
* KERNEL: This operation is safe to call in interrupt or softirq context.
*
* Return: 0 on success, or -ERRNO
*/
int nfp_xpb_writelm(struct nfp_cpp *cpp, u32 xpb_tgt,
u32 mask, u32 value)
{
int err;
u32 tmp;
err = nfp_xpb_readl(cpp, xpb_tgt, &tmp);
if (err < 0)
return err;
tmp &= ~mask;
tmp |= mask & value;
return nfp_xpb_writel(cpp, xpb_tgt, tmp);
}
/* Lockdep markers */
static struct lock_class_key nfp_cpp_resource_lock_key;
static void nfp_cpp_dev_release(struct device *dev)
{
/* Nothing to do here - it just makes the kernel happy */
}
/**
* nfp_cpp_from_operations() - Create a NFP CPP handle
* from an operations structure
* @ops: NFP CPP operations structure
* @parent: Parent device
* @priv: Private data of low-level implementation
*
* NOTE: On failure, cpp_ops->free will be called!
*
* Return: NFP CPP handle on success, ERR_PTR on failure
*/
struct nfp_cpp *
nfp_cpp_from_operations(const struct nfp_cpp_operations *ops,
struct device *parent, void *priv)
{
const u32 arm = NFP_CPP_ID(NFP_CPP_TARGET_ARM, NFP_CPP_ACTION_RW, 0);
struct nfp_cpp *cpp;
int ifc, err;
u32 mask[2];
u32 xpbaddr;
size_t tgt;
cpp = kzalloc(sizeof(*cpp), GFP_KERNEL);
if (!cpp) {
err = -ENOMEM;
goto err_malloc;
}
cpp->op = ops;
cpp->priv = priv;
ifc = ops->get_interface(parent);
if (ifc < 0) {
err = ifc;
goto err_free_cpp;
}
cpp->interface = ifc;
if (ops->read_serial) {
err = ops->read_serial(parent, cpp->serial);
if (err)
goto err_free_cpp;
}
rwlock_init(&cpp->resource_lock);
init_waitqueue_head(&cpp->waitq);
lockdep_set_class(&cpp->resource_lock, &nfp_cpp_resource_lock_key);
INIT_LIST_HEAD(&cpp->resource_list);
INIT_LIST_HEAD(&cpp->area_cache_list);
mutex_init(&cpp->area_cache_mutex);
cpp->dev.init_name = "cpp";
cpp->dev.parent = parent;
cpp->dev.release = nfp_cpp_dev_release;
err = device_register(&cpp->dev);
if (err < 0) {
put_device(&cpp->dev);
goto err_free_cpp;
}
dev_set_drvdata(&cpp->dev, cpp);
/* NOTE: cpp_lock is NOT locked for op->init,
* since it may call NFP CPP API operations
*/
if (cpp->op->init) {
err = cpp->op->init(cpp);
if (err < 0) {
dev_err(parent,
"NFP interface initialization failed\n");
goto err_out;
}
}
err = nfp_cpp_model_autodetect(cpp, &cpp->model);
if (err < 0) {
dev_err(parent, "NFP model detection failed\n");
goto err_out;
}
for (tgt = 0; tgt < ARRAY_SIZE(cpp->imb_cat_table); tgt++) {
/* Hardcoded XPB IMB Base, island 0 */
xpbaddr = 0x000a0000 + (tgt * 4);
err = nfp_xpb_readl(cpp, xpbaddr,
&cpp->imb_cat_table[tgt]);
if (err < 0) {
dev_err(parent,
"Can't read CPP mapping from device\n");
goto err_out;
}
}
nfp_cpp_readl(cpp, arm, NFP_ARM_GCSR + NFP_ARM_GCSR_SOFTMODEL2,
&mask[0]);
nfp_cpp_readl(cpp, arm, NFP_ARM_GCSR + NFP_ARM_GCSR_SOFTMODEL3,
&mask[1]);
err = nfp_cpp_set_mu_locality_lsb(cpp);
if (err < 0) {
dev_err(parent, "Can't calculate MU locality bit offset\n");
goto err_out;
}
dev_info(cpp->dev.parent, "Model: 0x%08x, SN: %pM, Ifc: 0x%04x\n",
nfp_cpp_model(cpp), cpp->serial, nfp_cpp_interface(cpp));
return cpp;
err_out:
device_unregister(&cpp->dev);
err_free_cpp:
kfree(cpp);
err_malloc:
return ERR_PTR(err);
}
/**
* nfp_cpp_priv() - Get the operations private data of a CPP handle
* @cpp: CPP handle
*
* Return: Private data for the NFP CPP handle
*/
void *nfp_cpp_priv(struct nfp_cpp *cpp)
{
return cpp->priv;
}
/**
* nfp_cpp_device() - Get the Linux device handle of a CPP handle
* @cpp: CPP handle
*
* Return: Device for the NFP CPP bus
*/
struct device *nfp_cpp_device(struct nfp_cpp *cpp)
{
return &cpp->dev;
}
#define NFP_EXPL_OP(func, expl, args...) \
({ \
struct nfp_cpp *cpp = nfp_cpp_explicit_cpp(expl); \
int err = -ENODEV; \
\
if (cpp->op->func) \
err = cpp->op->func(expl, ##args); \
err; \
})
#define NFP_EXPL_OP_NR(func, expl, args...) \
({ \
struct nfp_cpp *cpp = nfp_cpp_explicit_cpp(expl); \
\
if (cpp->op->func) \
cpp->op->func(expl, ##args); \
\
})
/**
* nfp_cpp_explicit_acquire() - Acquire explicit access handle
* @cpp: NFP CPP handle
*
* The 'data_ref' and 'signal_ref' values are useful when
* constructing the NFP_EXPL_CSR1 and NFP_EXPL_POST values.
*
* Return: NFP CPP explicit handle
*/
struct nfp_cpp_explicit *nfp_cpp_explicit_acquire(struct nfp_cpp *cpp)
{
struct nfp_cpp_explicit *expl;
int err;
expl = kzalloc(sizeof(*expl) + cpp->op->explicit_priv_size, GFP_KERNEL);
if (!expl)
return NULL;
expl->cpp = cpp;
err = NFP_EXPL_OP(explicit_acquire, expl);
if (err < 0) {
kfree(expl);
return NULL;
}
return expl;
}
/**
* nfp_cpp_explicit_set_target() - Set target fields for explicit
* @expl: Explicit handle
* @cpp_id: CPP ID field
* @len: CPP Length field
* @mask: CPP Mask field
*
* Return: 0, or -ERRNO
*/
int nfp_cpp_explicit_set_target(struct nfp_cpp_explicit *expl,
u32 cpp_id, u8 len, u8 mask)
{
expl->cmd.cpp_id = cpp_id;
expl->cmd.len = len;
expl->cmd.byte_mask = mask;
return 0;
}
/**
* nfp_cpp_explicit_set_data() - Set data fields for explicit
* @expl: Explicit handle
* @data_master: CPP Data Master field
* @data_ref: CPP Data Ref field
*
* Return: 0, or -ERRNO
*/
int nfp_cpp_explicit_set_data(struct nfp_cpp_explicit *expl,
u8 data_master, u16 data_ref)
{
expl->cmd.data_master = data_master;
expl->cmd.data_ref = data_ref;
return 0;
}
/**
* nfp_cpp_explicit_set_signal() - Set signal fields for explicit
* @expl: Explicit handle
* @signal_master: CPP Signal Master field
* @signal_ref: CPP Signal Ref field
*
* Return: 0, or -ERRNO
*/
int nfp_cpp_explicit_set_signal(struct nfp_cpp_explicit *expl,
u8 signal_master, u8 signal_ref)
{
expl->cmd.signal_master = signal_master;
expl->cmd.signal_ref = signal_ref;
return 0;
}
/**
* nfp_cpp_explicit_set_posted() - Set completion fields for explicit
* @expl: Explicit handle
* @posted: True for signaled completion, false otherwise
* @siga: CPP Signal A field
* @siga_mode: CPP Signal A Mode field
* @sigb: CPP Signal B field
* @sigb_mode: CPP Signal B Mode field
*
* Return: 0, or -ERRNO
*/
int nfp_cpp_explicit_set_posted(struct nfp_cpp_explicit *expl, int posted,
u8 siga,
enum nfp_cpp_explicit_signal_mode siga_mode,
u8 sigb,
enum nfp_cpp_explicit_signal_mode sigb_mode)
{
expl->cmd.posted = posted;
expl->cmd.siga = siga;
expl->cmd.sigb = sigb;
expl->cmd.siga_mode = siga_mode;
expl->cmd.sigb_mode = sigb_mode;
return 0;
}
/**
* nfp_cpp_explicit_put() - Set up the write (pull) data for a explicit access
* @expl: NFP CPP Explicit handle
* @buff: Data to have the target pull in the transaction
* @len: Length of data, in bytes
*
* The 'len' parameter must be less than or equal to 128 bytes.
*
* If this function is called before the configuration
* registers are set, it will return -EINVAL.
*
* Return: 0, or -ERRNO
*/
int nfp_cpp_explicit_put(struct nfp_cpp_explicit *expl,
const void *buff, size_t len)
{
return NFP_EXPL_OP(explicit_put, expl, buff, len);
}
/**
* nfp_cpp_explicit_do() - Execute a transaction, and wait for it to complete
* @expl: NFP CPP Explicit handle
* @address: Address to send in the explicit transaction
*
* If this function is called before the configuration
* registers are set, it will return -1, with an errno of EINVAL.
*
* Return: 0, or -ERRNO
*/
int nfp_cpp_explicit_do(struct nfp_cpp_explicit *expl, u64 address)
{
return NFP_EXPL_OP(explicit_do, expl, &expl->cmd, address);
}
/**
* nfp_cpp_explicit_get() - Get the 'push' (read) data from a explicit access
* @expl: NFP CPP Explicit handle
* @buff: Data that the target pushed in the transaction
* @len: Length of data, in bytes
*
* The 'len' parameter must be less than or equal to 128 bytes.
*
* If this function is called before all three configuration
* registers are set, it will return -1, with an errno of EINVAL.
*
* If this function is called before nfp_cpp_explicit_do()
* has completed, it will return -1, with an errno of EBUSY.
*
* Return: 0, or -ERRNO
*/
int nfp_cpp_explicit_get(struct nfp_cpp_explicit *expl, void *buff, size_t len)
{
return NFP_EXPL_OP(explicit_get, expl, buff, len);
}
/**
* nfp_cpp_explicit_release() - Release explicit access handle
* @expl: NFP CPP Explicit handle
*
*/
void nfp_cpp_explicit_release(struct nfp_cpp_explicit *expl)
{
NFP_EXPL_OP_NR(explicit_release, expl);
kfree(expl);
}
/**
* nfp_cpp_explicit_cpp() - return CPP handle for CPP explicit
* @cpp_explicit: CPP explicit handle
*
* Return: NFP CPP handle of the explicit
*/
struct nfp_cpp *nfp_cpp_explicit_cpp(struct nfp_cpp_explicit *cpp_explicit)
{
return cpp_explicit->cpp;
}
/**
* nfp_cpp_explicit_priv() - return private struct for CPP explicit
* @cpp_explicit: CPP explicit handle
*
* Return: private data of the explicit, or NULL
*/
void *nfp_cpp_explicit_priv(struct nfp_cpp_explicit *cpp_explicit)
{
return &cpp_explicit[1];
}