// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2017 - 2019 Pensando Systems, Inc */
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
#include <net/ip6_checksum.h>
#include <net/netdev_queues.h>
#include <net/page_pool/helpers.h>
#include "ionic.h"
#include "ionic_lif.h"
#include "ionic_txrx.h"
static dma_addr_t ionic_tx_map_single(struct ionic_queue *q,
void *data, size_t len);
static dma_addr_t ionic_tx_map_frag(struct ionic_queue *q,
const skb_frag_t *frag,
size_t offset, size_t len);
static void ionic_tx_desc_unmap_bufs(struct ionic_queue *q,
struct ionic_tx_desc_info *desc_info);
static void ionic_tx_clean(struct ionic_queue *q,
struct ionic_tx_desc_info *desc_info,
struct ionic_txq_comp *comp,
bool in_napi);
static inline void ionic_txq_post(struct ionic_queue *q, bool ring_dbell)
{
ionic_q_post(q, ring_dbell);
}
static inline void ionic_rxq_post(struct ionic_queue *q, bool ring_dbell)
{
ionic_q_post(q, ring_dbell);
}
bool ionic_txq_poke_doorbell(struct ionic_queue *q)
{
struct netdev_queue *netdev_txq;
unsigned long now, then, dif;
struct net_device *netdev;
netdev = q->lif->netdev;
netdev_txq = netdev_get_tx_queue(netdev, q->index);
HARD_TX_LOCK(netdev, netdev_txq, smp_processor_id());
if (q->tail_idx == q->head_idx) {
HARD_TX_UNLOCK(netdev, netdev_txq);
return false;
}
now = READ_ONCE(jiffies);
then = q->dbell_jiffies;
dif = now - then;
if (dif > q->dbell_deadline) {
ionic_dbell_ring(q->lif->kern_dbpage, q->hw_type,
q->dbval | q->head_idx);
q->dbell_jiffies = now;
}
HARD_TX_UNLOCK(netdev, netdev_txq);
return true;
}
bool ionic_rxq_poke_doorbell(struct ionic_queue *q)
{
unsigned long now, then, dif;
/* no lock, called from rx napi or txrx napi, nothing else can fill */
if (q->tail_idx == q->head_idx)
return false;
now = READ_ONCE(jiffies);
then = q->dbell_jiffies;
dif = now - then;
if (dif > q->dbell_deadline) {
ionic_dbell_ring(q->lif->kern_dbpage, q->hw_type,
q->dbval | q->head_idx);
q->dbell_jiffies = now;
dif = 2 * q->dbell_deadline;
if (dif > IONIC_RX_MAX_DOORBELL_DEADLINE)
dif = IONIC_RX_MAX_DOORBELL_DEADLINE;
q->dbell_deadline = dif;
}
return true;
}
static inline struct ionic_txq_sg_elem *ionic_tx_sg_elems(struct ionic_queue *q)
{
if (likely(q->sg_desc_size == sizeof(struct ionic_txq_sg_desc_v1)))
return q->txq_sgl_v1[q->head_idx].elems;
else
return q->txq_sgl[q->head_idx].elems;
}
static inline struct netdev_queue *q_to_ndq(struct net_device *netdev,
struct ionic_queue *q)
{
return netdev_get_tx_queue(netdev, q->index);
}
static void *ionic_rx_buf_va(struct ionic_buf_info *buf_info)
{
return page_address(buf_info->page) + buf_info->page_offset;
}
static dma_addr_t ionic_rx_buf_pa(struct ionic_buf_info *buf_info)
{
return page_pool_get_dma_addr(buf_info->page) + buf_info->page_offset;
}
static void __ionic_rx_put_buf(struct ionic_queue *q,
struct ionic_buf_info *buf_info,
bool recycle_direct)
{
if (!buf_info->page)
return;
page_pool_put_full_page(q->page_pool, buf_info->page, recycle_direct);
buf_info->page = NULL;
buf_info->len = 0;
buf_info->page_offset = 0;
}
static void ionic_rx_put_buf(struct ionic_queue *q,
struct ionic_buf_info *buf_info)
{
__ionic_rx_put_buf(q, buf_info, false);
}
static void ionic_rx_put_buf_direct(struct ionic_queue *q,
struct ionic_buf_info *buf_info)
{
__ionic_rx_put_buf(q, buf_info, true);
}
static void ionic_rx_add_skb_frag(struct ionic_queue *q,
struct sk_buff *skb,
struct ionic_buf_info *buf_info,
u32 headroom, u32 len,
bool synced)
{
if (!synced)
page_pool_dma_sync_for_cpu(q->page_pool,
buf_info->page,
buf_info->page_offset + headroom,
len);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
buf_info->page, buf_info->page_offset + headroom,
len, buf_info->len);
/* napi_gro_frags() will release/recycle the
* page_pool buffers from the frags list
*/
buf_info->page = NULL;
buf_info->len = 0;
buf_info->page_offset = 0;
}
static struct sk_buff *ionic_rx_build_skb(struct ionic_queue *q,
struct ionic_rx_desc_info *desc_info,
unsigned int headroom,
unsigned int len,
unsigned int num_sg_elems,
bool synced)
{
struct ionic_buf_info *buf_info;
struct sk_buff *skb;
unsigned int i;
u16 frag_len;
buf_info = &desc_info->bufs[0];
prefetchw(buf_info->page);
skb = napi_get_frags(&q_to_qcq(q)->napi);
if (unlikely(!skb)) {
net_warn_ratelimited("%s: SKB alloc failed on %s!\n",
dev_name(q->dev), q->name);
q_to_rx_stats(q)->alloc_err++;
return NULL;
}
skb_mark_for_recycle(skb);
if (headroom)
frag_len = min_t(u16, len,
IONIC_XDP_MAX_LINEAR_MTU + VLAN_ETH_HLEN);
else
frag_len = min_t(u16, len, IONIC_PAGE_SIZE);
if (unlikely(!buf_info->page))
goto err_bad_buf_page;
ionic_rx_add_skb_frag(q, skb, buf_info, headroom, frag_len, synced);
len -= frag_len;
buf_info++;
for (i = 0; i < num_sg_elems; i++, buf_info++) {
if (unlikely(!buf_info->page))
goto err_bad_buf_page;
frag_len = min_t(u16, len, buf_info->len);
ionic_rx_add_skb_frag(q, skb, buf_info, 0, frag_len, synced);
len -= frag_len;
}
return skb;
err_bad_buf_page:
dev_kfree_skb(skb);
return NULL;
}
static struct sk_buff *ionic_rx_copybreak(struct net_device *netdev,
struct ionic_queue *q,
struct ionic_rx_desc_info *desc_info,
unsigned int headroom,
unsigned int len,
unsigned int num_sg_elems,
bool synced)
{
struct ionic_buf_info *buf_info;
struct device *dev = q->dev;
struct sk_buff *skb;
int i;
buf_info = &desc_info->bufs[0];
skb = napi_alloc_skb(&q_to_qcq(q)->napi, len);
if (unlikely(!skb)) {
net_warn_ratelimited("%s: SKB alloc failed on %s!\n",
dev_name(dev), q->name);
q_to_rx_stats(q)->alloc_err++;
return NULL;
}
skb_mark_for_recycle(skb);
if (!synced)
page_pool_dma_sync_for_cpu(q->page_pool,
buf_info->page,
buf_info->page_offset + headroom,
len);
skb_copy_to_linear_data(skb, ionic_rx_buf_va(buf_info) + headroom, len);
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, netdev);
/* recycle the Rx buffer now that we're done with it */
ionic_rx_put_buf_direct(q, buf_info);
buf_info++;
for (i = 0; i < num_sg_elems; i++, buf_info++)
ionic_rx_put_buf_direct(q, buf_info);
return skb;
}
static void ionic_xdp_tx_desc_clean(struct ionic_queue *q,
struct ionic_tx_desc_info *desc_info,
bool in_napi)
{
struct xdp_frame_bulk bq;
if (!desc_info->nbufs)
return;
xdp_frame_bulk_init(&bq);
rcu_read_lock(); /* need for xdp_return_frame_bulk */
if (desc_info->act == XDP_TX) {
if (likely(in_napi))
xdp_return_frame_rx_napi(desc_info->xdpf);
else
xdp_return_frame(desc_info->xdpf);
} else if (desc_info->act == XDP_REDIRECT) {
ionic_tx_desc_unmap_bufs(q, desc_info);
xdp_return_frame_bulk(desc_info->xdpf, &bq);
}
xdp_flush_frame_bulk(&bq);
rcu_read_unlock();
desc_info->nbufs = 0;
desc_info->xdpf = NULL;
desc_info->act = 0;
}
static int ionic_xdp_post_frame(struct ionic_queue *q, struct xdp_frame *frame,
enum xdp_action act, struct page *page, int off,
bool ring_doorbell)
{
struct ionic_tx_desc_info *desc_info;
struct ionic_buf_info *buf_info;
struct ionic_tx_stats *stats;
struct ionic_txq_desc *desc;
size_t len = frame->len;
dma_addr_t dma_addr;
u64 cmd;
desc_info = &q->tx_info[q->head_idx];
desc = &q->txq[q->head_idx];
buf_info = desc_info->bufs;
stats = q_to_tx_stats(q);
if (act == XDP_TX) {
dma_addr = page_pool_get_dma_addr(page) +
off + XDP_PACKET_HEADROOM;
dma_sync_single_for_device(q->dev, dma_addr,
len, DMA_TO_DEVICE);
} else /* XDP_REDIRECT */ {
dma_addr = ionic_tx_map_single(q, frame->data, len);
if (!dma_addr)
return -EIO;
}
buf_info->dma_addr = dma_addr;
buf_info->len = len;
buf_info->page = page;
buf_info->page_offset = off;
desc_info->nbufs = 1;
desc_info->xdpf = frame;
desc_info->act = act;
if (xdp_frame_has_frags(frame)) {
struct ionic_txq_sg_elem *elem;
struct skb_shared_info *sinfo;
struct ionic_buf_info *bi;
skb_frag_t *frag;
int i;
bi = &buf_info[1];
sinfo = xdp_get_shared_info_from_frame(frame);
frag = sinfo->frags;
elem = ionic_tx_sg_elems(q);
for (i = 0; i < sinfo->nr_frags; i++, frag++, bi++) {
if (act == XDP_TX) {
struct page *pg = skb_frag_page(frag);
dma_addr = page_pool_get_dma_addr(pg) +
skb_frag_off(frag);
dma_sync_single_for_device(q->dev, dma_addr,
skb_frag_size(frag),
DMA_TO_DEVICE);
} else {
dma_addr = ionic_tx_map_frag(q, frag, 0,
skb_frag_size(frag));
if (dma_mapping_error(q->dev, dma_addr)) {
ionic_tx_desc_unmap_bufs(q, desc_info);
return -EIO;
}
}
bi->dma_addr = dma_addr;
bi->len = skb_frag_size(frag);
bi->page = skb_frag_page(frag);
elem->addr = cpu_to_le64(bi->dma_addr);
elem->len = cpu_to_le16(bi->len);
elem++;
desc_info->nbufs++;
}
}
cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_CSUM_NONE,
0, (desc_info->nbufs - 1), buf_info->dma_addr);
desc->cmd = cpu_to_le64(cmd);
desc->len = cpu_to_le16(len);
desc->csum_start = 0;
desc->csum_offset = 0;
stats->xdp_frames++;
stats->pkts++;
stats->bytes += len;
ionic_txq_post(q, ring_doorbell);
return 0;
}
int ionic_xdp_xmit(struct net_device *netdev, int n,
struct xdp_frame **xdp_frames, u32 flags)
{
struct ionic_lif *lif = netdev_priv(netdev);
struct ionic_queue *txq;
struct netdev_queue *nq;
int nxmit;
int space;
int cpu;
int qi;
if (unlikely(!test_bit(IONIC_LIF_F_UP, lif->state)))
return -ENETDOWN;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
/* AdminQ is assumed on cpu 0, while we attempt to affinitize the
* TxRx queue pairs 0..n-1 on cpus 1..n. We try to keep with that
* affinitization here, but of course irqbalance and friends might
* have juggled things anyway, so we have to check for the 0 case.
*/
cpu = smp_processor_id();
qi = cpu ? (cpu - 1) % lif->nxqs : cpu;
txq = &lif->txqcqs[qi]->q;
nq = netdev_get_tx_queue(netdev, txq->index);
__netif_tx_lock(nq, cpu);
txq_trans_cond_update(nq);
if (netif_tx_queue_stopped(nq) ||
!netif_txq_maybe_stop(q_to_ndq(netdev, txq),
ionic_q_space_avail(txq),
1, 1)) {
__netif_tx_unlock(nq);
return -EIO;
}
space = min_t(int, n, ionic_q_space_avail(txq));
for (nxmit = 0; nxmit < space ; nxmit++) {
if (ionic_xdp_post_frame(txq, xdp_frames[nxmit],
XDP_REDIRECT,
virt_to_page(xdp_frames[nxmit]->data),
0, false)) {
nxmit--;
break;
}
}
if (flags & XDP_XMIT_FLUSH)
ionic_dbell_ring(lif->kern_dbpage, txq->hw_type,
txq->dbval | txq->head_idx);
netif_txq_maybe_stop(q_to_ndq(netdev, txq),
ionic_q_space_avail(txq),
4, 4);
__netif_tx_unlock(nq);
return nxmit;
}
static void ionic_xdp_rx_unlink_bufs(struct ionic_queue *q,
struct ionic_buf_info *buf_info,
int nbufs)
{
int i;
for (i = 0; i < nbufs; i++) {
buf_info->page = NULL;
buf_info++;
}
}
static bool ionic_run_xdp(struct ionic_rx_stats *stats,
struct net_device *netdev,
struct bpf_prog *xdp_prog,
struct ionic_queue *rxq,
struct ionic_buf_info *buf_info,
int len)
{
u32 xdp_action = XDP_ABORTED;
struct xdp_buff xdp_buf;
struct ionic_queue *txq;
struct netdev_queue *nq;
struct xdp_frame *xdpf;
int remain_len;
int nbufs = 1;
int frag_len;
int err = 0;
xdp_init_buff(&xdp_buf, IONIC_PAGE_SIZE, rxq->xdp_rxq_info);
frag_len = min_t(u16, len, IONIC_XDP_MAX_LINEAR_MTU + VLAN_ETH_HLEN);
xdp_prepare_buff(&xdp_buf, ionic_rx_buf_va(buf_info),
XDP_PACKET_HEADROOM, frag_len, false);
page_pool_dma_sync_for_cpu(rxq->page_pool, buf_info->page,
buf_info->page_offset + XDP_PACKET_HEADROOM,
frag_len);
prefetchw(&xdp_buf.data_hard_start);
/* We limit MTU size to one buffer if !xdp_has_frags, so
* if the recv len is bigger than one buffer
* then we know we have frag info to gather
*/
remain_len = len - frag_len;
if (remain_len) {
struct skb_shared_info *sinfo;
struct ionic_buf_info *bi;
skb_frag_t *frag;
bi = buf_info;
sinfo = xdp_get_shared_info_from_buff(&xdp_buf);
sinfo->nr_frags = 0;
sinfo->xdp_frags_size = 0;
xdp_buff_set_frags_flag(&xdp_buf);
do {
if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
err = -ENOSPC;
break;
}
frag = &sinfo->frags[sinfo->nr_frags];
sinfo->nr_frags++;
bi++;
frag_len = min_t(u16, remain_len, bi->len);
page_pool_dma_sync_for_cpu(rxq->page_pool, bi->page,
buf_info->page_offset,
frag_len);
skb_frag_fill_page_desc(frag, bi->page, 0, frag_len);
sinfo->xdp_frags_size += frag_len;
remain_len -= frag_len;
if (page_is_pfmemalloc(bi->page))
xdp_buff_set_frag_pfmemalloc(&xdp_buf);
} while (remain_len > 0);
nbufs += sinfo->nr_frags;
}
xdp_action = bpf_prog_run_xdp(xdp_prog, &xdp_buf);
switch (xdp_action) {
case XDP_PASS:
stats->xdp_pass++;
return false; /* false = we didn't consume the packet */
case XDP_DROP:
ionic_rx_put_buf_direct(rxq, buf_info);
stats->xdp_drop++;
break;
case XDP_TX:
xdpf = xdp_convert_buff_to_frame(&xdp_buf);
if (!xdpf) {
err = -ENOSPC;
break;
}
txq = rxq->partner;
nq = netdev_get_tx_queue(netdev, txq->index);
__netif_tx_lock(nq, smp_processor_id());
txq_trans_cond_update(nq);
if (netif_tx_queue_stopped(nq) ||
!netif_txq_maybe_stop(q_to_ndq(netdev, txq),
ionic_q_space_avail(txq),
1, 1)) {
__netif_tx_unlock(nq);
err = -EIO;
break;
}
err = ionic_xdp_post_frame(txq, xdpf, XDP_TX,
buf_info->page,
buf_info->page_offset,
true);
__netif_tx_unlock(nq);
if (unlikely(err)) {
netdev_dbg(netdev, "tx ionic_xdp_post_frame err %d\n", err);
break;
}
ionic_xdp_rx_unlink_bufs(rxq, buf_info, nbufs);
stats->xdp_tx++;
break;
case XDP_REDIRECT:
err = xdp_do_redirect(netdev, &xdp_buf, xdp_prog);
if (unlikely(err)) {
netdev_dbg(netdev, "xdp_do_redirect err %d\n", err);
break;
}
ionic_xdp_rx_unlink_bufs(rxq, buf_info, nbufs);
rxq->xdp_flush = true;
stats->xdp_redirect++;
break;
case XDP_ABORTED:
default:
err = -EIO;
break;
}
if (err) {
ionic_rx_put_buf_direct(rxq, buf_info);
trace_xdp_exception(netdev, xdp_prog, xdp_action);
stats->xdp_aborted++;
}
return true;
}
static void ionic_rx_clean(struct ionic_queue *q,
struct ionic_rx_desc_info *desc_info,
struct ionic_rxq_comp *comp,
struct bpf_prog *xdp_prog)
{
struct net_device *netdev = q->lif->netdev;
struct ionic_qcq *qcq = q_to_qcq(q);
struct ionic_rx_stats *stats;
unsigned int headroom = 0;
struct sk_buff *skb;
bool synced = false;
bool use_copybreak;
u16 len;
stats = q_to_rx_stats(q);
if (unlikely(comp->status)) {
/* Most likely status==2 and the pkt received was bigger
* than the buffer available: comp->len will show the
* pkt size received that didn't fit the advertised desc.len
*/
dev_dbg(q->dev, "q%d drop comp->status %d comp->len %d desc->len %d\n",
q->index, comp->status, comp->len, q->rxq[q->head_idx].len);
stats->dropped++;
return;
}
len = le16_to_cpu(comp->len);
stats->pkts++;
stats->bytes += len;
if (xdp_prog) {
if (ionic_run_xdp(stats, netdev, xdp_prog, q, desc_info->bufs, len))
return;
synced = true;
headroom = XDP_PACKET_HEADROOM;
}
use_copybreak = len <= q->lif->rx_copybreak;
if (use_copybreak)
skb = ionic_rx_copybreak(netdev, q, desc_info,
headroom, len,
comp->num_sg_elems, synced);
else
skb = ionic_rx_build_skb(q, desc_info, headroom, len,
comp->num_sg_elems, synced);
if (unlikely(!skb)) {
stats->dropped++;
return;
}
skb_record_rx_queue(skb, q->index);
if (likely(netdev->features & NETIF_F_RXHASH)) {
switch (comp->pkt_type_color & IONIC_RXQ_COMP_PKT_TYPE_MASK) {
case IONIC_PKT_TYPE_IPV4:
case IONIC_PKT_TYPE_IPV6:
skb_set_hash(skb, le32_to_cpu(comp->rss_hash),
PKT_HASH_TYPE_L3);
break;
case IONIC_PKT_TYPE_IPV4_TCP:
case IONIC_PKT_TYPE_IPV6_TCP:
case IONIC_PKT_TYPE_IPV4_UDP:
case IONIC_PKT_TYPE_IPV6_UDP:
skb_set_hash(skb, le32_to_cpu(comp->rss_hash),
PKT_HASH_TYPE_L4);
break;
}
}
if (likely(netdev->features & NETIF_F_RXCSUM) &&
(comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_CALC)) {
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = (__force __wsum)le16_to_cpu(comp->csum);
stats->csum_complete++;
} else {
stats->csum_none++;
}
if (unlikely((comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_TCP_BAD) ||
(comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_UDP_BAD) ||
(comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_IP_BAD)))
stats->csum_error++;
if (likely(netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
(comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_VLAN)) {
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
le16_to_cpu(comp->vlan_tci));
stats->vlan_stripped++;
}
if (unlikely(q->features & IONIC_RXQ_F_HWSTAMP)) {
__le64 *cq_desc_hwstamp;
u64 hwstamp;
cq_desc_hwstamp =
(void *)comp +
qcq->cq.desc_size -
sizeof(struct ionic_rxq_comp) -
IONIC_HWSTAMP_CQ_NEGOFFSET;
hwstamp = le64_to_cpu(*cq_desc_hwstamp);
if (hwstamp != IONIC_HWSTAMP_INVALID) {
skb_hwtstamps(skb)->hwtstamp = ionic_lif_phc_ktime(q->lif, hwstamp);
stats->hwstamp_valid++;
} else {
stats->hwstamp_invalid++;
}
}
if (use_copybreak)
napi_gro_receive(&qcq->napi, skb);
else
napi_gro_frags(&qcq->napi);
}
static bool __ionic_rx_service(struct ionic_cq *cq, struct bpf_prog *xdp_prog)
{
struct ionic_rx_desc_info *desc_info;
struct ionic_queue *q = cq->bound_q;
struct ionic_rxq_comp *comp;
comp = &((struct ionic_rxq_comp *)cq->base)[cq->tail_idx];
if (!color_match(comp->pkt_type_color, cq->done_color))
return false;
/* check for empty queue */
if (q->tail_idx == q->head_idx)
return false;
if (q->tail_idx != le16_to_cpu(comp->comp_index))
return false;
desc_info = &q->rx_info[q->tail_idx];
q->tail_idx = (q->tail_idx + 1) & (q->num_descs - 1);
/* clean the related q entry, only one per qc completion */
ionic_rx_clean(q, desc_info, comp, xdp_prog);
return true;
}
bool ionic_rx_service(struct ionic_cq *cq)
{
return __ionic_rx_service(cq, NULL);
}
static inline void ionic_write_cmb_desc(struct ionic_queue *q,
void *desc)
{
/* Since Rx and Tx descriptors are the same size, we can
* save an instruction or two and skip the qtype check.
*/
if (unlikely(q_to_qcq(q)->flags & IONIC_QCQ_F_CMB_RINGS))
memcpy_toio(&q->cmb_txq[q->head_idx], desc, sizeof(q->cmb_txq[0]));
}
void ionic_rx_fill(struct ionic_queue *q, struct bpf_prog *xdp_prog)
{
struct net_device *netdev = q->lif->netdev;
struct ionic_rx_desc_info *desc_info;
struct ionic_rxq_sg_elem *sg_elem;
struct ionic_buf_info *buf_info;
unsigned int fill_threshold;
struct ionic_rxq_desc *desc;
unsigned int first_frag_len;
unsigned int first_buf_len;
unsigned int headroom = 0;
unsigned int remain_len;
unsigned int frag_len;
unsigned int nfrags;
unsigned int n_fill;
unsigned int len;
unsigned int i;
unsigned int j;
n_fill = ionic_q_space_avail(q);
fill_threshold = min_t(unsigned int, IONIC_RX_FILL_THRESHOLD,
q->num_descs / IONIC_RX_FILL_DIV);
if (n_fill < fill_threshold)
return;
len = netdev->mtu + VLAN_ETH_HLEN;
if (xdp_prog) {
/* Always alloc the full size buffer, but only need
* the actual frag_len in the descriptor
* XDP uses space in the first buffer, so account for
* head room, tail room, and ip header in the first frag size.
*/
headroom = XDP_PACKET_HEADROOM;
first_buf_len = IONIC_XDP_MAX_LINEAR_MTU + VLAN_ETH_HLEN + headroom;
first_frag_len = min_t(u16, len + headroom, first_buf_len);
} else {
/* Use MTU size if smaller than max buffer size */
first_frag_len = min_t(u16, len, IONIC_PAGE_SIZE);
first_buf_len = first_frag_len;
}
for (i = n_fill; i; i--) {
/* fill main descriptor - buf[0] */
nfrags = 0;
remain_len = len;
desc = &q->rxq[q->head_idx];
desc_info = &q->rx_info[q->head_idx];
buf_info = &desc_info->bufs[0];
buf_info->len = first_buf_len;
frag_len = first_frag_len - headroom;
/* get a new buffer if we can't reuse one */
if (!buf_info->page)
buf_info->page = page_pool_alloc(q->page_pool,
&buf_info->page_offset,
&buf_info->len,
GFP_ATOMIC);
if (unlikely(!buf_info->page)) {
buf_info->len = 0;
return;
}
desc->addr = cpu_to_le64(ionic_rx_buf_pa(buf_info) + headroom);
desc->len = cpu_to_le16(frag_len);
remain_len -= frag_len;
buf_info++;
nfrags++;
/* fill sg descriptors - buf[1..n] */
sg_elem = q->rxq_sgl[q->head_idx].elems;
for (j = 0; remain_len > 0 && j < q->max_sg_elems; j++, sg_elem++) {
frag_len = min_t(u16, remain_len, IONIC_PAGE_SIZE);
/* Recycle any leftover buffers that are too small to reuse */
if (unlikely(buf_info->page && buf_info->len < frag_len))
ionic_rx_put_buf_direct(q, buf_info);
/* Get new buffer if needed */
if (!buf_info->page) {
buf_info->len = frag_len;
buf_info->page = page_pool_alloc(q->page_pool,
&buf_info->page_offset,
&buf_info->len,
GFP_ATOMIC);
if (unlikely(!buf_info->page)) {
buf_info->len = 0;
return;
}
}
sg_elem->addr = cpu_to_le64(ionic_rx_buf_pa(buf_info));
sg_elem->len = cpu_to_le16(frag_len);
remain_len -= frag_len;
buf_info++;
nfrags++;
}
/* clear end sg element as a sentinel */
if (j < q->max_sg_elems)
memset(sg_elem, 0, sizeof(*sg_elem));
desc->opcode = (nfrags > 1) ? IONIC_RXQ_DESC_OPCODE_SG :
IONIC_RXQ_DESC_OPCODE_SIMPLE;
desc_info->nbufs = nfrags;
ionic_write_cmb_desc(q, desc);
ionic_rxq_post(q, false);
}
ionic_dbell_ring(q->lif->kern_dbpage, q->hw_type,
q->dbval | q->head_idx);
q->dbell_deadline = IONIC_RX_MIN_DOORBELL_DEADLINE;
q->dbell_jiffies = jiffies;
}
void ionic_rx_empty(struct ionic_queue *q)
{
struct ionic_rx_desc_info *desc_info;
unsigned int i, j;
for (i = 0; i < q->num_descs; i++) {
desc_info = &q->rx_info[i];
for (j = 0; j < ARRAY_SIZE(desc_info->bufs); j++)
ionic_rx_put_buf(q, &desc_info->bufs[j]);
desc_info->nbufs = 0;
}
q->head_idx = 0;
q->tail_idx = 0;
}
static void ionic_dim_update(struct ionic_qcq *qcq, int napi_mode)
{
struct dim_sample dim_sample;
struct ionic_lif *lif;
unsigned int qi;
u64 pkts, bytes;
if (!qcq->intr.dim_coal_hw)
return;
lif = qcq->q.lif;
qi = qcq->cq.bound_q->index;
switch (napi_mode) {
case IONIC_LIF_F_TX_DIM_INTR:
pkts = lif->txqstats[qi].pkts;
bytes = lif->txqstats[qi].bytes;
break;
case IONIC_LIF_F_RX_DIM_INTR:
pkts = lif->rxqstats[qi].pkts;
bytes = lif->rxqstats[qi].bytes;
break;
default:
pkts = lif->txqstats[qi].pkts + lif->rxqstats[qi].pkts;
bytes = lif->txqstats[qi].bytes + lif->rxqstats[qi].bytes;
break;
}
dim_update_sample(qcq->cq.bound_intr->rearm_count,
pkts, bytes, &dim_sample);
net_dim(&qcq->dim, dim_sample);
}
int ionic_tx_napi(struct napi_struct *napi, int budget)
{
struct ionic_qcq *qcq = napi_to_qcq(napi);
struct ionic_cq *cq = napi_to_cq(napi);
u32 work_done = 0;
u32 flags = 0;
work_done = ionic_tx_cq_service(cq, budget, !!budget);
if (unlikely(!budget))
return budget;
if (work_done < budget && napi_complete_done(napi, work_done)) {
ionic_dim_update(qcq, IONIC_LIF_F_TX_DIM_INTR);
flags |= IONIC_INTR_CRED_UNMASK;
cq->bound_intr->rearm_count++;
}
if (work_done || flags) {
flags |= IONIC_INTR_CRED_RESET_COALESCE;
ionic_intr_credits(cq->idev->intr_ctrl,
cq->bound_intr->index,
work_done, flags);
}
if (!work_done && cq->bound_q->lif->doorbell_wa)
ionic_txq_poke_doorbell(&qcq->q);
return work_done;
}
static void ionic_xdp_do_flush(struct ionic_cq *cq)
{
if (cq->bound_q->xdp_flush) {
xdp_do_flush();
cq->bound_q->xdp_flush = false;
}
}
static unsigned int ionic_rx_cq_service(struct ionic_cq *cq,
unsigned int work_to_do)
{
struct ionic_queue *q = cq->bound_q;
unsigned int work_done = 0;
struct bpf_prog *xdp_prog;
if (work_to_do == 0)
return 0;
xdp_prog = READ_ONCE(q->xdp_prog);
while (__ionic_rx_service(cq, xdp_prog)) {
if (cq->tail_idx == cq->num_descs - 1)
cq->done_color = !cq->done_color;
cq->tail_idx = (cq->tail_idx + 1) & (cq->num_descs - 1);
if (++work_done >= work_to_do)
break;
}
ionic_rx_fill(q, xdp_prog);
ionic_xdp_do_flush(cq);
return work_done;
}
int ionic_rx_napi(struct napi_struct *napi, int budget)
{
struct ionic_qcq *qcq = napi_to_qcq(napi);
struct ionic_cq *cq = napi_to_cq(napi);
u32 work_done = 0;
u32 flags = 0;
if (unlikely(!budget))
return budget;
work_done = ionic_rx_cq_service(cq, budget);
if (work_done < budget && napi_complete_done(napi, work_done)) {
ionic_dim_update(qcq, IONIC_LIF_F_RX_DIM_INTR);
flags |= IONIC_INTR_CRED_UNMASK;
cq->bound_intr->rearm_count++;
}
if (work_done || flags) {
flags |= IONIC_INTR_CRED_RESET_COALESCE;
ionic_intr_credits(cq->idev->intr_ctrl,
cq->bound_intr->index,
work_done, flags);
}
if (!work_done && cq->bound_q->lif->doorbell_wa)
ionic_rxq_poke_doorbell(&qcq->q);
return work_done;
}
int ionic_txrx_napi(struct napi_struct *napi, int budget)
{
struct ionic_qcq *rxqcq = napi_to_qcq(napi);
struct ionic_cq *rxcq = napi_to_cq(napi);
unsigned int qi = rxcq->bound_q->index;
struct ionic_qcq *txqcq;
struct ionic_lif *lif;
struct ionic_cq *txcq;
u32 rx_work_done = 0;
u32 tx_work_done = 0;
u32 flags = 0;
lif = rxcq->bound_q->lif;
txqcq = lif->txqcqs[qi];
txcq = &lif->txqcqs[qi]->cq;
tx_work_done = ionic_tx_cq_service(txcq, IONIC_TX_BUDGET_DEFAULT, !!budget);
if (unlikely(!budget))
return budget;
rx_work_done = ionic_rx_cq_service(rxcq, budget);
if (rx_work_done < budget && napi_complete_done(napi, rx_work_done)) {
ionic_dim_update(rxqcq, 0);
flags |= IONIC_INTR_CRED_UNMASK;
rxcq->bound_intr->rearm_count++;
}
if (rx_work_done || flags) {
flags |= IONIC_INTR_CRED_RESET_COALESCE;
ionic_intr_credits(rxcq->idev->intr_ctrl, rxcq->bound_intr->index,
tx_work_done + rx_work_done, flags);
}
if (lif->doorbell_wa) {
if (!rx_work_done)
ionic_rxq_poke_doorbell(&rxqcq->q);
if (!tx_work_done)
ionic_txq_poke_doorbell(&txqcq->q);
}
return rx_work_done;
}
static dma_addr_t ionic_tx_map_single(struct ionic_queue *q,
void *data, size_t len)
{
struct device *dev = q->dev;
dma_addr_t dma_addr;
dma_addr = dma_map_single(dev, data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, dma_addr))) {
net_warn_ratelimited("%s: DMA single map failed on %s!\n",
dev_name(dev), q->name);
q_to_tx_stats(q)->dma_map_err++;
return 0;
}
return dma_addr;
}
static dma_addr_t ionic_tx_map_frag(struct ionic_queue *q,
const skb_frag_t *frag,
size_t offset, size_t len)
{
struct device *dev = q->dev;
dma_addr_t dma_addr;
dma_addr = skb_frag_dma_map(dev, frag, offset, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, dma_addr))) {
net_warn_ratelimited("%s: DMA frag map failed on %s!\n",
dev_name(dev), q->name);
q_to_tx_stats(q)->dma_map_err++;
return 0;
}
return dma_addr;
}
static int ionic_tx_map_skb(struct ionic_queue *q, struct sk_buff *skb,
struct ionic_tx_desc_info *desc_info)
{
struct ionic_buf_info *buf_info = desc_info->bufs;
struct device *dev = q->dev;
dma_addr_t dma_addr;
unsigned int nfrags;
skb_frag_t *frag;
int frag_idx;
dma_addr = ionic_tx_map_single(q, skb->data, skb_headlen(skb));
if (!dma_addr)
return -EIO;
buf_info->dma_addr = dma_addr;
buf_info->len = skb_headlen(skb);
buf_info++;
frag = skb_shinfo(skb)->frags;
nfrags = skb_shinfo(skb)->nr_frags;
for (frag_idx = 0; frag_idx < nfrags; frag_idx++, frag++) {
dma_addr = ionic_tx_map_frag(q, frag, 0, skb_frag_size(frag));
if (!dma_addr)
goto dma_fail;
buf_info->dma_addr = dma_addr;
buf_info->len = skb_frag_size(frag);
buf_info++;
}
desc_info->nbufs = 1 + nfrags;
return 0;
dma_fail:
/* unwind the frag mappings and the head mapping */
while (frag_idx > 0) {
frag_idx--;
buf_info--;
dma_unmap_page(dev, buf_info->dma_addr,
buf_info->len, DMA_TO_DEVICE);
}
dma_unmap_single(dev, desc_info->bufs[0].dma_addr,
desc_info->bufs[0].len, DMA_TO_DEVICE);
return -EIO;
}
static void ionic_tx_desc_unmap_bufs(struct ionic_queue *q,
struct ionic_tx_desc_info *desc_info)
{
struct ionic_buf_info *buf_info = desc_info->bufs;
struct device *dev = q->dev;
unsigned int i;
if (!desc_info->nbufs)
return;
dma_unmap_single(dev, buf_info->dma_addr,
buf_info->len, DMA_TO_DEVICE);
buf_info++;
for (i = 1; i < desc_info->nbufs; i++, buf_info++)
dma_unmap_page(dev, buf_info->dma_addr,
buf_info->len, DMA_TO_DEVICE);
desc_info->nbufs = 0;
}
static void ionic_tx_clean(struct ionic_queue *q,
struct ionic_tx_desc_info *desc_info,
struct ionic_txq_comp *comp,
bool in_napi)
{
struct ionic_tx_stats *stats = q_to_tx_stats(q);
struct ionic_qcq *qcq = q_to_qcq(q);
struct sk_buff *skb;
if (desc_info->xdpf) {
ionic_xdp_tx_desc_clean(q->partner, desc_info, in_napi);
stats->clean++;
if (unlikely(__netif_subqueue_stopped(q->lif->netdev, q->index)))
netif_wake_subqueue(q->lif->netdev, q->index);
return;
}
ionic_tx_desc_unmap_bufs(q, desc_info);
skb = desc_info->skb;
if (!skb)
return;
if (unlikely(ionic_txq_hwstamp_enabled(q))) {
if (comp) {
struct skb_shared_hwtstamps hwts = {};
__le64 *cq_desc_hwstamp;
u64 hwstamp;
cq_desc_hwstamp =
(void *)comp +
qcq->cq.desc_size -
sizeof(struct ionic_txq_comp) -
IONIC_HWSTAMP_CQ_NEGOFFSET;
hwstamp = le64_to_cpu(*cq_desc_hwstamp);
if (hwstamp != IONIC_HWSTAMP_INVALID) {
hwts.hwtstamp = ionic_lif_phc_ktime(q->lif, hwstamp);
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
skb_tstamp_tx(skb, &hwts);
stats->hwstamp_valid++;
} else {
stats->hwstamp_invalid++;
}
}
}
desc_info->bytes = skb->len;
stats->clean++;
napi_consume_skb(skb, likely(in_napi) ? 1 : 0);
}
static bool ionic_tx_service(struct ionic_cq *cq,
unsigned int *total_pkts,
unsigned int *total_bytes,
bool in_napi)
{
struct ionic_tx_desc_info *desc_info;
struct ionic_queue *q = cq->bound_q;
struct ionic_txq_comp *comp;
unsigned int bytes = 0;
unsigned int pkts = 0;
u16 index;
comp = &((struct ionic_txq_comp *)cq->base)[cq->tail_idx];
if (!color_match(comp->color, cq->done_color))
return false;
/* clean the related q entries, there could be
* several q entries completed for each cq completion
*/
do {
desc_info = &q->tx_info[q->tail_idx];
desc_info->bytes = 0;
index = q->tail_idx;
q->tail_idx = (q->tail_idx + 1) & (q->num_descs - 1);
ionic_tx_clean(q, desc_info, comp, in_napi);
if (desc_info->skb) {
pkts++;
bytes += desc_info->bytes;
desc_info->skb = NULL;
}
} while (index != le16_to_cpu(comp->comp_index));
(*total_pkts) += pkts;
(*total_bytes) += bytes;
return true;
}
unsigned int ionic_tx_cq_service(struct ionic_cq *cq,
unsigned int work_to_do,
bool in_napi)
{
unsigned int work_done = 0;
unsigned int bytes = 0;
unsigned int pkts = 0;
if (work_to_do == 0)
return 0;
while (ionic_tx_service(cq, &pkts, &bytes, in_napi)) {
if (cq->tail_idx == cq->num_descs - 1)
cq->done_color = !cq->done_color;
cq->tail_idx = (cq->tail_idx + 1) & (cq->num_descs - 1);
if (++work_done >= work_to_do)
break;
}
if (work_done) {
struct ionic_queue *q = cq->bound_q;
if (likely(!ionic_txq_hwstamp_enabled(q)))
netif_txq_completed_wake(q_to_ndq(q->lif->netdev, q),
pkts, bytes,
ionic_q_space_avail(q),
IONIC_TSO_DESCS_NEEDED);
}
return work_done;
}
void ionic_tx_flush(struct ionic_cq *cq)
{
u32 work_done;
work_done = ionic_tx_cq_service(cq, cq->num_descs, false);
if (work_done)
ionic_intr_credits(cq->idev->intr_ctrl, cq->bound_intr->index,
work_done, IONIC_INTR_CRED_RESET_COALESCE);
}
void ionic_tx_empty(struct ionic_queue *q)
{
struct ionic_tx_desc_info *desc_info;
int bytes = 0;
int pkts = 0;
/* walk the not completed tx entries, if any */
while (q->head_idx != q->tail_idx) {
desc_info = &q->tx_info[q->tail_idx];
desc_info->bytes = 0;
q->tail_idx = (q->tail_idx + 1) & (q->num_descs - 1);
ionic_tx_clean(q, desc_info, NULL, false);
if (desc_info->skb) {
pkts++;
bytes += desc_info->bytes;
desc_info->skb = NULL;
}
}
if (likely(!ionic_txq_hwstamp_enabled(q))) {
struct netdev_queue *ndq = q_to_ndq(q->lif->netdev, q);
netdev_tx_completed_queue(ndq, pkts, bytes);
netdev_tx_reset_queue(ndq);
}
}
static int ionic_tx_tcp_inner_pseudo_csum(struct sk_buff *skb)
{
int err;
err = skb_cow_head(skb, 0);
if (unlikely(err))
return err;
if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
inner_ip_hdr(skb)->check = 0;
inner_tcp_hdr(skb)->check =
~csum_tcpudp_magic(inner_ip_hdr(skb)->saddr,
inner_ip_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
} else if (skb->protocol == cpu_to_be16(ETH_P_IPV6)) {
inner_tcp_hdr(skb)->check =
~csum_ipv6_magic(&inner_ipv6_hdr(skb)->saddr,
&inner_ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
}
return 0;
}
static int ionic_tx_tcp_pseudo_csum(struct sk_buff *skb)
{
int err;
err = skb_cow_head(skb, 0);
if (unlikely(err))
return err;
if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check =
~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
} else if (skb->protocol == cpu_to_be16(ETH_P_IPV6)) {
tcp_v6_gso_csum_prep(skb);
}
return 0;
}
static void ionic_tx_tso_post(struct net_device *netdev, struct ionic_queue *q,
struct ionic_txq_desc *desc,
struct sk_buff *skb,
dma_addr_t addr, u8 nsge, u16 len,
unsigned int hdrlen, unsigned int mss,
bool outer_csum,
u16 vlan_tci, bool has_vlan,
bool start, bool done)
{
u8 flags = 0;
u64 cmd;
flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0;
flags |= outer_csum ? IONIC_TXQ_DESC_FLAG_ENCAP : 0;
flags |= start ? IONIC_TXQ_DESC_FLAG_TSO_SOT : 0;
flags |= done ? IONIC_TXQ_DESC_FLAG_TSO_EOT : 0;
cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_TSO, flags, nsge, addr);
desc->cmd = cpu_to_le64(cmd);
desc->len = cpu_to_le16(len);
desc->vlan_tci = cpu_to_le16(vlan_tci);
desc->hdr_len = cpu_to_le16(hdrlen);
desc->mss = cpu_to_le16(mss);
ionic_write_cmb_desc(q, desc);
if (start) {
skb_tx_timestamp(skb);
if (likely(!ionic_txq_hwstamp_enabled(q)))
netdev_tx_sent_queue(q_to_ndq(netdev, q), skb->len);
ionic_txq_post(q, false);
} else {
ionic_txq_post(q, done);
}
}
static int ionic_tx_tso(struct net_device *netdev, struct ionic_queue *q,
struct sk_buff *skb)
{
struct ionic_tx_stats *stats = q_to_tx_stats(q);
struct ionic_tx_desc_info *desc_info;
struct ionic_buf_info *buf_info;
struct ionic_txq_sg_elem *elem;
struct ionic_txq_desc *desc;
unsigned int chunk_len;
unsigned int frag_rem;
unsigned int tso_rem;
unsigned int seg_rem;
dma_addr_t desc_addr;
dma_addr_t frag_addr;
unsigned int hdrlen;
unsigned int len;
unsigned int mss;
bool start, done;
bool outer_csum;
bool has_vlan;
u16 desc_len;
u8 desc_nsge;
u16 vlan_tci;
bool encap;
int err;
desc_info = &q->tx_info[q->head_idx];
if (unlikely(ionic_tx_map_skb(q, skb, desc_info)))
return -EIO;
len = skb->len;
mss = skb_shinfo(skb)->gso_size;
outer_csum = (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
SKB_GSO_GRE_CSUM |
SKB_GSO_IPXIP4 |
SKB_GSO_IPXIP6 |
SKB_GSO_UDP_TUNNEL |
SKB_GSO_UDP_TUNNEL_CSUM));
has_vlan = !!skb_vlan_tag_present(skb);
vlan_tci = skb_vlan_tag_get(skb);
encap = skb->encapsulation;
/* Preload inner-most TCP csum field with IP pseudo hdr
* calculated with IP length set to zero. HW will later
* add in length to each TCP segment resulting from the TSO.
*/
if (encap)
err = ionic_tx_tcp_inner_pseudo_csum(skb);
else
err = ionic_tx_tcp_pseudo_csum(skb);
if (unlikely(err)) {
/* clean up mapping from ionic_tx_map_skb */
ionic_tx_desc_unmap_bufs(q, desc_info);
return err;
}
if (encap)
hdrlen = skb_inner_tcp_all_headers(skb);
else
hdrlen = skb_tcp_all_headers(skb);
desc_info->skb = skb;
buf_info = desc_info->bufs;
tso_rem = len;
seg_rem = min(tso_rem, hdrlen + mss);
frag_addr = 0;
frag_rem = 0;
start = true;
while (tso_rem > 0) {
desc = NULL;
elem = NULL;
desc_addr = 0;
desc_len = 0;
desc_nsge = 0;
/* use fragments until we have enough to post a single descriptor */
while (seg_rem > 0) {
/* if the fragment is exhausted then move to the next one */
if (frag_rem == 0) {
/* grab the next fragment */
frag_addr = buf_info->dma_addr;
frag_rem = buf_info->len;
buf_info++;
}
chunk_len = min(frag_rem, seg_rem);
if (!desc) {
/* fill main descriptor */
desc = &q->txq[q->head_idx];
elem = ionic_tx_sg_elems(q);
desc_addr = frag_addr;
desc_len = chunk_len;
} else {
/* fill sg descriptor */
elem->addr = cpu_to_le64(frag_addr);
elem->len = cpu_to_le16(chunk_len);
elem++;
desc_nsge++;
}
frag_addr += chunk_len;
frag_rem -= chunk_len;
tso_rem -= chunk_len;
seg_rem -= chunk_len;
}
seg_rem = min(tso_rem, mss);
done = (tso_rem == 0);
/* post descriptor */
ionic_tx_tso_post(netdev, q, desc, skb, desc_addr, desc_nsge,
desc_len, hdrlen, mss, outer_csum, vlan_tci,
has_vlan, start, done);
start = false;
/* Buffer information is stored with the first tso descriptor */
desc_info = &q->tx_info[q->head_idx];
desc_info->nbufs = 0;
}
stats->pkts += DIV_ROUND_UP(len - hdrlen, mss);
stats->bytes += len;
stats->tso++;
stats->tso_bytes = len;
return 0;
}
static void ionic_tx_calc_csum(struct ionic_queue *q, struct sk_buff *skb,
struct ionic_tx_desc_info *desc_info)
{
struct ionic_txq_desc *desc = &q->txq[q->head_idx];
struct ionic_buf_info *buf_info = desc_info->bufs;
struct ionic_tx_stats *stats = q_to_tx_stats(q);
bool has_vlan;
u8 flags = 0;
bool encap;
u64 cmd;
has_vlan = !!skb_vlan_tag_present(skb);
encap = skb->encapsulation;
flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0;
flags |= encap ? IONIC_TXQ_DESC_FLAG_ENCAP : 0;
cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_CSUM_PARTIAL,
flags, skb_shinfo(skb)->nr_frags,
buf_info->dma_addr);
desc->cmd = cpu_to_le64(cmd);
desc->len = cpu_to_le16(buf_info->len);
if (has_vlan) {
desc->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
stats->vlan_inserted++;
} else {
desc->vlan_tci = 0;
}
desc->csum_start = cpu_to_le16(skb_checksum_start_offset(skb));
desc->csum_offset = cpu_to_le16(skb->csum_offset);
ionic_write_cmb_desc(q, desc);
if (skb_csum_is_sctp(skb))
stats->crc32_csum++;
else
stats->csum++;
}
static void ionic_tx_calc_no_csum(struct ionic_queue *q, struct sk_buff *skb,
struct ionic_tx_desc_info *desc_info)
{
struct ionic_txq_desc *desc = &q->txq[q->head_idx];
struct ionic_buf_info *buf_info = desc_info->bufs;
struct ionic_tx_stats *stats = q_to_tx_stats(q);
bool has_vlan;
u8 flags = 0;
bool encap;
u64 cmd;
has_vlan = !!skb_vlan_tag_present(skb);
encap = skb->encapsulation;
flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0;
flags |= encap ? IONIC_TXQ_DESC_FLAG_ENCAP : 0;
cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_CSUM_NONE,
flags, skb_shinfo(skb)->nr_frags,
buf_info->dma_addr);
desc->cmd = cpu_to_le64(cmd);
desc->len = cpu_to_le16(buf_info->len);
if (has_vlan) {
desc->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
stats->vlan_inserted++;
} else {
desc->vlan_tci = 0;
}
desc->csum_start = 0;
desc->csum_offset = 0;
ionic_write_cmb_desc(q, desc);
stats->csum_none++;
}
static void ionic_tx_skb_frags(struct ionic_queue *q, struct sk_buff *skb,
struct ionic_tx_desc_info *desc_info)
{
struct ionic_buf_info *buf_info = &desc_info->bufs[1];
struct ionic_tx_stats *stats = q_to_tx_stats(q);
struct ionic_txq_sg_elem *elem;
unsigned int i;
elem = ionic_tx_sg_elems(q);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, buf_info++, elem++) {
elem->addr = cpu_to_le64(buf_info->dma_addr);
elem->len = cpu_to_le16(buf_info->len);
}
stats->frags += skb_shinfo(skb)->nr_frags;
}
static int ionic_tx(struct net_device *netdev, struct ionic_queue *q,
struct sk_buff *skb)
{
struct ionic_tx_desc_info *desc_info = &q->tx_info[q->head_idx];
struct ionic_tx_stats *stats = q_to_tx_stats(q);
bool ring_dbell = true;
if (unlikely(ionic_tx_map_skb(q, skb, desc_info)))
return -EIO;
desc_info->skb = skb;
/* set up the initial descriptor */
if (skb->ip_summed == CHECKSUM_PARTIAL)
ionic_tx_calc_csum(q, skb, desc_info);
else
ionic_tx_calc_no_csum(q, skb, desc_info);
/* add frags */
ionic_tx_skb_frags(q, skb, desc_info);
skb_tx_timestamp(skb);
stats->pkts++;
stats->bytes += skb->len;
if (likely(!ionic_txq_hwstamp_enabled(q))) {
struct netdev_queue *ndq = q_to_ndq(netdev, q);
if (unlikely(!ionic_q_has_space(q, MAX_SKB_FRAGS + 1)))
netif_tx_stop_queue(ndq);
ring_dbell = __netdev_tx_sent_queue(ndq, skb->len,
netdev_xmit_more());
}
ionic_txq_post(q, ring_dbell);
return 0;
}
static int ionic_tx_descs_needed(struct ionic_queue *q, struct sk_buff *skb)
{
int nr_frags = skb_shinfo(skb)->nr_frags;
bool too_many_frags = false;
skb_frag_t *frag;
int desc_bufs;
int chunk_len;
int frag_rem;
int tso_rem;
int seg_rem;
bool encap;
int hdrlen;
int ndescs;
int err;
/* Each desc is mss long max, so a descriptor for each gso_seg */
if (skb_is_gso(skb)) {
ndescs = skb_shinfo(skb)->gso_segs;
if (!nr_frags)
return ndescs;
} else {
ndescs = 1;
if (!nr_frags)
return ndescs;
if (unlikely(nr_frags > q->max_sg_elems)) {
too_many_frags = true;
goto linearize;
}
return ndescs;
}
/* We need to scan the skb to be sure that none of the MTU sized
* packets in the TSO will require more sgs per descriptor than we
* can support. We loop through the frags, add up the lengths for
* a packet, and count the number of sgs used per packet.
*/
tso_rem = skb->len;
frag = skb_shinfo(skb)->frags;
encap = skb->encapsulation;
/* start with just hdr in first part of first descriptor */
if (encap)
hdrlen = skb_inner_tcp_all_headers(skb);
else
hdrlen = skb_tcp_all_headers(skb);
seg_rem = min_t(int, tso_rem, hdrlen + skb_shinfo(skb)->gso_size);
frag_rem = hdrlen;
while (tso_rem > 0) {
desc_bufs = 0;
while (seg_rem > 0) {
desc_bufs++;
/* We add the +1 because we can take buffers for one
* more than we have SGs: one for the initial desc data
* in addition to the SG segments that might follow.
*/
if (desc_bufs > q->max_sg_elems + 1) {
too_many_frags = true;
goto linearize;
}
if (frag_rem == 0) {
frag_rem = skb_frag_size(frag);
frag++;
}
chunk_len = min(frag_rem, seg_rem);
frag_rem -= chunk_len;
tso_rem -= chunk_len;
seg_rem -= chunk_len;
}
seg_rem = min_t(int, tso_rem, skb_shinfo(skb)->gso_size);
}
linearize:
if (too_many_frags) {
err = skb_linearize(skb);
if (unlikely(err))
return err;
q_to_tx_stats(q)->linearize++;
}
return ndescs;
}
static netdev_tx_t ionic_start_hwstamp_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct ionic_lif *lif = netdev_priv(netdev);
struct ionic_queue *q;
int err, ndescs;
/* Does not stop/start txq, because we post to a separate tx queue
* for timestamping, and if a packet can't be posted immediately to
* the timestamping queue, it is dropped.
*/
q = &lif->hwstamp_txq->q;
ndescs = ionic_tx_descs_needed(q, skb);
if (unlikely(ndescs < 0))
goto err_out_drop;
if (unlikely(!ionic_q_has_space(q, ndescs)))
goto err_out_drop;
skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP;
if (skb_is_gso(skb))
err = ionic_tx_tso(netdev, q, skb);
else
err = ionic_tx(netdev, q, skb);
if (unlikely(err))
goto err_out_drop;
return NETDEV_TX_OK;
err_out_drop:
q->drop++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
netdev_tx_t ionic_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
u16 queue_index = skb_get_queue_mapping(skb);
struct ionic_lif *lif = netdev_priv(netdev);
struct ionic_queue *q;
int ndescs;
int err;
if (unlikely(!test_bit(IONIC_LIF_F_UP, lif->state))) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
if (lif->hwstamp_txq && lif->phc->ts_config_tx_mode)
return ionic_start_hwstamp_xmit(skb, netdev);
if (unlikely(queue_index >= lif->nxqs))
queue_index = 0;
q = &lif->txqcqs[queue_index]->q;
ndescs = ionic_tx_descs_needed(q, skb);
if (ndescs < 0)
goto err_out_drop;
if (!netif_txq_maybe_stop(q_to_ndq(netdev, q),
ionic_q_space_avail(q),
ndescs, ndescs))
return NETDEV_TX_BUSY;
if (skb_is_gso(skb))
err = ionic_tx_tso(netdev, q, skb);
else
err = ionic_tx(netdev, q, skb);
if (unlikely(err))
goto err_out_drop;
return NETDEV_TX_OK;
err_out_drop:
q->drop++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}