// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2015-2018 Netronome Systems, Inc. */
/*
* nfp_target.c
* CPP Access Width Decoder
* Authors: Jakub Kicinski <[email protected]>
* Jason McMullan <[email protected]>
* Francois H. Theron <[email protected]>
*/
#define pr_fmt(fmt) "NFP target: " fmt
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/printk.h>
#include "nfp_cpp.h"
#include "nfp6000/nfp6000.h"
#define P32 1
#define P64 2
/* This structure ONLY includes items that can be done with a read or write of
* 32-bit or 64-bit words. All others are not listed.
*/
#define AT(_action, _token, _pull, _push) \
case NFP_CPP_ID(0, (_action), (_token)): \
return PUSHPULL((_pull), (_push))
static int target_rw(u32 cpp_id, int pp, int start, int len)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(0, 0, 0, pp);
AT(1, 0, pp, 0);
AT(NFP_CPP_ACTION_RW, 0, pp, pp);
default:
return -EINVAL;
}
}
static int nfp6000_nbi_dma(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(0, 0, 0, P64); /* ReadNbiDma */
AT(1, 0, P64, 0); /* WriteNbiDma */
AT(NFP_CPP_ACTION_RW, 0, P64, P64);
default:
return -EINVAL;
}
}
static int nfp6000_nbi_stats(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(0, 0, 0, P32); /* ReadNbiStats */
AT(1, 0, P32, 0); /* WriteNbiStats */
AT(NFP_CPP_ACTION_RW, 0, P32, P32);
default:
return -EINVAL;
}
}
static int nfp6000_nbi_tm(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(0, 0, 0, P64); /* ReadNbiTM */
AT(1, 0, P64, 0); /* WriteNbiTM */
AT(NFP_CPP_ACTION_RW, 0, P64, P64);
default:
return -EINVAL;
}
}
static int nfp6000_nbi_ppc(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(0, 0, 0, P64); /* ReadNbiPreclassifier */
AT(1, 0, P64, 0); /* WriteNbiPreclassifier */
AT(NFP_CPP_ACTION_RW, 0, P64, P64);
default:
return -EINVAL;
}
}
static int nfp6000_nbi(u32 cpp_id, u64 address)
{
u64 rel_addr = address & 0x3fFFFF;
if (rel_addr < (1 << 20))
return nfp6000_nbi_dma(cpp_id);
if (rel_addr < (2 << 20))
return nfp6000_nbi_stats(cpp_id);
if (rel_addr < (3 << 20))
return nfp6000_nbi_tm(cpp_id);
return nfp6000_nbi_ppc(cpp_id);
}
/* This structure ONLY includes items that can be done with a read or write of
* 32-bit or 64-bit words. All others are not listed.
*/
static int nfp6000_mu_common(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(NFP_CPP_ACTION_RW, 0, P64, P64); /* read_be/write_be */
AT(NFP_CPP_ACTION_RW, 1, P64, P64); /* read_le/write_le */
AT(NFP_CPP_ACTION_RW, 2, P64, P64); /* read_swap_be/write_swap_be */
AT(NFP_CPP_ACTION_RW, 3, P64, P64); /* read_swap_le/write_swap_le */
AT(0, 0, 0, P64); /* read_be */
AT(0, 1, 0, P64); /* read_le */
AT(0, 2, 0, P64); /* read_swap_be */
AT(0, 3, 0, P64); /* read_swap_le */
AT(1, 0, P64, 0); /* write_be */
AT(1, 1, P64, 0); /* write_le */
AT(1, 2, P64, 0); /* write_swap_be */
AT(1, 3, P64, 0); /* write_swap_le */
AT(3, 0, 0, P32); /* atomic_read */
AT(3, 2, P32, 0); /* mask_compare_write */
AT(4, 0, P32, 0); /* atomic_write */
AT(4, 2, 0, 0); /* atomic_write_imm */
AT(4, 3, 0, P32); /* swap_imm */
AT(5, 0, P32, 0); /* set */
AT(5, 3, 0, P32); /* test_set_imm */
AT(6, 0, P32, 0); /* clr */
AT(6, 3, 0, P32); /* test_clr_imm */
AT(7, 0, P32, 0); /* add */
AT(7, 3, 0, P32); /* test_add_imm */
AT(8, 0, P32, 0); /* addsat */
AT(8, 3, 0, P32); /* test_subsat_imm */
AT(9, 0, P32, 0); /* sub */
AT(9, 3, 0, P32); /* test_sub_imm */
AT(10, 0, P32, 0); /* subsat */
AT(10, 3, 0, P32); /* test_subsat_imm */
AT(13, 0, 0, P32); /* microq128_get */
AT(13, 1, 0, P32); /* microq128_pop */
AT(13, 2, P32, 0); /* microq128_put */
AT(15, 0, P32, 0); /* xor */
AT(15, 3, 0, P32); /* test_xor_imm */
AT(28, 0, 0, P32); /* read32_be */
AT(28, 1, 0, P32); /* read32_le */
AT(28, 2, 0, P32); /* read32_swap_be */
AT(28, 3, 0, P32); /* read32_swap_le */
AT(31, 0, P32, 0); /* write32_be */
AT(31, 1, P32, 0); /* write32_le */
AT(31, 2, P32, 0); /* write32_swap_be */
AT(31, 3, P32, 0); /* write32_swap_le */
default:
return -EINVAL;
}
}
static int nfp6000_mu_ctm(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(16, 1, 0, P32); /* packet_read_packet_status */
AT(17, 1, 0, P32); /* packet_credit_get */
AT(17, 3, 0, P64); /* packet_add_thread */
AT(18, 2, 0, P64); /* packet_free_and_return_pointer */
AT(18, 3, 0, P64); /* packet_return_pointer */
AT(21, 0, 0, P64); /* pe_dma_to_memory_indirect */
AT(21, 1, 0, P64); /* pe_dma_to_memory_indirect_swap */
AT(21, 2, 0, P64); /* pe_dma_to_memory_indirect_free */
AT(21, 3, 0, P64); /* pe_dma_to_memory_indirect_free_swap */
default:
return nfp6000_mu_common(cpp_id);
}
}
static int nfp6000_mu_emu(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(18, 0, 0, P32); /* read_queue */
AT(18, 1, 0, P32); /* read_queue_ring */
AT(18, 2, P32, 0); /* write_queue */
AT(18, 3, P32, 0); /* write_queue_ring */
AT(20, 2, P32, 0); /* journal */
AT(21, 0, 0, P32); /* get */
AT(21, 1, 0, P32); /* get_eop */
AT(21, 2, 0, P32); /* get_freely */
AT(22, 0, 0, P32); /* pop */
AT(22, 1, 0, P32); /* pop_eop */
AT(22, 2, 0, P32); /* pop_freely */
default:
return nfp6000_mu_common(cpp_id);
}
}
static int nfp6000_mu_imu(u32 cpp_id)
{
return nfp6000_mu_common(cpp_id);
}
static int nfp6000_mu(u32 cpp_id, u64 address)
{
int pp;
if (address < 0x2000000000ULL)
pp = nfp6000_mu_ctm(cpp_id);
else if (address < 0x8000000000ULL)
pp = nfp6000_mu_emu(cpp_id);
else if (address < 0x9800000000ULL)
pp = nfp6000_mu_ctm(cpp_id);
else if (address < 0x9C00000000ULL)
pp = nfp6000_mu_emu(cpp_id);
else if (address < 0xA000000000ULL)
pp = nfp6000_mu_imu(cpp_id);
else
pp = nfp6000_mu_ctm(cpp_id);
return pp;
}
static int nfp6000_ila(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(0, 1, 0, P32); /* read_check_error */
AT(2, 0, 0, P32); /* read_int */
AT(3, 0, P32, 0); /* write_int */
default:
return target_rw(cpp_id, P32, 48, 4);
}
}
static int nfp6000_pci(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(2, 0, 0, P32);
AT(3, 0, P32, 0);
default:
return target_rw(cpp_id, P32, 4, 4);
}
}
static int nfp6000_crypto(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(2, 0, P64, 0);
default:
return target_rw(cpp_id, P64, 12, 4);
}
}
static int nfp6000_cap_xpb(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(0, 1, 0, P32); /* RingGet */
AT(0, 2, P32, 0); /* Interthread Signal */
AT(1, 1, P32, 0); /* RingPut */
AT(1, 2, P32, 0); /* CTNNWr */
AT(2, 0, 0, P32); /* ReflectRd, signal none */
AT(2, 1, 0, P32); /* ReflectRd, signal self */
AT(2, 2, 0, P32); /* ReflectRd, signal remote */
AT(2, 3, 0, P32); /* ReflectRd, signal both */
AT(3, 0, P32, 0); /* ReflectWr, signal none */
AT(3, 1, P32, 0); /* ReflectWr, signal self */
AT(3, 2, P32, 0); /* ReflectWr, signal remote */
AT(3, 3, P32, 0); /* ReflectWr, signal both */
AT(NFP_CPP_ACTION_RW, 1, P32, P32);
default:
return target_rw(cpp_id, P32, 1, 63);
}
}
static int nfp6000_cls(u32 cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
AT(0, 3, P32, 0); /* xor */
AT(2, 0, P32, 0); /* set */
AT(2, 1, P32, 0); /* clr */
AT(4, 0, P32, 0); /* add */
AT(4, 1, P32, 0); /* add64 */
AT(6, 0, P32, 0); /* sub */
AT(6, 1, P32, 0); /* sub64 */
AT(6, 2, P32, 0); /* subsat */
AT(8, 2, P32, 0); /* hash_mask */
AT(8, 3, P32, 0); /* hash_clear */
AT(9, 0, 0, P32); /* ring_get */
AT(9, 1, 0, P32); /* ring_pop */
AT(9, 2, 0, P32); /* ring_get_freely */
AT(9, 3, 0, P32); /* ring_pop_freely */
AT(10, 0, P32, 0); /* ring_put */
AT(10, 2, P32, 0); /* ring_journal */
AT(14, 0, P32, 0); /* reflect_write_sig_local */
AT(15, 1, 0, P32); /* reflect_read_sig_local */
AT(17, 2, P32, 0); /* statisic */
AT(24, 0, 0, P32); /* ring_read */
AT(24, 1, P32, 0); /* ring_write */
AT(25, 0, 0, P32); /* ring_workq_add_thread */
AT(25, 1, P32, 0); /* ring_workq_add_work */
default:
return target_rw(cpp_id, P32, 0, 64);
}
}
int nfp_target_pushpull(u32 cpp_id, u64 address)
{
switch (NFP_CPP_ID_TARGET_of(cpp_id)) {
case NFP_CPP_TARGET_NBI:
return nfp6000_nbi(cpp_id, address);
case NFP_CPP_TARGET_QDR:
return target_rw(cpp_id, P32, 24, 4);
case NFP_CPP_TARGET_ILA:
return nfp6000_ila(cpp_id);
case NFP_CPP_TARGET_MU:
return nfp6000_mu(cpp_id, address);
case NFP_CPP_TARGET_PCIE:
return nfp6000_pci(cpp_id);
case NFP_CPP_TARGET_ARM:
if (address < 0x10000)
return target_rw(cpp_id, P64, 1, 1);
else
return target_rw(cpp_id, P32, 1, 1);
case NFP_CPP_TARGET_CRYPTO:
return nfp6000_crypto(cpp_id);
case NFP_CPP_TARGET_CT_XPB:
return nfp6000_cap_xpb(cpp_id);
case NFP_CPP_TARGET_CLS:
return nfp6000_cls(cpp_id);
case 0:
return target_rw(cpp_id, P32, 4, 4);
default:
return -EINVAL;
}
}
#undef AT
#undef P32
#undef P64
/* All magic NFP-6xxx IMB 'mode' numbers here are from:
* Databook (1 August 2013)
* - System Overview and Connectivity
* -- Internal Connectivity
* --- Distributed Switch Fabric - Command Push/Pull (DSF-CPP) Bus
* ---- CPP addressing
* ----- Table 3.6. CPP Address Translation Mode Commands
*/
#define _NIC_NFP6000_MU_LOCALITY_DIRECT 2
static int nfp_decode_basic(u64 addr, int *dest_island, int cpp_tgt,
int mode, bool addr40, int isld1, int isld0)
{
int iid_lsb, idx_lsb;
/* This function doesn't handle MU or CTXBP */
if (cpp_tgt == NFP_CPP_TARGET_MU || cpp_tgt == NFP_CPP_TARGET_CT_XPB)
return -EINVAL;
switch (mode) {
case 0:
/* For VQDR, in this mode for 32-bit addressing
* it would be islands 0, 16, 32 and 48 depending on channel
* and upper address bits.
* Since those are not all valid islands, most decode
* cases would result in bad island IDs, but we do them
* anyway since this is decoding an address that is already
* assumed to be used as-is to get to sram.
*/
iid_lsb = addr40 ? 34 : 26;
*dest_island = (addr >> iid_lsb) & 0x3F;
return 0;
case 1:
/* For VQDR 32-bit, this would decode as:
* Channel 0: island#0
* Channel 1: island#0
* Channel 2: island#1
* Channel 3: island#1
* That would be valid as long as both islands
* have VQDR. Let's allow this.
*/
idx_lsb = addr40 ? 39 : 31;
if (addr & BIT_ULL(idx_lsb))
*dest_island = isld1;
else
*dest_island = isld0;
return 0;
case 2:
/* For VQDR 32-bit:
* Channel 0: (island#0 | 0)
* Channel 1: (island#0 | 1)
* Channel 2: (island#1 | 0)
* Channel 3: (island#1 | 1)
*
* Make sure we compare against isldN values
* by clearing the LSB.
* This is what the silicon does.
*/
isld0 &= ~1;
isld1 &= ~1;
idx_lsb = addr40 ? 39 : 31;
iid_lsb = idx_lsb - 1;
if (addr & BIT_ULL(idx_lsb))
*dest_island = isld1 | (int)((addr >> iid_lsb) & 1);
else
*dest_island = isld0 | (int)((addr >> iid_lsb) & 1);
return 0;
case 3:
/* In this mode the data address starts to affect the island ID
* so rather not allow it. In some really specific case
* one could use this to send the upper half of the
* VQDR channel to another MU, but this is getting very
* specific.
* However, as above for mode 0, this is the decoder
* and the caller should validate the resulting IID.
* This blindly does what the silicon would do.
*/
isld0 &= ~3;
isld1 &= ~3;
idx_lsb = addr40 ? 39 : 31;
iid_lsb = idx_lsb - 2;
if (addr & BIT_ULL(idx_lsb))
*dest_island = isld1 | (int)((addr >> iid_lsb) & 3);
else
*dest_island = isld0 | (int)((addr >> iid_lsb) & 3);
return 0;
default:
return -EINVAL;
}
}
static int nfp_encode_basic_qdr(u64 addr, int dest_island, int cpp_tgt,
int mode, bool addr40, int isld1, int isld0)
{
int v, ret;
/* Full Island ID and channel bits overlap? */
ret = nfp_decode_basic(addr, &v, cpp_tgt, mode, addr40, isld1, isld0);
if (ret)
return ret;
/* The current address won't go where expected? */
if (dest_island != -1 && dest_island != v)
return -EINVAL;
/* If dest_island was -1, we don't care where it goes. */
return 0;
}
/* Try each option, take first one that fits.
* Not sure if we would want to do some smarter
* searching and prefer 0 or non-0 island IDs.
*/
static int nfp_encode_basic_search(u64 *addr, int dest_island, int *isld,
int iid_lsb, int idx_lsb, int v_max)
{
int i, v;
for (i = 0; i < 2; i++)
for (v = 0; v < v_max; v++) {
if (dest_island != (isld[i] | v))
continue;
*addr &= ~GENMASK_ULL(idx_lsb, iid_lsb);
*addr |= ((u64)i << idx_lsb);
*addr |= ((u64)v << iid_lsb);
return 0;
}
return -ENODEV;
}
/* For VQDR, we may not modify the Channel bits, which might overlap
* with the Index bit. When it does, we need to ensure that isld0 == isld1.
*/
static int nfp_encode_basic(u64 *addr, int dest_island, int cpp_tgt,
int mode, bool addr40, int isld1, int isld0)
{
int iid_lsb, idx_lsb;
int isld[2];
u64 v64;
isld[0] = isld0;
isld[1] = isld1;
/* This function doesn't handle MU or CTXBP */
if (cpp_tgt == NFP_CPP_TARGET_MU || cpp_tgt == NFP_CPP_TARGET_CT_XPB)
return -EINVAL;
switch (mode) {
case 0:
if (cpp_tgt == NFP_CPP_TARGET_QDR && !addr40)
/* In this specific mode we'd rather not modify
* the address but we can verify if the existing
* contents will point to a valid island.
*/
return nfp_encode_basic_qdr(*addr, cpp_tgt, dest_island,
mode, addr40, isld1, isld0);
iid_lsb = addr40 ? 34 : 26;
/* <39:34> or <31:26> */
v64 = GENMASK_ULL(iid_lsb + 5, iid_lsb);
*addr &= ~v64;
*addr |= ((u64)dest_island << iid_lsb) & v64;
return 0;
case 1:
if (cpp_tgt == NFP_CPP_TARGET_QDR && !addr40)
return nfp_encode_basic_qdr(*addr, cpp_tgt, dest_island,
mode, addr40, isld1, isld0);
idx_lsb = addr40 ? 39 : 31;
if (dest_island == isld0) {
/* Only need to clear the Index bit */
*addr &= ~BIT_ULL(idx_lsb);
return 0;
}
if (dest_island == isld1) {
/* Only need to set the Index bit */
*addr |= BIT_ULL(idx_lsb);
return 0;
}
return -ENODEV;
case 2:
/* iid<0> = addr<30> = channel<0>
* channel<1> = addr<31> = Index
*/
if (cpp_tgt == NFP_CPP_TARGET_QDR && !addr40)
/* Special case where we allow channel bits to
* be set before hand and with them select an island.
* So we need to confirm that it's at least plausible.
*/
return nfp_encode_basic_qdr(*addr, cpp_tgt, dest_island,
mode, addr40, isld1, isld0);
/* Make sure we compare against isldN values
* by clearing the LSB.
* This is what the silicon does.
*/
isld[0] &= ~1;
isld[1] &= ~1;
idx_lsb = addr40 ? 39 : 31;
iid_lsb = idx_lsb - 1;
return nfp_encode_basic_search(addr, dest_island, isld,
iid_lsb, idx_lsb, 2);
case 3:
if (cpp_tgt == NFP_CPP_TARGET_QDR && !addr40)
/* iid<0> = addr<29> = data
* iid<1> = addr<30> = channel<0>
* channel<1> = addr<31> = Index
*/
return nfp_encode_basic_qdr(*addr, cpp_tgt, dest_island,
mode, addr40, isld1, isld0);
isld[0] &= ~3;
isld[1] &= ~3;
idx_lsb = addr40 ? 39 : 31;
iid_lsb = idx_lsb - 2;
return nfp_encode_basic_search(addr, dest_island, isld,
iid_lsb, idx_lsb, 4);
default:
return -EINVAL;
}
}
static int nfp_encode_mu(u64 *addr, int dest_island, int mode,
bool addr40, int isld1, int isld0)
{
int iid_lsb, idx_lsb, locality_lsb;
int isld[2];
u64 v64;
int da;
isld[0] = isld0;
isld[1] = isld1;
locality_lsb = nfp_cppat_mu_locality_lsb(mode, addr40);
if (((*addr >> locality_lsb) & 3) == _NIC_NFP6000_MU_LOCALITY_DIRECT)
da = 1;
else
da = 0;
switch (mode) {
case 0:
iid_lsb = addr40 ? 32 : 24;
v64 = GENMASK_ULL(iid_lsb + 5, iid_lsb);
*addr &= ~v64;
*addr |= (((u64)dest_island) << iid_lsb) & v64;
return 0;
case 1:
if (da) {
iid_lsb = addr40 ? 32 : 24;
v64 = GENMASK_ULL(iid_lsb + 5, iid_lsb);
*addr &= ~v64;
*addr |= (((u64)dest_island) << iid_lsb) & v64;
return 0;
}
idx_lsb = addr40 ? 37 : 29;
if (dest_island == isld0) {
*addr &= ~BIT_ULL(idx_lsb);
return 0;
}
if (dest_island == isld1) {
*addr |= BIT_ULL(idx_lsb);
return 0;
}
return -ENODEV;
case 2:
if (da) {
iid_lsb = addr40 ? 32 : 24;
v64 = GENMASK_ULL(iid_lsb + 5, iid_lsb);
*addr &= ~v64;
*addr |= (((u64)dest_island) << iid_lsb) & v64;
return 0;
}
/* Make sure we compare against isldN values
* by clearing the LSB.
* This is what the silicon does.
*/
isld[0] &= ~1;
isld[1] &= ~1;
idx_lsb = addr40 ? 37 : 29;
iid_lsb = idx_lsb - 1;
return nfp_encode_basic_search(addr, dest_island, isld,
iid_lsb, idx_lsb, 2);
case 3:
/* Only the EMU will use 40 bit addressing. Silently
* set the direct locality bit for everyone else.
* The SDK toolchain uses dest_island <= 0 to test
* for atypical address encodings to support access
* to local-island CTM with a 32-but address (high-locality
* is effewctively ignored and just used for
* routing to island #0).
*/
if (dest_island > 0 && (dest_island < 24 || dest_island > 26)) {
*addr |= ((u64)_NIC_NFP6000_MU_LOCALITY_DIRECT)
<< locality_lsb;
da = 1;
}
if (da) {
iid_lsb = addr40 ? 32 : 24;
v64 = GENMASK_ULL(iid_lsb + 5, iid_lsb);
*addr &= ~v64;
*addr |= (((u64)dest_island) << iid_lsb) & v64;
return 0;
}
isld[0] &= ~3;
isld[1] &= ~3;
idx_lsb = addr40 ? 37 : 29;
iid_lsb = idx_lsb - 2;
return nfp_encode_basic_search(addr, dest_island, isld,
iid_lsb, idx_lsb, 4);
default:
return -EINVAL;
}
}
static int nfp_cppat_addr_encode(u64 *addr, int dest_island, int cpp_tgt,
int mode, bool addr40, int isld1, int isld0)
{
switch (cpp_tgt) {
case NFP_CPP_TARGET_NBI:
case NFP_CPP_TARGET_QDR:
case NFP_CPP_TARGET_ILA:
case NFP_CPP_TARGET_PCIE:
case NFP_CPP_TARGET_ARM:
case NFP_CPP_TARGET_CRYPTO:
case NFP_CPP_TARGET_CLS:
return nfp_encode_basic(addr, dest_island, cpp_tgt, mode,
addr40, isld1, isld0);
case NFP_CPP_TARGET_MU:
return nfp_encode_mu(addr, dest_island, mode,
addr40, isld1, isld0);
case NFP_CPP_TARGET_CT_XPB:
if (mode != 1 || addr40)
return -EINVAL;
*addr &= ~GENMASK_ULL(29, 24);
*addr |= ((u64)dest_island << 24) & GENMASK_ULL(29, 24);
return 0;
default:
return -EINVAL;
}
}
int nfp_target_cpp(u32 cpp_island_id, u64 cpp_island_address,
u32 *cpp_target_id, u64 *cpp_target_address,
const u32 *imb_table)
{
const int island = NFP_CPP_ID_ISLAND_of(cpp_island_id);
const int target = NFP_CPP_ID_TARGET_of(cpp_island_id);
u32 imb;
int err;
if (target < 0 || target >= 16) {
pr_err("Invalid CPP target: %d\n", target);
return -EINVAL;
}
if (island == 0) {
/* Already translated */
*cpp_target_id = cpp_island_id;
*cpp_target_address = cpp_island_address;
return 0;
}
/* CPP + Island only allowed on systems with IMB tables */
if (!imb_table)
return -EINVAL;
imb = imb_table[target];
*cpp_target_address = cpp_island_address;
err = nfp_cppat_addr_encode(cpp_target_address, island, target,
((imb >> 13) & 7), ((imb >> 12) & 1),
((imb >> 6) & 0x3f), ((imb >> 0) & 0x3f));
if (err) {
pr_err("Can't encode CPP address: %d\n", err);
return err;
}
*cpp_target_id = NFP_CPP_ID(target,
NFP_CPP_ID_ACTION_of(cpp_island_id),
NFP_CPP_ID_TOKEN_of(cpp_island_id));
return 0;
}