// SPDX-License-Identifier: GPL-2.0-only
/*******************************************************************************
Copyright (C) 2007-2009 STMicroelectronics Ltd
Author: Giuseppe Cavallaro <[email protected]>
*******************************************************************************/
#include <linux/io.h>
#include <linux/iopoll.h>
#include "common.h"
#include "dwmac_dma.h"
#include "stmmac.h"
#define GMAC_HI_REG_AE 0x80000000
int dwmac_dma_reset(void __iomem *ioaddr)
{
u32 value = readl(ioaddr + DMA_BUS_MODE);
/* DMA SW reset */
value |= DMA_BUS_MODE_SFT_RESET;
writel(value, ioaddr + DMA_BUS_MODE);
return readl_poll_timeout(ioaddr + DMA_BUS_MODE, value,
!(value & DMA_BUS_MODE_SFT_RESET),
10000, 200000);
}
/* CSR1 enables the transmit DMA to check for new descriptor */
void dwmac_enable_dma_transmission(void __iomem *ioaddr, u32 chan)
{
writel(1, ioaddr + DMA_CHAN_XMT_POLL_DEMAND(chan));
}
void dwmac_enable_dma_irq(struct stmmac_priv *priv, void __iomem *ioaddr,
u32 chan, bool rx, bool tx)
{
u32 value = readl(ioaddr + DMA_CHAN_INTR_ENA(chan));
if (rx)
value |= DMA_INTR_DEFAULT_RX;
if (tx)
value |= DMA_INTR_DEFAULT_TX;
writel(value, ioaddr + DMA_CHAN_INTR_ENA(chan));
}
void dwmac_disable_dma_irq(struct stmmac_priv *priv, void __iomem *ioaddr,
u32 chan, bool rx, bool tx)
{
u32 value = readl(ioaddr + DMA_CHAN_INTR_ENA(chan));
if (rx)
value &= ~DMA_INTR_DEFAULT_RX;
if (tx)
value &= ~DMA_INTR_DEFAULT_TX;
writel(value, ioaddr + DMA_CHAN_INTR_ENA(chan));
}
void dwmac_dma_start_tx(struct stmmac_priv *priv, void __iomem *ioaddr,
u32 chan)
{
u32 value = readl(ioaddr + DMA_CHAN_CONTROL(chan));
value |= DMA_CONTROL_ST;
writel(value, ioaddr + DMA_CHAN_CONTROL(chan));
}
void dwmac_dma_stop_tx(struct stmmac_priv *priv, void __iomem *ioaddr, u32 chan)
{
u32 value = readl(ioaddr + DMA_CHAN_CONTROL(chan));
value &= ~DMA_CONTROL_ST;
writel(value, ioaddr + DMA_CHAN_CONTROL(chan));
}
void dwmac_dma_start_rx(struct stmmac_priv *priv, void __iomem *ioaddr,
u32 chan)
{
u32 value = readl(ioaddr + DMA_CHAN_CONTROL(chan));
value |= DMA_CONTROL_SR;
writel(value, ioaddr + DMA_CHAN_CONTROL(chan));
}
void dwmac_dma_stop_rx(struct stmmac_priv *priv, void __iomem *ioaddr, u32 chan)
{
u32 value = readl(ioaddr + DMA_CHAN_CONTROL(chan));
value &= ~DMA_CONTROL_SR;
writel(value, ioaddr + DMA_CHAN_CONTROL(chan));
}
#ifdef DWMAC_DMA_DEBUG
static void show_tx_process_state(unsigned int status)
{
unsigned int state;
state = (status & DMA_STATUS_TS_MASK) >> DMA_STATUS_TS_SHIFT;
switch (state) {
case 0:
pr_debug("- TX (Stopped): Reset or Stop command\n");
break;
case 1:
pr_debug("- TX (Running): Fetching the Tx desc\n");
break;
case 2:
pr_debug("- TX (Running): Waiting for end of tx\n");
break;
case 3:
pr_debug("- TX (Running): Reading the data "
"and queuing the data into the Tx buf\n");
break;
case 6:
pr_debug("- TX (Suspended): Tx Buff Underflow "
"or an unavailable Transmit descriptor\n");
break;
case 7:
pr_debug("- TX (Running): Closing Tx descriptor\n");
break;
default:
break;
}
}
static void show_rx_process_state(unsigned int status)
{
unsigned int state;
state = (status & DMA_STATUS_RS_MASK) >> DMA_STATUS_RS_SHIFT;
switch (state) {
case 0:
pr_debug("- RX (Stopped): Reset or Stop command\n");
break;
case 1:
pr_debug("- RX (Running): Fetching the Rx desc\n");
break;
case 2:
pr_debug("- RX (Running): Checking for end of pkt\n");
break;
case 3:
pr_debug("- RX (Running): Waiting for Rx pkt\n");
break;
case 4:
pr_debug("- RX (Suspended): Unavailable Rx buf\n");
break;
case 5:
pr_debug("- RX (Running): Closing Rx descriptor\n");
break;
case 6:
pr_debug("- RX(Running): Flushing the current frame"
" from the Rx buf\n");
break;
case 7:
pr_debug("- RX (Running): Queuing the Rx frame"
" from the Rx buf into memory\n");
break;
default:
break;
}
}
#endif
int dwmac_dma_interrupt(struct stmmac_priv *priv, void __iomem *ioaddr,
struct stmmac_extra_stats *x, u32 chan, u32 dir)
{
struct stmmac_pcpu_stats *stats = this_cpu_ptr(priv->xstats.pcpu_stats);
int ret = 0;
/* read the status register (CSR5) */
u32 intr_status = readl(ioaddr + DMA_CHAN_STATUS(chan));
#ifdef DWMAC_DMA_DEBUG
/* Enable it to monitor DMA rx/tx status in case of critical problems */
pr_debug("%s: [CSR5: 0x%08x]\n", __func__, intr_status);
show_tx_process_state(intr_status);
show_rx_process_state(intr_status);
#endif
if (dir == DMA_DIR_RX)
intr_status &= DMA_STATUS_MSK_RX;
else if (dir == DMA_DIR_TX)
intr_status &= DMA_STATUS_MSK_TX;
/* ABNORMAL interrupts */
if (unlikely(intr_status & DMA_STATUS_AIS)) {
if (unlikely(intr_status & DMA_STATUS_UNF)) {
ret = tx_hard_error_bump_tc;
x->tx_undeflow_irq++;
}
if (unlikely(intr_status & DMA_STATUS_TJT))
x->tx_jabber_irq++;
if (unlikely(intr_status & DMA_STATUS_OVF))
x->rx_overflow_irq++;
if (unlikely(intr_status & DMA_STATUS_RU))
x->rx_buf_unav_irq++;
if (unlikely(intr_status & DMA_STATUS_RPS))
x->rx_process_stopped_irq++;
if (unlikely(intr_status & DMA_STATUS_RWT))
x->rx_watchdog_irq++;
if (unlikely(intr_status & DMA_STATUS_ETI))
x->tx_early_irq++;
if (unlikely(intr_status & DMA_STATUS_TPS)) {
x->tx_process_stopped_irq++;
ret = tx_hard_error;
}
if (unlikely(intr_status & DMA_STATUS_FBI)) {
x->fatal_bus_error_irq++;
ret = tx_hard_error;
}
}
/* TX/RX NORMAL interrupts */
if (likely(intr_status & DMA_STATUS_NIS)) {
if (likely(intr_status & DMA_STATUS_RI)) {
u32 value = readl(ioaddr + DMA_INTR_ENA);
/* to schedule NAPI on real RIE event. */
if (likely(value & DMA_INTR_ENA_RIE)) {
u64_stats_update_begin(&stats->syncp);
u64_stats_inc(&stats->rx_normal_irq_n[chan]);
u64_stats_update_end(&stats->syncp);
ret |= handle_rx;
}
}
if (likely(intr_status & DMA_STATUS_TI)) {
u64_stats_update_begin(&stats->syncp);
u64_stats_inc(&stats->tx_normal_irq_n[chan]);
u64_stats_update_end(&stats->syncp);
ret |= handle_tx;
}
if (unlikely(intr_status & DMA_STATUS_ERI))
x->rx_early_irq++;
}
/* Optional hardware blocks, interrupts should be disabled */
if (unlikely(intr_status &
(DMA_STATUS_GPI | DMA_STATUS_GMI | DMA_STATUS_GLI)))
pr_warn("%s: unexpected status %08x\n", __func__, intr_status);
/* Clear the interrupt by writing a logic 1 to the CSR5[15-0] */
writel((intr_status & 0x1ffff), ioaddr + DMA_STATUS);
return ret;
}
void dwmac_dma_flush_tx_fifo(void __iomem *ioaddr)
{
u32 csr6 = readl(ioaddr + DMA_CONTROL);
writel((csr6 | DMA_CONTROL_FTF), ioaddr + DMA_CONTROL);
do {} while ((readl(ioaddr + DMA_CONTROL) & DMA_CONTROL_FTF));
}
void stmmac_set_mac_addr(void __iomem *ioaddr, const u8 addr[6],
unsigned int high, unsigned int low)
{
unsigned long data;
data = (addr[5] << 8) | addr[4];
/* For MAC Addr registers we have to set the Address Enable (AE)
* bit that has no effect on the High Reg 0 where the bit 31 (MO)
* is RO.
*/
writel(data | GMAC_HI_REG_AE, ioaddr + high);
data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
writel(data, ioaddr + low);
}
EXPORT_SYMBOL_GPL(stmmac_set_mac_addr);
/* Enable disable MAC RX/TX */
void stmmac_set_mac(void __iomem *ioaddr, bool enable)
{
u32 old_val, value;
old_val = readl(ioaddr + MAC_CTRL_REG);
value = old_val;
if (enable)
value |= MAC_ENABLE_RX | MAC_ENABLE_TX;
else
value &= ~(MAC_ENABLE_TX | MAC_ENABLE_RX);
if (value != old_val)
writel(value, ioaddr + MAC_CTRL_REG);
}
void stmmac_get_mac_addr(void __iomem *ioaddr, unsigned char *addr,
unsigned int high, unsigned int low)
{
unsigned int hi_addr, lo_addr;
/* Read the MAC address from the hardware */
hi_addr = readl(ioaddr + high);
lo_addr = readl(ioaddr + low);
/* Extract the MAC address from the high and low words */
addr[0] = lo_addr & 0xff;
addr[1] = (lo_addr >> 8) & 0xff;
addr[2] = (lo_addr >> 16) & 0xff;
addr[3] = (lo_addr >> 24) & 0xff;
addr[4] = hi_addr & 0xff;
addr[5] = (hi_addr >> 8) & 0xff;
}
EXPORT_SYMBOL_GPL(stmmac_get_mac_addr);