// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
/* QLogic qede NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
* Copyright (c) 2019-2020 Marvell International Ltd.
*/
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <net/udp_tunnel.h>
#include <linux/bitops.h>
#include <linux/vmalloc.h>
#include <linux/qed/qed_if.h>
#include "qede.h"
#define QEDE_FILTER_PRINT_MAX_LEN (64)
struct qede_arfs_tuple {
union {
__be32 src_ipv4;
struct in6_addr src_ipv6;
};
union {
__be32 dst_ipv4;
struct in6_addr dst_ipv6;
};
__be16 src_port;
__be16 dst_port;
__be16 eth_proto;
u8 ip_proto;
/* Describe filtering mode needed for this kind of filter */
enum qed_filter_config_mode mode;
/* Used to compare new/old filters. Return true if IPs match */
bool (*ip_comp)(struct qede_arfs_tuple *a, struct qede_arfs_tuple *b);
/* Given an address into ethhdr build a header from tuple info */
void (*build_hdr)(struct qede_arfs_tuple *t, void *header);
/* Stringify the tuple for a print into the provided buffer */
void (*stringify)(struct qede_arfs_tuple *t, void *buffer);
};
struct qede_arfs_fltr_node {
#define QEDE_FLTR_VALID 0
unsigned long state;
/* pointer to aRFS packet buffer */
void *data;
/* dma map address of aRFS packet buffer */
dma_addr_t mapping;
/* length of aRFS packet buffer */
int buf_len;
/* tuples to hold from aRFS packet buffer */
struct qede_arfs_tuple tuple;
u32 flow_id;
u64 sw_id;
u16 rxq_id;
u16 next_rxq_id;
u8 vfid;
bool filter_op;
bool used;
u8 fw_rc;
bool b_is_drop;
struct hlist_node node;
};
struct qede_arfs {
#define QEDE_ARFS_BUCKET_HEAD(edev, idx) (&(edev)->arfs->arfs_hl_head[idx])
#define QEDE_ARFS_POLL_COUNT 100
#define QEDE_RFS_FLW_BITSHIFT (4)
#define QEDE_RFS_FLW_MASK ((1 << QEDE_RFS_FLW_BITSHIFT) - 1)
struct hlist_head arfs_hl_head[1 << QEDE_RFS_FLW_BITSHIFT];
/* lock for filter list access */
spinlock_t arfs_list_lock;
unsigned long *arfs_fltr_bmap;
int filter_count;
/* Currently configured filtering mode */
enum qed_filter_config_mode mode;
};
static void qede_configure_arfs_fltr(struct qede_dev *edev,
struct qede_arfs_fltr_node *n,
u16 rxq_id, bool add_fltr)
{
const struct qed_eth_ops *op = edev->ops;
struct qed_ntuple_filter_params params;
if (n->used)
return;
memset(¶ms, 0, sizeof(params));
params.addr = n->mapping;
params.length = n->buf_len;
params.qid = rxq_id;
params.b_is_add = add_fltr;
params.b_is_drop = n->b_is_drop;
if (n->vfid) {
params.b_is_vf = true;
params.vf_id = n->vfid - 1;
}
if (n->tuple.stringify) {
char tuple_buffer[QEDE_FILTER_PRINT_MAX_LEN];
n->tuple.stringify(&n->tuple, tuple_buffer);
DP_VERBOSE(edev, NETIF_MSG_RX_STATUS,
"%s sw_id[0x%llx]: %s [vf %u queue %d]\n",
add_fltr ? "Adding" : "Deleting",
n->sw_id, tuple_buffer, n->vfid, rxq_id);
}
n->used = true;
n->filter_op = add_fltr;
op->ntuple_filter_config(edev->cdev, n, ¶ms);
}
static void
qede_free_arfs_filter(struct qede_dev *edev, struct qede_arfs_fltr_node *fltr)
{
kfree(fltr->data);
if (fltr->sw_id < QEDE_RFS_MAX_FLTR)
clear_bit(fltr->sw_id, edev->arfs->arfs_fltr_bmap);
kfree(fltr);
}
static int
qede_enqueue_fltr_and_config_searcher(struct qede_dev *edev,
struct qede_arfs_fltr_node *fltr,
u16 bucket_idx)
{
fltr->mapping = dma_map_single(&edev->pdev->dev, fltr->data,
fltr->buf_len, DMA_TO_DEVICE);
if (dma_mapping_error(&edev->pdev->dev, fltr->mapping)) {
DP_NOTICE(edev, "Failed to map DMA memory for rule\n");
qede_free_arfs_filter(edev, fltr);
return -ENOMEM;
}
INIT_HLIST_NODE(&fltr->node);
hlist_add_head(&fltr->node,
QEDE_ARFS_BUCKET_HEAD(edev, bucket_idx));
edev->arfs->filter_count++;
if (edev->arfs->filter_count == 1 &&
edev->arfs->mode == QED_FILTER_CONFIG_MODE_DISABLE) {
edev->ops->configure_arfs_searcher(edev->cdev,
fltr->tuple.mode);
edev->arfs->mode = fltr->tuple.mode;
}
return 0;
}
static void
qede_dequeue_fltr_and_config_searcher(struct qede_dev *edev,
struct qede_arfs_fltr_node *fltr)
{
hlist_del(&fltr->node);
dma_unmap_single(&edev->pdev->dev, fltr->mapping,
fltr->buf_len, DMA_TO_DEVICE);
qede_free_arfs_filter(edev, fltr);
edev->arfs->filter_count--;
if (!edev->arfs->filter_count &&
edev->arfs->mode != QED_FILTER_CONFIG_MODE_DISABLE) {
enum qed_filter_config_mode mode;
mode = QED_FILTER_CONFIG_MODE_DISABLE;
edev->ops->configure_arfs_searcher(edev->cdev, mode);
edev->arfs->mode = QED_FILTER_CONFIG_MODE_DISABLE;
}
}
void qede_arfs_filter_op(void *dev, void *filter, u8 fw_rc)
{
struct qede_arfs_fltr_node *fltr = filter;
struct qede_dev *edev = dev;
fltr->fw_rc = fw_rc;
if (fw_rc) {
DP_NOTICE(edev,
"Failed arfs filter configuration fw_rc=%d, flow_id=%d, sw_id=0x%llx, src_port=%d, dst_port=%d, rxq=%d\n",
fw_rc, fltr->flow_id, fltr->sw_id,
ntohs(fltr->tuple.src_port),
ntohs(fltr->tuple.dst_port), fltr->rxq_id);
spin_lock_bh(&edev->arfs->arfs_list_lock);
fltr->used = false;
clear_bit(QEDE_FLTR_VALID, &fltr->state);
spin_unlock_bh(&edev->arfs->arfs_list_lock);
return;
}
spin_lock_bh(&edev->arfs->arfs_list_lock);
fltr->used = false;
if (fltr->filter_op) {
set_bit(QEDE_FLTR_VALID, &fltr->state);
if (fltr->rxq_id != fltr->next_rxq_id)
qede_configure_arfs_fltr(edev, fltr, fltr->rxq_id,
false);
} else {
clear_bit(QEDE_FLTR_VALID, &fltr->state);
if (fltr->rxq_id != fltr->next_rxq_id) {
fltr->rxq_id = fltr->next_rxq_id;
qede_configure_arfs_fltr(edev, fltr,
fltr->rxq_id, true);
}
}
spin_unlock_bh(&edev->arfs->arfs_list_lock);
}
/* Should be called while qede_lock is held */
void qede_process_arfs_filters(struct qede_dev *edev, bool free_fltr)
{
int i;
for (i = 0; i <= QEDE_RFS_FLW_MASK; i++) {
struct hlist_node *temp;
struct hlist_head *head;
struct qede_arfs_fltr_node *fltr;
head = &edev->arfs->arfs_hl_head[i];
hlist_for_each_entry_safe(fltr, temp, head, node) {
bool del = false;
if (edev->state != QEDE_STATE_OPEN)
del = true;
spin_lock_bh(&edev->arfs->arfs_list_lock);
if ((!test_bit(QEDE_FLTR_VALID, &fltr->state) &&
!fltr->used) || free_fltr) {
qede_dequeue_fltr_and_config_searcher(edev,
fltr);
} else {
bool flow_exp = false;
#ifdef CONFIG_RFS_ACCEL
flow_exp = rps_may_expire_flow(edev->ndev,
fltr->rxq_id,
fltr->flow_id,
fltr->sw_id);
#endif
if ((flow_exp || del) && !free_fltr)
qede_configure_arfs_fltr(edev, fltr,
fltr->rxq_id,
false);
}
spin_unlock_bh(&edev->arfs->arfs_list_lock);
}
}
#ifdef CONFIG_RFS_ACCEL
spin_lock_bh(&edev->arfs->arfs_list_lock);
if (edev->arfs->filter_count) {
set_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags);
schedule_delayed_work(&edev->sp_task,
QEDE_SP_TASK_POLL_DELAY);
}
spin_unlock_bh(&edev->arfs->arfs_list_lock);
#endif
}
/* This function waits until all aRFS filters get deleted and freed.
* On timeout it frees all filters forcefully.
*/
void qede_poll_for_freeing_arfs_filters(struct qede_dev *edev)
{
int count = QEDE_ARFS_POLL_COUNT;
while (count) {
qede_process_arfs_filters(edev, false);
if (!edev->arfs->filter_count)
break;
msleep(100);
count--;
}
if (!count) {
DP_NOTICE(edev, "Timeout in polling for arfs filter free\n");
/* Something is terribly wrong, free forcefully */
qede_process_arfs_filters(edev, true);
}
}
int qede_alloc_arfs(struct qede_dev *edev)
{
int i;
if (!edev->dev_info.common.b_arfs_capable)
return -EINVAL;
edev->arfs = vzalloc(sizeof(*edev->arfs));
if (!edev->arfs)
return -ENOMEM;
spin_lock_init(&edev->arfs->arfs_list_lock);
for (i = 0; i <= QEDE_RFS_FLW_MASK; i++)
INIT_HLIST_HEAD(QEDE_ARFS_BUCKET_HEAD(edev, i));
edev->arfs->arfs_fltr_bmap =
vzalloc(array_size(sizeof(long),
BITS_TO_LONGS(QEDE_RFS_MAX_FLTR)));
if (!edev->arfs->arfs_fltr_bmap) {
vfree(edev->arfs);
edev->arfs = NULL;
return -ENOMEM;
}
#ifdef CONFIG_RFS_ACCEL
edev->ndev->rx_cpu_rmap = alloc_irq_cpu_rmap(QEDE_RSS_COUNT(edev));
if (!edev->ndev->rx_cpu_rmap) {
vfree(edev->arfs->arfs_fltr_bmap);
edev->arfs->arfs_fltr_bmap = NULL;
vfree(edev->arfs);
edev->arfs = NULL;
return -ENOMEM;
}
#endif
return 0;
}
void qede_free_arfs(struct qede_dev *edev)
{
if (!edev->arfs)
return;
#ifdef CONFIG_RFS_ACCEL
if (edev->ndev->rx_cpu_rmap)
free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
edev->ndev->rx_cpu_rmap = NULL;
#endif
vfree(edev->arfs->arfs_fltr_bmap);
edev->arfs->arfs_fltr_bmap = NULL;
vfree(edev->arfs);
edev->arfs = NULL;
}
#ifdef CONFIG_RFS_ACCEL
static bool qede_compare_ip_addr(struct qede_arfs_fltr_node *tpos,
const struct sk_buff *skb)
{
if (skb->protocol == htons(ETH_P_IP)) {
if (tpos->tuple.src_ipv4 == ip_hdr(skb)->saddr &&
tpos->tuple.dst_ipv4 == ip_hdr(skb)->daddr)
return true;
else
return false;
} else {
struct in6_addr *src = &tpos->tuple.src_ipv6;
u8 size = sizeof(struct in6_addr);
if (!memcmp(src, &ipv6_hdr(skb)->saddr, size) &&
!memcmp(&tpos->tuple.dst_ipv6, &ipv6_hdr(skb)->daddr, size))
return true;
else
return false;
}
}
static struct qede_arfs_fltr_node *
qede_arfs_htbl_key_search(struct hlist_head *h, const struct sk_buff *skb,
__be16 src_port, __be16 dst_port, u8 ip_proto)
{
struct qede_arfs_fltr_node *tpos;
hlist_for_each_entry(tpos, h, node)
if (tpos->tuple.ip_proto == ip_proto &&
tpos->tuple.eth_proto == skb->protocol &&
qede_compare_ip_addr(tpos, skb) &&
tpos->tuple.src_port == src_port &&
tpos->tuple.dst_port == dst_port)
return tpos;
return NULL;
}
static struct qede_arfs_fltr_node *
qede_alloc_filter(struct qede_dev *edev, int min_hlen)
{
struct qede_arfs_fltr_node *n;
int bit_id;
bit_id = find_first_zero_bit(edev->arfs->arfs_fltr_bmap,
QEDE_RFS_MAX_FLTR);
if (bit_id >= QEDE_RFS_MAX_FLTR)
return NULL;
n = kzalloc(sizeof(*n), GFP_ATOMIC);
if (!n)
return NULL;
n->data = kzalloc(min_hlen, GFP_ATOMIC);
if (!n->data) {
kfree(n);
return NULL;
}
n->sw_id = (u16)bit_id;
set_bit(bit_id, edev->arfs->arfs_fltr_bmap);
return n;
}
int qede_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
u16 rxq_index, u32 flow_id)
{
struct qede_dev *edev = netdev_priv(dev);
struct qede_arfs_fltr_node *n;
int min_hlen, rc, tp_offset;
struct ethhdr *eth;
__be16 *ports;
u16 tbl_idx;
u8 ip_proto;
if (skb->encapsulation)
return -EPROTONOSUPPORT;
if (skb->protocol != htons(ETH_P_IP) &&
skb->protocol != htons(ETH_P_IPV6))
return -EPROTONOSUPPORT;
if (skb->protocol == htons(ETH_P_IP)) {
ip_proto = ip_hdr(skb)->protocol;
tp_offset = sizeof(struct iphdr);
} else {
ip_proto = ipv6_hdr(skb)->nexthdr;
tp_offset = sizeof(struct ipv6hdr);
}
if (ip_proto != IPPROTO_TCP && ip_proto != IPPROTO_UDP)
return -EPROTONOSUPPORT;
ports = (__be16 *)(skb->data + tp_offset);
tbl_idx = skb_get_hash_raw(skb) & QEDE_RFS_FLW_MASK;
spin_lock_bh(&edev->arfs->arfs_list_lock);
n = qede_arfs_htbl_key_search(QEDE_ARFS_BUCKET_HEAD(edev, tbl_idx),
skb, ports[0], ports[1], ip_proto);
if (n) {
/* Filter match */
n->next_rxq_id = rxq_index;
if (test_bit(QEDE_FLTR_VALID, &n->state)) {
if (n->rxq_id != rxq_index)
qede_configure_arfs_fltr(edev, n, n->rxq_id,
false);
} else {
if (!n->used) {
n->rxq_id = rxq_index;
qede_configure_arfs_fltr(edev, n, n->rxq_id,
true);
}
}
rc = n->sw_id;
goto ret_unlock;
}
min_hlen = ETH_HLEN + skb_headlen(skb);
n = qede_alloc_filter(edev, min_hlen);
if (!n) {
rc = -ENOMEM;
goto ret_unlock;
}
n->buf_len = min_hlen;
n->rxq_id = rxq_index;
n->next_rxq_id = rxq_index;
n->tuple.src_port = ports[0];
n->tuple.dst_port = ports[1];
n->flow_id = flow_id;
if (skb->protocol == htons(ETH_P_IP)) {
n->tuple.src_ipv4 = ip_hdr(skb)->saddr;
n->tuple.dst_ipv4 = ip_hdr(skb)->daddr;
} else {
memcpy(&n->tuple.src_ipv6, &ipv6_hdr(skb)->saddr,
sizeof(struct in6_addr));
memcpy(&n->tuple.dst_ipv6, &ipv6_hdr(skb)->daddr,
sizeof(struct in6_addr));
}
eth = (struct ethhdr *)n->data;
eth->h_proto = skb->protocol;
n->tuple.eth_proto = skb->protocol;
n->tuple.ip_proto = ip_proto;
n->tuple.mode = QED_FILTER_CONFIG_MODE_5_TUPLE;
memcpy(n->data + ETH_HLEN, skb->data, skb_headlen(skb));
rc = qede_enqueue_fltr_and_config_searcher(edev, n, tbl_idx);
if (rc)
goto ret_unlock;
qede_configure_arfs_fltr(edev, n, n->rxq_id, true);
spin_unlock_bh(&edev->arfs->arfs_list_lock);
set_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags);
schedule_delayed_work(&edev->sp_task, 0);
return n->sw_id;
ret_unlock:
spin_unlock_bh(&edev->arfs->arfs_list_lock);
return rc;
}
#endif
void qede_udp_ports_update(void *dev, u16 vxlan_port, u16 geneve_port)
{
struct qede_dev *edev = dev;
if (edev->vxlan_dst_port != vxlan_port)
edev->vxlan_dst_port = 0;
if (edev->geneve_dst_port != geneve_port)
edev->geneve_dst_port = 0;
}
void qede_force_mac(void *dev, u8 *mac, bool forced)
{
struct qede_dev *edev = dev;
__qede_lock(edev);
if (!is_valid_ether_addr(mac)) {
__qede_unlock(edev);
return;
}
eth_hw_addr_set(edev->ndev, mac);
__qede_unlock(edev);
}
void qede_fill_rss_params(struct qede_dev *edev,
struct qed_update_vport_rss_params *rss, u8 *update)
{
bool need_reset = false;
int i;
if (QEDE_RSS_COUNT(edev) <= 1) {
memset(rss, 0, sizeof(*rss));
*update = 0;
return;
}
/* Need to validate current RSS config uses valid entries */
for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
if (edev->rss_ind_table[i] >= QEDE_RSS_COUNT(edev)) {
need_reset = true;
break;
}
}
if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) || need_reset) {
for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
u16 indir_val, val;
val = QEDE_RSS_COUNT(edev);
indir_val = ethtool_rxfh_indir_default(i, val);
edev->rss_ind_table[i] = indir_val;
}
edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
}
/* Now that we have the queue-indirection, prepare the handles */
for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
u16 idx = QEDE_RX_QUEUE_IDX(edev, edev->rss_ind_table[i]);
rss->rss_ind_table[i] = edev->fp_array[idx].rxq->handle;
}
if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
netdev_rss_key_fill(edev->rss_key, sizeof(edev->rss_key));
edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
}
memcpy(rss->rss_key, edev->rss_key, sizeof(rss->rss_key));
if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
edev->rss_caps = QED_RSS_IPV4 | QED_RSS_IPV6 |
QED_RSS_IPV4_TCP | QED_RSS_IPV6_TCP;
edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
}
rss->rss_caps = edev->rss_caps;
*update = 1;
}
static int qede_set_ucast_rx_mac(struct qede_dev *edev,
enum qed_filter_xcast_params_type opcode,
const unsigned char mac[ETH_ALEN])
{
struct qed_filter_ucast_params ucast;
memset(&ucast, 0, sizeof(ucast));
ucast.type = opcode;
ucast.mac_valid = 1;
ether_addr_copy(ucast.mac, mac);
return edev->ops->filter_config_ucast(edev->cdev, &ucast);
}
static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
enum qed_filter_xcast_params_type opcode,
u16 vid)
{
struct qed_filter_ucast_params ucast;
memset(&ucast, 0, sizeof(ucast));
ucast.type = opcode;
ucast.vlan_valid = 1;
ucast.vlan = vid;
return edev->ops->filter_config_ucast(edev->cdev, &ucast);
}
static int qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
{
struct qed_update_vport_params *params;
int rc;
/* Proceed only if action actually needs to be performed */
if (edev->accept_any_vlan == action)
return 0;
params = vzalloc(sizeof(*params));
if (!params)
return -ENOMEM;
params->vport_id = 0;
params->accept_any_vlan = action;
params->update_accept_any_vlan_flg = 1;
rc = edev->ops->vport_update(edev->cdev, params);
if (rc) {
DP_ERR(edev, "Failed to %s accept-any-vlan\n",
action ? "enable" : "disable");
} else {
DP_INFO(edev, "%s accept-any-vlan\n",
action ? "enabled" : "disabled");
edev->accept_any_vlan = action;
}
vfree(params);
return 0;
}
int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
{
struct qede_dev *edev = netdev_priv(dev);
struct qede_vlan *vlan, *tmp;
int rc = 0;
DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
if (!vlan) {
DP_INFO(edev, "Failed to allocate struct for vlan\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&vlan->list);
vlan->vid = vid;
vlan->configured = false;
/* Verify vlan isn't already configured */
list_for_each_entry(tmp, &edev->vlan_list, list) {
if (tmp->vid == vlan->vid) {
DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
"vlan already configured\n");
kfree(vlan);
return -EEXIST;
}
}
/* If interface is down, cache this VLAN ID and return */
__qede_lock(edev);
if (edev->state != QEDE_STATE_OPEN) {
DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
"Interface is down, VLAN %d will be configured when interface is up\n",
vid);
if (vid != 0)
edev->non_configured_vlans++;
list_add(&vlan->list, &edev->vlan_list);
goto out;
}
/* Check for the filter limit.
* Note - vlan0 has a reserved filter and can be added without
* worrying about quota
*/
if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
(vlan->vid == 0)) {
rc = qede_set_ucast_rx_vlan(edev,
QED_FILTER_XCAST_TYPE_ADD,
vlan->vid);
if (rc) {
DP_ERR(edev, "Failed to configure VLAN %d\n",
vlan->vid);
kfree(vlan);
goto out;
}
vlan->configured = true;
/* vlan0 filter isn't consuming out of our quota */
if (vlan->vid != 0)
edev->configured_vlans++;
} else {
/* Out of quota; Activate accept-any-VLAN mode */
if (!edev->non_configured_vlans) {
rc = qede_config_accept_any_vlan(edev, true);
if (rc) {
kfree(vlan);
goto out;
}
}
edev->non_configured_vlans++;
}
list_add(&vlan->list, &edev->vlan_list);
out:
__qede_unlock(edev);
return rc;
}
static void qede_del_vlan_from_list(struct qede_dev *edev,
struct qede_vlan *vlan)
{
/* vlan0 filter isn't consuming out of our quota */
if (vlan->vid != 0) {
if (vlan->configured)
edev->configured_vlans--;
else
edev->non_configured_vlans--;
}
list_del(&vlan->list);
kfree(vlan);
}
int qede_configure_vlan_filters(struct qede_dev *edev)
{
int rc = 0, real_rc = 0, accept_any_vlan = 0;
struct qed_dev_eth_info *dev_info;
struct qede_vlan *vlan = NULL;
if (list_empty(&edev->vlan_list))
return 0;
dev_info = &edev->dev_info;
/* Configure non-configured vlans */
list_for_each_entry(vlan, &edev->vlan_list, list) {
if (vlan->configured)
continue;
/* We have used all our credits, now enable accept_any_vlan */
if ((vlan->vid != 0) &&
(edev->configured_vlans == dev_info->num_vlan_filters)) {
accept_any_vlan = 1;
continue;
}
DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
vlan->vid);
if (rc) {
DP_ERR(edev, "Failed to configure VLAN %u\n",
vlan->vid);
real_rc = rc;
continue;
}
vlan->configured = true;
/* vlan0 filter doesn't consume our VLAN filter's quota */
if (vlan->vid != 0) {
edev->non_configured_vlans--;
edev->configured_vlans++;
}
}
/* enable accept_any_vlan mode if we have more VLANs than credits,
* or remove accept_any_vlan mode if we've actually removed
* a non-configured vlan, and all remaining vlans are truly configured.
*/
if (accept_any_vlan)
rc = qede_config_accept_any_vlan(edev, true);
else if (!edev->non_configured_vlans)
rc = qede_config_accept_any_vlan(edev, false);
if (rc && !real_rc)
real_rc = rc;
return real_rc;
}
int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
{
struct qede_dev *edev = netdev_priv(dev);
struct qede_vlan *vlan;
int rc = 0;
DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
/* Find whether entry exists */
__qede_lock(edev);
list_for_each_entry(vlan, &edev->vlan_list, list)
if (vlan->vid == vid)
break;
if (list_entry_is_head(vlan, &edev->vlan_list, list)) {
DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
"Vlan isn't configured\n");
goto out;
}
if (edev->state != QEDE_STATE_OPEN) {
/* As interface is already down, we don't have a VPORT
* instance to remove vlan filter. So just update vlan list
*/
DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
"Interface is down, removing VLAN from list only\n");
qede_del_vlan_from_list(edev, vlan);
goto out;
}
/* Remove vlan */
if (vlan->configured) {
rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
vid);
if (rc) {
DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
goto out;
}
}
qede_del_vlan_from_list(edev, vlan);
/* We have removed a VLAN - try to see if we can
* configure non-configured VLAN from the list.
*/
rc = qede_configure_vlan_filters(edev);
out:
__qede_unlock(edev);
return rc;
}
void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
{
struct qede_vlan *vlan = NULL;
if (list_empty(&edev->vlan_list))
return;
list_for_each_entry(vlan, &edev->vlan_list, list) {
if (!vlan->configured)
continue;
vlan->configured = false;
/* vlan0 filter isn't consuming out of our quota */
if (vlan->vid != 0) {
edev->non_configured_vlans++;
edev->configured_vlans--;
}
DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
"marked vlan %d as non-configured\n", vlan->vid);
}
edev->accept_any_vlan = false;
}
static void qede_set_features_reload(struct qede_dev *edev,
struct qede_reload_args *args)
{
edev->ndev->features = args->u.features;
}
netdev_features_t qede_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct qede_dev *edev = netdev_priv(dev);
if (edev->xdp_prog || edev->ndev->mtu > PAGE_SIZE ||
!(features & NETIF_F_GRO))
features &= ~NETIF_F_GRO_HW;
return features;
}
int qede_set_features(struct net_device *dev, netdev_features_t features)
{
struct qede_dev *edev = netdev_priv(dev);
netdev_features_t changes = features ^ dev->features;
bool need_reload = false;
if (changes & NETIF_F_GRO_HW)
need_reload = true;
if (need_reload) {
struct qede_reload_args args;
args.u.features = features;
args.func = &qede_set_features_reload;
/* Make sure that we definitely need to reload.
* In case of an eBPF attached program, there will be no FW
* aggregations, so no need to actually reload.
*/
__qede_lock(edev);
if (edev->xdp_prog)
args.func(edev, &args);
else
qede_reload(edev, &args, true);
__qede_unlock(edev);
return 1;
}
return 0;
}
static int qede_udp_tunnel_sync(struct net_device *dev, unsigned int table)
{
struct qede_dev *edev = netdev_priv(dev);
struct qed_tunn_params tunn_params;
struct udp_tunnel_info ti;
u16 *save_port;
int rc;
memset(&tunn_params, 0, sizeof(tunn_params));
udp_tunnel_nic_get_port(dev, table, 0, &ti);
if (ti.type == UDP_TUNNEL_TYPE_VXLAN) {
tunn_params.update_vxlan_port = 1;
tunn_params.vxlan_port = ntohs(ti.port);
save_port = &edev->vxlan_dst_port;
} else {
tunn_params.update_geneve_port = 1;
tunn_params.geneve_port = ntohs(ti.port);
save_port = &edev->geneve_dst_port;
}
__qede_lock(edev);
rc = edev->ops->tunn_config(edev->cdev, &tunn_params);
__qede_unlock(edev);
if (rc)
return rc;
*save_port = ntohs(ti.port);
return 0;
}
static const struct udp_tunnel_nic_info qede_udp_tunnels_both = {
.sync_table = qede_udp_tunnel_sync,
.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
.tables = {
{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
},
}, qede_udp_tunnels_vxlan = {
.sync_table = qede_udp_tunnel_sync,
.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
.tables = {
{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
},
}, qede_udp_tunnels_geneve = {
.sync_table = qede_udp_tunnel_sync,
.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
.tables = {
{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
},
};
void qede_set_udp_tunnels(struct qede_dev *edev)
{
if (edev->dev_info.common.vxlan_enable &&
edev->dev_info.common.geneve_enable)
edev->ndev->udp_tunnel_nic_info = &qede_udp_tunnels_both;
else if (edev->dev_info.common.vxlan_enable)
edev->ndev->udp_tunnel_nic_info = &qede_udp_tunnels_vxlan;
else if (edev->dev_info.common.geneve_enable)
edev->ndev->udp_tunnel_nic_info = &qede_udp_tunnels_geneve;
}
static void qede_xdp_reload_func(struct qede_dev *edev,
struct qede_reload_args *args)
{
struct bpf_prog *old;
old = xchg(&edev->xdp_prog, args->u.new_prog);
if (old)
bpf_prog_put(old);
}
static int qede_xdp_set(struct qede_dev *edev, struct bpf_prog *prog)
{
struct qede_reload_args args;
/* If we're called, there was already a bpf reference increment */
args.func = &qede_xdp_reload_func;
args.u.new_prog = prog;
qede_reload(edev, &args, false);
return 0;
}
int qede_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
struct qede_dev *edev = netdev_priv(dev);
switch (xdp->command) {
case XDP_SETUP_PROG:
return qede_xdp_set(edev, xdp->prog);
default:
return -EINVAL;
}
}
static int qede_set_mcast_rx_mac(struct qede_dev *edev,
enum qed_filter_xcast_params_type opcode,
unsigned char *mac, int num_macs)
{
struct qed_filter_mcast_params mcast;
int i;
memset(&mcast, 0, sizeof(mcast));
mcast.type = opcode;
mcast.num = num_macs;
for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
ether_addr_copy(mcast.mac[i], mac);
return edev->ops->filter_config_mcast(edev->cdev, &mcast);
}
int qede_set_mac_addr(struct net_device *ndev, void *p)
{
struct qede_dev *edev = netdev_priv(ndev);
struct sockaddr *addr = p;
int rc = 0;
/* Make sure the state doesn't transition while changing the MAC.
* Also, all flows accessing the dev_addr field are doing that under
* this lock.
*/
__qede_lock(edev);
if (!is_valid_ether_addr(addr->sa_data)) {
DP_NOTICE(edev, "The MAC address is not valid\n");
rc = -EFAULT;
goto out;
}
if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
DP_NOTICE(edev, "qed prevents setting MAC %pM\n",
addr->sa_data);
rc = -EINVAL;
goto out;
}
if (edev->state == QEDE_STATE_OPEN) {
/* Remove the previous primary mac */
rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
ndev->dev_addr);
if (rc)
goto out;
}
eth_hw_addr_set(ndev, addr->sa_data);
DP_INFO(edev, "Setting device MAC to %pM\n", addr->sa_data);
if (edev->state != QEDE_STATE_OPEN) {
DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
"The device is currently down\n");
/* Ask PF to explicitly update a copy in bulletin board */
if (IS_VF(edev) && edev->ops->req_bulletin_update_mac)
edev->ops->req_bulletin_update_mac(edev->cdev,
ndev->dev_addr);
goto out;
}
edev->ops->common->update_mac(edev->cdev, ndev->dev_addr);
rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
ndev->dev_addr);
out:
__qede_unlock(edev);
return rc;
}
static int
qede_configure_mcast_filtering(struct net_device *ndev,
enum qed_filter_rx_mode_type *accept_flags)
{
struct qede_dev *edev = netdev_priv(ndev);
unsigned char *mc_macs, *temp;
struct netdev_hw_addr *ha;
int rc = 0, mc_count;
size_t size;
size = 64 * ETH_ALEN;
mc_macs = kzalloc(size, GFP_KERNEL);
if (!mc_macs) {
DP_NOTICE(edev,
"Failed to allocate memory for multicast MACs\n");
rc = -ENOMEM;
goto exit;
}
temp = mc_macs;
/* Remove all previously configured MAC filters */
rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
mc_macs, 1);
if (rc)
goto exit;
netif_addr_lock_bh(ndev);
mc_count = netdev_mc_count(ndev);
if (mc_count <= 64) {
netdev_for_each_mc_addr(ha, ndev) {
ether_addr_copy(temp, ha->addr);
temp += ETH_ALEN;
}
}
netif_addr_unlock_bh(ndev);
/* Check for all multicast @@@TBD resource allocation */
if ((ndev->flags & IFF_ALLMULTI) || (mc_count > 64)) {
if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
} else {
/* Add all multicast MAC filters */
rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
mc_macs, mc_count);
}
exit:
kfree(mc_macs);
return rc;
}
void qede_set_rx_mode(struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
schedule_delayed_work(&edev->sp_task, 0);
}
/* Must be called with qede_lock held */
void qede_config_rx_mode(struct net_device *ndev)
{
enum qed_filter_rx_mode_type accept_flags;
struct qede_dev *edev = netdev_priv(ndev);
unsigned char *uc_macs, *temp;
struct netdev_hw_addr *ha;
int rc, uc_count;
size_t size;
netif_addr_lock_bh(ndev);
uc_count = netdev_uc_count(ndev);
size = uc_count * ETH_ALEN;
uc_macs = kzalloc(size, GFP_ATOMIC);
if (!uc_macs) {
DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
netif_addr_unlock_bh(ndev);
return;
}
temp = uc_macs;
netdev_for_each_uc_addr(ha, ndev) {
ether_addr_copy(temp, ha->addr);
temp += ETH_ALEN;
}
netif_addr_unlock_bh(ndev);
/* Remove all previous unicast secondary macs and multicast macs
* (configure / leave the primary mac)
*/
rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
edev->ndev->dev_addr);
if (rc)
goto out;
/* Check for promiscuous */
if (ndev->flags & IFF_PROMISC)
accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
else
accept_flags = QED_FILTER_RX_MODE_TYPE_REGULAR;
/* Configure all filters regardless, in case promisc is rejected */
if (uc_count < edev->dev_info.num_mac_filters) {
int i;
temp = uc_macs;
for (i = 0; i < uc_count; i++) {
rc = qede_set_ucast_rx_mac(edev,
QED_FILTER_XCAST_TYPE_ADD,
temp);
if (rc)
goto out;
temp += ETH_ALEN;
}
} else {
accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
}
rc = qede_configure_mcast_filtering(ndev, &accept_flags);
if (rc)
goto out;
/* take care of VLAN mode */
if (ndev->flags & IFF_PROMISC) {
qede_config_accept_any_vlan(edev, true);
} else if (!edev->non_configured_vlans) {
/* It's possible that accept_any_vlan mode is set due to a
* previous setting of IFF_PROMISC. If vlan credits are
* sufficient, disable accept_any_vlan.
*/
qede_config_accept_any_vlan(edev, false);
}
edev->ops->filter_config_rx_mode(edev->cdev, accept_flags);
out:
kfree(uc_macs);
}
static struct qede_arfs_fltr_node *
qede_get_arfs_fltr_by_loc(struct hlist_head *head, u64 location)
{
struct qede_arfs_fltr_node *fltr;
hlist_for_each_entry(fltr, head, node)
if (location == fltr->sw_id)
return fltr;
return NULL;
}
int qede_get_cls_rule_all(struct qede_dev *edev, struct ethtool_rxnfc *info,
u32 *rule_locs)
{
struct qede_arfs_fltr_node *fltr;
struct hlist_head *head;
int cnt = 0, rc = 0;
info->data = QEDE_RFS_MAX_FLTR;
__qede_lock(edev);
if (!edev->arfs) {
rc = -EPERM;
goto unlock;
}
head = QEDE_ARFS_BUCKET_HEAD(edev, 0);
hlist_for_each_entry(fltr, head, node) {
if (cnt == info->rule_cnt) {
rc = -EMSGSIZE;
goto unlock;
}
rule_locs[cnt] = fltr->sw_id;
cnt++;
}
info->rule_cnt = cnt;
unlock:
__qede_unlock(edev);
return rc;
}
int qede_get_cls_rule_entry(struct qede_dev *edev, struct ethtool_rxnfc *cmd)
{
struct ethtool_rx_flow_spec *fsp = &cmd->fs;
struct qede_arfs_fltr_node *fltr = NULL;
int rc = 0;
cmd->data = QEDE_RFS_MAX_FLTR;
__qede_lock(edev);
if (!edev->arfs) {
rc = -EPERM;
goto unlock;
}
fltr = qede_get_arfs_fltr_by_loc(QEDE_ARFS_BUCKET_HEAD(edev, 0),
fsp->location);
if (!fltr) {
DP_NOTICE(edev, "Rule not found - location=0x%x\n",
fsp->location);
rc = -EINVAL;
goto unlock;
}
if (fltr->tuple.eth_proto == htons(ETH_P_IP)) {
if (fltr->tuple.ip_proto == IPPROTO_TCP)
fsp->flow_type = TCP_V4_FLOW;
else
fsp->flow_type = UDP_V4_FLOW;
fsp->h_u.tcp_ip4_spec.psrc = fltr->tuple.src_port;
fsp->h_u.tcp_ip4_spec.pdst = fltr->tuple.dst_port;
fsp->h_u.tcp_ip4_spec.ip4src = fltr->tuple.src_ipv4;
fsp->h_u.tcp_ip4_spec.ip4dst = fltr->tuple.dst_ipv4;
} else {
if (fltr->tuple.ip_proto == IPPROTO_TCP)
fsp->flow_type = TCP_V6_FLOW;
else
fsp->flow_type = UDP_V6_FLOW;
fsp->h_u.tcp_ip6_spec.psrc = fltr->tuple.src_port;
fsp->h_u.tcp_ip6_spec.pdst = fltr->tuple.dst_port;
memcpy(&fsp->h_u.tcp_ip6_spec.ip6src,
&fltr->tuple.src_ipv6, sizeof(struct in6_addr));
memcpy(&fsp->h_u.tcp_ip6_spec.ip6dst,
&fltr->tuple.dst_ipv6, sizeof(struct in6_addr));
}
fsp->ring_cookie = fltr->rxq_id;
if (fltr->vfid) {
fsp->ring_cookie |= ((u64)fltr->vfid) <<
ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF;
}
if (fltr->b_is_drop)
fsp->ring_cookie = RX_CLS_FLOW_DISC;
unlock:
__qede_unlock(edev);
return rc;
}
static int
qede_poll_arfs_filter_config(struct qede_dev *edev,
struct qede_arfs_fltr_node *fltr)
{
int count = QEDE_ARFS_POLL_COUNT;
while (fltr->used && count) {
msleep(20);
count--;
}
if (count == 0 || fltr->fw_rc) {
DP_NOTICE(edev, "Timeout in polling filter config\n");
qede_dequeue_fltr_and_config_searcher(edev, fltr);
return -EIO;
}
return fltr->fw_rc;
}
static int qede_flow_get_min_header_size(struct qede_arfs_tuple *t)
{
int size = ETH_HLEN;
if (t->eth_proto == htons(ETH_P_IP))
size += sizeof(struct iphdr);
else
size += sizeof(struct ipv6hdr);
if (t->ip_proto == IPPROTO_TCP)
size += sizeof(struct tcphdr);
else
size += sizeof(struct udphdr);
return size;
}
static bool qede_flow_spec_ipv4_cmp(struct qede_arfs_tuple *a,
struct qede_arfs_tuple *b)
{
if (a->eth_proto != htons(ETH_P_IP) ||
b->eth_proto != htons(ETH_P_IP))
return false;
return (a->src_ipv4 == b->src_ipv4) &&
(a->dst_ipv4 == b->dst_ipv4);
}
static void qede_flow_build_ipv4_hdr(struct qede_arfs_tuple *t,
void *header)
{
__be16 *ports = (__be16 *)(header + ETH_HLEN + sizeof(struct iphdr));
struct iphdr *ip = (struct iphdr *)(header + ETH_HLEN);
struct ethhdr *eth = (struct ethhdr *)header;
eth->h_proto = t->eth_proto;
ip->saddr = t->src_ipv4;
ip->daddr = t->dst_ipv4;
ip->version = 0x4;
ip->ihl = 0x5;
ip->protocol = t->ip_proto;
ip->tot_len = cpu_to_be16(qede_flow_get_min_header_size(t) - ETH_HLEN);
/* ports is weakly typed to suit both TCP and UDP ports */
ports[0] = t->src_port;
ports[1] = t->dst_port;
}
static void qede_flow_stringify_ipv4_hdr(struct qede_arfs_tuple *t,
void *buffer)
{
const char *prefix = t->ip_proto == IPPROTO_TCP ? "TCP" : "UDP";
snprintf(buffer, QEDE_FILTER_PRINT_MAX_LEN,
"%s %pI4 (%04x) -> %pI4 (%04x)",
prefix, &t->src_ipv4, t->src_port,
&t->dst_ipv4, t->dst_port);
}
static bool qede_flow_spec_ipv6_cmp(struct qede_arfs_tuple *a,
struct qede_arfs_tuple *b)
{
if (a->eth_proto != htons(ETH_P_IPV6) ||
b->eth_proto != htons(ETH_P_IPV6))
return false;
if (memcmp(&a->src_ipv6, &b->src_ipv6, sizeof(struct in6_addr)))
return false;
if (memcmp(&a->dst_ipv6, &b->dst_ipv6, sizeof(struct in6_addr)))
return false;
return true;
}
static void qede_flow_build_ipv6_hdr(struct qede_arfs_tuple *t,
void *header)
{
__be16 *ports = (__be16 *)(header + ETH_HLEN + sizeof(struct ipv6hdr));
struct ipv6hdr *ip6 = (struct ipv6hdr *)(header + ETH_HLEN);
struct ethhdr *eth = (struct ethhdr *)header;
eth->h_proto = t->eth_proto;
memcpy(&ip6->saddr, &t->src_ipv6, sizeof(struct in6_addr));
memcpy(&ip6->daddr, &t->dst_ipv6, sizeof(struct in6_addr));
ip6->version = 0x6;
if (t->ip_proto == IPPROTO_TCP) {
ip6->nexthdr = NEXTHDR_TCP;
ip6->payload_len = cpu_to_be16(sizeof(struct tcphdr));
} else {
ip6->nexthdr = NEXTHDR_UDP;
ip6->payload_len = cpu_to_be16(sizeof(struct udphdr));
}
/* ports is weakly typed to suit both TCP and UDP ports */
ports[0] = t->src_port;
ports[1] = t->dst_port;
}
/* Validate fields which are set and not accepted by the driver */
static int qede_flow_spec_validate_unused(struct qede_dev *edev,
struct ethtool_rx_flow_spec *fs)
{
if (fs->flow_type & FLOW_MAC_EXT) {
DP_INFO(edev, "Don't support MAC extensions\n");
return -EOPNOTSUPP;
}
if ((fs->flow_type & FLOW_EXT) &&
(fs->h_ext.vlan_etype || fs->h_ext.vlan_tci)) {
DP_INFO(edev, "Don't support vlan-based classification\n");
return -EOPNOTSUPP;
}
if ((fs->flow_type & FLOW_EXT) &&
(fs->h_ext.data[0] || fs->h_ext.data[1])) {
DP_INFO(edev, "Don't support user defined data\n");
return -EOPNOTSUPP;
}
return 0;
}
static int qede_set_v4_tuple_to_profile(struct qede_arfs_tuple *t,
struct netlink_ext_ack *extack)
{
/* We must have Only 4-tuples/l4 port/src ip/dst ip
* as an input.
*/
if (t->src_port && t->dst_port && t->src_ipv4 && t->dst_ipv4) {
t->mode = QED_FILTER_CONFIG_MODE_5_TUPLE;
} else if (!t->src_port && t->dst_port &&
!t->src_ipv4 && !t->dst_ipv4) {
t->mode = QED_FILTER_CONFIG_MODE_L4_PORT;
} else if (!t->src_port && !t->dst_port &&
!t->dst_ipv4 && t->src_ipv4) {
t->mode = QED_FILTER_CONFIG_MODE_IP_SRC;
} else if (!t->src_port && !t->dst_port &&
t->dst_ipv4 && !t->src_ipv4) {
t->mode = QED_FILTER_CONFIG_MODE_IP_DEST;
} else {
NL_SET_ERR_MSG_MOD(extack, "Invalid N-tuple");
return -EOPNOTSUPP;
}
t->ip_comp = qede_flow_spec_ipv4_cmp;
t->build_hdr = qede_flow_build_ipv4_hdr;
t->stringify = qede_flow_stringify_ipv4_hdr;
return 0;
}
static int qede_set_v6_tuple_to_profile(struct qede_arfs_tuple *t,
struct in6_addr *zaddr,
struct netlink_ext_ack *extack)
{
/* We must have Only 4-tuples/l4 port/src ip/dst ip
* as an input.
*/
if (t->src_port && t->dst_port &&
memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr)) &&
memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr))) {
t->mode = QED_FILTER_CONFIG_MODE_5_TUPLE;
} else if (!t->src_port && t->dst_port &&
!memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr)) &&
!memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr))) {
t->mode = QED_FILTER_CONFIG_MODE_L4_PORT;
} else if (!t->src_port && !t->dst_port &&
!memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr)) &&
memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr))) {
t->mode = QED_FILTER_CONFIG_MODE_IP_SRC;
} else if (!t->src_port && !t->dst_port &&
memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr)) &&
!memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr))) {
t->mode = QED_FILTER_CONFIG_MODE_IP_DEST;
} else {
NL_SET_ERR_MSG_MOD(extack, "Invalid N-tuple");
return -EOPNOTSUPP;
}
t->ip_comp = qede_flow_spec_ipv6_cmp;
t->build_hdr = qede_flow_build_ipv6_hdr;
return 0;
}
/* Must be called while qede lock is held */
static struct qede_arfs_fltr_node *
qede_flow_find_fltr(struct qede_dev *edev, struct qede_arfs_tuple *t)
{
struct qede_arfs_fltr_node *fltr;
struct hlist_node *temp;
struct hlist_head *head;
head = QEDE_ARFS_BUCKET_HEAD(edev, 0);
hlist_for_each_entry_safe(fltr, temp, head, node) {
if (fltr->tuple.ip_proto == t->ip_proto &&
fltr->tuple.src_port == t->src_port &&
fltr->tuple.dst_port == t->dst_port &&
t->ip_comp(&fltr->tuple, t))
return fltr;
}
return NULL;
}
static void qede_flow_set_destination(struct qede_dev *edev,
struct qede_arfs_fltr_node *n,
struct ethtool_rx_flow_spec *fs)
{
if (fs->ring_cookie == RX_CLS_FLOW_DISC) {
n->b_is_drop = true;
return;
}
n->vfid = ethtool_get_flow_spec_ring_vf(fs->ring_cookie);
n->rxq_id = ethtool_get_flow_spec_ring(fs->ring_cookie);
n->next_rxq_id = n->rxq_id;
if (n->vfid)
DP_VERBOSE(edev, QED_MSG_SP,
"Configuring N-tuple for VF 0x%02x\n", n->vfid - 1);
}
int qede_delete_flow_filter(struct qede_dev *edev, u64 cookie)
{
struct qede_arfs_fltr_node *fltr = NULL;
int rc = -EPERM;
__qede_lock(edev);
if (!edev->arfs)
goto unlock;
fltr = qede_get_arfs_fltr_by_loc(QEDE_ARFS_BUCKET_HEAD(edev, 0),
cookie);
if (!fltr)
goto unlock;
qede_configure_arfs_fltr(edev, fltr, fltr->rxq_id, false);
rc = qede_poll_arfs_filter_config(edev, fltr);
if (rc == 0)
qede_dequeue_fltr_and_config_searcher(edev, fltr);
unlock:
__qede_unlock(edev);
return rc;
}
int qede_get_arfs_filter_count(struct qede_dev *edev)
{
int count = 0;
__qede_lock(edev);
if (!edev->arfs)
goto unlock;
count = edev->arfs->filter_count;
unlock:
__qede_unlock(edev);
return count;
}
static int qede_parse_actions(struct qede_dev *edev,
struct flow_action *flow_action,
struct netlink_ext_ack *extack)
{
const struct flow_action_entry *act;
int i;
if (!flow_action_has_entries(flow_action)) {
NL_SET_ERR_MSG_MOD(extack, "No actions received");
return -EINVAL;
}
if (!flow_action_basic_hw_stats_check(flow_action, extack))
return -EOPNOTSUPP;
flow_action_for_each(i, act, flow_action) {
switch (act->id) {
case FLOW_ACTION_DROP:
break;
case FLOW_ACTION_QUEUE:
if (act->queue.vf)
break;
if (act->queue.index >= QEDE_RSS_COUNT(edev)) {
NL_SET_ERR_MSG_MOD(extack,
"Queue out-of-bounds");
return -EINVAL;
}
break;
default:
return -EINVAL;
}
}
return 0;
}
static int
qede_flow_parse_ports(struct flow_rule *rule, struct qede_arfs_tuple *t,
struct netlink_ext_ack *extack)
{
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports match;
flow_rule_match_ports(rule, &match);
if ((match.key->src && match.mask->src != htons(U16_MAX)) ||
(match.key->dst && match.mask->dst != htons(U16_MAX))) {
NL_SET_ERR_MSG_MOD(extack,
"Do not support ports masks");
return -EINVAL;
}
t->src_port = match.key->src;
t->dst_port = match.key->dst;
}
return 0;
}
static int
qede_flow_parse_v6_common(struct flow_rule *rule,
struct qede_arfs_tuple *t,
struct netlink_ext_ack *extack)
{
struct in6_addr zero_addr, addr;
int err;
memset(&zero_addr, 0, sizeof(addr));
memset(&addr, 0xff, sizeof(addr));
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
struct flow_match_ipv6_addrs match;
flow_rule_match_ipv6_addrs(rule, &match);
if ((memcmp(&match.key->src, &zero_addr, sizeof(addr)) &&
memcmp(&match.mask->src, &addr, sizeof(addr))) ||
(memcmp(&match.key->dst, &zero_addr, sizeof(addr)) &&
memcmp(&match.mask->dst, &addr, sizeof(addr)))) {
NL_SET_ERR_MSG_MOD(extack,
"Do not support IPv6 address prefix/mask");
return -EINVAL;
}
memcpy(&t->src_ipv6, &match.key->src, sizeof(addr));
memcpy(&t->dst_ipv6, &match.key->dst, sizeof(addr));
}
err = qede_flow_parse_ports(rule, t, extack);
if (err)
return err;
return qede_set_v6_tuple_to_profile(t, &zero_addr, extack);
}
static int
qede_flow_parse_v4_common(struct flow_rule *rule,
struct qede_arfs_tuple *t,
struct netlink_ext_ack *extack)
{
int err;
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
struct flow_match_ipv4_addrs match;
flow_rule_match_ipv4_addrs(rule, &match);
if ((match.key->src && match.mask->src != htonl(U32_MAX)) ||
(match.key->dst && match.mask->dst != htonl(U32_MAX))) {
NL_SET_ERR_MSG_MOD(extack,
"Do not support ipv4 prefix/masks");
return -EINVAL;
}
t->src_ipv4 = match.key->src;
t->dst_ipv4 = match.key->dst;
}
err = qede_flow_parse_ports(rule, t, extack);
if (err)
return err;
return qede_set_v4_tuple_to_profile(t, extack);
}
static int
qede_flow_parse_tcp_v6(struct flow_rule *rule, struct qede_arfs_tuple *tuple,
struct netlink_ext_ack *extack)
{
tuple->ip_proto = IPPROTO_TCP;
tuple->eth_proto = htons(ETH_P_IPV6);
return qede_flow_parse_v6_common(rule, tuple, extack);
}
static int
qede_flow_parse_tcp_v4(struct flow_rule *rule, struct qede_arfs_tuple *tuple,
struct netlink_ext_ack *extack)
{
tuple->ip_proto = IPPROTO_TCP;
tuple->eth_proto = htons(ETH_P_IP);
return qede_flow_parse_v4_common(rule, tuple, extack);
}
static int
qede_flow_parse_udp_v6(struct flow_rule *rule, struct qede_arfs_tuple *tuple,
struct netlink_ext_ack *extack)
{
tuple->ip_proto = IPPROTO_UDP;
tuple->eth_proto = htons(ETH_P_IPV6);
return qede_flow_parse_v6_common(rule, tuple, extack);
}
static int
qede_flow_parse_udp_v4(struct flow_rule *rule, struct qede_arfs_tuple *tuple,
struct netlink_ext_ack *extack)
{
tuple->ip_proto = IPPROTO_UDP;
tuple->eth_proto = htons(ETH_P_IP);
return qede_flow_parse_v4_common(rule, tuple, extack);
}
static int
qede_parse_flow_attr(__be16 proto, struct flow_rule *rule,
struct qede_arfs_tuple *tuple,
struct netlink_ext_ack *extack)
{
struct flow_dissector *dissector = rule->match.dissector;
int rc = -EINVAL;
u8 ip_proto = 0;
memset(tuple, 0, sizeof(*tuple));
if (dissector->used_keys &
~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
BIT_ULL(FLOW_DISSECTOR_KEY_PORTS))) {
NL_SET_ERR_MSG_FMT_MOD(extack, "Unsupported key used: 0x%llx",
dissector->used_keys);
return -EOPNOTSUPP;
}
if (flow_rule_match_has_control_flags(rule, extack))
return -EOPNOTSUPP;
if (proto != htons(ETH_P_IP) &&
proto != htons(ETH_P_IPV6)) {
NL_SET_ERR_MSG_FMT_MOD(extack, "Unsupported proto=0x%x",
proto);
return -EPROTONOSUPPORT;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
ip_proto = match.key->ip_proto;
}
if (ip_proto == IPPROTO_TCP && proto == htons(ETH_P_IP))
rc = qede_flow_parse_tcp_v4(rule, tuple, extack);
else if (ip_proto == IPPROTO_TCP && proto == htons(ETH_P_IPV6))
rc = qede_flow_parse_tcp_v6(rule, tuple, extack);
else if (ip_proto == IPPROTO_UDP && proto == htons(ETH_P_IP))
rc = qede_flow_parse_udp_v4(rule, tuple, extack);
else if (ip_proto == IPPROTO_UDP && proto == htons(ETH_P_IPV6))
rc = qede_flow_parse_udp_v6(rule, tuple, extack);
else
NL_SET_ERR_MSG_MOD(extack, "Invalid protocol request");
return rc;
}
int qede_add_tc_flower_fltr(struct qede_dev *edev, __be16 proto,
struct flow_cls_offload *f)
{
struct netlink_ext_ack *extack = f->common.extack;
struct qede_arfs_fltr_node *n;
struct qede_arfs_tuple t;
int min_hlen, rc;
__qede_lock(edev);
if (!edev->arfs) {
rc = -EPERM;
goto unlock;
}
/* parse flower attribute and prepare filter */
rc = qede_parse_flow_attr(proto, f->rule, &t, extack);
if (rc)
goto unlock;
/* Validate profile mode and number of filters */
if ((edev->arfs->filter_count && edev->arfs->mode != t.mode) ||
edev->arfs->filter_count == QEDE_RFS_MAX_FLTR) {
DP_NOTICE(edev,
"Filter configuration invalidated, filter mode=0x%x, configured mode=0x%x, filter count=0x%x\n",
t.mode, edev->arfs->mode, edev->arfs->filter_count);
rc = -EINVAL;
goto unlock;
}
/* parse tc actions and get the vf_id */
rc = qede_parse_actions(edev, &f->rule->action, extack);
if (rc)
goto unlock;
if (qede_flow_find_fltr(edev, &t)) {
rc = -EEXIST;
goto unlock;
}
n = kzalloc(sizeof(*n), GFP_KERNEL);
if (!n) {
rc = -ENOMEM;
goto unlock;
}
min_hlen = qede_flow_get_min_header_size(&t);
n->data = kzalloc(min_hlen, GFP_KERNEL);
if (!n->data) {
kfree(n);
rc = -ENOMEM;
goto unlock;
}
memcpy(&n->tuple, &t, sizeof(n->tuple));
n->buf_len = min_hlen;
n->b_is_drop = true;
n->sw_id = f->cookie;
n->tuple.build_hdr(&n->tuple, n->data);
rc = qede_enqueue_fltr_and_config_searcher(edev, n, 0);
if (rc)
goto unlock;
qede_configure_arfs_fltr(edev, n, n->rxq_id, true);
rc = qede_poll_arfs_filter_config(edev, n);
unlock:
__qede_unlock(edev);
return rc;
}
static int qede_flow_spec_validate(struct qede_dev *edev,
struct flow_action *flow_action,
struct qede_arfs_tuple *t,
__u32 location,
struct netlink_ext_ack *extack)
{
int err;
if (location >= QEDE_RFS_MAX_FLTR) {
DP_INFO(edev, "Location out-of-bounds\n");
return -EINVAL;
}
/* Check location isn't already in use */
if (test_bit(location, edev->arfs->arfs_fltr_bmap)) {
DP_INFO(edev, "Location already in use\n");
return -EINVAL;
}
/* Check if the filtering-mode could support the filter */
if (edev->arfs->filter_count &&
edev->arfs->mode != t->mode) {
DP_INFO(edev,
"flow_spec would require filtering mode %08x, but %08x is configured\n",
t->mode, edev->arfs->filter_count);
return -EINVAL;
}
err = qede_parse_actions(edev, flow_action, extack);
if (err)
return err;
return 0;
}
static int qede_flow_spec_to_rule(struct qede_dev *edev,
struct qede_arfs_tuple *t,
struct ethtool_rx_flow_spec *fs)
{
struct ethtool_rx_flow_spec_input input = {};
struct ethtool_rx_flow_rule *flow;
struct netlink_ext_ack extack;
__be16 proto;
int err;
err = qede_flow_spec_validate_unused(edev, fs);
if (err)
return err;
switch ((fs->flow_type & ~FLOW_EXT)) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
proto = htons(ETH_P_IP);
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
proto = htons(ETH_P_IPV6);
break;
default:
DP_VERBOSE(edev, NETIF_MSG_IFUP,
"Can't support flow of type %08x\n", fs->flow_type);
return -EOPNOTSUPP;
}
input.fs = fs;
flow = ethtool_rx_flow_rule_create(&input);
if (IS_ERR(flow))
return PTR_ERR(flow);
err = qede_parse_flow_attr(proto, flow->rule, t, &extack);
if (err)
goto err_out;
/* Make sure location is valid and filter isn't already set */
err = qede_flow_spec_validate(edev, &flow->rule->action, t,
fs->location, &extack);
err_out:
if (extack._msg)
DP_NOTICE(edev, "%s\n", extack._msg);
ethtool_rx_flow_rule_destroy(flow);
return err;
}
int qede_add_cls_rule(struct qede_dev *edev, struct ethtool_rxnfc *info)
{
struct ethtool_rx_flow_spec *fsp = &info->fs;
struct qede_arfs_fltr_node *n;
struct qede_arfs_tuple t;
int min_hlen, rc;
__qede_lock(edev);
if (!edev->arfs) {
rc = -EPERM;
goto unlock;
}
/* Translate the flow specification into something fittign our DB */
rc = qede_flow_spec_to_rule(edev, &t, fsp);
if (rc)
goto unlock;
if (qede_flow_find_fltr(edev, &t)) {
rc = -EINVAL;
goto unlock;
}
n = kzalloc(sizeof(*n), GFP_KERNEL);
if (!n) {
rc = -ENOMEM;
goto unlock;
}
min_hlen = qede_flow_get_min_header_size(&t);
n->data = kzalloc(min_hlen, GFP_KERNEL);
if (!n->data) {
kfree(n);
rc = -ENOMEM;
goto unlock;
}
n->sw_id = fsp->location;
set_bit(n->sw_id, edev->arfs->arfs_fltr_bmap);
n->buf_len = min_hlen;
memcpy(&n->tuple, &t, sizeof(n->tuple));
qede_flow_set_destination(edev, n, fsp);
/* Build a minimal header according to the flow */
n->tuple.build_hdr(&n->tuple, n->data);
rc = qede_enqueue_fltr_and_config_searcher(edev, n, 0);
if (rc)
goto unlock;
qede_configure_arfs_fltr(edev, n, n->rxq_id, true);
rc = qede_poll_arfs_filter_config(edev, n);
unlock:
__qede_unlock(edev);
return rc;
}