// SPDX-License-Identifier: GPL-2.0
/* Texas Instruments ICSSG Industrial Ethernet Peripheral (IEP) Driver
*
* Copyright (C) 2023 Texas Instruments Incorporated - https://www.ti.com
*
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/timekeeping.h>
#include <linux/interrupt.h>
#include <linux/of_irq.h>
#include <linux/workqueue.h>
#include "icss_iep.h"
#define IEP_MAX_DEF_INC 0xf
#define IEP_MAX_COMPEN_INC 0xfff
#define IEP_MAX_COMPEN_COUNT 0xffffff
#define IEP_GLOBAL_CFG_CNT_ENABLE BIT(0)
#define IEP_GLOBAL_CFG_DEFAULT_INC_MASK GENMASK(7, 4)
#define IEP_GLOBAL_CFG_DEFAULT_INC_SHIFT 4
#define IEP_GLOBAL_CFG_COMPEN_INC_MASK GENMASK(19, 8)
#define IEP_GLOBAL_CFG_COMPEN_INC_SHIFT 8
#define IEP_GLOBAL_STATUS_CNT_OVF BIT(0)
#define IEP_CMP_CFG_SHADOW_EN BIT(17)
#define IEP_CMP_CFG_CMP0_RST_CNT_EN BIT(0)
#define IEP_CMP_CFG_CMP_EN(cmp) (GENMASK(16, 1) & (1 << ((cmp) + 1)))
#define IEP_CMP_STATUS(cmp) (1 << (cmp))
#define IEP_SYNC_CTRL_SYNC_EN BIT(0)
#define IEP_SYNC_CTRL_SYNC_N_EN(n) (GENMASK(2, 1) & (BIT(1) << (n)))
#define IEP_MIN_CMP 0
#define IEP_MAX_CMP 15
#define ICSS_IEP_64BIT_COUNTER_SUPPORT BIT(0)
#define ICSS_IEP_SLOW_COMPEN_REG_SUPPORT BIT(1)
#define ICSS_IEP_SHADOW_MODE_SUPPORT BIT(2)
#define LATCH_INDEX(ts_index) ((ts_index) + 6)
#define IEP_CAP_CFG_CAPNR_1ST_EVENT_EN(n) BIT(LATCH_INDEX(n))
#define IEP_CAP_CFG_CAP_ASYNC_EN(n) BIT(LATCH_INDEX(n) + 10)
/**
* icss_iep_get_count_hi() - Get the upper 32 bit IEP counter
* @iep: Pointer to structure representing IEP.
*
* Return: upper 32 bit IEP counter
*/
int icss_iep_get_count_hi(struct icss_iep *iep)
{
u32 val = 0;
if (iep && (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT))
val = readl(iep->base + iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG1]);
return val;
}
EXPORT_SYMBOL_GPL(icss_iep_get_count_hi);
/**
* icss_iep_get_count_low() - Get the lower 32 bit IEP counter
* @iep: Pointer to structure representing IEP.
*
* Return: lower 32 bit IEP counter
*/
int icss_iep_get_count_low(struct icss_iep *iep)
{
u32 val = 0;
if (iep)
val = readl(iep->base + iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG0]);
return val;
}
EXPORT_SYMBOL_GPL(icss_iep_get_count_low);
/**
* icss_iep_get_ptp_clock_idx() - Get PTP clock index using IEP driver
* @iep: Pointer to structure representing IEP.
*
* Return: PTP clock index, -1 if not registered
*/
int icss_iep_get_ptp_clock_idx(struct icss_iep *iep)
{
if (!iep || !iep->ptp_clock)
return -1;
return ptp_clock_index(iep->ptp_clock);
}
EXPORT_SYMBOL_GPL(icss_iep_get_ptp_clock_idx);
static void icss_iep_set_counter(struct icss_iep *iep, u64 ns)
{
if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
writel(upper_32_bits(ns), iep->base +
iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG1]);
writel(lower_32_bits(ns), iep->base + iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG0]);
}
static void icss_iep_update_to_next_boundary(struct icss_iep *iep, u64 start_ns);
/**
* icss_iep_settime() - Set time of the PTP clock using IEP driver
* @iep: Pointer to structure representing IEP.
* @ns: Time to be set in nanoseconds
*
* This API uses writel() instead of regmap_write() for write operations as
* regmap_write() is too slow and this API is time sensitive.
*/
static void icss_iep_settime(struct icss_iep *iep, u64 ns)
{
if (iep->ops && iep->ops->settime) {
iep->ops->settime(iep->clockops_data, ns);
return;
}
if (iep->pps_enabled || iep->perout_enabled)
writel(0, iep->base + iep->plat_data->reg_offs[ICSS_IEP_SYNC_CTRL_REG]);
icss_iep_set_counter(iep, ns);
if (iep->pps_enabled || iep->perout_enabled) {
icss_iep_update_to_next_boundary(iep, ns);
writel(IEP_SYNC_CTRL_SYNC_N_EN(0) | IEP_SYNC_CTRL_SYNC_EN,
iep->base + iep->plat_data->reg_offs[ICSS_IEP_SYNC_CTRL_REG]);
}
}
/**
* icss_iep_gettime() - Get time of the PTP clock using IEP driver
* @iep: Pointer to structure representing IEP.
* @sts: Pointer to structure representing PTP system timestamp.
*
* This API uses readl() instead of regmap_read() for read operations as
* regmap_read() is too slow and this API is time sensitive.
*
* Return: The current timestamp of the PTP clock using IEP driver
*/
static u64 icss_iep_gettime(struct icss_iep *iep,
struct ptp_system_timestamp *sts)
{
u32 ts_hi = 0, ts_lo;
unsigned long flags;
if (iep->ops && iep->ops->gettime)
return iep->ops->gettime(iep->clockops_data, sts);
/* use local_irq_x() to make it work for both RT/non-RT */
local_irq_save(flags);
/* no need to play with hi-lo, hi is latched when lo is read */
ptp_read_system_prets(sts);
ts_lo = readl(iep->base + iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG0]);
ptp_read_system_postts(sts);
if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
ts_hi = readl(iep->base + iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG1]);
local_irq_restore(flags);
return (u64)ts_lo | (u64)ts_hi << 32;
}
static void icss_iep_enable(struct icss_iep *iep)
{
regmap_update_bits(iep->map, ICSS_IEP_GLOBAL_CFG_REG,
IEP_GLOBAL_CFG_CNT_ENABLE,
IEP_GLOBAL_CFG_CNT_ENABLE);
}
static void icss_iep_disable(struct icss_iep *iep)
{
regmap_update_bits(iep->map, ICSS_IEP_GLOBAL_CFG_REG,
IEP_GLOBAL_CFG_CNT_ENABLE,
0);
}
static void icss_iep_enable_shadow_mode(struct icss_iep *iep)
{
u32 cycle_time;
int cmp;
cycle_time = iep->cycle_time_ns - iep->def_inc;
icss_iep_disable(iep);
/* disable shadow mode */
regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
IEP_CMP_CFG_SHADOW_EN, 0);
/* enable shadow mode */
regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
IEP_CMP_CFG_SHADOW_EN, IEP_CMP_CFG_SHADOW_EN);
/* clear counters */
icss_iep_set_counter(iep, 0);
/* clear overflow status */
regmap_update_bits(iep->map, ICSS_IEP_GLOBAL_STATUS_REG,
IEP_GLOBAL_STATUS_CNT_OVF,
IEP_GLOBAL_STATUS_CNT_OVF);
/* clear compare status */
for (cmp = IEP_MIN_CMP; cmp < IEP_MAX_CMP; cmp++) {
regmap_update_bits(iep->map, ICSS_IEP_CMP_STAT_REG,
IEP_CMP_STATUS(cmp), IEP_CMP_STATUS(cmp));
}
/* enable reset counter on CMP0 event */
regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
IEP_CMP_CFG_CMP0_RST_CNT_EN,
IEP_CMP_CFG_CMP0_RST_CNT_EN);
/* enable compare */
regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
IEP_CMP_CFG_CMP_EN(0),
IEP_CMP_CFG_CMP_EN(0));
/* set CMP0 value to cycle time */
regmap_write(iep->map, ICSS_IEP_CMP0_REG0, cycle_time);
if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
regmap_write(iep->map, ICSS_IEP_CMP0_REG1, cycle_time);
icss_iep_set_counter(iep, 0);
icss_iep_enable(iep);
}
static void icss_iep_set_default_inc(struct icss_iep *iep, u8 def_inc)
{
regmap_update_bits(iep->map, ICSS_IEP_GLOBAL_CFG_REG,
IEP_GLOBAL_CFG_DEFAULT_INC_MASK,
def_inc << IEP_GLOBAL_CFG_DEFAULT_INC_SHIFT);
}
static void icss_iep_set_compensation_inc(struct icss_iep *iep, u16 compen_inc)
{
struct device *dev = regmap_get_device(iep->map);
if (compen_inc > IEP_MAX_COMPEN_INC) {
dev_err(dev, "%s: too high compensation inc %d\n",
__func__, compen_inc);
compen_inc = IEP_MAX_COMPEN_INC;
}
regmap_update_bits(iep->map, ICSS_IEP_GLOBAL_CFG_REG,
IEP_GLOBAL_CFG_COMPEN_INC_MASK,
compen_inc << IEP_GLOBAL_CFG_COMPEN_INC_SHIFT);
}
static void icss_iep_set_compensation_count(struct icss_iep *iep,
u32 compen_count)
{
struct device *dev = regmap_get_device(iep->map);
if (compen_count > IEP_MAX_COMPEN_COUNT) {
dev_err(dev, "%s: too high compensation count %d\n",
__func__, compen_count);
compen_count = IEP_MAX_COMPEN_COUNT;
}
regmap_write(iep->map, ICSS_IEP_COMPEN_REG, compen_count);
}
static void icss_iep_set_slow_compensation_count(struct icss_iep *iep,
u32 compen_count)
{
regmap_write(iep->map, ICSS_IEP_SLOW_COMPEN_REG, compen_count);
}
/* PTP PHC operations */
static int icss_iep_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct icss_iep *iep = container_of(ptp, struct icss_iep, ptp_info);
s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
u32 cyc_count;
u16 cmp_inc;
mutex_lock(&iep->ptp_clk_mutex);
/* ppb is amount of frequency we want to adjust in 1GHz (billion)
* e.g. 100ppb means we need to speed up clock by 100Hz
* i.e. at end of 1 second (1 billion ns) clock time, we should be
* counting 100 more ns.
* We use IEP slow compensation to achieve continuous freq. adjustment.
* There are 2 parts. Cycle time and adjustment per cycle.
* Simplest case would be 1 sec Cycle time. Then adjustment
* pre cycle would be (def_inc + ppb) value.
* Cycle time will have to be chosen based on how worse the ppb is.
* e.g. smaller the ppb, cycle time has to be large.
* The minimum adjustment we can do is +-1ns per cycle so let's
* reduce the cycle time to get 1ns per cycle adjustment.
* 1ppb = 1sec cycle time & 1ns adjust
* 1000ppb = 1/1000 cycle time & 1ns adjust per cycle
*/
if (iep->cycle_time_ns)
iep->slow_cmp_inc = iep->clk_tick_time; /* 4ns adj per cycle */
else
iep->slow_cmp_inc = 1; /* 1ns adjust per cycle */
if (ppb < 0) {
iep->slow_cmp_inc = -iep->slow_cmp_inc;
ppb = -ppb;
}
cyc_count = NSEC_PER_SEC; /* 1s cycle time @1GHz */
cyc_count /= ppb; /* cycle time per ppb */
/* slow_cmp_count is decremented every clock cycle, e.g. @250MHz */
if (!iep->cycle_time_ns)
cyc_count /= iep->clk_tick_time;
iep->slow_cmp_count = cyc_count;
/* iep->clk_tick_time is def_inc */
cmp_inc = iep->clk_tick_time + iep->slow_cmp_inc;
icss_iep_set_compensation_inc(iep, cmp_inc);
icss_iep_set_slow_compensation_count(iep, iep->slow_cmp_count);
mutex_unlock(&iep->ptp_clk_mutex);
return 0;
}
static int icss_iep_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct icss_iep *iep = container_of(ptp, struct icss_iep, ptp_info);
s64 ns;
mutex_lock(&iep->ptp_clk_mutex);
if (iep->ops && iep->ops->adjtime) {
iep->ops->adjtime(iep->clockops_data, delta);
} else {
ns = icss_iep_gettime(iep, NULL);
ns += delta;
icss_iep_settime(iep, ns);
}
mutex_unlock(&iep->ptp_clk_mutex);
return 0;
}
static int icss_iep_ptp_gettimeex(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct icss_iep *iep = container_of(ptp, struct icss_iep, ptp_info);
u64 ns;
mutex_lock(&iep->ptp_clk_mutex);
ns = icss_iep_gettime(iep, sts);
*ts = ns_to_timespec64(ns);
mutex_unlock(&iep->ptp_clk_mutex);
return 0;
}
static int icss_iep_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct icss_iep *iep = container_of(ptp, struct icss_iep, ptp_info);
u64 ns;
mutex_lock(&iep->ptp_clk_mutex);
ns = timespec64_to_ns(ts);
icss_iep_settime(iep, ns);
mutex_unlock(&iep->ptp_clk_mutex);
return 0;
}
static void icss_iep_update_to_next_boundary(struct icss_iep *iep, u64 start_ns)
{
u64 ns, p_ns;
u32 offset;
ns = icss_iep_gettime(iep, NULL);
if (start_ns < ns)
start_ns = ns;
p_ns = iep->period;
/* Round up to next period boundary */
start_ns += p_ns - 1;
offset = do_div(start_ns, p_ns);
start_ns = start_ns * p_ns;
/* If it is too close to update, shift to next boundary */
if (p_ns - offset < 10)
start_ns += p_ns;
regmap_write(iep->map, ICSS_IEP_CMP1_REG0, lower_32_bits(start_ns));
if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
regmap_write(iep->map, ICSS_IEP_CMP1_REG1, upper_32_bits(start_ns));
}
static int icss_iep_perout_enable_hw(struct icss_iep *iep,
struct ptp_perout_request *req, int on)
{
int ret;
u64 cmp;
if (iep->ops && iep->ops->perout_enable) {
ret = iep->ops->perout_enable(iep->clockops_data, req, on, &cmp);
if (ret)
return ret;
if (on) {
/* Configure CMP */
regmap_write(iep->map, ICSS_IEP_CMP1_REG0, lower_32_bits(cmp));
if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
regmap_write(iep->map, ICSS_IEP_CMP1_REG1, upper_32_bits(cmp));
/* Configure SYNC, 1ms pulse width */
regmap_write(iep->map, ICSS_IEP_SYNC_PWIDTH_REG, 1000000);
regmap_write(iep->map, ICSS_IEP_SYNC0_PERIOD_REG, 0);
regmap_write(iep->map, ICSS_IEP_SYNC_START_REG, 0);
regmap_write(iep->map, ICSS_IEP_SYNC_CTRL_REG, 0); /* one-shot mode */
/* Enable CMP 1 */
regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
IEP_CMP_CFG_CMP_EN(1), IEP_CMP_CFG_CMP_EN(1));
} else {
/* Disable CMP 1 */
regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
IEP_CMP_CFG_CMP_EN(1), 0);
/* clear regs */
regmap_write(iep->map, ICSS_IEP_CMP1_REG0, 0);
if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
regmap_write(iep->map, ICSS_IEP_CMP1_REG1, 0);
}
} else {
if (on) {
u64 start_ns;
iep->period = ((u64)req->period.sec * NSEC_PER_SEC) +
req->period.nsec;
start_ns = ((u64)req->period.sec * NSEC_PER_SEC)
+ req->period.nsec;
icss_iep_update_to_next_boundary(iep, start_ns);
/* Enable Sync in single shot mode */
regmap_write(iep->map, ICSS_IEP_SYNC_CTRL_REG,
IEP_SYNC_CTRL_SYNC_N_EN(0) | IEP_SYNC_CTRL_SYNC_EN);
/* Enable CMP 1 */
regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
IEP_CMP_CFG_CMP_EN(1), IEP_CMP_CFG_CMP_EN(1));
} else {
/* Disable CMP 1 */
regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
IEP_CMP_CFG_CMP_EN(1), 0);
/* clear CMP regs */
regmap_write(iep->map, ICSS_IEP_CMP1_REG0, 0);
if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
regmap_write(iep->map, ICSS_IEP_CMP1_REG1, 0);
/* Disable sync */
regmap_write(iep->map, ICSS_IEP_SYNC_CTRL_REG, 0);
}
}
return 0;
}
static int icss_iep_perout_enable(struct icss_iep *iep,
struct ptp_perout_request *req, int on)
{
int ret = 0;
mutex_lock(&iep->ptp_clk_mutex);
if (iep->pps_enabled) {
ret = -EBUSY;
goto exit;
}
if (iep->perout_enabled == !!on)
goto exit;
ret = icss_iep_perout_enable_hw(iep, req, on);
if (!ret)
iep->perout_enabled = !!on;
exit:
mutex_unlock(&iep->ptp_clk_mutex);
return ret;
}
static void icss_iep_cap_cmp_work(struct work_struct *work)
{
struct icss_iep *iep = container_of(work, struct icss_iep, work);
const u32 *reg_offs = iep->plat_data->reg_offs;
struct ptp_clock_event pevent;
unsigned int val;
u64 ns, ns_next;
mutex_lock(&iep->ptp_clk_mutex);
ns = readl(iep->base + reg_offs[ICSS_IEP_CMP1_REG0]);
if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT) {
val = readl(iep->base + reg_offs[ICSS_IEP_CMP1_REG1]);
ns |= (u64)val << 32;
}
/* set next event */
ns_next = ns + iep->period;
writel(lower_32_bits(ns_next),
iep->base + reg_offs[ICSS_IEP_CMP1_REG0]);
if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
writel(upper_32_bits(ns_next),
iep->base + reg_offs[ICSS_IEP_CMP1_REG1]);
pevent.pps_times.ts_real = ns_to_timespec64(ns);
pevent.type = PTP_CLOCK_PPSUSR;
pevent.index = 0;
ptp_clock_event(iep->ptp_clock, &pevent);
dev_dbg(iep->dev, "IEP:pps ts: %llu next:%llu:\n", ns, ns_next);
mutex_unlock(&iep->ptp_clk_mutex);
}
static irqreturn_t icss_iep_cap_cmp_irq(int irq, void *dev_id)
{
struct icss_iep *iep = (struct icss_iep *)dev_id;
const u32 *reg_offs = iep->plat_data->reg_offs;
unsigned int val;
val = readl(iep->base + reg_offs[ICSS_IEP_CMP_STAT_REG]);
/* The driver only enables CMP1 */
if (val & BIT(1)) {
/* Clear the event */
writel(BIT(1), iep->base + reg_offs[ICSS_IEP_CMP_STAT_REG]);
if (iep->pps_enabled || iep->perout_enabled)
schedule_work(&iep->work);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int icss_iep_pps_enable(struct icss_iep *iep, int on)
{
struct ptp_clock_request rq;
struct timespec64 ts;
int ret = 0;
u64 ns;
mutex_lock(&iep->ptp_clk_mutex);
if (iep->perout_enabled) {
ret = -EBUSY;
goto exit;
}
if (iep->pps_enabled == !!on)
goto exit;
rq.perout.index = 0;
if (on) {
ns = icss_iep_gettime(iep, NULL);
ts = ns_to_timespec64(ns);
rq.perout.period.sec = 1;
rq.perout.period.nsec = 0;
rq.perout.start.sec = ts.tv_sec + 2;
rq.perout.start.nsec = 0;
ret = icss_iep_perout_enable_hw(iep, &rq.perout, on);
} else {
ret = icss_iep_perout_enable_hw(iep, &rq.perout, on);
if (iep->cap_cmp_irq)
cancel_work_sync(&iep->work);
}
if (!ret)
iep->pps_enabled = !!on;
exit:
mutex_unlock(&iep->ptp_clk_mutex);
return ret;
}
static int icss_iep_extts_enable(struct icss_iep *iep, u32 index, int on)
{
u32 val, cap, ret = 0;
mutex_lock(&iep->ptp_clk_mutex);
if (iep->ops && iep->ops->extts_enable) {
ret = iep->ops->extts_enable(iep->clockops_data, index, on);
goto exit;
}
if (((iep->latch_enable & BIT(index)) >> index) == on)
goto exit;
regmap_read(iep->map, ICSS_IEP_CAPTURE_CFG_REG, &val);
cap = IEP_CAP_CFG_CAP_ASYNC_EN(index) | IEP_CAP_CFG_CAPNR_1ST_EVENT_EN(index);
if (on) {
val |= cap;
iep->latch_enable |= BIT(index);
} else {
val &= ~cap;
iep->latch_enable &= ~BIT(index);
}
regmap_write(iep->map, ICSS_IEP_CAPTURE_CFG_REG, val);
exit:
mutex_unlock(&iep->ptp_clk_mutex);
return ret;
}
static int icss_iep_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct icss_iep *iep = container_of(ptp, struct icss_iep, ptp_info);
switch (rq->type) {
case PTP_CLK_REQ_PEROUT:
return icss_iep_perout_enable(iep, &rq->perout, on);
case PTP_CLK_REQ_PPS:
return icss_iep_pps_enable(iep, on);
case PTP_CLK_REQ_EXTTS:
return icss_iep_extts_enable(iep, rq->extts.index, on);
default:
break;
}
return -EOPNOTSUPP;
}
static struct ptp_clock_info icss_iep_ptp_info = {
.owner = THIS_MODULE,
.name = "ICSS IEP timer",
.max_adj = 10000000,
.adjfine = icss_iep_ptp_adjfine,
.adjtime = icss_iep_ptp_adjtime,
.gettimex64 = icss_iep_ptp_gettimeex,
.settime64 = icss_iep_ptp_settime,
.enable = icss_iep_ptp_enable,
};
struct icss_iep *icss_iep_get_idx(struct device_node *np, int idx)
{
struct platform_device *pdev;
struct device_node *iep_np;
struct icss_iep *iep;
iep_np = of_parse_phandle(np, "ti,iep", idx);
if (!iep_np || !of_device_is_available(iep_np))
return ERR_PTR(-ENODEV);
pdev = of_find_device_by_node(iep_np);
of_node_put(iep_np);
if (!pdev)
/* probably IEP not yet probed */
return ERR_PTR(-EPROBE_DEFER);
iep = platform_get_drvdata(pdev);
if (!iep)
return ERR_PTR(-EPROBE_DEFER);
device_lock(iep->dev);
if (iep->client_np) {
device_unlock(iep->dev);
dev_err(iep->dev, "IEP is already acquired by %s",
iep->client_np->name);
return ERR_PTR(-EBUSY);
}
iep->client_np = np;
device_unlock(iep->dev);
get_device(iep->dev);
return iep;
}
EXPORT_SYMBOL_GPL(icss_iep_get_idx);
struct icss_iep *icss_iep_get(struct device_node *np)
{
return icss_iep_get_idx(np, 0);
}
EXPORT_SYMBOL_GPL(icss_iep_get);
void icss_iep_put(struct icss_iep *iep)
{
device_lock(iep->dev);
iep->client_np = NULL;
device_unlock(iep->dev);
put_device(iep->dev);
}
EXPORT_SYMBOL_GPL(icss_iep_put);
void icss_iep_init_fw(struct icss_iep *iep)
{
/* start IEP for FW use in raw 64bit mode, no PTP support */
iep->clk_tick_time = iep->def_inc;
iep->cycle_time_ns = 0;
iep->ops = NULL;
iep->clockops_data = NULL;
icss_iep_set_default_inc(iep, iep->def_inc);
icss_iep_set_compensation_inc(iep, iep->def_inc);
icss_iep_set_compensation_count(iep, 0);
regmap_write(iep->map, ICSS_IEP_SYNC_PWIDTH_REG, iep->refclk_freq / 10); /* 100 ms pulse */
regmap_write(iep->map, ICSS_IEP_SYNC0_PERIOD_REG, 0);
if (iep->plat_data->flags & ICSS_IEP_SLOW_COMPEN_REG_SUPPORT)
icss_iep_set_slow_compensation_count(iep, 0);
icss_iep_enable(iep);
icss_iep_settime(iep, 0);
}
EXPORT_SYMBOL_GPL(icss_iep_init_fw);
void icss_iep_exit_fw(struct icss_iep *iep)
{
icss_iep_disable(iep);
}
EXPORT_SYMBOL_GPL(icss_iep_exit_fw);
int icss_iep_init(struct icss_iep *iep, const struct icss_iep_clockops *clkops,
void *clockops_data, u32 cycle_time_ns)
{
int ret = 0;
iep->cycle_time_ns = cycle_time_ns;
iep->clk_tick_time = iep->def_inc;
iep->ops = clkops;
iep->clockops_data = clockops_data;
icss_iep_set_default_inc(iep, iep->def_inc);
icss_iep_set_compensation_inc(iep, iep->def_inc);
icss_iep_set_compensation_count(iep, 0);
regmap_write(iep->map, ICSS_IEP_SYNC_PWIDTH_REG, iep->refclk_freq / 10); /* 100 ms pulse */
regmap_write(iep->map, ICSS_IEP_SYNC0_PERIOD_REG, 0);
if (iep->plat_data->flags & ICSS_IEP_SLOW_COMPEN_REG_SUPPORT)
icss_iep_set_slow_compensation_count(iep, 0);
if (!(iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT) ||
!(iep->plat_data->flags & ICSS_IEP_SLOW_COMPEN_REG_SUPPORT))
goto skip_perout;
if (iep->ops && iep->ops->perout_enable) {
iep->ptp_info.n_per_out = 1;
iep->ptp_info.pps = 1;
} else if (iep->cap_cmp_irq) {
iep->ptp_info.pps = 1;
}
if (iep->ops && iep->ops->extts_enable)
iep->ptp_info.n_ext_ts = 2;
skip_perout:
if (cycle_time_ns)
icss_iep_enable_shadow_mode(iep);
else
icss_iep_enable(iep);
icss_iep_settime(iep, ktime_get_real_ns());
iep->ptp_clock = ptp_clock_register(&iep->ptp_info, iep->dev);
if (IS_ERR(iep->ptp_clock)) {
ret = PTR_ERR(iep->ptp_clock);
iep->ptp_clock = NULL;
dev_err(iep->dev, "Failed to register ptp clk %d\n", ret);
}
return ret;
}
EXPORT_SYMBOL_GPL(icss_iep_init);
int icss_iep_exit(struct icss_iep *iep)
{
if (iep->ptp_clock) {
ptp_clock_unregister(iep->ptp_clock);
iep->ptp_clock = NULL;
}
icss_iep_disable(iep);
return 0;
}
EXPORT_SYMBOL_GPL(icss_iep_exit);
static int icss_iep_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct icss_iep *iep;
struct clk *iep_clk;
int ret, irq;
iep = devm_kzalloc(dev, sizeof(*iep), GFP_KERNEL);
if (!iep)
return -ENOMEM;
iep->dev = dev;
iep->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(iep->base))
return -ENODEV;
irq = platform_get_irq_byname_optional(pdev, "iep_cap_cmp");
if (irq == -EPROBE_DEFER)
return irq;
if (irq > 0) {
ret = devm_request_irq(dev, irq, icss_iep_cap_cmp_irq,
IRQF_TRIGGER_HIGH, "iep_cap_cmp", iep);
if (ret) {
dev_info(iep->dev, "cap_cmp irq request failed: %x\n",
ret);
} else {
iep->cap_cmp_irq = irq;
INIT_WORK(&iep->work, icss_iep_cap_cmp_work);
}
}
iep_clk = devm_clk_get(dev, NULL);
if (IS_ERR(iep_clk))
return PTR_ERR(iep_clk);
iep->refclk_freq = clk_get_rate(iep_clk);
iep->def_inc = NSEC_PER_SEC / iep->refclk_freq; /* ns per clock tick */
if (iep->def_inc > IEP_MAX_DEF_INC) {
dev_err(dev, "Failed to set def_inc %d. IEP_clock is too slow to be supported\n",
iep->def_inc);
return -EINVAL;
}
iep->plat_data = device_get_match_data(dev);
if (!iep->plat_data)
return -EINVAL;
iep->map = devm_regmap_init(dev, NULL, iep, iep->plat_data->config);
if (IS_ERR(iep->map)) {
dev_err(dev, "Failed to create regmap for IEP %ld\n",
PTR_ERR(iep->map));
return PTR_ERR(iep->map);
}
iep->ptp_info = icss_iep_ptp_info;
mutex_init(&iep->ptp_clk_mutex);
dev_set_drvdata(dev, iep);
icss_iep_disable(iep);
return 0;
}
static bool am654_icss_iep_valid_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case ICSS_IEP_GLOBAL_CFG_REG ... ICSS_IEP_SYNC_START_REG:
return true;
default:
return false;
}
return false;
}
static int icss_iep_regmap_write(void *context, unsigned int reg,
unsigned int val)
{
struct icss_iep *iep = context;
writel(val, iep->base + iep->plat_data->reg_offs[reg]);
return 0;
}
static int icss_iep_regmap_read(void *context, unsigned int reg,
unsigned int *val)
{
struct icss_iep *iep = context;
*val = readl(iep->base + iep->plat_data->reg_offs[reg]);
return 0;
}
static const struct regmap_config am654_icss_iep_regmap_config = {
.name = "icss iep",
.reg_stride = 1,
.reg_write = icss_iep_regmap_write,
.reg_read = icss_iep_regmap_read,
.writeable_reg = am654_icss_iep_valid_reg,
.readable_reg = am654_icss_iep_valid_reg,
.fast_io = 1,
};
static const struct icss_iep_plat_data am654_icss_iep_plat_data = {
.flags = ICSS_IEP_64BIT_COUNTER_SUPPORT |
ICSS_IEP_SLOW_COMPEN_REG_SUPPORT |
ICSS_IEP_SHADOW_MODE_SUPPORT,
.reg_offs = {
[ICSS_IEP_GLOBAL_CFG_REG] = 0x00,
[ICSS_IEP_COMPEN_REG] = 0x08,
[ICSS_IEP_SLOW_COMPEN_REG] = 0x0C,
[ICSS_IEP_COUNT_REG0] = 0x10,
[ICSS_IEP_COUNT_REG1] = 0x14,
[ICSS_IEP_CAPTURE_CFG_REG] = 0x18,
[ICSS_IEP_CAPTURE_STAT_REG] = 0x1c,
[ICSS_IEP_CAP6_RISE_REG0] = 0x50,
[ICSS_IEP_CAP6_RISE_REG1] = 0x54,
[ICSS_IEP_CAP7_RISE_REG0] = 0x60,
[ICSS_IEP_CAP7_RISE_REG1] = 0x64,
[ICSS_IEP_CMP_CFG_REG] = 0x70,
[ICSS_IEP_CMP_STAT_REG] = 0x74,
[ICSS_IEP_CMP0_REG0] = 0x78,
[ICSS_IEP_CMP0_REG1] = 0x7c,
[ICSS_IEP_CMP1_REG0] = 0x80,
[ICSS_IEP_CMP1_REG1] = 0x84,
[ICSS_IEP_CMP8_REG0] = 0xc0,
[ICSS_IEP_CMP8_REG1] = 0xc4,
[ICSS_IEP_SYNC_CTRL_REG] = 0x180,
[ICSS_IEP_SYNC0_STAT_REG] = 0x188,
[ICSS_IEP_SYNC1_STAT_REG] = 0x18c,
[ICSS_IEP_SYNC_PWIDTH_REG] = 0x190,
[ICSS_IEP_SYNC0_PERIOD_REG] = 0x194,
[ICSS_IEP_SYNC1_DELAY_REG] = 0x198,
[ICSS_IEP_SYNC_START_REG] = 0x19c,
},
.config = &am654_icss_iep_regmap_config,
};
static const struct of_device_id icss_iep_of_match[] = {
{
.compatible = "ti,am654-icss-iep",
.data = &am654_icss_iep_plat_data,
},
{},
};
MODULE_DEVICE_TABLE(of, icss_iep_of_match);
static struct platform_driver icss_iep_driver = {
.driver = {
.name = "icss-iep",
.of_match_table = icss_iep_of_match,
},
.probe = icss_iep_probe,
};
module_platform_driver(icss_iep_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("TI ICSS IEP driver");
MODULE_AUTHOR("Roger Quadros <[email protected]>");
MODULE_AUTHOR("Md Danish Anwar <[email protected]>");