// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2013 Solarflare Communications Inc.
*/
#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/ipv6.h>
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include <linux/cache.h>
#include "net_driver.h"
#include "efx.h"
#include "io.h"
#include "nic.h"
#include "tx.h"
#include "tx_common.h"
#include "workarounds.h"
#include "ef10_regs.h"
#ifdef EFX_USE_PIO
#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
#endif /* EFX_USE_PIO */
static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer)
{
unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
struct efx_buffer *page_buf =
&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
unsigned int offset =
((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
if (unlikely(!page_buf->addr) &&
efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
GFP_ATOMIC))
return NULL;
buffer->dma_addr = page_buf->dma_addr + offset;
buffer->unmap_len = 0;
return (u8 *)page_buf->addr + offset;
}
u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer, size_t len)
{
if (len > EFX_TX_CB_SIZE)
return NULL;
return efx_tx_get_copy_buffer(tx_queue, buffer);
}
static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
{
/* We need to consider all queues that the net core sees as one */
struct efx_nic *efx = txq1->efx;
struct efx_tx_queue *txq2;
unsigned int fill_level;
fill_level = efx_channel_tx_old_fill_level(txq1->channel);
if (likely(fill_level < efx->txq_stop_thresh))
return;
/* We used the stale old_read_count above, which gives us a
* pessimistic estimate of the fill level (which may even
* validly be >= efx->txq_entries). Now try again using
* read_count (more likely to be a cache miss).
*
* If we read read_count and then conditionally stop the
* queue, it is possible for the completion path to race with
* us and complete all outstanding descriptors in the middle,
* after which there will be no more completions to wake it.
* Therefore we stop the queue first, then read read_count
* (with a memory barrier to ensure the ordering), then
* restart the queue if the fill level turns out to be low
* enough.
*/
netif_tx_stop_queue(txq1->core_txq);
smp_mb();
efx_for_each_channel_tx_queue(txq2, txq1->channel)
txq2->old_read_count = READ_ONCE(txq2->read_count);
fill_level = efx_channel_tx_old_fill_level(txq1->channel);
EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
if (likely(fill_level < efx->txq_stop_thresh)) {
smp_mb();
if (likely(!efx->loopback_selftest))
netif_tx_start_queue(txq1->core_txq);
}
}
static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
struct sk_buff *skb)
{
unsigned int copy_len = skb->len;
struct efx_tx_buffer *buffer;
u8 *copy_buffer;
int rc;
EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
if (unlikely(!copy_buffer))
return -ENOMEM;
rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
EFX_WARN_ON_PARANOID(rc);
buffer->len = copy_len;
buffer->skb = skb;
buffer->flags = EFX_TX_BUF_SKB;
++tx_queue->insert_count;
return rc;
}
#ifdef EFX_USE_PIO
struct efx_short_copy_buffer {
int used;
u8 buf[L1_CACHE_BYTES];
};
/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
* Advances piobuf pointer. Leaves additional data in the copy buffer.
*/
static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
u8 *data, int len,
struct efx_short_copy_buffer *copy_buf)
{
int block_len = len & ~(sizeof(copy_buf->buf) - 1);
__iowrite64_copy(*piobuf, data, block_len >> 3);
*piobuf += block_len;
len -= block_len;
if (len) {
data += block_len;
BUG_ON(copy_buf->used);
BUG_ON(len > sizeof(copy_buf->buf));
memcpy(copy_buf->buf, data, len);
copy_buf->used = len;
}
}
/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
* Advances piobuf pointer. Leaves additional data in the copy buffer.
*/
static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
u8 *data, int len,
struct efx_short_copy_buffer *copy_buf)
{
if (copy_buf->used) {
/* if the copy buffer is partially full, fill it up and write */
int copy_to_buf =
min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
copy_buf->used += copy_to_buf;
/* if we didn't fill it up then we're done for now */
if (copy_buf->used < sizeof(copy_buf->buf))
return;
__iowrite64_copy(*piobuf, copy_buf->buf,
sizeof(copy_buf->buf) >> 3);
*piobuf += sizeof(copy_buf->buf);
data += copy_to_buf;
len -= copy_to_buf;
copy_buf->used = 0;
}
efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
}
static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
struct efx_short_copy_buffer *copy_buf)
{
/* if there's anything in it, write the whole buffer, including junk */
if (copy_buf->used)
__iowrite64_copy(piobuf, copy_buf->buf,
sizeof(copy_buf->buf) >> 3);
}
/* Traverse skb structure and copy fragments in to PIO buffer.
* Advances piobuf pointer.
*/
static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
u8 __iomem **piobuf,
struct efx_short_copy_buffer *copy_buf)
{
int i;
efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
copy_buf);
for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
skb_frag_t *f = &skb_shinfo(skb)->frags[i];
u8 *vaddr;
vaddr = kmap_local_page(skb_frag_page(f));
efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
skb_frag_size(f), copy_buf);
kunmap_local(vaddr);
}
EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
}
static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
struct sk_buff *skb)
{
struct efx_tx_buffer *buffer =
efx_tx_queue_get_insert_buffer(tx_queue);
u8 __iomem *piobuf = tx_queue->piobuf;
/* Copy to PIO buffer. Ensure the writes are padded to the end
* of a cache line, as this is required for write-combining to be
* effective on at least x86.
*/
if (skb_shinfo(skb)->nr_frags) {
/* The size of the copy buffer will ensure all writes
* are the size of a cache line.
*/
struct efx_short_copy_buffer copy_buf;
copy_buf.used = 0;
efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
&piobuf, ©_buf);
efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf);
} else {
/* Pad the write to the size of a cache line.
* We can do this because we know the skb_shared_info struct is
* after the source, and the destination buffer is big enough.
*/
BUILD_BUG_ON(L1_CACHE_BYTES >
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
__iowrite64_copy(tx_queue->piobuf, skb->data,
ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
}
buffer->skb = skb;
buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
EFX_POPULATE_QWORD_5(buffer->option,
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
ESF_DZ_TX_PIO_CONT, 0,
ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
ESF_DZ_TX_PIO_BUF_ADDR,
tx_queue->piobuf_offset);
++tx_queue->insert_count;
return 0;
}
/* Decide whether we can use TX PIO, ie. write packet data directly into
* a buffer on the device. This can reduce latency at the expense of
* throughput, so we only do this if both hardware and software TX rings
* are empty, including all queues for the channel. This also ensures that
* only one packet at a time can be using the PIO buffer. If the xmit_more
* flag is set then we don't use this - there'll be another packet along
* shortly and we want to hold off the doorbell.
*/
static bool efx_tx_may_pio(struct efx_tx_queue *tx_queue)
{
struct efx_channel *channel = tx_queue->channel;
if (!tx_queue->piobuf)
return false;
EFX_WARN_ON_ONCE_PARANOID(!channel->efx->type->option_descriptors);
efx_for_each_channel_tx_queue(tx_queue, channel)
if (!efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count))
return false;
return true;
}
#endif /* EFX_USE_PIO */
/* Send any pending traffic for a channel. xmit_more is shared across all
* queues for a channel, so we must check all of them.
*/
static void efx_tx_send_pending(struct efx_channel *channel)
{
struct efx_tx_queue *q;
efx_for_each_channel_tx_queue(q, channel) {
if (q->xmit_pending)
efx_nic_push_buffers(q);
}
}
/*
* Add a socket buffer to a TX queue
*
* This maps all fragments of a socket buffer for DMA and adds them to
* the TX queue. The queue's insert pointer will be incremented by
* the number of fragments in the socket buffer.
*
* If any DMA mapping fails, any mapped fragments will be unmapped,
* the queue's insert pointer will be restored to its original value.
*
* This function is split out from efx_hard_start_xmit to allow the
* loopback test to direct packets via specific TX queues.
*
* Returns NETDEV_TX_OK.
* You must hold netif_tx_lock() to call this function.
*/
netdev_tx_t __efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
unsigned int old_insert_count = tx_queue->insert_count;
bool xmit_more = netdev_xmit_more();
bool data_mapped = false;
unsigned int segments;
unsigned int skb_len;
int rc;
skb_len = skb->len;
segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
if (segments == 1)
segments = 0; /* Don't use TSO for a single segment. */
/* Handle TSO first - it's *possible* (although unlikely) that we might
* be passed a packet to segment that's smaller than the copybreak/PIO
* size limit.
*/
if (segments) {
switch (tx_queue->tso_version) {
case 1:
rc = efx_enqueue_skb_tso(tx_queue, skb, &data_mapped);
break;
case 2:
rc = efx_ef10_tx_tso_desc(tx_queue, skb, &data_mapped);
break;
case 0: /* No TSO on this queue, SW fallback needed */
default:
rc = -EINVAL;
break;
}
if (rc == -EINVAL) {
rc = efx_tx_tso_fallback(tx_queue, skb);
tx_queue->tso_fallbacks++;
if (rc == 0)
return 0;
}
if (rc)
goto err;
#ifdef EFX_USE_PIO
} else if (skb_len <= efx_piobuf_size && !xmit_more &&
efx_tx_may_pio(tx_queue)) {
/* Use PIO for short packets with an empty queue. */
if (efx_enqueue_skb_pio(tx_queue, skb))
goto err;
tx_queue->pio_packets++;
data_mapped = true;
#endif
} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
/* Pad short packets or coalesce short fragmented packets. */
if (efx_enqueue_skb_copy(tx_queue, skb))
goto err;
tx_queue->cb_packets++;
data_mapped = true;
}
/* Map for DMA and create descriptors if we haven't done so already. */
if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
goto err;
efx_tx_maybe_stop_queue(tx_queue);
tx_queue->xmit_pending = true;
/* Pass off to hardware */
if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
efx_tx_send_pending(tx_queue->channel);
if (segments) {
tx_queue->tso_bursts++;
tx_queue->tso_packets += segments;
tx_queue->tx_packets += segments;
} else {
tx_queue->tx_packets++;
}
return NETDEV_TX_OK;
err:
efx_enqueue_unwind(tx_queue, old_insert_count);
dev_kfree_skb_any(skb);
/* If we're not expecting another transmit and we had something to push
* on this queue or a partner queue then we need to push here to get the
* previous packets out.
*/
if (!xmit_more)
efx_tx_send_pending(tx_queue->channel);
return NETDEV_TX_OK;
}
/* Transmit a packet from an XDP buffer
*
* Returns number of packets sent on success, error code otherwise.
* Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
* (for XDP redirect).
*/
int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
bool flush)
{
struct efx_tx_buffer *tx_buffer;
struct efx_tx_queue *tx_queue;
struct xdp_frame *xdpf;
dma_addr_t dma_addr;
unsigned int len;
int space;
int cpu;
int i = 0;
if (unlikely(n && !xdpfs))
return -EINVAL;
if (unlikely(!n))
return 0;
cpu = raw_smp_processor_id();
if (unlikely(cpu >= efx->xdp_tx_queue_count))
return -EINVAL;
tx_queue = efx->xdp_tx_queues[cpu];
if (unlikely(!tx_queue))
return -EINVAL;
if (!tx_queue->initialised)
return -EINVAL;
if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
HARD_TX_LOCK(efx->net_dev, tx_queue->core_txq, cpu);
/* If we're borrowing net stack queues we have to handle stop-restart
* or we might block the queue and it will be considered as frozen
*/
if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
if (netif_tx_queue_stopped(tx_queue->core_txq))
goto unlock;
efx_tx_maybe_stop_queue(tx_queue);
}
/* Check for available space. We should never need multiple
* descriptors per frame.
*/
space = efx->txq_entries +
tx_queue->read_count - tx_queue->insert_count;
for (i = 0; i < n; i++) {
xdpf = xdpfs[i];
if (i >= space)
break;
/* We'll want a descriptor for this tx. */
prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
len = xdpf->len;
/* Map for DMA. */
dma_addr = dma_map_single(&efx->pci_dev->dev,
xdpf->data, len,
DMA_TO_DEVICE);
if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
break;
/* Create descriptor and set up for unmapping DMA. */
tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
tx_buffer->xdpf = xdpf;
tx_buffer->flags = EFX_TX_BUF_XDP |
EFX_TX_BUF_MAP_SINGLE;
tx_buffer->dma_offset = 0;
tx_buffer->unmap_len = len;
tx_queue->tx_packets++;
}
/* Pass mapped frames to hardware. */
if (flush && i > 0)
efx_nic_push_buffers(tx_queue);
unlock:
if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
HARD_TX_UNLOCK(efx->net_dev, tx_queue->core_txq);
return i == 0 ? -EIO : i;
}
/* Initiate a packet transmission. We use one channel per CPU
* (sharing when we have more CPUs than channels).
*
* Context: non-blocking.
* Should always return NETDEV_TX_OK and consume the skb.
*/
netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
struct net_device *net_dev)
{
struct efx_nic *efx = efx_netdev_priv(net_dev);
struct efx_tx_queue *tx_queue;
unsigned index, type;
EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
index = skb_get_queue_mapping(skb);
type = efx_tx_csum_type_skb(skb);
/* PTP "event" packet */
if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
((efx_ptp_use_mac_tx_timestamps(efx) && efx->ptp_data) ||
unlikely(efx_ptp_is_ptp_tx(efx, skb)))) {
/* There may be existing transmits on the channel that are
* waiting for this packet to trigger the doorbell write.
* We need to send the packets at this point.
*/
efx_tx_send_pending(efx_get_tx_channel(efx, index));
return efx_ptp_tx(efx, skb);
}
tx_queue = efx_get_tx_queue(efx, index, type);
if (WARN_ON_ONCE(!tx_queue)) {
/* We don't have a TXQ of the right type.
* This should never happen, as we don't advertise offload
* features unless we can support them.
*/
dev_kfree_skb_any(skb);
/* If we're not expecting another transmit and we had something to push
* on this queue or a partner queue then we need to push here to get the
* previous packets out.
*/
if (!netdev_xmit_more())
efx_tx_send_pending(efx_get_tx_channel(efx, index));
return NETDEV_TX_OK;
}
return __efx_enqueue_skb(tx_queue, skb);
}
void efx_xmit_done_single(struct efx_tx_queue *tx_queue)
{
unsigned int pkts_compl = 0, bytes_compl = 0;
unsigned int efv_pkts_compl = 0;
unsigned int read_ptr;
bool finished = false;
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
while (!finished) {
struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
if (!efx_tx_buffer_in_use(buffer)) {
struct efx_nic *efx = tx_queue->efx;
netif_err(efx, hw, efx->net_dev,
"TX queue %d spurious single TX completion\n",
tx_queue->queue);
efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
return;
}
/* Need to check the flag before dequeueing. */
if (buffer->flags & EFX_TX_BUF_SKB)
finished = true;
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
&efv_pkts_compl);
++tx_queue->read_count;
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
}
tx_queue->pkts_compl += pkts_compl;
tx_queue->bytes_compl += bytes_compl;
EFX_WARN_ON_PARANOID(pkts_compl + efv_pkts_compl != 1);
efx_xmit_done_check_empty(tx_queue);
}
void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
/* Must be inverse of queue lookup in efx_hard_start_xmit() */
tx_queue->core_txq =
netdev_get_tx_queue(efx->net_dev,
tx_queue->channel->channel);
}