// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
* Copyright (c) 2019-2021 Marvell International Ltd.
*/
#include <linux/types.h>
#include <linux/crc8.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "qed_hsi.h"
#include "qed_hw.h"
#include "qed_init_ops.h"
#include "qed_iro_hsi.h"
#include "qed_reg_addr.h"
#define CDU_VALIDATION_DEFAULT_CFG CDU_CONTEXT_VALIDATION_DEFAULT_CFG
static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES] = {
{400, 336, 352, 368, 304, 384, 416, 352}, /* region 3 offsets */
{528, 496, 416, 512, 448, 512, 544, 480}, /* region 4 offsets */
{608, 544, 496, 576, 576, 592, 624, 560} /* region 5 offsets */
};
static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES] = {
{240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
};
/* General constants */
#define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
QM_PQ_ELEMENT_SIZE, \
0x1000) : 0)
#define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \
0x100) - 1 : 0)
#define QM_INVALID_PQ_ID 0xffff
/* Max link speed (in Mbps) */
#define QM_MAX_LINK_SPEED 100000
/* Feature enable */
#define QM_BYPASS_EN 1
#define QM_BYTE_CRD_EN 1
/* Initial VOQ byte credit */
#define QM_INITIAL_VOQ_BYTE_CRD 98304
/* Other PQ constants */
#define QM_OTHER_PQS_PER_PF 4
/* VOQ constants */
#define MAX_NUM_VOQS (MAX_NUM_PORTS_K2 * NUM_TCS_4PORT_K2)
#define VOQS_BIT_MASK (BIT(MAX_NUM_VOQS) - 1)
/* WFQ constants */
/* PF WFQ increment value, 0x9000 = 4*9*1024 */
#define QM_PF_WFQ_INC_VAL(weight) ((weight) * 0x9000)
/* PF WFQ Upper bound, in MB, 10 * burst size of 1ms in 50Gbps */
#define QM_PF_WFQ_UPPER_BOUND 62500000
/* PF WFQ max increment value, 0.7 * upper bound */
#define QM_PF_WFQ_MAX_INC_VAL ((QM_PF_WFQ_UPPER_BOUND * 7) / 10)
/* Number of VOQs in E5 PF WFQ credit register (QmWfqCrd) */
#define QM_PF_WFQ_CRD_E5_NUM_VOQS 16
/* VP WFQ increment value */
#define QM_VP_WFQ_INC_VAL(weight) ((weight) * QM_VP_WFQ_MIN_INC_VAL)
/* VP WFQ min increment value */
#define QM_VP_WFQ_MIN_INC_VAL 10800
/* VP WFQ max increment value, 2^30 */
#define QM_VP_WFQ_MAX_INC_VAL 0x40000000
/* VP WFQ bypass threshold */
#define QM_VP_WFQ_BYPASS_THRESH (QM_VP_WFQ_MIN_INC_VAL - 100)
/* VP RL credit task cost */
#define QM_VP_RL_CRD_TASK_COST 9700
/* Bit of VOQ in VP WFQ PQ map */
#define QM_VP_WFQ_PQ_VOQ_SHIFT 0
/* Bit of PF in VP WFQ PQ map */
#define QM_VP_WFQ_PQ_PF_SHIFT 5
/* RL constants */
/* Period in us */
#define QM_RL_PERIOD 5
/* Period in 25MHz cycles */
#define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
/* RL increment value - rate is specified in mbps */
#define QM_RL_INC_VAL(rate) ({ \
typeof(rate) __rate = (rate); \
max_t(u32, \
(u32)(((__rate ? __rate : \
100000) * \
QM_RL_PERIOD * \
101) / (8 * 100)), 1); })
/* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
#define QM_PF_RL_UPPER_BOUND 62500000
/* Max PF RL increment value is 0.7 * upper bound */
#define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10)
/* QCN RL Upper bound, speed is in Mpbs */
#define QM_GLOBAL_RL_UPPER_BOUND(speed) ((u32)max_t( \
u32, \
(u32)(((speed) * \
QM_RL_PERIOD * 101) / (8 * 100)), \
QM_VP_RL_CRD_TASK_COST \
+ 1000))
/* AFullOprtnstcCrdMask constants */
#define QM_OPPOR_LINE_VOQ_DEF 1
#define QM_OPPOR_FW_STOP_DEF 0
#define QM_OPPOR_PQ_EMPTY_DEF 1
/* Command Queue constants */
/* Pure LB CmdQ lines (+spare) */
#define PBF_CMDQ_PURE_LB_LINES 150
#define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
(ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
#define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
(ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
/* Returns the VOQ line credit for the specified number of PBF command lines.
* PBF lines are specified in 256b units.
*/
#define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
/* BTB: blocks constants (block size = 256B) */
/* 256B blocks in 9700B packet */
#define BTB_JUMBO_PKT_BLOCKS 38
/* Headroom per-port */
#define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
#define BTB_PURE_LB_FACTOR 10
/* Factored (hence really 0.7) */
#define BTB_PURE_LB_RATIO 7
/* QM stop command constants */
#define QM_STOP_PQ_MASK_WIDTH 32
#define QM_STOP_CMD_ADDR 2
#define QM_STOP_CMD_STRUCT_SIZE 2
#define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
#define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
#define QM_STOP_CMD_PAUSE_MASK_MASK -1
#define QM_STOP_CMD_GROUP_ID_OFFSET 1
#define QM_STOP_CMD_GROUP_ID_SHIFT 16
#define QM_STOP_CMD_GROUP_ID_MASK 15
#define QM_STOP_CMD_PQ_TYPE_OFFSET 1
#define QM_STOP_CMD_PQ_TYPE_SHIFT 24
#define QM_STOP_CMD_PQ_TYPE_MASK 1
#define QM_STOP_CMD_MAX_POLL_COUNT 100
#define QM_STOP_CMD_POLL_PERIOD_US 500
/* QM command macros */
#define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE
#define QM_CMD_SET_FIELD(var, cmd, field, value) \
SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
cmd ## _ ## field, \
value)
#define QM_INIT_TX_PQ_MAP(p_hwfn, map, pq_id, vp_pq_id, rl_valid, \
rl_id, ext_voq, wrr) \
do { \
u32 __reg = 0; \
\
BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg)); \
memset(&(map), 0, sizeof(map)); \
SET_FIELD(__reg, QM_RF_PQ_MAP_PQ_VALID, 1); \
SET_FIELD(__reg, QM_RF_PQ_MAP_RL_VALID, \
!!(rl_valid)); \
SET_FIELD(__reg, QM_RF_PQ_MAP_VP_PQ_ID, (vp_pq_id)); \
SET_FIELD(__reg, QM_RF_PQ_MAP_RL_ID, (rl_id)); \
SET_FIELD(__reg, QM_RF_PQ_MAP_VOQ, (ext_voq)); \
SET_FIELD(__reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP, \
(wrr)); \
\
STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \
__reg); \
(map).reg = cpu_to_le32(__reg); \
} while (0)
#define WRITE_PQ_INFO_TO_RAM 1
#define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
(((rl) >> 8) << 9))
#define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
(XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
XSTORM_PQ_INFO_OFFSET(pq_id))
static const char * const s_protocol_types[] = {
"PROTOCOLID_ISCSI", "PROTOCOLID_FCOE", "PROTOCOLID_ROCE",
"PROTOCOLID_CORE", "PROTOCOLID_ETH", "PROTOCOLID_IWARP",
"PROTOCOLID_TOE", "PROTOCOLID_PREROCE", "PROTOCOLID_COMMON",
"PROTOCOLID_TCP", "PROTOCOLID_RDMA", "PROTOCOLID_SCSI",
};
static const char *s_ramrod_cmd_ids[][28] = {
{
"ISCSI_RAMROD_CMD_ID_UNUSED", "ISCSI_RAMROD_CMD_ID_INIT_FUNC",
"ISCSI_RAMROD_CMD_ID_DESTROY_FUNC",
"ISCSI_RAMROD_CMD_ID_OFFLOAD_CONN",
"ISCSI_RAMROD_CMD_ID_UPDATE_CONN",
"ISCSI_RAMROD_CMD_ID_TERMINATION_CONN",
"ISCSI_RAMROD_CMD_ID_CLEAR_SQ", "ISCSI_RAMROD_CMD_ID_MAC_UPDATE",
"ISCSI_RAMROD_CMD_ID_CONN_STATS", },
{ "FCOE_RAMROD_CMD_ID_INIT_FUNC", "FCOE_RAMROD_CMD_ID_DESTROY_FUNC",
"FCOE_RAMROD_CMD_ID_STAT_FUNC",
"FCOE_RAMROD_CMD_ID_OFFLOAD_CONN",
"FCOE_RAMROD_CMD_ID_TERMINATE_CONN", },
{ "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
"RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
"RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
"RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
"RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
"RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
"RDMA_RAMROD_STOP_NS_TRACKING", "ROCE_RAMROD_CREATE_QP",
"ROCE_RAMROD_MODIFY_QP", "ROCE_RAMROD_QUERY_QP",
"ROCE_RAMROD_DESTROY_QP", "ROCE_RAMROD_CREATE_UD_QP",
"ROCE_RAMROD_DESTROY_UD_QP", "ROCE_RAMROD_FUNC_UPDATE",
"ROCE_RAMROD_SUSPEND_QP", "ROCE_RAMROD_QUERY_SUSPENDED_QP",
"ROCE_RAMROD_CREATE_SUSPENDED_QP", "ROCE_RAMROD_RESUME_QP",
"ROCE_RAMROD_SUSPEND_UD_QP", "ROCE_RAMROD_RESUME_UD_QP",
"ROCE_RAMROD_CREATE_SUSPENDED_UD_QP", "ROCE_RAMROD_FLUSH_DPT_QP", },
{ "CORE_RAMROD_UNUSED", "CORE_RAMROD_RX_QUEUE_START",
"CORE_RAMROD_TX_QUEUE_START", "CORE_RAMROD_RX_QUEUE_STOP",
"CORE_RAMROD_TX_QUEUE_STOP",
"CORE_RAMROD_RX_QUEUE_FLUSH",
"CORE_RAMROD_TX_QUEUE_UPDATE", "CORE_RAMROD_QUEUE_STATS_QUERY", },
{ "ETH_RAMROD_UNUSED", "ETH_RAMROD_VPORT_START",
"ETH_RAMROD_VPORT_UPDATE", "ETH_RAMROD_VPORT_STOP",
"ETH_RAMROD_RX_QUEUE_START", "ETH_RAMROD_RX_QUEUE_STOP",
"ETH_RAMROD_TX_QUEUE_START", "ETH_RAMROD_TX_QUEUE_STOP",
"ETH_RAMROD_FILTERS_UPDATE", "ETH_RAMROD_RX_QUEUE_UPDATE",
"ETH_RAMROD_RX_CREATE_OPENFLOW_ACTION",
"ETH_RAMROD_RX_ADD_OPENFLOW_FILTER",
"ETH_RAMROD_RX_DELETE_OPENFLOW_FILTER",
"ETH_RAMROD_RX_ADD_UDP_FILTER",
"ETH_RAMROD_RX_DELETE_UDP_FILTER",
"ETH_RAMROD_RX_CREATE_GFT_ACTION",
"ETH_RAMROD_RX_UPDATE_GFT_FILTER", "ETH_RAMROD_TX_QUEUE_UPDATE",
"ETH_RAMROD_RGFS_FILTER_ADD", "ETH_RAMROD_RGFS_FILTER_DEL",
"ETH_RAMROD_TGFS_FILTER_ADD", "ETH_RAMROD_TGFS_FILTER_DEL",
"ETH_RAMROD_GFS_COUNTERS_REPORT_REQUEST", },
{ "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
"RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
"RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
"RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
"RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
"RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
"RDMA_RAMROD_STOP_NS_TRACKING",
"IWARP_RAMROD_CMD_ID_TCP_OFFLOAD",
"IWARP_RAMROD_CMD_ID_MPA_OFFLOAD",
"IWARP_RAMROD_CMD_ID_MPA_OFFLOAD_SEND_RTR",
"IWARP_RAMROD_CMD_ID_CREATE_QP", "IWARP_RAMROD_CMD_ID_QUERY_QP",
"IWARP_RAMROD_CMD_ID_MODIFY_QP",
"IWARP_RAMROD_CMD_ID_DESTROY_QP",
"IWARP_RAMROD_CMD_ID_ABORT_TCP_OFFLOAD", },
{ NULL }, /*TOE*/
{ NULL }, /*PREROCE*/
{ "COMMON_RAMROD_UNUSED", "COMMON_RAMROD_PF_START",
"COMMON_RAMROD_PF_STOP", "COMMON_RAMROD_VF_START",
"COMMON_RAMROD_VF_STOP", "COMMON_RAMROD_PF_UPDATE",
"COMMON_RAMROD_RL_UPDATE", "COMMON_RAMROD_EMPTY", }
};
/******************** INTERNAL IMPLEMENTATION *********************/
/* Returns the external VOQ number */
static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
{
if (tc == PURE_LB_TC)
return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
else
return port_id * max_phys_tcs_per_port + tc;
}
/* Prepare PF RL enable/disable runtime init values */
static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
{
STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
if (pf_rl_en) {
u8 num_ext_voqs = MAX_NUM_VOQS;
u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
/* Enable RLs for all VOQs */
STORE_RT_REG(p_hwfn,
QM_REG_RLPFVOQENABLE_RT_OFFSET,
(u32)voq_bit_mask);
/* Write RL period */
STORE_RT_REG(p_hwfn,
QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
STORE_RT_REG(p_hwfn,
QM_REG_RLPFPERIODTIMER_RT_OFFSET,
QM_RL_PERIOD_CLK_25M);
/* Set credit threshold for QM bypass flow */
if (QM_BYPASS_EN)
STORE_RT_REG(p_hwfn,
QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
QM_PF_RL_UPPER_BOUND);
}
}
/* Prepare PF WFQ enable/disable runtime init values */
static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
{
STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
/* Set credit threshold for QM bypass flow */
if (pf_wfq_en && QM_BYPASS_EN)
STORE_RT_REG(p_hwfn,
QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
QM_PF_WFQ_UPPER_BOUND);
}
/* Prepare global RL enable/disable runtime init values */
static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
{
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
global_rl_en ? 1 : 0);
if (global_rl_en) {
/* Write RL period (use timer 0 only) */
STORE_RT_REG(p_hwfn,
QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
QM_RL_PERIOD_CLK_25M);
STORE_RT_REG(p_hwfn,
QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
QM_RL_PERIOD_CLK_25M);
/* Set credit threshold for QM bypass flow */
if (QM_BYPASS_EN)
STORE_RT_REG(p_hwfn,
QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
QM_GLOBAL_RL_UPPER_BOUND(10000) - 1);
}
}
/* Prepare VPORT WFQ enable/disable runtime init values */
static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
{
STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
vport_wfq_en ? 1 : 0);
/* Set credit threshold for QM bypass flow */
if (vport_wfq_en && QM_BYPASS_EN)
STORE_RT_REG(p_hwfn,
QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
QM_VP_WFQ_BYPASS_THRESH);
}
/* Prepare runtime init values to allocate PBF command queue lines for
* the specified VOQ.
*/
static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
u8 ext_voq, u16 cmdq_lines)
{
u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
(u32)cmdq_lines);
STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
qm_line_crd);
STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
qm_line_crd);
}
/* Prepare runtime init values to allocate PBF command queue lines. */
static void
qed_cmdq_lines_rt_init(struct qed_hwfn *p_hwfn,
u8 max_ports_per_engine,
u8 max_phys_tcs_per_port,
struct init_qm_port_params port_params[MAX_NUM_PORTS])
{
u8 tc, ext_voq, port_id, num_tcs_in_port;
u8 num_ext_voqs = MAX_NUM_VOQS;
/* Clear PBF lines of all VOQs */
for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
u16 phys_lines, phys_lines_per_tc;
if (!port_params[port_id].active)
continue;
/* Find number of command queue lines to divide between the
* active physical TCs.
*/
phys_lines = port_params[port_id].num_pbf_cmd_lines;
phys_lines -= PBF_CMDQ_PURE_LB_LINES;
/* Find #lines per active physical TC */
num_tcs_in_port = 0;
for (tc = 0; tc < max_phys_tcs_per_port; tc++)
if (((port_params[port_id].active_phys_tcs >>
tc) & 0x1) == 1)
num_tcs_in_port++;
phys_lines_per_tc = phys_lines / num_tcs_in_port;
/* Init registers per active TC */
for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
ext_voq = qed_get_ext_voq(p_hwfn,
port_id,
tc, max_phys_tcs_per_port);
if (((port_params[port_id].active_phys_tcs >>
tc) & 0x1) == 1)
qed_cmdq_lines_voq_rt_init(p_hwfn,
ext_voq,
phys_lines_per_tc);
}
/* Init registers for pure LB TC */
ext_voq = qed_get_ext_voq(p_hwfn,
port_id,
PURE_LB_TC, max_phys_tcs_per_port);
qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
PBF_CMDQ_PURE_LB_LINES);
}
}
/* Prepare runtime init values to allocate guaranteed BTB blocks for the
* specified port. The guaranteed BTB space is divided between the TCs as
* follows (shared space Is currently not used):
* 1. Parameters:
* B - BTB blocks for this port
* C - Number of physical TCs for this port
* 2. Calculation:
* a. 38 blocks (9700B jumbo frame) are allocated for global per port
* headroom.
* b. B = B - 38 (remainder after global headroom allocation).
* c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
* d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
* e. B/C blocks are allocated for each physical TC.
* Assumptions:
* - MTU is up to 9700 bytes (38 blocks)
* - All TCs are considered symmetrical (same rate and packet size)
* - No optimization for lossy TC (all are considered lossless). Shared space
* is not enabled and allocated for each TC.
*/
static void
qed_btb_blocks_rt_init(struct qed_hwfn *p_hwfn,
u8 max_ports_per_engine,
u8 max_phys_tcs_per_port,
struct init_qm_port_params port_params[MAX_NUM_PORTS])
{
u32 usable_blocks, pure_lb_blocks, phys_blocks;
u8 tc, ext_voq, port_id, num_tcs_in_port;
for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
if (!port_params[port_id].active)
continue;
/* Subtract headroom blocks */
usable_blocks = port_params[port_id].num_btb_blocks -
BTB_HEADROOM_BLOCKS;
/* Find blocks per physical TC. Use factor to avoid floating
* arithmethic.
*/
num_tcs_in_port = 0;
for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
if (((port_params[port_id].active_phys_tcs >>
tc) & 0x1) == 1)
num_tcs_in_port++;
pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
(num_tcs_in_port * BTB_PURE_LB_FACTOR +
BTB_PURE_LB_RATIO);
pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
pure_lb_blocks / BTB_PURE_LB_FACTOR);
phys_blocks = (usable_blocks - pure_lb_blocks) /
num_tcs_in_port;
/* Init physical TCs */
for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
if (((port_params[port_id].active_phys_tcs >>
tc) & 0x1) == 1) {
ext_voq =
qed_get_ext_voq(p_hwfn,
port_id,
tc,
max_phys_tcs_per_port);
STORE_RT_REG(p_hwfn,
PBF_BTB_GUARANTEED_RT_OFFSET
(ext_voq), phys_blocks);
}
}
/* Init pure LB TC */
ext_voq = qed_get_ext_voq(p_hwfn,
port_id,
PURE_LB_TC, max_phys_tcs_per_port);
STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
pure_lb_blocks);
}
}
/* Prepare runtime init values for the specified RL.
* Set max link speed (100Gbps) per rate limiter.
* Return -1 on error.
*/
static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
{
u32 upper_bound = QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
(u32)QM_RL_CRD_REG_SIGN_BIT;
u32 inc_val;
u16 rl_id;
/* Go over all global RLs */
for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
STORE_RT_REG(p_hwfn,
QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
(u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn,
QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
upper_bound);
STORE_RT_REG(p_hwfn,
QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
}
return 0;
}
/* Returns the upper bound for the specified Vport RL parameters.
* link_speed is in Mbps.
* Returns 0 in case of error.
*/
static u32 qed_get_vport_rl_upper_bound(enum init_qm_rl_type vport_rl_type,
u32 link_speed)
{
switch (vport_rl_type) {
case QM_RL_TYPE_NORMAL:
return QM_INITIAL_VOQ_BYTE_CRD;
case QM_RL_TYPE_QCN:
return QM_GLOBAL_RL_UPPER_BOUND(link_speed);
default:
return 0;
}
}
/* Prepare VPORT RL runtime init values.
* Return -1 on error.
*/
static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
u16 start_rl,
u16 num_rls,
u32 link_speed,
struct init_qm_rl_params *rl_params)
{
u16 i, rl_id;
if (num_rls && start_rl + num_rls >= MAX_QM_GLOBAL_RLS) {
DP_NOTICE(p_hwfn, "Invalid rate limiter configuration\n");
return -1;
}
/* Go over all PF VPORTs */
for (i = 0, rl_id = start_rl; i < num_rls; i++, rl_id++) {
u32 upper_bound, inc_val;
upper_bound =
qed_get_vport_rl_upper_bound((enum init_qm_rl_type)
rl_params[i].vport_rl_type,
link_speed);
inc_val =
QM_RL_INC_VAL(rl_params[i].vport_rl ?
rl_params[i].vport_rl : link_speed);
if (inc_val > upper_bound) {
DP_NOTICE(p_hwfn,
"Invalid RL rate - limit configuration\n");
return -1;
}
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
(u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id,
inc_val);
}
return 0;
}
/* Prepare Tx PQ mapping runtime init values for the specified PF */
static int qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_qm_pf_rt_init_params *p_params,
u32 base_mem_addr_4kb)
{
u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
struct init_qm_vport_params *vport_params = p_params->vport_params;
u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
struct init_qm_pq_params *pq_params = p_params->pq_params;
u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
last_pq_group = (p_params->start_pq + num_pqs - 1) /
QM_PF_QUEUE_GROUP_SIZE;
pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
mem_addr_4kb = base_mem_addr_4kb;
/* Set mapping from PQ group to PF */
for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
(u32)(p_params->pf_id));
/* Set PQ sizes */
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
QM_PQ_SIZE_256B(p_params->num_pf_cids));
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
QM_PQ_SIZE_256B(p_params->num_vf_cids));
/* Go over all Tx PQs */
for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
u16 *p_first_tx_pq_id, vport_id_in_pf;
struct qm_rf_pq_map tx_pq_map;
u8 tc_id = pq_params[i].tc_id;
bool is_vf_pq;
u8 ext_voq;
ext_voq = qed_get_ext_voq(p_hwfn,
pq_params[i].port_id,
tc_id,
p_params->max_phys_tcs_per_port);
is_vf_pq = (i >= p_params->num_pf_pqs);
/* Update first Tx PQ of VPORT/TC */
vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
p_first_tx_pq_id =
&vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
u32 map_val =
(ext_voq << QM_VP_WFQ_PQ_VOQ_SHIFT) |
(p_params->pf_id << QM_VP_WFQ_PQ_PF_SHIFT);
/* Create new VP PQ */
*p_first_tx_pq_id = pq_id;
/* Map VP PQ to VOQ and PF */
STORE_RT_REG(p_hwfn,
QM_REG_WFQVPMAP_RT_OFFSET +
*p_first_tx_pq_id,
map_val);
}
/* Prepare PQ map entry */
QM_INIT_TX_PQ_MAP(p_hwfn,
tx_pq_map,
pq_id,
*p_first_tx_pq_id,
pq_params[i].rl_valid,
pq_params[i].rl_id,
ext_voq, pq_params[i].wrr_group);
/* Set PQ base address */
STORE_RT_REG(p_hwfn,
QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
mem_addr_4kb);
/* Clear PQ pointer table entry (64 bit) */
if (p_params->is_pf_loading)
for (j = 0; j < 2; j++)
STORE_RT_REG(p_hwfn,
QM_REG_PTRTBLTX_RT_OFFSET +
(pq_id * 2) + j, 0);
/* Write PQ info to RAM */
if (WRITE_PQ_INFO_TO_RAM != 0) {
u32 pq_info = 0;
pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
p_params->pf_id,
tc_id,
pq_params[i].port_id,
pq_params[i].rl_valid,
pq_params[i].rl_id);
qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
pq_info);
}
/* If VF PQ, add indication to PQ VF mask */
if (is_vf_pq) {
tx_pq_vf_mask[pq_id /
QM_PF_QUEUE_GROUP_SIZE] |=
BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
mem_addr_4kb += vport_pq_mem_4kb;
} else {
mem_addr_4kb += pq_mem_4kb;
}
}
/* Store Tx PQ VF mask to size select register */
for (i = 0; i < num_tx_pq_vf_masks; i++)
if (tx_pq_vf_mask[i])
STORE_RT_REG(p_hwfn,
QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
tx_pq_vf_mask[i]);
return 0;
}
/* Prepare Other PQ mapping runtime init values for the specified PF */
static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
u8 pf_id,
bool is_pf_loading,
u32 num_pf_cids,
u32 num_tids, u32 base_mem_addr_4kb)
{
u32 pq_size, pq_mem_4kb, mem_addr_4kb;
u16 i, j, pq_id, pq_group;
/* A single other PQ group is used in each PF, where PQ group i is used
* in PF i.
*/
pq_group = pf_id;
pq_size = num_pf_cids + num_tids;
pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
mem_addr_4kb = base_mem_addr_4kb;
/* Map PQ group to PF */
STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
(u32)(pf_id));
/* Set PQ sizes */
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
QM_PQ_SIZE_256B(pq_size));
for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
/* Set PQ base address */
STORE_RT_REG(p_hwfn,
QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
mem_addr_4kb);
/* Clear PQ pointer table entry */
if (is_pf_loading)
for (j = 0; j < 2; j++)
STORE_RT_REG(p_hwfn,
QM_REG_PTRTBLOTHER_RT_OFFSET +
(pq_id * 2) + j, 0);
mem_addr_4kb += pq_mem_4kb;
}
}
/* Prepare PF WFQ runtime init values for the specified PF.
* Return -1 on error.
*/
static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
struct qed_qm_pf_rt_init_params *p_params)
{
u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
struct init_qm_pq_params *pq_params = p_params->pq_params;
u32 inc_val, crd_reg_offset;
u8 ext_voq;
u16 i;
inc_val = QM_PF_WFQ_INC_VAL(p_params->pf_wfq);
if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
return -1;
}
for (i = 0; i < num_tx_pqs; i++) {
ext_voq = qed_get_ext_voq(p_hwfn,
pq_params[i].port_id,
pq_params[i].tc_id,
p_params->max_phys_tcs_per_port);
crd_reg_offset =
(p_params->pf_id < MAX_NUM_PFS_BB ?
QM_REG_WFQPFCRD_RT_OFFSET :
QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
ext_voq * MAX_NUM_PFS_BB +
(p_params->pf_id % MAX_NUM_PFS_BB);
OVERWRITE_RT_REG(p_hwfn,
crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
}
STORE_RT_REG(p_hwfn,
QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
QM_PF_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
inc_val);
return 0;
}
/* Prepare PF RL runtime init values for the specified PF.
* Return -1 on error.
*/
static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
{
u32 inc_val = QM_RL_INC_VAL(pf_rl);
if (inc_val > QM_PF_RL_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
return -1;
}
STORE_RT_REG(p_hwfn,
QM_REG_RLPFCRD_RT_OFFSET + pf_id,
(u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn,
QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
return 0;
}
/* Prepare VPORT WFQ runtime init values for the specified VPORTs.
* Return -1 on error.
*/
static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
u16 num_vports,
struct init_qm_vport_params *vport_params)
{
u16 vport_pq_id, wfq, i;
u32 inc_val;
u8 tc;
/* Go over all PF VPORTs */
for (i = 0; i < num_vports; i++) {
/* Each VPORT can have several VPORT PQ IDs for various TCs */
for (tc = 0; tc < NUM_OF_TCS; tc++) {
/* Check if VPORT/TC is valid */
vport_pq_id = vport_params[i].first_tx_pq_id[tc];
if (vport_pq_id == QM_INVALID_PQ_ID)
continue;
/* Find WFQ weight (per VPORT or per VPORT+TC) */
wfq = vport_params[i].wfq;
wfq = wfq ? wfq : vport_params[i].tc_wfq[tc];
inc_val = QM_VP_WFQ_INC_VAL(wfq);
if (inc_val > QM_VP_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn,
"Invalid VPORT WFQ weight configuration\n");
return -1;
}
/* Config registers */
STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET +
vport_pq_id,
(u32)QM_WFQ_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_WFQVPUPPERBOUND_RT_OFFSET +
vport_pq_id,
inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET +
vport_pq_id, inc_val);
}
}
return 0;
}
static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
u32 reg_val, i;
for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
i++) {
udelay(QM_STOP_CMD_POLL_PERIOD_US);
reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
}
/* Check if timeout while waiting for SDM command ready */
if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
"Timeout when waiting for QM SDM command ready signal\n");
return false;
}
return true;
}
static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
{
if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
return false;
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
}
/******************** INTERFACE IMPLEMENTATION *********************/
u32 qed_qm_pf_mem_size(u32 num_pf_cids,
u32 num_vf_cids,
u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
{
return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
}
int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
struct qed_qm_common_rt_init_params *p_params)
{
u32 mask = 0;
/* Init AFullOprtnstcCrdMask */
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
QM_OPPOR_LINE_VOQ_DEF);
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ,
p_params->pf_wfq_en ? 1 : 0);
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ,
p_params->vport_wfq_en ? 1 : 0);
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL,
p_params->pf_rl_en ? 1 : 0);
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
p_params->global_rl_en ? 1 : 0);
SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
SET_FIELD(mask,
QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
/* Enable/disable PF RL */
qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
/* Enable/disable PF WFQ */
qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
/* Enable/disable global RL */
qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
/* Enable/disable VPORT WFQ */
qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
/* Init PBF CMDQ line credit */
qed_cmdq_lines_rt_init(p_hwfn,
p_params->max_ports_per_engine,
p_params->max_phys_tcs_per_port,
p_params->port_params);
/* Init BTB blocks in PBF */
qed_btb_blocks_rt_init(p_hwfn,
p_params->max_ports_per_engine,
p_params->max_phys_tcs_per_port,
p_params->port_params);
qed_global_rl_rt_init(p_hwfn);
return 0;
}
int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_qm_pf_rt_init_params *p_params)
{
struct init_qm_vport_params *vport_params = p_params->vport_params;
u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
p_params->num_tids) *
QM_OTHER_PQS_PER_PF;
u16 i;
u8 tc;
/* Clear first Tx PQ ID array for each VPORT */
for (i = 0; i < p_params->num_vports; i++)
for (tc = 0; tc < NUM_OF_TCS; tc++)
vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
/* Map Other PQs (if any) */
qed_other_pq_map_rt_init(p_hwfn,
p_params->pf_id,
p_params->is_pf_loading, p_params->num_pf_cids,
p_params->num_tids, 0);
/* Map Tx PQs */
if (qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb))
return -1;
/* Init PF WFQ */
if (p_params->pf_wfq)
if (qed_pf_wfq_rt_init(p_hwfn, p_params))
return -1;
/* Init PF RL */
if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
return -1;
/* Init VPORT WFQ */
if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
return -1;
/* Set VPORT RL */
if (qed_vport_rl_rt_init(p_hwfn, p_params->start_rl,
p_params->num_rls, p_params->link_speed,
p_params->rl_params))
return -1;
return 0;
}
int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
{
u32 inc_val = QM_PF_WFQ_INC_VAL(pf_wfq);
if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
return -1;
}
qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
return 0;
}
int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
{
u32 inc_val = QM_RL_INC_VAL(pf_rl);
if (inc_val > QM_PF_RL_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
return -1;
}
qed_wr(p_hwfn,
p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
return 0;
}
int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
{
int result = 0;
u16 vport_pq_id;
u8 tc;
for (tc = 0; tc < NUM_OF_TCS && !result; tc++) {
vport_pq_id = first_tx_pq_id[tc];
if (vport_pq_id != QM_INVALID_PQ_ID)
result = qed_init_vport_tc_wfq(p_hwfn, p_ptt,
vport_pq_id, wfq);
}
return result;
}
int qed_init_vport_tc_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
u16 first_tx_pq_id, u16 wfq)
{
u32 inc_val;
if (first_tx_pq_id == QM_INVALID_PQ_ID)
return -1;
inc_val = QM_VP_WFQ_INC_VAL(wfq);
if (!inc_val || inc_val > QM_VP_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
return -1;
}
qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPCRD + first_tx_pq_id * 4,
(u32)QM_WFQ_CRD_REG_SIGN_BIT);
qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPUPPERBOUND + first_tx_pq_id * 4,
inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + first_tx_pq_id * 4,
inc_val);
return 0;
}
int qed_init_global_rl(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit,
enum init_qm_rl_type vport_rl_type)
{
u32 inc_val, upper_bound;
upper_bound =
(vport_rl_type ==
QM_RL_TYPE_QCN) ? QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) :
QM_INITIAL_VOQ_BYTE_CRD;
inc_val = QM_RL_INC_VAL(rate_limit);
if (inc_val > upper_bound) {
DP_NOTICE(p_hwfn, "Invalid VPORT rate limit configuration.\n");
return -1;
}
qed_wr(p_hwfn, p_ptt,
QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
qed_wr(p_hwfn,
p_ptt,
QM_REG_RLGLBLUPPERBOUND + rl_id * 4,
upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
return 0;
}
bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
bool is_release_cmd,
bool is_tx_pq, u16 start_pq, u16 num_pqs)
{
u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
u32 pq_mask = 0, last_pq, pq_id;
last_pq = start_pq + num_pqs - 1;
/* Set command's PQ type */
QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
/* Go over requested PQs */
for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
/* Set PQ bit in mask (stop command only) */
if (!is_release_cmd)
pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
/* If last PQ or end of PQ mask, write command */
if ((pq_id == last_pq) ||
(pq_id % QM_STOP_PQ_MASK_WIDTH ==
(QM_STOP_PQ_MASK_WIDTH - 1))) {
QM_CMD_SET_FIELD(cmd_arr,
QM_STOP_CMD, PAUSE_MASK, pq_mask);
QM_CMD_SET_FIELD(cmd_arr,
QM_STOP_CMD,
GROUP_ID,
pq_id / QM_STOP_PQ_MASK_WIDTH);
if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
cmd_arr[0], cmd_arr[1]))
return false;
pq_mask = 0;
}
}
return true;
}
#define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
do { \
typeof(var) *__p_var = &(var); \
typeof(offset) __offset = offset; \
*__p_var = (*__p_var & ~BIT(__offset)) | \
((enable) ? BIT(__offset) : 0); \
} while (0)
#define PRS_ETH_TUNN_OUTPUT_FORMAT 0xF4DAB910
#define PRS_ETH_OUTPUT_FORMAT 0xFFFF4910
#define ARR_REG_WR(dev, ptt, addr, arr, arr_size) \
do { \
u32 i; \
\
for (i = 0; i < (arr_size); i++) \
qed_wr(dev, ptt, \
((addr) + (4 * i)), \
((u32 *)&(arr))[i]); \
} while (0)
/**
* qed_dmae_to_grc() - Internal function for writing from host to
* wide-bus registers (split registers are not supported yet).
*
* @p_hwfn: HW device data.
* @p_ptt: PTT window used for writing the registers.
* @p_data: Pointer to source data.
* @addr: Destination register address.
* @len_in_dwords: Data length in dwords (u32).
*
* Return: Length of the written data in dwords (u32) or -1 on invalid
* input.
*/
static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
__le32 *p_data, u32 addr, u32 len_in_dwords)
{
struct qed_dmae_params params = { 0 };
u32 *data_cpu;
int rc;
if (!p_data)
return -1;
/* Set DMAE params */
SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
/* Execute DMAE command */
rc = qed_dmae_host2grc(p_hwfn, p_ptt,
(u64)(uintptr_t)(p_data),
addr, len_in_dwords, ¶ms);
/* If not read using DMAE, read using GRC */
if (rc) {
DP_VERBOSE(p_hwfn,
QED_MSG_DEBUG,
"Failed writing to chip using DMAE, using GRC instead\n");
/* Swap to CPU byteorder and write to registers using GRC */
data_cpu = (__force u32 *)p_data;
le32_to_cpu_array(data_cpu, len_in_dwords);
ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
cpu_to_le32_array(data_cpu, len_in_dwords);
}
return len_in_dwords;
}
void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 dest_port)
{
/* Update PRS register */
qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
/* Update NIG register */
qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
/* Update PBF register */
qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
}
void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, bool vxlan_enable)
{
u32 reg_val;
u8 shift;
/* Update PRS register */
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
SET_FIELD(reg_val,
PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE, vxlan_enable);
qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
if (reg_val) {
reg_val =
qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
/* Update output only if tunnel blocks not included. */
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
(u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
}
/* Update NIG register */
reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
/* Update DORQ register */
qed_wr(p_hwfn,
p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
}
void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
bool eth_gre_enable, bool ip_gre_enable)
{
u32 reg_val;
u8 shift;
/* Update PRS register */
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
SET_FIELD(reg_val,
PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE,
eth_gre_enable);
SET_FIELD(reg_val,
PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE,
ip_gre_enable);
qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
if (reg_val) {
reg_val =
qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
/* Update output only if tunnel blocks not included. */
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
(u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
}
/* Update NIG register */
reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
/* Update DORQ registers */
qed_wr(p_hwfn,
p_ptt,
DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
qed_wr(p_hwfn,
p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
}
void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 dest_port)
{
/* Update PRS register */
qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
/* Update NIG register */
qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
/* Update PBF register */
qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
}
void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
bool eth_geneve_enable, bool ip_geneve_enable)
{
u32 reg_val;
/* Update PRS register */
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
SET_FIELD(reg_val,
PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE,
eth_geneve_enable);
SET_FIELD(reg_val,
PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE,
ip_geneve_enable);
qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
if (reg_val) {
reg_val =
qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
/* Update output only if tunnel blocks not included. */
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
(u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
}
/* Update NIG register */
qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
eth_geneve_enable ? 1 : 0);
qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
/* EDPM with geneve tunnel not supported in BB */
if (QED_IS_BB_B0(p_hwfn->cdev))
return;
/* Update DORQ registers */
qed_wr(p_hwfn,
p_ptt,
DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2,
eth_geneve_enable ? 1 : 0);
qed_wr(p_hwfn,
p_ptt,
DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2,
ip_geneve_enable ? 1 : 0);
}
#define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 3
#define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT 0xC8DAB910
void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, bool enable)
{
u32 reg_val, cfg_mask;
/* read PRS config register */
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
/* set VXLAN_NO_L2_ENABLE mask */
cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
if (enable) {
/* set VXLAN_NO_L2_ENABLE flag */
reg_val |= cfg_mask;
/* update PRS FIC register */
qed_wr(p_hwfn,
p_ptt,
PRS_REG_OUTPUT_FORMAT_4_0,
(u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
} else {
/* clear VXLAN_NO_L2_ENABLE flag */
reg_val &= ~cfg_mask;
}
/* write PRS config register */
qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
}
#define T_ETH_PACKET_ACTION_GFT_EVENTID 23
#define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272
#define T_ETH_PACKET_MATCH_RFS_EVENTID 25
#define PARSER_ETH_CONN_CM_HDR 0
#define CAM_LINE_SIZE sizeof(u32)
#define RAM_LINE_SIZE sizeof(u64)
#define REG_SIZE sizeof(u32)
void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
{
struct regpair ram_line = { 0 };
/* Disable gft search for PF */
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
/* Clean ram & cam for next gft session */
/* Zero camline */
qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
/* Zero ramline */
qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
sizeof(ram_line) / REG_SIZE);
}
void qed_gft_config(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 pf_id,
bool tcp,
bool udp,
bool ipv4, bool ipv6, enum gft_profile_type profile_type)
{
struct regpair ram_line;
u32 search_non_ip_as_gft;
u32 reg_val, cam_line;
u32 lo = 0, hi = 0;
if (!ipv6 && !ipv4)
DP_NOTICE(p_hwfn,
"gft_config: must accept at least on of - ipv4 or ipv6'\n");
if (!tcp && !udp)
DP_NOTICE(p_hwfn,
"gft_config: must accept at least on of - udp or tcp\n");
if (profile_type >= MAX_GFT_PROFILE_TYPE)
DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
/* Set RFS event ID to be awakened i Tstorm By Prs */
reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
/* Do not load context only cid in PRS on match. */
qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
/* Do not use tenant ID exist bit for gft search */
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
/* Set Cam */
cam_line = 0;
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
/* Filters are per PF!! */
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_PF_ID_MASK,
GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
if (!(tcp && udp)) {
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
if (tcp)
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
GFT_PROFILE_TCP_PROTOCOL);
else
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
GFT_PROFILE_UDP_PROTOCOL);
}
if (!(ipv4 && ipv6)) {
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
if (ipv4)
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_IP_VERSION,
GFT_PROFILE_IPV4);
else
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_IP_VERSION,
GFT_PROFILE_IPV6);
}
/* Write characteristics to cam */
qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
cam_line);
cam_line =
qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
/* Write line to RAM - compare to filter 4 tuple */
/* Search no IP as GFT */
search_non_ip_as_gft = 0;
/* Tunnel type */
SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
} else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
} else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
} else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
} else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
/* Allow tunneled traffic without inner IP */
search_non_ip_as_gft = 1;
}
ram_line.lo = cpu_to_le32(lo);
ram_line.hi = cpu_to_le32(hi);
qed_wr(p_hwfn,
p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
sizeof(ram_line) / REG_SIZE);
/* Set default profile so that no filter match will happen */
ram_line.lo = cpu_to_le32(0xffffffff);
ram_line.hi = cpu_to_le32(0x3ff);
qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
PRS_GFT_CAM_LINES_NO_MATCH,
sizeof(ram_line) / REG_SIZE);
/* Enable gft search */
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
}
DECLARE_CRC8_TABLE(cdu_crc8_table);
/* Calculate and return CDU validation byte per connection type/region/cid */
static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
{
const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
u8 crc, validation_byte = 0;
static u8 crc8_table_valid; /* automatically initialized to 0 */
u32 validation_string = 0;
__be32 data_to_crc;
if (!crc8_table_valid) {
crc8_populate_msb(cdu_crc8_table, 0x07);
crc8_table_valid = 1;
}
/* The CRC is calculated on the String-to-compress:
* [31:8] = {CID[31:20],CID[11:0]}
* [7:4] = Region
* [3:0] = Type
*/
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
validation_string |= ((region & 0xF) << 4);
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
validation_string |= (conn_type & 0xF);
/* Convert to big-endian and calculate CRC8 */
data_to_crc = cpu_to_be32(validation_string);
crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
CRC8_INIT_VALUE);
/* The validation byte [7:0] is composed:
* for type A validation
* [7] = active configuration bit
* [6:0] = crc[6:0]
*
* for type B validation
* [7] = active configuration bit
* [6:3] = connection_type[3:0]
* [2:0] = crc[2:0]
*/
validation_byte |=
((validation_cfg >>
CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
if ((validation_cfg >>
CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
else
validation_byte |= crc & 0x7F;
return validation_byte;
}
/* Calcualte and set validation bytes for session context */
void qed_calc_session_ctx_validation(void *p_ctx_mem,
u16 ctx_size, u8 ctx_type, u32 cid)
{
u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
p_ctx = (u8 * const)p_ctx_mem;
x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
memset(p_ctx, 0, ctx_size);
*x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
*t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
*u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
}
/* Calcualte and set validation bytes for task context */
void qed_calc_task_ctx_validation(void *p_ctx_mem,
u16 ctx_size, u8 ctx_type, u32 tid)
{
u8 *p_ctx, *region1_val_ptr;
p_ctx = (u8 * const)p_ctx_mem;
region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
memset(p_ctx, 0, ctx_size);
*region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
}
/* Memset session context to 0 while preserving validation bytes */
void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
{
u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
u8 x_val, t_val, u_val;
p_ctx = (u8 * const)p_ctx_mem;
x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
x_val = *x_val_ptr;
t_val = *t_val_ptr;
u_val = *u_val_ptr;
memset(p_ctx, 0, ctx_size);
*x_val_ptr = x_val;
*t_val_ptr = t_val;
*u_val_ptr = u_val;
}
/* Memset task context to 0 while preserving validation bytes */
void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
{
u8 *p_ctx, *region1_val_ptr;
u8 region1_val;
p_ctx = (u8 * const)p_ctx_mem;
region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
region1_val = *region1_val_ptr;
memset(p_ctx, 0, ctx_size);
*region1_val_ptr = region1_val;
}
/* Enable and configure context validation */
void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
u32 ctx_validation;
/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
}
const char *qed_get_protocol_type_str(u32 protocol_type)
{
if (protocol_type >= ARRAY_SIZE(s_protocol_types))
return "Invalid protocol type";
return s_protocol_types[protocol_type];
}
const char *qed_get_ramrod_cmd_id_str(u32 protocol_type, u32 ramrod_cmd_id)
{
const char *ramrod_cmd_id_str;
if (protocol_type >= ARRAY_SIZE(s_ramrod_cmd_ids))
return "Invalid protocol type";
if (ramrod_cmd_id >= ARRAY_SIZE(s_ramrod_cmd_ids[0]))
return "Invalid Ramrod command ID";
ramrod_cmd_id_str = s_ramrod_cmd_ids[protocol_type][ramrod_cmd_id];
if (!ramrod_cmd_id_str)
return "Invalid Ramrod command ID";
return ramrod_cmd_id_str;
}
static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
{
switch (storm_id) {
case 0:
return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
case 1:
return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
case 2:
return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
case 3:
return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
case 4:
return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
case 5:
return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
default:
return 0;
}
}
void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u8 assert_level[NUM_STORMS])
{
u8 storm_id;
for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
}
}
#define PHYS_ADDR_DWORDS DIV_ROUND_UP(sizeof(dma_addr_t), 4)
#define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
{
switch (storm_id) {
case 0:
return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
TSTORM_OVERLAY_BUF_ADDR_OFFSET;
case 1:
return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
MSTORM_OVERLAY_BUF_ADDR_OFFSET;
case 2:
return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
USTORM_OVERLAY_BUF_ADDR_OFFSET;
case 3:
return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
XSTORM_OVERLAY_BUF_ADDR_OFFSET;
case 4:
return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
YSTORM_OVERLAY_BUF_ADDR_OFFSET;
case 5:
return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
PSTORM_OVERLAY_BUF_ADDR_OFFSET;
default:
return 0;
}
}
struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
const u32 * const
fw_overlay_in_buf,
u32 buf_size_in_bytes)
{
u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
struct phys_mem_desc *allocated_mem;
if (!buf_size)
return NULL;
allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
GFP_KERNEL);
if (!allocated_mem)
return NULL;
/* For each Storm, set physical address in RAM */
while (buf_offset < buf_size) {
struct phys_mem_desc *storm_mem_desc;
struct fw_overlay_buf_hdr *hdr;
u32 storm_buf_size;
u8 storm_id;
hdr =
(struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
storm_buf_size = GET_FIELD(hdr->data,
FW_OVERLAY_BUF_HDR_BUF_SIZE);
storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
if (storm_id >= NUM_STORMS)
break;
storm_mem_desc = allocated_mem + storm_id;
storm_mem_desc->size = storm_buf_size * sizeof(u32);
/* Allocate physical memory for Storm's overlays buffer */
storm_mem_desc->virt_addr =
dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
storm_mem_desc->size,
&storm_mem_desc->phys_addr, GFP_KERNEL);
if (!storm_mem_desc->virt_addr)
break;
/* Skip overlays buffer header */
buf_offset += OVERLAY_HDR_SIZE_DWORDS;
/* Copy Storm's overlays buffer to allocated memory */
memcpy(storm_mem_desc->virt_addr,
&fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
/* Advance to next Storm */
buf_offset += storm_buf_size;
}
/* If memory allocation has failed, free all allocated memory */
if (buf_offset < buf_size) {
qed_fw_overlay_mem_free(p_hwfn, &allocated_mem);
return NULL;
}
return allocated_mem;
}
void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct phys_mem_desc *fw_overlay_mem)
{
u8 storm_id;
for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
struct phys_mem_desc *storm_mem_desc =
(struct phys_mem_desc *)fw_overlay_mem + storm_id;
u32 ram_addr, i;
/* Skip Storms with no FW overlays */
if (!storm_mem_desc->virt_addr)
continue;
/* Calculate overlay RAM GRC address of current PF */
ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
/* Write Storm's overlay physical address to RAM */
for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
qed_wr(p_hwfn, p_ptt, ram_addr,
((u32 *)&storm_mem_desc->phys_addr)[i]);
}
}
void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
struct phys_mem_desc **fw_overlay_mem)
{
u8 storm_id;
if (!fw_overlay_mem || !(*fw_overlay_mem))
return;
for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
struct phys_mem_desc *storm_mem_desc =
(struct phys_mem_desc *)*fw_overlay_mem + storm_id;
/* Free Storm's physical memory */
if (storm_mem_desc->virt_addr)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
storm_mem_desc->size,
storm_mem_desc->virt_addr,
storm_mem_desc->phys_addr);
}
/* Free allocated virtual memory */
kfree(*fw_overlay_mem);
*fw_overlay_mem = NULL;
}