// SPDX-License-Identifier: BSD-3-Clause-Clear
/*
* Copyright (c) 2018-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <net/mac80211.h>
#include <linux/etherdevice.h>
#include "mac.h"
#include "core.h"
#include "debug.h"
#include "wmi.h"
#include "hw.h"
#include "dp_tx.h"
#include "dp_rx.h"
#include "peer.h"
#include "debugfs.h"
#include "hif.h"
#include "wow.h"
#define CHAN2G(_channel, _freq, _flags) { \
.band = NL80211_BAND_2GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _freq, _flags) { \
.band = NL80211_BAND_5GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN6G(_channel, _freq, _flags) { \
.band = NL80211_BAND_6GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static const struct ieee80211_channel ath12k_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static const struct ieee80211_channel ath12k_5ghz_channels[] = {
CHAN5G(36, 5180, 0),
CHAN5G(40, 5200, 0),
CHAN5G(44, 5220, 0),
CHAN5G(48, 5240, 0),
CHAN5G(52, 5260, 0),
CHAN5G(56, 5280, 0),
CHAN5G(60, 5300, 0),
CHAN5G(64, 5320, 0),
CHAN5G(100, 5500, 0),
CHAN5G(104, 5520, 0),
CHAN5G(108, 5540, 0),
CHAN5G(112, 5560, 0),
CHAN5G(116, 5580, 0),
CHAN5G(120, 5600, 0),
CHAN5G(124, 5620, 0),
CHAN5G(128, 5640, 0),
CHAN5G(132, 5660, 0),
CHAN5G(136, 5680, 0),
CHAN5G(140, 5700, 0),
CHAN5G(144, 5720, 0),
CHAN5G(149, 5745, 0),
CHAN5G(153, 5765, 0),
CHAN5G(157, 5785, 0),
CHAN5G(161, 5805, 0),
CHAN5G(165, 5825, 0),
CHAN5G(169, 5845, 0),
CHAN5G(173, 5865, 0),
};
static const struct ieee80211_channel ath12k_6ghz_channels[] = {
/* Operating Class 136 */
CHAN6G(2, 5935, 0),
/* Operating Classes 131-135 */
CHAN6G(1, 5955, 0),
CHAN6G(5, 5975, 0),
CHAN6G(9, 5995, 0),
CHAN6G(13, 6015, 0),
CHAN6G(17, 6035, 0),
CHAN6G(21, 6055, 0),
CHAN6G(25, 6075, 0),
CHAN6G(29, 6095, 0),
CHAN6G(33, 6115, 0),
CHAN6G(37, 6135, 0),
CHAN6G(41, 6155, 0),
CHAN6G(45, 6175, 0),
CHAN6G(49, 6195, 0),
CHAN6G(53, 6215, 0),
CHAN6G(57, 6235, 0),
CHAN6G(61, 6255, 0),
CHAN6G(65, 6275, 0),
CHAN6G(69, 6295, 0),
CHAN6G(73, 6315, 0),
CHAN6G(77, 6335, 0),
CHAN6G(81, 6355, 0),
CHAN6G(85, 6375, 0),
CHAN6G(89, 6395, 0),
CHAN6G(93, 6415, 0),
CHAN6G(97, 6435, 0),
CHAN6G(101, 6455, 0),
CHAN6G(105, 6475, 0),
CHAN6G(109, 6495, 0),
CHAN6G(113, 6515, 0),
CHAN6G(117, 6535, 0),
CHAN6G(121, 6555, 0),
CHAN6G(125, 6575, 0),
CHAN6G(129, 6595, 0),
CHAN6G(133, 6615, 0),
CHAN6G(137, 6635, 0),
CHAN6G(141, 6655, 0),
CHAN6G(145, 6675, 0),
CHAN6G(149, 6695, 0),
CHAN6G(153, 6715, 0),
CHAN6G(157, 6735, 0),
CHAN6G(161, 6755, 0),
CHAN6G(165, 6775, 0),
CHAN6G(169, 6795, 0),
CHAN6G(173, 6815, 0),
CHAN6G(177, 6835, 0),
CHAN6G(181, 6855, 0),
CHAN6G(185, 6875, 0),
CHAN6G(189, 6895, 0),
CHAN6G(193, 6915, 0),
CHAN6G(197, 6935, 0),
CHAN6G(201, 6955, 0),
CHAN6G(205, 6975, 0),
CHAN6G(209, 6995, 0),
CHAN6G(213, 7015, 0),
CHAN6G(217, 7035, 0),
CHAN6G(221, 7055, 0),
CHAN6G(225, 7075, 0),
CHAN6G(229, 7095, 0),
CHAN6G(233, 7115, 0),
};
static struct ieee80211_rate ath12k_legacy_rates[] = {
{ .bitrate = 10,
.hw_value = ATH12K_HW_RATE_CCK_LP_1M },
{ .bitrate = 20,
.hw_value = ATH12K_HW_RATE_CCK_LP_2M,
.hw_value_short = ATH12K_HW_RATE_CCK_SP_2M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55,
.hw_value = ATH12K_HW_RATE_CCK_LP_5_5M,
.hw_value_short = ATH12K_HW_RATE_CCK_SP_5_5M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110,
.hw_value = ATH12K_HW_RATE_CCK_LP_11M,
.hw_value_short = ATH12K_HW_RATE_CCK_SP_11M,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60, .hw_value = ATH12K_HW_RATE_OFDM_6M },
{ .bitrate = 90, .hw_value = ATH12K_HW_RATE_OFDM_9M },
{ .bitrate = 120, .hw_value = ATH12K_HW_RATE_OFDM_12M },
{ .bitrate = 180, .hw_value = ATH12K_HW_RATE_OFDM_18M },
{ .bitrate = 240, .hw_value = ATH12K_HW_RATE_OFDM_24M },
{ .bitrate = 360, .hw_value = ATH12K_HW_RATE_OFDM_36M },
{ .bitrate = 480, .hw_value = ATH12K_HW_RATE_OFDM_48M },
{ .bitrate = 540, .hw_value = ATH12K_HW_RATE_OFDM_54M },
};
static const int
ath12k_phymodes[NUM_NL80211_BANDS][ATH12K_CHAN_WIDTH_NUM] = {
[NL80211_BAND_2GHZ] = {
[NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN,
[NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN,
[NL80211_CHAN_WIDTH_20_NOHT] = MODE_11BE_EHT20_2G,
[NL80211_CHAN_WIDTH_20] = MODE_11BE_EHT20_2G,
[NL80211_CHAN_WIDTH_40] = MODE_11BE_EHT40_2G,
[NL80211_CHAN_WIDTH_80] = MODE_UNKNOWN,
[NL80211_CHAN_WIDTH_80P80] = MODE_UNKNOWN,
[NL80211_CHAN_WIDTH_160] = MODE_UNKNOWN,
[NL80211_CHAN_WIDTH_320] = MODE_UNKNOWN,
},
[NL80211_BAND_5GHZ] = {
[NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN,
[NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN,
[NL80211_CHAN_WIDTH_20_NOHT] = MODE_11BE_EHT20,
[NL80211_CHAN_WIDTH_20] = MODE_11BE_EHT20,
[NL80211_CHAN_WIDTH_40] = MODE_11BE_EHT40,
[NL80211_CHAN_WIDTH_80] = MODE_11BE_EHT80,
[NL80211_CHAN_WIDTH_160] = MODE_11BE_EHT160,
[NL80211_CHAN_WIDTH_80P80] = MODE_11BE_EHT80_80,
[NL80211_CHAN_WIDTH_320] = MODE_11BE_EHT320,
},
[NL80211_BAND_6GHZ] = {
[NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN,
[NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN,
[NL80211_CHAN_WIDTH_20_NOHT] = MODE_11BE_EHT20,
[NL80211_CHAN_WIDTH_20] = MODE_11BE_EHT20,
[NL80211_CHAN_WIDTH_40] = MODE_11BE_EHT40,
[NL80211_CHAN_WIDTH_80] = MODE_11BE_EHT80,
[NL80211_CHAN_WIDTH_160] = MODE_11BE_EHT160,
[NL80211_CHAN_WIDTH_80P80] = MODE_11BE_EHT80_80,
[NL80211_CHAN_WIDTH_320] = MODE_11BE_EHT320,
},
};
const struct htt_rx_ring_tlv_filter ath12k_mac_mon_status_filter_default = {
.rx_filter = HTT_RX_FILTER_TLV_FLAGS_MPDU_START |
HTT_RX_FILTER_TLV_FLAGS_PPDU_END |
HTT_RX_FILTER_TLV_FLAGS_PPDU_END_STATUS_DONE,
.pkt_filter_flags0 = HTT_RX_FP_MGMT_FILTER_FLAGS0,
.pkt_filter_flags1 = HTT_RX_FP_MGMT_FILTER_FLAGS1,
.pkt_filter_flags2 = HTT_RX_FP_CTRL_FILTER_FLASG2,
.pkt_filter_flags3 = HTT_RX_FP_DATA_FILTER_FLASG3 |
HTT_RX_FP_CTRL_FILTER_FLASG3
};
#define ATH12K_MAC_FIRST_OFDM_RATE_IDX 4
#define ath12k_g_rates ath12k_legacy_rates
#define ath12k_g_rates_size (ARRAY_SIZE(ath12k_legacy_rates))
#define ath12k_a_rates (ath12k_legacy_rates + 4)
#define ath12k_a_rates_size (ARRAY_SIZE(ath12k_legacy_rates) - 4)
#define ATH12K_MAC_SCAN_TIMEOUT_MSECS 200 /* in msecs */
static const u32 ath12k_smps_map[] = {
[WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC,
[WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC,
[WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE,
[WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE,
};
static int ath12k_start_vdev_delay(struct ath12k *ar,
struct ath12k_vif *arvif);
static void ath12k_mac_stop(struct ath12k *ar);
static int ath12k_mac_vdev_create(struct ath12k *ar, struct ieee80211_vif *vif);
static int ath12k_mac_vdev_delete(struct ath12k *ar, struct ieee80211_vif *vif);
static const char *ath12k_mac_phymode_str(enum wmi_phy_mode mode)
{
switch (mode) {
case MODE_11A:
return "11a";
case MODE_11G:
return "11g";
case MODE_11B:
return "11b";
case MODE_11GONLY:
return "11gonly";
case MODE_11NA_HT20:
return "11na-ht20";
case MODE_11NG_HT20:
return "11ng-ht20";
case MODE_11NA_HT40:
return "11na-ht40";
case MODE_11NG_HT40:
return "11ng-ht40";
case MODE_11AC_VHT20:
return "11ac-vht20";
case MODE_11AC_VHT40:
return "11ac-vht40";
case MODE_11AC_VHT80:
return "11ac-vht80";
case MODE_11AC_VHT160:
return "11ac-vht160";
case MODE_11AC_VHT80_80:
return "11ac-vht80+80";
case MODE_11AC_VHT20_2G:
return "11ac-vht20-2g";
case MODE_11AC_VHT40_2G:
return "11ac-vht40-2g";
case MODE_11AC_VHT80_2G:
return "11ac-vht80-2g";
case MODE_11AX_HE20:
return "11ax-he20";
case MODE_11AX_HE40:
return "11ax-he40";
case MODE_11AX_HE80:
return "11ax-he80";
case MODE_11AX_HE80_80:
return "11ax-he80+80";
case MODE_11AX_HE160:
return "11ax-he160";
case MODE_11AX_HE20_2G:
return "11ax-he20-2g";
case MODE_11AX_HE40_2G:
return "11ax-he40-2g";
case MODE_11AX_HE80_2G:
return "11ax-he80-2g";
case MODE_11BE_EHT20:
return "11be-eht20";
case MODE_11BE_EHT40:
return "11be-eht40";
case MODE_11BE_EHT80:
return "11be-eht80";
case MODE_11BE_EHT80_80:
return "11be-eht80+80";
case MODE_11BE_EHT160:
return "11be-eht160";
case MODE_11BE_EHT160_160:
return "11be-eht160+160";
case MODE_11BE_EHT320:
return "11be-eht320";
case MODE_11BE_EHT20_2G:
return "11be-eht20-2g";
case MODE_11BE_EHT40_2G:
return "11be-eht40-2g";
case MODE_UNKNOWN:
/* skip */
break;
/* no default handler to allow compiler to check that the
* enum is fully handled
*/
}
return "<unknown>";
}
enum rate_info_bw
ath12k_mac_bw_to_mac80211_bw(enum ath12k_supported_bw bw)
{
u8 ret = RATE_INFO_BW_20;
switch (bw) {
case ATH12K_BW_20:
ret = RATE_INFO_BW_20;
break;
case ATH12K_BW_40:
ret = RATE_INFO_BW_40;
break;
case ATH12K_BW_80:
ret = RATE_INFO_BW_80;
break;
case ATH12K_BW_160:
ret = RATE_INFO_BW_160;
break;
case ATH12K_BW_320:
ret = RATE_INFO_BW_320;
break;
}
return ret;
}
enum ath12k_supported_bw ath12k_mac_mac80211_bw_to_ath12k_bw(enum rate_info_bw bw)
{
switch (bw) {
case RATE_INFO_BW_20:
return ATH12K_BW_20;
case RATE_INFO_BW_40:
return ATH12K_BW_40;
case RATE_INFO_BW_80:
return ATH12K_BW_80;
case RATE_INFO_BW_160:
return ATH12K_BW_160;
case RATE_INFO_BW_320:
return ATH12K_BW_320;
default:
return ATH12K_BW_20;
}
}
int ath12k_mac_hw_ratecode_to_legacy_rate(u8 hw_rc, u8 preamble, u8 *rateidx,
u16 *rate)
{
/* As default, it is OFDM rates */
int i = ATH12K_MAC_FIRST_OFDM_RATE_IDX;
int max_rates_idx = ath12k_g_rates_size;
if (preamble == WMI_RATE_PREAMBLE_CCK) {
hw_rc &= ~ATH12K_HW_RATECODE_CCK_SHORT_PREAM_MASK;
i = 0;
max_rates_idx = ATH12K_MAC_FIRST_OFDM_RATE_IDX;
}
while (i < max_rates_idx) {
if (hw_rc == ath12k_legacy_rates[i].hw_value) {
*rateidx = i;
*rate = ath12k_legacy_rates[i].bitrate;
return 0;
}
i++;
}
return -EINVAL;
}
u8 ath12k_mac_bitrate_to_idx(const struct ieee80211_supported_band *sband,
u32 bitrate)
{
int i;
for (i = 0; i < sband->n_bitrates; i++)
if (sband->bitrates[i].bitrate == bitrate)
return i;
return 0;
}
static u32
ath12k_mac_max_ht_nss(const u8 *ht_mcs_mask)
{
int nss;
for (nss = IEEE80211_HT_MCS_MASK_LEN - 1; nss >= 0; nss--)
if (ht_mcs_mask[nss])
return nss + 1;
return 1;
}
static u32
ath12k_mac_max_vht_nss(const u16 *vht_mcs_mask)
{
int nss;
for (nss = NL80211_VHT_NSS_MAX - 1; nss >= 0; nss--)
if (vht_mcs_mask[nss])
return nss + 1;
return 1;
}
static u8 ath12k_parse_mpdudensity(u8 mpdudensity)
{
/* From IEEE Std 802.11-2020 defined values for "Minimum MPDU Start Spacing":
* 0 for no restriction
* 1 for 1/4 us
* 2 for 1/2 us
* 3 for 1 us
* 4 for 2 us
* 5 for 4 us
* 6 for 8 us
* 7 for 16 us
*/
switch (mpdudensity) {
case 0:
return 0;
case 1:
case 2:
case 3:
/* Our lower layer calculations limit our precision to
* 1 microsecond
*/
return 1;
case 4:
return 2;
case 5:
return 4;
case 6:
return 8;
case 7:
return 16;
default:
return 0;
}
}
static int ath12k_mac_vif_chan(struct ieee80211_vif *vif,
struct cfg80211_chan_def *def)
{
struct ieee80211_chanctx_conf *conf;
rcu_read_lock();
conf = rcu_dereference(vif->bss_conf.chanctx_conf);
if (!conf) {
rcu_read_unlock();
return -ENOENT;
}
*def = conf->def;
rcu_read_unlock();
return 0;
}
static bool ath12k_mac_bitrate_is_cck(int bitrate)
{
switch (bitrate) {
case 10:
case 20:
case 55:
case 110:
return true;
}
return false;
}
u8 ath12k_mac_hw_rate_to_idx(const struct ieee80211_supported_band *sband,
u8 hw_rate, bool cck)
{
const struct ieee80211_rate *rate;
int i;
for (i = 0; i < sband->n_bitrates; i++) {
rate = &sband->bitrates[i];
if (ath12k_mac_bitrate_is_cck(rate->bitrate) != cck)
continue;
if (rate->hw_value == hw_rate)
return i;
else if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE &&
rate->hw_value_short == hw_rate)
return i;
}
return 0;
}
static u8 ath12k_mac_bitrate_to_rate(int bitrate)
{
return DIV_ROUND_UP(bitrate, 5) |
(ath12k_mac_bitrate_is_cck(bitrate) ? BIT(7) : 0);
}
static void ath12k_get_arvif_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ath12k_vif_iter *arvif_iter = data;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
if (arvif->vdev_id == arvif_iter->vdev_id &&
arvif->ar == arvif_iter->ar)
arvif_iter->arvif = arvif;
}
struct ath12k_vif *ath12k_mac_get_arvif(struct ath12k *ar, u32 vdev_id)
{
struct ath12k_vif_iter arvif_iter = {};
u32 flags;
arvif_iter.vdev_id = vdev_id;
arvif_iter.ar = ar;
flags = IEEE80211_IFACE_ITER_RESUME_ALL;
ieee80211_iterate_active_interfaces_atomic(ath12k_ar_to_hw(ar),
flags,
ath12k_get_arvif_iter,
&arvif_iter);
if (!arvif_iter.arvif) {
ath12k_warn(ar->ab, "No VIF found for vdev %d\n", vdev_id);
return NULL;
}
return arvif_iter.arvif;
}
struct ath12k_vif *ath12k_mac_get_arvif_by_vdev_id(struct ath12k_base *ab,
u32 vdev_id)
{
int i;
struct ath12k_pdev *pdev;
struct ath12k_vif *arvif;
for (i = 0; i < ab->num_radios; i++) {
pdev = rcu_dereference(ab->pdevs_active[i]);
if (pdev && pdev->ar &&
(pdev->ar->allocated_vdev_map & (1LL << vdev_id))) {
arvif = ath12k_mac_get_arvif(pdev->ar, vdev_id);
if (arvif)
return arvif;
}
}
return NULL;
}
struct ath12k *ath12k_mac_get_ar_by_vdev_id(struct ath12k_base *ab, u32 vdev_id)
{
int i;
struct ath12k_pdev *pdev;
for (i = 0; i < ab->num_radios; i++) {
pdev = rcu_dereference(ab->pdevs_active[i]);
if (pdev && pdev->ar) {
if (pdev->ar->allocated_vdev_map & (1LL << vdev_id))
return pdev->ar;
}
}
return NULL;
}
struct ath12k *ath12k_mac_get_ar_by_pdev_id(struct ath12k_base *ab, u32 pdev_id)
{
int i;
struct ath12k_pdev *pdev;
if (ab->hw_params->single_pdev_only) {
pdev = rcu_dereference(ab->pdevs_active[0]);
return pdev ? pdev->ar : NULL;
}
if (WARN_ON(pdev_id > ab->num_radios))
return NULL;
for (i = 0; i < ab->num_radios; i++) {
pdev = rcu_dereference(ab->pdevs_active[i]);
if (pdev && pdev->pdev_id == pdev_id)
return (pdev->ar ? pdev->ar : NULL);
}
return NULL;
}
static struct ath12k *ath12k_mac_get_ar_by_chan(struct ieee80211_hw *hw,
struct ieee80211_channel *channel)
{
struct ath12k_hw *ah = hw->priv;
struct ath12k *ar;
int i;
ar = ah->radio;
if (ah->num_radio == 1)
return ar;
for_each_ar(ah, ar, i) {
if (channel->center_freq >= ar->freq_low &&
channel->center_freq <= ar->freq_high)
return ar;
}
return NULL;
}
static struct ath12k *ath12k_get_ar_by_ctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
if (!ctx)
return NULL;
return ath12k_mac_get_ar_by_chan(hw, ctx->def.chan);
}
static struct ath12k *ath12k_get_ar_by_vif(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
/* If there is one pdev within ah, then we return
* ar directly.
*/
if (ah->num_radio == 1)
return ah->radio;
if (arvif->is_created)
return arvif->ar;
return NULL;
}
static struct ath12k_vif *ath12k_mac_get_vif_up(struct ath12k *ar)
{
struct ath12k_vif *arvif;
lockdep_assert_held(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
if (arvif->is_up)
return arvif;
}
return NULL;
}
static bool ath12k_mac_band_match(enum nl80211_band band1, enum WMI_HOST_WLAN_BAND band2)
{
switch (band1) {
case NL80211_BAND_2GHZ:
if (band2 & WMI_HOST_WLAN_2G_CAP)
return true;
break;
case NL80211_BAND_5GHZ:
case NL80211_BAND_6GHZ:
if (band2 & WMI_HOST_WLAN_5G_CAP)
return true;
break;
default:
return false;
}
return false;
}
static u8 ath12k_mac_get_target_pdev_id_from_vif(struct ath12k_vif *arvif)
{
struct ath12k *ar = arvif->ar;
struct ath12k_base *ab = ar->ab;
struct ieee80211_vif *vif = arvif->vif;
struct cfg80211_chan_def def;
enum nl80211_band band;
u8 pdev_id = ab->fw_pdev[0].pdev_id;
int i;
if (WARN_ON(ath12k_mac_vif_chan(vif, &def)))
return pdev_id;
band = def.chan->band;
for (i = 0; i < ab->fw_pdev_count; i++) {
if (ath12k_mac_band_match(band, ab->fw_pdev[i].supported_bands))
return ab->fw_pdev[i].pdev_id;
}
return pdev_id;
}
u8 ath12k_mac_get_target_pdev_id(struct ath12k *ar)
{
struct ath12k_vif *arvif;
struct ath12k_base *ab = ar->ab;
if (!ab->hw_params->single_pdev_only)
return ar->pdev->pdev_id;
arvif = ath12k_mac_get_vif_up(ar);
/* fw_pdev array has pdev ids derived from phy capability
* service ready event (pdev_and_hw_link_ids).
* If no vif is active, return default first index.
*/
if (!arvif)
return ar->ab->fw_pdev[0].pdev_id;
/* If active vif is found, return the pdev id matching chandef band */
return ath12k_mac_get_target_pdev_id_from_vif(arvif);
}
static void ath12k_pdev_caps_update(struct ath12k *ar)
{
struct ath12k_base *ab = ar->ab;
ar->max_tx_power = ab->target_caps.hw_max_tx_power;
/* FIXME: Set min_tx_power to ab->target_caps.hw_min_tx_power.
* But since the received value in svcrdy is same as hw_max_tx_power,
* we can set ar->min_tx_power to 0 currently until
* this is fixed in firmware
*/
ar->min_tx_power = 0;
ar->txpower_limit_2g = ar->max_tx_power;
ar->txpower_limit_5g = ar->max_tx_power;
ar->txpower_scale = WMI_HOST_TP_SCALE_MAX;
}
static int ath12k_mac_txpower_recalc(struct ath12k *ar)
{
struct ath12k_pdev *pdev = ar->pdev;
struct ath12k_vif *arvif;
int ret, txpower = -1;
u32 param;
lockdep_assert_held(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
if (arvif->txpower <= 0)
continue;
if (txpower == -1)
txpower = arvif->txpower;
else
txpower = min(txpower, arvif->txpower);
}
if (txpower == -1)
return 0;
/* txpwr is set as 2 units per dBm in FW*/
txpower = min_t(u32, max_t(u32, ar->min_tx_power, txpower),
ar->max_tx_power) * 2;
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "txpower to set in hw %d\n",
txpower / 2);
if ((pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) &&
ar->txpower_limit_2g != txpower) {
param = WMI_PDEV_PARAM_TXPOWER_LIMIT2G;
ret = ath12k_wmi_pdev_set_param(ar, param,
txpower, ar->pdev->pdev_id);
if (ret)
goto fail;
ar->txpower_limit_2g = txpower;
}
if ((pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) &&
ar->txpower_limit_5g != txpower) {
param = WMI_PDEV_PARAM_TXPOWER_LIMIT5G;
ret = ath12k_wmi_pdev_set_param(ar, param,
txpower, ar->pdev->pdev_id);
if (ret)
goto fail;
ar->txpower_limit_5g = txpower;
}
return 0;
fail:
ath12k_warn(ar->ab, "failed to recalc txpower limit %d using pdev param %d: %d\n",
txpower / 2, param, ret);
return ret;
}
static int ath12k_recalc_rtscts_prot(struct ath12k_vif *arvif)
{
struct ath12k *ar = arvif->ar;
u32 vdev_param, rts_cts;
int ret;
lockdep_assert_held(&ar->conf_mutex);
vdev_param = WMI_VDEV_PARAM_ENABLE_RTSCTS;
/* Enable RTS/CTS protection for sw retries (when legacy stations
* are in BSS) or by default only for second rate series.
* TODO: Check if we need to enable CTS 2 Self in any case
*/
rts_cts = WMI_USE_RTS_CTS;
if (arvif->num_legacy_stations > 0)
rts_cts |= WMI_RTSCTS_ACROSS_SW_RETRIES << 4;
else
rts_cts |= WMI_RTSCTS_FOR_SECOND_RATESERIES << 4;
/* Need not send duplicate param value to firmware */
if (arvif->rtscts_prot_mode == rts_cts)
return 0;
arvif->rtscts_prot_mode = rts_cts;
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %d recalc rts/cts prot %d\n",
arvif->vdev_id, rts_cts);
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
vdev_param, rts_cts);
if (ret)
ath12k_warn(ar->ab, "failed to recalculate rts/cts prot for vdev %d: %d\n",
arvif->vdev_id, ret);
return ret;
}
static int ath12k_mac_set_kickout(struct ath12k_vif *arvif)
{
struct ath12k *ar = arvif->ar;
u32 param;
int ret;
ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_STA_KICKOUT_TH,
ATH12K_KICKOUT_THRESHOLD,
ar->pdev->pdev_id);
if (ret) {
ath12k_warn(ar->ab, "failed to set kickout threshold on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
param = WMI_VDEV_PARAM_AP_KEEPALIVE_MIN_IDLE_INACTIVE_TIME_SECS;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param,
ATH12K_KEEPALIVE_MIN_IDLE);
if (ret) {
ath12k_warn(ar->ab, "failed to set keepalive minimum idle time on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
param = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_IDLE_INACTIVE_TIME_SECS;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param,
ATH12K_KEEPALIVE_MAX_IDLE);
if (ret) {
ath12k_warn(ar->ab, "failed to set keepalive maximum idle time on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
param = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_UNRESPONSIVE_TIME_SECS;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param,
ATH12K_KEEPALIVE_MAX_UNRESPONSIVE);
if (ret) {
ath12k_warn(ar->ab, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
void ath12k_mac_peer_cleanup_all(struct ath12k *ar)
{
struct ath12k_peer *peer, *tmp;
struct ath12k_base *ab = ar->ab;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ab->base_lock);
list_for_each_entry_safe(peer, tmp, &ab->peers, list) {
ath12k_dp_rx_peer_tid_cleanup(ar, peer);
list_del(&peer->list);
kfree(peer);
}
spin_unlock_bh(&ab->base_lock);
ar->num_peers = 0;
ar->num_stations = 0;
}
static int ath12k_mac_vdev_setup_sync(struct ath12k *ar)
{
lockdep_assert_held(&ar->conf_mutex);
if (test_bit(ATH12K_FLAG_CRASH_FLUSH, &ar->ab->dev_flags))
return -ESHUTDOWN;
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "vdev setup timeout %d\n",
ATH12K_VDEV_SETUP_TIMEOUT_HZ);
if (!wait_for_completion_timeout(&ar->vdev_setup_done,
ATH12K_VDEV_SETUP_TIMEOUT_HZ))
return -ETIMEDOUT;
return ar->last_wmi_vdev_start_status ? -EINVAL : 0;
}
static int ath12k_monitor_vdev_up(struct ath12k *ar, int vdev_id)
{
struct ath12k_wmi_vdev_up_params params = {};
int ret;
params.vdev_id = vdev_id;
params.bssid = ar->mac_addr;
ret = ath12k_wmi_vdev_up(ar, ¶ms);
if (ret) {
ath12k_warn(ar->ab, "failed to put up monitor vdev %i: %d\n",
vdev_id, ret);
return ret;
}
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor vdev %i started\n",
vdev_id);
return 0;
}
static int ath12k_mac_monitor_vdev_start(struct ath12k *ar, int vdev_id,
struct cfg80211_chan_def *chandef)
{
struct ieee80211_channel *channel;
struct wmi_vdev_start_req_arg arg = {};
struct ath12k_wmi_vdev_up_params params = {};
int ret;
lockdep_assert_held(&ar->conf_mutex);
channel = chandef->chan;
arg.vdev_id = vdev_id;
arg.freq = channel->center_freq;
arg.band_center_freq1 = chandef->center_freq1;
arg.band_center_freq2 = chandef->center_freq2;
arg.mode = ath12k_phymodes[chandef->chan->band][chandef->width];
arg.chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR);
arg.min_power = 0;
arg.max_power = channel->max_power;
arg.max_reg_power = channel->max_reg_power;
arg.max_antenna_gain = channel->max_antenna_gain;
arg.pref_tx_streams = ar->num_tx_chains;
arg.pref_rx_streams = ar->num_rx_chains;
arg.punct_bitmap = 0xFFFFFFFF;
arg.passive |= !!(chandef->chan->flags & IEEE80211_CHAN_NO_IR);
reinit_completion(&ar->vdev_setup_done);
reinit_completion(&ar->vdev_delete_done);
ret = ath12k_wmi_vdev_start(ar, &arg, false);
if (ret) {
ath12k_warn(ar->ab, "failed to request monitor vdev %i start: %d\n",
vdev_id, ret);
return ret;
}
ret = ath12k_mac_vdev_setup_sync(ar);
if (ret) {
ath12k_warn(ar->ab, "failed to synchronize setup for monitor vdev %i start: %d\n",
vdev_id, ret);
return ret;
}
params.vdev_id = vdev_id;
params.bssid = ar->mac_addr;
ret = ath12k_wmi_vdev_up(ar, ¶ms);
if (ret) {
ath12k_warn(ar->ab, "failed to put up monitor vdev %i: %d\n",
vdev_id, ret);
goto vdev_stop;
}
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor vdev %i started\n",
vdev_id);
return 0;
vdev_stop:
ret = ath12k_wmi_vdev_stop(ar, vdev_id);
if (ret)
ath12k_warn(ar->ab, "failed to stop monitor vdev %i after start failure: %d\n",
vdev_id, ret);
return ret;
}
static int ath12k_mac_monitor_vdev_stop(struct ath12k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_setup_done);
ret = ath12k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
if (ret)
ath12k_warn(ar->ab, "failed to request monitor vdev %i stop: %d\n",
ar->monitor_vdev_id, ret);
ret = ath12k_mac_vdev_setup_sync(ar);
if (ret)
ath12k_warn(ar->ab, "failed to synchronize monitor vdev %i stop: %d\n",
ar->monitor_vdev_id, ret);
ret = ath12k_wmi_vdev_down(ar, ar->monitor_vdev_id);
if (ret)
ath12k_warn(ar->ab, "failed to put down monitor vdev %i: %d\n",
ar->monitor_vdev_id, ret);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor vdev %i stopped\n",
ar->monitor_vdev_id);
return ret;
}
static int ath12k_mac_monitor_vdev_create(struct ath12k *ar)
{
struct ath12k_pdev *pdev = ar->pdev;
struct ath12k_wmi_vdev_create_arg arg = {};
int bit, ret;
u8 tmp_addr[6];
u16 nss;
lockdep_assert_held(&ar->conf_mutex);
if (ar->monitor_vdev_created)
return 0;
if (ar->ab->free_vdev_map == 0) {
ath12k_warn(ar->ab, "failed to find free vdev id for monitor vdev\n");
return -ENOMEM;
}
bit = __ffs64(ar->ab->free_vdev_map);
ar->monitor_vdev_id = bit;
arg.if_id = ar->monitor_vdev_id;
arg.type = WMI_VDEV_TYPE_MONITOR;
arg.subtype = WMI_VDEV_SUBTYPE_NONE;
arg.pdev_id = pdev->pdev_id;
arg.if_stats_id = ATH12K_INVAL_VDEV_STATS_ID;
if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) {
arg.chains[NL80211_BAND_2GHZ].tx = ar->num_tx_chains;
arg.chains[NL80211_BAND_2GHZ].rx = ar->num_rx_chains;
}
if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) {
arg.chains[NL80211_BAND_5GHZ].tx = ar->num_tx_chains;
arg.chains[NL80211_BAND_5GHZ].rx = ar->num_rx_chains;
}
ret = ath12k_wmi_vdev_create(ar, tmp_addr, &arg);
if (ret) {
ath12k_warn(ar->ab, "failed to request monitor vdev %i creation: %d\n",
ar->monitor_vdev_id, ret);
ar->monitor_vdev_id = -1;
return ret;
}
nss = hweight32(ar->cfg_tx_chainmask) ? : 1;
ret = ath12k_wmi_vdev_set_param_cmd(ar, ar->monitor_vdev_id,
WMI_VDEV_PARAM_NSS, nss);
if (ret) {
ath12k_warn(ar->ab, "failed to set vdev %d chainmask 0x%x, nss %d :%d\n",
ar->monitor_vdev_id, ar->cfg_tx_chainmask, nss, ret);
return ret;
}
ret = ath12k_mac_txpower_recalc(ar);
if (ret)
return ret;
ar->allocated_vdev_map |= 1LL << ar->monitor_vdev_id;
ar->ab->free_vdev_map &= ~(1LL << ar->monitor_vdev_id);
ar->num_created_vdevs++;
ar->monitor_vdev_created = true;
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor vdev %d created\n",
ar->monitor_vdev_id);
return 0;
}
static int ath12k_mac_monitor_vdev_delete(struct ath12k *ar)
{
int ret;
unsigned long time_left;
lockdep_assert_held(&ar->conf_mutex);
if (!ar->monitor_vdev_created)
return 0;
reinit_completion(&ar->vdev_delete_done);
ret = ath12k_wmi_vdev_delete(ar, ar->monitor_vdev_id);
if (ret) {
ath12k_warn(ar->ab, "failed to request wmi monitor vdev %i removal: %d\n",
ar->monitor_vdev_id, ret);
return ret;
}
time_left = wait_for_completion_timeout(&ar->vdev_delete_done,
ATH12K_VDEV_DELETE_TIMEOUT_HZ);
if (time_left == 0) {
ath12k_warn(ar->ab, "Timeout in receiving vdev delete response\n");
} else {
ar->allocated_vdev_map &= ~(1LL << ar->monitor_vdev_id);
ar->ab->free_vdev_map |= 1LL << (ar->monitor_vdev_id);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor vdev %d deleted\n",
ar->monitor_vdev_id);
ar->num_created_vdevs--;
ar->monitor_vdev_id = -1;
ar->monitor_vdev_created = false;
}
return ret;
}
static void
ath12k_mac_get_any_chandef_iter(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *conf,
void *data)
{
struct cfg80211_chan_def **def = data;
*def = &conf->def;
}
static int ath12k_mac_monitor_start(struct ath12k *ar)
{
struct cfg80211_chan_def *chandef = NULL;
int ret;
lockdep_assert_held(&ar->conf_mutex);
if (ar->monitor_started)
return 0;
ieee80211_iter_chan_contexts_atomic(ath12k_ar_to_hw(ar),
ath12k_mac_get_any_chandef_iter,
&chandef);
if (!chandef)
return 0;
ret = ath12k_mac_monitor_vdev_start(ar, ar->monitor_vdev_id, chandef);
if (ret) {
ath12k_warn(ar->ab, "failed to start monitor vdev: %d\n", ret);
ath12k_mac_monitor_vdev_delete(ar);
return ret;
}
ar->monitor_started = true;
ar->num_started_vdevs++;
ret = ath12k_dp_tx_htt_monitor_mode_ring_config(ar, false);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor started ret %d\n", ret);
return ret;
}
static int ath12k_mac_monitor_stop(struct ath12k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
if (!ar->monitor_started)
return 0;
ret = ath12k_mac_monitor_vdev_stop(ar);
if (ret) {
ath12k_warn(ar->ab, "failed to stop monitor vdev: %d\n", ret);
return ret;
}
ar->monitor_started = false;
ar->num_started_vdevs--;
ret = ath12k_dp_tx_htt_monitor_mode_ring_config(ar, true);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor stopped ret %d\n", ret);
return ret;
}
static int ath12k_mac_vdev_stop(struct ath12k_vif *arvif)
{
struct ath12k *ar = arvif->ar;
int ret;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_setup_done);
ret = ath12k_wmi_vdev_stop(ar, arvif->vdev_id);
if (ret) {
ath12k_warn(ar->ab, "failed to stop WMI vdev %i: %d\n",
arvif->vdev_id, ret);
goto err;
}
ret = ath12k_mac_vdev_setup_sync(ar);
if (ret) {
ath12k_warn(ar->ab, "failed to synchronize setup for vdev %i: %d\n",
arvif->vdev_id, ret);
goto err;
}
WARN_ON(ar->num_started_vdevs == 0);
ar->num_started_vdevs--;
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "vdev %pM stopped, vdev_id %d\n",
arvif->vif->addr, arvif->vdev_id);
if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) {
clear_bit(ATH12K_CAC_RUNNING, &ar->dev_flags);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "CAC Stopped for vdev %d\n",
arvif->vdev_id);
}
return 0;
err:
return ret;
}
static int ath12k_mac_config(struct ath12k *ar, u32 changed)
{
struct ieee80211_hw *hw = ath12k_ar_to_hw(ar);
struct ieee80211_conf *conf = &hw->conf;
int ret = 0;
mutex_lock(&ar->conf_mutex);
if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
ar->monitor_conf_enabled = conf->flags & IEEE80211_CONF_MONITOR;
if (ar->monitor_conf_enabled) {
if (ar->monitor_vdev_created)
goto exit;
ret = ath12k_mac_monitor_vdev_create(ar);
if (ret)
goto exit;
ret = ath12k_mac_monitor_start(ar);
if (ret)
goto err_mon_del;
} else {
if (!ar->monitor_vdev_created)
goto exit;
ret = ath12k_mac_monitor_stop(ar);
if (ret)
goto exit;
ath12k_mac_monitor_vdev_delete(ar);
}
}
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
err_mon_del:
ath12k_mac_monitor_vdev_delete(ar);
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath12k_mac_op_config(struct ieee80211_hw *hw, u32 changed)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar;
int ret;
ar = ath12k_ah_to_ar(ah, 0);
ret = ath12k_mac_config(ar, changed);
if (ret)
ath12k_warn(ar->ab, "failed to update config pdev idx %d: %d\n",
ar->pdev_idx, ret);
return ret;
}
static int ath12k_mac_setup_bcn_p2p_ie(struct ath12k_vif *arvif,
struct sk_buff *bcn)
{
struct ath12k *ar = arvif->ar;
struct ieee80211_mgmt *mgmt;
const u8 *p2p_ie;
int ret;
mgmt = (void *)bcn->data;
p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
mgmt->u.beacon.variable,
bcn->len - (mgmt->u.beacon.variable -
bcn->data));
if (!p2p_ie) {
ath12k_warn(ar->ab, "no P2P ie found in beacon\n");
return -ENOENT;
}
ret = ath12k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie);
if (ret) {
ath12k_warn(ar->ab, "failed to submit P2P GO bcn ie for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
static int ath12k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui,
u8 oui_type, size_t ie_offset)
{
const u8 *next, *end;
size_t len;
u8 *ie;
if (WARN_ON(skb->len < ie_offset))
return -EINVAL;
ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type,
skb->data + ie_offset,
skb->len - ie_offset);
if (!ie)
return -ENOENT;
len = ie[1] + 2;
end = skb->data + skb->len;
next = ie + len;
if (WARN_ON(next > end))
return -EINVAL;
memmove(ie, next, end - next);
skb_trim(skb, skb->len - len);
return 0;
}
static void ath12k_mac_set_arvif_ies(struct ath12k_vif *arvif, struct sk_buff *bcn,
u8 bssid_index, bool *nontx_profile_found)
{
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)bcn->data;
const struct element *elem, *nontx, *index, *nie;
const u8 *start, *tail;
u16 rem_len;
u8 i;
start = bcn->data + ieee80211_get_hdrlen_from_skb(bcn) + sizeof(mgmt->u.beacon);
tail = skb_tail_pointer(bcn);
rem_len = tail - start;
arvif->rsnie_present = false;
arvif->wpaie_present = false;
if (cfg80211_find_ie(WLAN_EID_RSN, start, rem_len))
arvif->rsnie_present = true;
if (cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, WLAN_OUI_TYPE_MICROSOFT_WPA,
start, rem_len))
arvif->wpaie_present = true;
/* Return from here for the transmitted profile */
if (!bssid_index)
return;
/* Initial rsnie_present for the nontransmitted profile is set to be same as that
* of the transmitted profile. It will be changed if security configurations are
* different.
*/
*nontx_profile_found = false;
for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, rem_len) {
/* Fixed minimum MBSSID element length with at least one
* nontransmitted BSSID profile is 12 bytes as given below;
* 1 (max BSSID indicator) +
* 2 (Nontransmitted BSSID profile: Subelement ID + length) +
* 4 (Nontransmitted BSSID Capabilities: tag + length + info)
* 2 (Nontransmitted BSSID SSID: tag + length)
* 3 (Nontransmitted BSSID Index: tag + length + BSSID index
*/
if (elem->datalen < 12 || elem->data[0] < 1)
continue; /* Max BSSID indicator must be >=1 */
for_each_element(nontx, elem->data + 1, elem->datalen - 1) {
start = nontx->data;
if (nontx->id != 0 || nontx->datalen < 4)
continue; /* Invalid nontransmitted profile */
if (nontx->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
nontx->data[1] != 2) {
continue; /* Missing nontransmitted BSS capabilities */
}
if (nontx->data[4] != WLAN_EID_SSID)
continue; /* Missing SSID for nontransmitted BSS */
index = cfg80211_find_elem(WLAN_EID_MULTI_BSSID_IDX,
start, nontx->datalen);
if (!index || index->datalen < 1 || index->data[0] == 0)
continue; /* Invalid MBSSID Index element */
if (index->data[0] == bssid_index) {
*nontx_profile_found = true;
if (cfg80211_find_ie(WLAN_EID_RSN,
nontx->data,
nontx->datalen)) {
arvif->rsnie_present = true;
return;
} else if (!arvif->rsnie_present) {
return; /* Both tx and nontx BSS are open */
}
nie = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
nontx->data,
nontx->datalen);
if (!nie || nie->datalen < 2)
return; /* Invalid non-inheritance element */
for (i = 1; i < nie->datalen - 1; i++) {
if (nie->data[i] == WLAN_EID_RSN) {
arvif->rsnie_present = false;
break;
}
}
return;
}
}
}
}
static int ath12k_mac_setup_bcn_tmpl_ema(struct ath12k_vif *arvif)
{
struct ieee80211_bss_conf *bss_conf = &arvif->vif->bss_conf;
struct ath12k_wmi_bcn_tmpl_ema_arg ema_args;
struct ieee80211_ema_beacons *beacons;
struct ath12k_vif *tx_arvif;
bool nontx_profile_found = false;
int ret = 0;
u8 i;
tx_arvif = ath12k_vif_to_arvif(arvif->vif->mbssid_tx_vif);
beacons = ieee80211_beacon_get_template_ema_list(ath12k_ar_to_hw(tx_arvif->ar),
tx_arvif->vif, 0);
if (!beacons || !beacons->cnt) {
ath12k_warn(arvif->ar->ab,
"failed to get ema beacon templates from mac80211\n");
return -EPERM;
}
if (tx_arvif == arvif)
ath12k_mac_set_arvif_ies(arvif, beacons->bcn[0].skb, 0, NULL);
for (i = 0; i < beacons->cnt; i++) {
if (tx_arvif != arvif && !nontx_profile_found)
ath12k_mac_set_arvif_ies(arvif, beacons->bcn[i].skb,
bss_conf->bssid_index,
&nontx_profile_found);
ema_args.bcn_cnt = beacons->cnt;
ema_args.bcn_index = i;
ret = ath12k_wmi_bcn_tmpl(tx_arvif->ar, tx_arvif->vdev_id,
&beacons->bcn[i].offs,
beacons->bcn[i].skb, &ema_args);
if (ret) {
ath12k_warn(tx_arvif->ar->ab,
"failed to set ema beacon template id %i error %d\n",
i, ret);
break;
}
}
if (tx_arvif != arvif && !nontx_profile_found)
ath12k_warn(arvif->ar->ab,
"nontransmitted bssid index %u not found in beacon template\n",
bss_conf->bssid_index);
ieee80211_beacon_free_ema_list(beacons);
return ret;
}
static int ath12k_mac_setup_bcn_tmpl(struct ath12k_vif *arvif)
{
struct ath12k_vif *tx_arvif = arvif;
struct ath12k *ar = arvif->ar;
struct ath12k_base *ab = ar->ab;
struct ieee80211_vif *vif = arvif->vif;
struct ieee80211_mutable_offsets offs = {};
bool nontx_profile_found = false;
struct sk_buff *bcn;
int ret;
if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
return 0;
if (vif->mbssid_tx_vif) {
tx_arvif = ath12k_vif_to_arvif(vif->mbssid_tx_vif);
if (tx_arvif != arvif && arvif->is_up)
return 0;
if (vif->bss_conf.ema_ap)
return ath12k_mac_setup_bcn_tmpl_ema(arvif);
}
bcn = ieee80211_beacon_get_template(ath12k_ar_to_hw(tx_arvif->ar), tx_arvif->vif,
&offs, 0);
if (!bcn) {
ath12k_warn(ab, "failed to get beacon template from mac80211\n");
return -EPERM;
}
if (tx_arvif == arvif) {
ath12k_mac_set_arvif_ies(arvif, bcn, 0, NULL);
} else {
ath12k_mac_set_arvif_ies(arvif, bcn,
arvif->vif->bss_conf.bssid_index,
&nontx_profile_found);
if (!nontx_profile_found)
ath12k_warn(ab,
"nontransmitted profile not found in beacon template\n");
}
if (arvif->vif->type == NL80211_IFTYPE_AP && arvif->vif->p2p) {
ret = ath12k_mac_setup_bcn_p2p_ie(arvif, bcn);
if (ret) {
ath12k_warn(ab, "failed to setup P2P GO bcn ie: %d\n",
ret);
goto free_bcn_skb;
}
/* P2P IE is inserted by firmware automatically (as
* configured above) so remove it from the base beacon
* template to avoid duplicate P2P IEs in beacon frames.
*/
ret = ath12k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA,
WLAN_OUI_TYPE_WFA_P2P,
offsetof(struct ieee80211_mgmt,
u.beacon.variable));
if (ret) {
ath12k_warn(ab, "failed to remove P2P vendor ie: %d\n",
ret);
goto free_bcn_skb;
}
}
ret = ath12k_wmi_bcn_tmpl(ar, arvif->vdev_id, &offs, bcn, NULL);
if (ret)
ath12k_warn(ab, "failed to submit beacon template command: %d\n",
ret);
free_bcn_skb:
kfree_skb(bcn);
return ret;
}
static void ath12k_control_beaconing(struct ath12k_vif *arvif,
struct ieee80211_bss_conf *info)
{
struct ath12k_wmi_vdev_up_params params = {};
struct ath12k *ar = arvif->ar;
int ret;
lockdep_assert_held(&arvif->ar->conf_mutex);
if (!info->enable_beacon) {
ret = ath12k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret)
ath12k_warn(ar->ab, "failed to down vdev_id %i: %d\n",
arvif->vdev_id, ret);
arvif->is_up = false;
return;
}
/* Install the beacon template to the FW */
ret = ath12k_mac_setup_bcn_tmpl(arvif);
if (ret) {
ath12k_warn(ar->ab, "failed to update bcn tmpl during vdev up: %d\n",
ret);
return;
}
arvif->aid = 0;
ether_addr_copy(arvif->bssid, info->bssid);
params.vdev_id = arvif->vdev_id;
params.aid = arvif->aid;
params.bssid = arvif->bssid;
if (arvif->vif->mbssid_tx_vif) {
params.tx_bssid = ath12k_vif_to_arvif(arvif->vif->mbssid_tx_vif)->bssid;
params.nontx_profile_idx = info->bssid_index;
params.nontx_profile_cnt = 1 << info->bssid_indicator;
}
ret = ath12k_wmi_vdev_up(arvif->ar, ¶ms);
if (ret) {
ath12k_warn(ar->ab, "failed to bring up vdev %d: %i\n",
arvif->vdev_id, ret);
return;
}
arvif->is_up = true;
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id);
}
static void ath12k_mac_handle_beacon_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct sk_buff *skb = data;
struct ieee80211_mgmt *mgmt = (void *)skb->data;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
if (vif->type != NL80211_IFTYPE_STATION)
return;
if (!ether_addr_equal(mgmt->bssid, vif->bss_conf.bssid))
return;
cancel_delayed_work(&arvif->connection_loss_work);
}
void ath12k_mac_handle_beacon(struct ath12k *ar, struct sk_buff *skb)
{
ieee80211_iterate_active_interfaces_atomic(ath12k_ar_to_hw(ar),
IEEE80211_IFACE_ITER_NORMAL,
ath12k_mac_handle_beacon_iter,
skb);
}
static void ath12k_mac_handle_beacon_miss_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
u32 *vdev_id = data;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k *ar = arvif->ar;
struct ieee80211_hw *hw = ath12k_ar_to_hw(ar);
if (arvif->vdev_id != *vdev_id)
return;
if (!arvif->is_up)
return;
ieee80211_beacon_loss(vif);
/* Firmware doesn't report beacon loss events repeatedly. If AP probe
* (done by mac80211) succeeds but beacons do not resume then it
* doesn't make sense to continue operation. Queue connection loss work
* which can be cancelled when beacon is received.
*/
ieee80211_queue_delayed_work(hw, &arvif->connection_loss_work,
ATH12K_CONNECTION_LOSS_HZ);
}
void ath12k_mac_handle_beacon_miss(struct ath12k *ar, u32 vdev_id)
{
ieee80211_iterate_active_interfaces_atomic(ath12k_ar_to_hw(ar),
IEEE80211_IFACE_ITER_NORMAL,
ath12k_mac_handle_beacon_miss_iter,
&vdev_id);
}
static void ath12k_mac_vif_sta_connection_loss_work(struct work_struct *work)
{
struct ath12k_vif *arvif = container_of(work, struct ath12k_vif,
connection_loss_work.work);
struct ieee80211_vif *vif = arvif->vif;
if (!arvif->is_up)
return;
ieee80211_connection_loss(vif);
}
static void ath12k_peer_assoc_h_basic(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ieee80211_hw *hw = ath12k_ar_to_hw(ar);
u32 aid;
lockdep_assert_held(&ar->conf_mutex);
if (vif->type == NL80211_IFTYPE_STATION)
aid = vif->cfg.aid;
else
aid = sta->aid;
ether_addr_copy(arg->peer_mac, sta->addr);
arg->vdev_id = arvif->vdev_id;
arg->peer_associd = aid;
arg->auth_flag = true;
/* TODO: STA WAR in ath10k for listen interval required? */
arg->peer_listen_intval = hw->conf.listen_interval;
arg->peer_nss = 1;
arg->peer_caps = vif->bss_conf.assoc_capability;
}
static void ath12k_peer_assoc_h_crypto(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg)
{
struct ieee80211_bss_conf *info = &vif->bss_conf;
struct cfg80211_chan_def def;
struct cfg80211_bss *bss;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ieee80211_hw *hw = ath12k_ar_to_hw(ar);
const u8 *rsnie = NULL;
const u8 *wpaie = NULL;
lockdep_assert_held(&ar->conf_mutex);
if (WARN_ON(ath12k_mac_vif_chan(vif, &def)))
return;
bss = cfg80211_get_bss(hw->wiphy, def.chan, info->bssid, NULL, 0,
IEEE80211_BSS_TYPE_ANY, IEEE80211_PRIVACY_ANY);
if (arvif->rsnie_present || arvif->wpaie_present) {
arg->need_ptk_4_way = true;
if (arvif->wpaie_present)
arg->need_gtk_2_way = true;
} else if (bss) {
const struct cfg80211_bss_ies *ies;
rcu_read_lock();
rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN);
ies = rcu_dereference(bss->ies);
wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
WLAN_OUI_TYPE_MICROSOFT_WPA,
ies->data,
ies->len);
rcu_read_unlock();
cfg80211_put_bss(hw->wiphy, bss);
}
/* FIXME: base on RSN IE/WPA IE is a correct idea? */
if (rsnie || wpaie) {
ath12k_dbg(ar->ab, ATH12K_DBG_WMI,
"%s: rsn ie found\n", __func__);
arg->need_ptk_4_way = true;
}
if (wpaie) {
ath12k_dbg(ar->ab, ATH12K_DBG_WMI,
"%s: wpa ie found\n", __func__);
arg->need_gtk_2_way = true;
}
if (sta->mfp) {
/* TODO: Need to check if FW supports PMF? */
arg->is_pmf_enabled = true;
}
/* TODO: safe_mode_enabled (bypass 4-way handshake) flag req? */
}
static void ath12k_peer_assoc_h_rates(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates;
struct cfg80211_chan_def def;
const struct ieee80211_supported_band *sband;
const struct ieee80211_rate *rates;
struct ieee80211_hw *hw = ath12k_ar_to_hw(ar);
enum nl80211_band band;
u32 ratemask;
u8 rate;
int i;
lockdep_assert_held(&ar->conf_mutex);
if (WARN_ON(ath12k_mac_vif_chan(vif, &def)))
return;
band = def.chan->band;
sband = hw->wiphy->bands[band];
ratemask = sta->deflink.supp_rates[band];
ratemask &= arvif->bitrate_mask.control[band].legacy;
rates = sband->bitrates;
rateset->num_rates = 0;
for (i = 0; i < 32; i++, ratemask >>= 1, rates++) {
if (!(ratemask & 1))
continue;
rate = ath12k_mac_bitrate_to_rate(rates->bitrate);
rateset->rates[rateset->num_rates] = rate;
rateset->num_rates++;
}
}
static bool
ath12k_peer_assoc_h_ht_masked(const u8 *ht_mcs_mask)
{
int nss;
for (nss = 0; nss < IEEE80211_HT_MCS_MASK_LEN; nss++)
if (ht_mcs_mask[nss])
return false;
return true;
}
static bool
ath12k_peer_assoc_h_vht_masked(const u16 *vht_mcs_mask)
{
int nss;
for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++)
if (vht_mcs_mask[nss])
return false;
return true;
}
static void ath12k_peer_assoc_h_ht(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg)
{
const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct cfg80211_chan_def def;
enum nl80211_band band;
const u8 *ht_mcs_mask;
int i, n;
u8 max_nss;
u32 stbc;
lockdep_assert_held(&ar->conf_mutex);
if (WARN_ON(ath12k_mac_vif_chan(vif, &def)))
return;
if (!ht_cap->ht_supported)
return;
band = def.chan->band;
ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
if (ath12k_peer_assoc_h_ht_masked(ht_mcs_mask))
return;
arg->ht_flag = true;
arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
ht_cap->ampdu_factor)) - 1;
arg->peer_mpdu_density =
ath12k_parse_mpdudensity(ht_cap->ampdu_density);
arg->peer_ht_caps = ht_cap->cap;
arg->peer_rate_caps |= WMI_HOST_RC_HT_FLAG;
if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING)
arg->ldpc_flag = true;
if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) {
arg->bw_40 = true;
arg->peer_rate_caps |= WMI_HOST_RC_CW40_FLAG;
}
if (arvif->bitrate_mask.control[band].gi != NL80211_TXRATE_FORCE_LGI) {
if (ht_cap->cap & (IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_SGI_40))
arg->peer_rate_caps |= WMI_HOST_RC_SGI_FLAG;
}
if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) {
arg->peer_rate_caps |= WMI_HOST_RC_TX_STBC_FLAG;
arg->stbc_flag = true;
}
if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) {
stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC;
stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT;
stbc = stbc << WMI_HOST_RC_RX_STBC_FLAG_S;
arg->peer_rate_caps |= stbc;
arg->stbc_flag = true;
}
if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2])
arg->peer_rate_caps |= WMI_HOST_RC_TS_FLAG;
else if (ht_cap->mcs.rx_mask[1])
arg->peer_rate_caps |= WMI_HOST_RC_DS_FLAG;
for (i = 0, n = 0, max_nss = 0; i < IEEE80211_HT_MCS_MASK_LEN * 8; i++)
if ((ht_cap->mcs.rx_mask[i / 8] & BIT(i % 8)) &&
(ht_mcs_mask[i / 8] & BIT(i % 8))) {
max_nss = (i / 8) + 1;
arg->peer_ht_rates.rates[n++] = i;
}
/* This is a workaround for HT-enabled STAs which break the spec
* and have no HT capabilities RX mask (no HT RX MCS map).
*
* As per spec, in section 20.3.5 Modulation and coding scheme (MCS),
* MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs.
*
* Firmware asserts if such situation occurs.
*/
if (n == 0) {
arg->peer_ht_rates.num_rates = 8;
for (i = 0; i < arg->peer_ht_rates.num_rates; i++)
arg->peer_ht_rates.rates[i] = i;
} else {
arg->peer_ht_rates.num_rates = n;
arg->peer_nss = min(sta->deflink.rx_nss, max_nss);
}
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n",
arg->peer_mac,
arg->peer_ht_rates.num_rates,
arg->peer_nss);
}
static int ath12k_mac_get_max_vht_mcs_map(u16 mcs_map, int nss)
{
switch ((mcs_map >> (2 * nss)) & 0x3) {
case IEEE80211_VHT_MCS_SUPPORT_0_7: return BIT(8) - 1;
case IEEE80211_VHT_MCS_SUPPORT_0_8: return BIT(9) - 1;
case IEEE80211_VHT_MCS_SUPPORT_0_9: return BIT(10) - 1;
}
return 0;
}
static u16
ath12k_peer_assoc_h_vht_limit(u16 tx_mcs_set,
const u16 vht_mcs_limit[NL80211_VHT_NSS_MAX])
{
int idx_limit;
int nss;
u16 mcs_map;
u16 mcs;
for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) {
mcs_map = ath12k_mac_get_max_vht_mcs_map(tx_mcs_set, nss) &
vht_mcs_limit[nss];
if (mcs_map)
idx_limit = fls(mcs_map) - 1;
else
idx_limit = -1;
switch (idx_limit) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
mcs = IEEE80211_VHT_MCS_SUPPORT_0_7;
break;
case 8:
mcs = IEEE80211_VHT_MCS_SUPPORT_0_8;
break;
case 9:
mcs = IEEE80211_VHT_MCS_SUPPORT_0_9;
break;
default:
WARN_ON(1);
fallthrough;
case -1:
mcs = IEEE80211_VHT_MCS_NOT_SUPPORTED;
break;
}
tx_mcs_set &= ~(0x3 << (nss * 2));
tx_mcs_set |= mcs << (nss * 2);
}
return tx_mcs_set;
}
static void ath12k_peer_assoc_h_vht(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg)
{
const struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct cfg80211_chan_def def;
enum nl80211_band band;
const u16 *vht_mcs_mask;
u16 tx_mcs_map;
u8 ampdu_factor;
u8 max_nss, vht_mcs;
int i;
if (WARN_ON(ath12k_mac_vif_chan(vif, &def)))
return;
if (!vht_cap->vht_supported)
return;
band = def.chan->band;
vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
if (ath12k_peer_assoc_h_vht_masked(vht_mcs_mask))
return;
arg->vht_flag = true;
/* TODO: similar flags required? */
arg->vht_capable = true;
if (def.chan->band == NL80211_BAND_2GHZ)
arg->vht_ng_flag = true;
arg->peer_vht_caps = vht_cap->cap;
ampdu_factor = (vht_cap->cap &
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >>
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
/* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to
* zero in VHT IE. Using it would result in degraded throughput.
* arg->peer_max_mpdu at this point contains HT max_mpdu so keep
* it if VHT max_mpdu is smaller.
*/
arg->peer_max_mpdu = max(arg->peer_max_mpdu,
(1U << (IEEE80211_HT_MAX_AMPDU_FACTOR +
ampdu_factor)) - 1);
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
arg->bw_80 = true;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160)
arg->bw_160 = true;
/* Calculate peer NSS capability from VHT capabilities if STA
* supports VHT.
*/
for (i = 0, max_nss = 0, vht_mcs = 0; i < NL80211_VHT_NSS_MAX; i++) {
vht_mcs = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) >>
(2 * i) & 3;
if (vht_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED &&
vht_mcs_mask[i])
max_nss = i + 1;
}
arg->peer_nss = min(sta->deflink.rx_nss, max_nss);
arg->rx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.rx_highest);
arg->rx_mcs_set = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map);
arg->tx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.tx_highest);
tx_mcs_map = __le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map);
arg->tx_mcs_set = ath12k_peer_assoc_h_vht_limit(tx_mcs_map, vht_mcs_mask);
/* In QCN9274 platform, VHT MCS rate 10 and 11 is enabled by default.
* VHT MCS rate 10 and 11 is not supported in 11ac standard.
* so explicitly disable the VHT MCS rate 10 and 11 in 11ac mode.
*/
arg->tx_mcs_set &= ~IEEE80211_VHT_MCS_SUPPORT_0_11_MASK;
arg->tx_mcs_set |= IEEE80211_DISABLE_VHT_MCS_SUPPORT_0_11;
if ((arg->tx_mcs_set & IEEE80211_VHT_MCS_NOT_SUPPORTED) ==
IEEE80211_VHT_MCS_NOT_SUPPORTED)
arg->peer_vht_caps &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
/* TODO: Check */
arg->tx_max_mcs_nss = 0xFF;
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x\n",
sta->addr, arg->peer_max_mpdu, arg->peer_flags);
/* TODO: rxnss_override */
}
static void ath12k_peer_assoc_h_he(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg)
{
const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap;
int i;
u8 ampdu_factor, max_nss;
u8 rx_mcs_80 = IEEE80211_HE_MCS_NOT_SUPPORTED;
u8 rx_mcs_160 = IEEE80211_HE_MCS_NOT_SUPPORTED;
u16 mcs_160_map, mcs_80_map;
bool support_160;
u16 v;
if (!he_cap->has_he)
return;
arg->he_flag = true;
support_160 = !!(he_cap->he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G);
/* Supported HE-MCS and NSS Set of peer he_cap is intersection with self he_cp */
mcs_160_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_160);
mcs_80_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80);
if (support_160) {
for (i = 7; i >= 0; i--) {
u8 mcs_160 = (mcs_160_map >> (2 * i)) & 3;
if (mcs_160 != IEEE80211_HE_MCS_NOT_SUPPORTED) {
rx_mcs_160 = i + 1;
break;
}
}
}
for (i = 7; i >= 0; i--) {
u8 mcs_80 = (mcs_80_map >> (2 * i)) & 3;
if (mcs_80 != IEEE80211_HE_MCS_NOT_SUPPORTED) {
rx_mcs_80 = i + 1;
break;
}
}
if (support_160)
max_nss = min(rx_mcs_80, rx_mcs_160);
else
max_nss = rx_mcs_80;
arg->peer_nss = min(sta->deflink.rx_nss, max_nss);
memcpy(&arg->peer_he_cap_macinfo, he_cap->he_cap_elem.mac_cap_info,
sizeof(he_cap->he_cap_elem.mac_cap_info));
memcpy(&arg->peer_he_cap_phyinfo, he_cap->he_cap_elem.phy_cap_info,
sizeof(he_cap->he_cap_elem.phy_cap_info));
arg->peer_he_ops = vif->bss_conf.he_oper.params;
/* the top most byte is used to indicate BSS color info */
arg->peer_he_ops &= 0xffffff;
/* As per section 26.6.1 IEEE Std 802.11ax‐2022, if the Max AMPDU
* Exponent Extension in HE cap is zero, use the arg->peer_max_mpdu
* as calculated while parsing VHT caps(if VHT caps is present)
* or HT caps (if VHT caps is not present).
*
* For non-zero value of Max AMPDU Exponent Extension in HE MAC caps,
* if a HE STA sends VHT cap and HE cap IE in assoc request then, use
* MAX_AMPDU_LEN_FACTOR as 20 to calculate max_ampdu length.
* If a HE STA that does not send VHT cap, but HE and HT cap in assoc
* request, then use MAX_AMPDU_LEN_FACTOR as 16 to calculate max_ampdu
* length.
*/
ampdu_factor = u8_get_bits(he_cap->he_cap_elem.mac_cap_info[3],
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK);
if (ampdu_factor) {
if (sta->deflink.vht_cap.vht_supported)
arg->peer_max_mpdu = (1 << (IEEE80211_HE_VHT_MAX_AMPDU_FACTOR +
ampdu_factor)) - 1;
else if (sta->deflink.ht_cap.ht_supported)
arg->peer_max_mpdu = (1 << (IEEE80211_HE_HT_MAX_AMPDU_FACTOR +
ampdu_factor)) - 1;
}
if (he_cap->he_cap_elem.phy_cap_info[6] &
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
int bit = 7;
int nss, ru;
arg->peer_ppet.numss_m1 = he_cap->ppe_thres[0] &
IEEE80211_PPE_THRES_NSS_MASK;
arg->peer_ppet.ru_bit_mask =
(he_cap->ppe_thres[0] &
IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK) >>
IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS;
for (nss = 0; nss <= arg->peer_ppet.numss_m1; nss++) {
for (ru = 0; ru < 4; ru++) {
u32 val = 0;
int i;
if ((arg->peer_ppet.ru_bit_mask & BIT(ru)) == 0)
continue;
for (i = 0; i < 6; i++) {
val >>= 1;
val |= ((he_cap->ppe_thres[bit / 8] >>
(bit % 8)) & 0x1) << 5;
bit++;
}
arg->peer_ppet.ppet16_ppet8_ru3_ru0[nss] |=
val << (ru * 6);
}
}
}
if (he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_RES)
arg->twt_responder = true;
if (he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_REQ)
arg->twt_requester = true;
switch (sta->deflink.bandwidth) {
case IEEE80211_STA_RX_BW_160:
if (he_cap->he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) {
v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80p80);
arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80_80] = v;
v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_80p80);
arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80_80] = v;
arg->peer_he_mcs_count++;
}
v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_160);
arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_160] = v;
v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_160);
arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_160] = v;
arg->peer_he_mcs_count++;
fallthrough;
default:
v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80);
arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80] = v;
v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_80);
arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80] = v;
arg->peer_he_mcs_count++;
break;
}
}
static void ath12k_peer_assoc_h_he_6ghz(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg)
{
const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap;
struct cfg80211_chan_def def;
enum nl80211_band band;
u8 ampdu_factor, mpdu_density;
if (WARN_ON(ath12k_mac_vif_chan(vif, &def)))
return;
band = def.chan->band;
if (!arg->he_flag || band != NL80211_BAND_6GHZ || !sta->deflink.he_6ghz_capa.capa)
return;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
arg->bw_40 = true;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
arg->bw_80 = true;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160)
arg->bw_160 = true;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_320)
arg->bw_320 = true;
arg->peer_he_caps_6ghz = le16_to_cpu(sta->deflink.he_6ghz_capa.capa);
mpdu_density = u32_get_bits(arg->peer_he_caps_6ghz,
IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
arg->peer_mpdu_density = ath12k_parse_mpdudensity(mpdu_density);
/* From IEEE Std 802.11ax-2021 - Section 10.12.2: An HE STA shall be capable of
* receiving A-MPDU where the A-MPDU pre-EOF padding length is up to the value
* indicated by the Maximum A-MPDU Length Exponent Extension field in the HE
* Capabilities element and the Maximum A-MPDU Length Exponent field in HE 6 GHz
* Band Capabilities element in the 6 GHz band.
*
* Here, we are extracting the Max A-MPDU Exponent Extension from HE caps and
* factor is the Maximum A-MPDU Length Exponent from HE 6 GHZ Band capability.
*/
ampdu_factor = u8_get_bits(he_cap->he_cap_elem.mac_cap_info[3],
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK) +
u32_get_bits(arg->peer_he_caps_6ghz,
IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
arg->peer_max_mpdu = (1u << (IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR +
ampdu_factor)) - 1;
}
static int ath12k_get_smps_from_capa(const struct ieee80211_sta_ht_cap *ht_cap,
const struct ieee80211_he_6ghz_capa *he_6ghz_capa,
int *smps)
{
if (ht_cap->ht_supported)
*smps = u16_get_bits(ht_cap->cap, IEEE80211_HT_CAP_SM_PS);
else
*smps = le16_get_bits(he_6ghz_capa->capa,
IEEE80211_HE_6GHZ_CAP_SM_PS);
if (*smps >= ARRAY_SIZE(ath12k_smps_map))
return -EINVAL;
return 0;
}
static void ath12k_peer_assoc_h_smps(struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg)
{
const struct ieee80211_he_6ghz_capa *he_6ghz_capa = &sta->deflink.he_6ghz_capa;
const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap;
int smps;
if (!ht_cap->ht_supported && !he_6ghz_capa->capa)
return;
if (ath12k_get_smps_from_capa(ht_cap, he_6ghz_capa, &smps))
return;
switch (smps) {
case WLAN_HT_CAP_SM_PS_STATIC:
arg->static_mimops_flag = true;
break;
case WLAN_HT_CAP_SM_PS_DYNAMIC:
arg->dynamic_mimops_flag = true;
break;
case WLAN_HT_CAP_SM_PS_DISABLED:
arg->spatial_mux_flag = true;
break;
default:
break;
}
}
static void ath12k_peer_assoc_h_qos(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
switch (arvif->vdev_type) {
case WMI_VDEV_TYPE_AP:
if (sta->wme) {
/* TODO: Check WME vs QoS */
arg->is_wme_set = true;
arg->qos_flag = true;
}
if (sta->wme && sta->uapsd_queues) {
/* TODO: Check WME vs QoS */
arg->is_wme_set = true;
arg->apsd_flag = true;
arg->peer_rate_caps |= WMI_HOST_RC_UAPSD_FLAG;
}
break;
case WMI_VDEV_TYPE_STA:
if (sta->wme) {
arg->is_wme_set = true;
arg->qos_flag = true;
}
break;
default:
break;
}
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac peer %pM qos %d\n",
sta->addr, arg->qos_flag);
}
static int ath12k_peer_assoc_qos_ap(struct ath12k *ar,
struct ath12k_vif *arvif,
struct ieee80211_sta *sta)
{
struct ath12k_wmi_ap_ps_arg arg;
u32 max_sp;
u32 uapsd;
int ret;
lockdep_assert_held(&ar->conf_mutex);
arg.vdev_id = arvif->vdev_id;
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n",
sta->uapsd_queues, sta->max_sp);
uapsd = 0;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC3_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI)
uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC2_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK)
uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC1_TRIGGER_EN;
if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE)
uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN |
WMI_AP_PS_UAPSD_AC0_TRIGGER_EN;
max_sp = 0;
if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP)
max_sp = sta->max_sp;
arg.param = WMI_AP_PS_PEER_PARAM_UAPSD;
arg.value = uapsd;
ret = ath12k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &arg);
if (ret)
goto err;
arg.param = WMI_AP_PS_PEER_PARAM_MAX_SP;
arg.value = max_sp;
ret = ath12k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &arg);
if (ret)
goto err;
/* TODO: revisit during testing */
arg.param = WMI_AP_PS_PEER_PARAM_SIFS_RESP_FRMTYPE;
arg.value = DISABLE_SIFS_RESPONSE_TRIGGER;
ret = ath12k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &arg);
if (ret)
goto err;
arg.param = WMI_AP_PS_PEER_PARAM_SIFS_RESP_UAPSD;
arg.value = DISABLE_SIFS_RESPONSE_TRIGGER;
ret = ath12k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &arg);
if (ret)
goto err;
return 0;
err:
ath12k_warn(ar->ab, "failed to set ap ps peer param %d for vdev %i: %d\n",
arg.param, arvif->vdev_id, ret);
return ret;
}
static bool ath12k_mac_sta_has_ofdm_only(struct ieee80211_sta *sta)
{
return sta->deflink.supp_rates[NL80211_BAND_2GHZ] >>
ATH12K_MAC_FIRST_OFDM_RATE_IDX;
}
static enum wmi_phy_mode ath12k_mac_get_phymode_vht(struct ath12k *ar,
struct ieee80211_sta *sta)
{
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) {
switch (sta->deflink.vht_cap.cap &
IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) {
case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ:
return MODE_11AC_VHT160;
case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ:
return MODE_11AC_VHT80_80;
default:
/* not sure if this is a valid case? */
return MODE_11AC_VHT160;
}
}
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
return MODE_11AC_VHT80;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
return MODE_11AC_VHT40;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20)
return MODE_11AC_VHT20;
return MODE_UNKNOWN;
}
static enum wmi_phy_mode ath12k_mac_get_phymode_he(struct ath12k *ar,
struct ieee80211_sta *sta)
{
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) {
if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
return MODE_11AX_HE160;
else if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
return MODE_11AX_HE80_80;
/* not sure if this is a valid case? */
return MODE_11AX_HE160;
}
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
return MODE_11AX_HE80;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
return MODE_11AX_HE40;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20)
return MODE_11AX_HE20;
return MODE_UNKNOWN;
}
static enum wmi_phy_mode ath12k_mac_get_phymode_eht(struct ath12k *ar,
struct ieee80211_sta *sta)
{
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_320)
if (sta->deflink.eht_cap.eht_cap_elem.phy_cap_info[0] &
IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
return MODE_11BE_EHT320;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) {
if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
return MODE_11BE_EHT160;
if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
return MODE_11BE_EHT80_80;
ath12k_warn(ar->ab, "invalid EHT PHY capability info for 160 Mhz: %d\n",
sta->deflink.he_cap.he_cap_elem.phy_cap_info[0]);
return MODE_11BE_EHT160;
}
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
return MODE_11BE_EHT80;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
return MODE_11BE_EHT40;
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20)
return MODE_11BE_EHT20;
return MODE_UNKNOWN;
}
static void ath12k_peer_assoc_h_phymode(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct cfg80211_chan_def def;
enum nl80211_band band;
const u8 *ht_mcs_mask;
const u16 *vht_mcs_mask;
enum wmi_phy_mode phymode = MODE_UNKNOWN;
if (WARN_ON(ath12k_mac_vif_chan(vif, &def)))
return;
band = def.chan->band;
ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
switch (band) {
case NL80211_BAND_2GHZ:
if (sta->deflink.eht_cap.has_eht) {
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11BE_EHT40_2G;
else
phymode = MODE_11BE_EHT20_2G;
} else if (sta->deflink.he_cap.has_he) {
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
phymode = MODE_11AX_HE80_2G;
else if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11AX_HE40_2G;
else
phymode = MODE_11AX_HE20_2G;
} else if (sta->deflink.vht_cap.vht_supported &&
!ath12k_peer_assoc_h_vht_masked(vht_mcs_mask)) {
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11AC_VHT40;
else
phymode = MODE_11AC_VHT20;
} else if (sta->deflink.ht_cap.ht_supported &&
!ath12k_peer_assoc_h_ht_masked(ht_mcs_mask)) {
if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
phymode = MODE_11NG_HT40;
else
phymode = MODE_11NG_HT20;
} else if (ath12k_mac_sta_has_ofdm_only(sta)) {
phymode = MODE_11G;
} else {
phymode = MODE_11B;
}
break;
case NL80211_BAND_5GHZ:
case NL80211_BAND_6GHZ:
/* Check EHT first */
if (sta->deflink.eht_cap.has_eht) {
phymode = ath12k_mac_get_phymode_eht(ar, sta);
} else if (sta->deflink.he_cap.has_he) {
phymode = ath12k_mac_get_phymode_he(ar, sta);
} else if (sta->deflink.vht_cap.vht_supported &&
!ath12k_peer_assoc_h_vht_masked(vht_mcs_mask)) {
phymode = ath12k_mac_get_phymode_vht(ar, sta);
} else if (sta->deflink.ht_cap.ht_supported &&
!ath12k_peer_assoc_h_ht_masked(ht_mcs_mask)) {
if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40)
phymode = MODE_11NA_HT40;
else
phymode = MODE_11NA_HT20;
} else {
phymode = MODE_11A;
}
break;
default:
break;
}
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac peer %pM phymode %s\n",
sta->addr, ath12k_mac_phymode_str(phymode));
arg->peer_phymode = phymode;
WARN_ON(phymode == MODE_UNKNOWN);
}
static void ath12k_mac_set_eht_mcs(u8 rx_tx_mcs7, u8 rx_tx_mcs9,
u8 rx_tx_mcs11, u8 rx_tx_mcs13,
u32 *rx_mcs, u32 *tx_mcs)
{
*rx_mcs = 0;
u32p_replace_bits(rx_mcs,
u8_get_bits(rx_tx_mcs7, IEEE80211_EHT_MCS_NSS_RX),
WMI_EHT_MCS_NSS_0_7);
u32p_replace_bits(rx_mcs,
u8_get_bits(rx_tx_mcs9, IEEE80211_EHT_MCS_NSS_RX),
WMI_EHT_MCS_NSS_8_9);
u32p_replace_bits(rx_mcs,
u8_get_bits(rx_tx_mcs11, IEEE80211_EHT_MCS_NSS_RX),
WMI_EHT_MCS_NSS_10_11);
u32p_replace_bits(rx_mcs,
u8_get_bits(rx_tx_mcs13, IEEE80211_EHT_MCS_NSS_RX),
WMI_EHT_MCS_NSS_12_13);
*tx_mcs = 0;
u32p_replace_bits(tx_mcs,
u8_get_bits(rx_tx_mcs7, IEEE80211_EHT_MCS_NSS_TX),
WMI_EHT_MCS_NSS_0_7);
u32p_replace_bits(tx_mcs,
u8_get_bits(rx_tx_mcs9, IEEE80211_EHT_MCS_NSS_TX),
WMI_EHT_MCS_NSS_8_9);
u32p_replace_bits(tx_mcs,
u8_get_bits(rx_tx_mcs11, IEEE80211_EHT_MCS_NSS_TX),
WMI_EHT_MCS_NSS_10_11);
u32p_replace_bits(tx_mcs,
u8_get_bits(rx_tx_mcs13, IEEE80211_EHT_MCS_NSS_TX),
WMI_EHT_MCS_NSS_12_13);
}
static void ath12k_mac_set_eht_ppe_threshold(const u8 *ppe_thres,
struct ath12k_wmi_ppe_threshold_arg *ppet)
{
u32 bit_pos = IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE, val;
u8 nss, ru, i;
u8 ppet_bit_len_per_ru = IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2;
ppet->numss_m1 = u8_get_bits(ppe_thres[0], IEEE80211_EHT_PPE_THRES_NSS_MASK);
ppet->ru_bit_mask = u16_get_bits(get_unaligned_le16(ppe_thres),
IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
for (nss = 0; nss <= ppet->numss_m1; nss++) {
for (ru = 0;
ru < hweight16(IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
ru++) {
if ((ppet->ru_bit_mask & BIT(ru)) == 0)
continue;
val = 0;
for (i = 0; i < ppet_bit_len_per_ru; i++) {
val |= (((ppe_thres[bit_pos / 8] >>
(bit_pos % 8)) & 0x1) << i);
bit_pos++;
}
ppet->ppet16_ppet8_ru3_ru0[nss] |=
(val << (ru * ppet_bit_len_per_ru));
}
}
}
static void ath12k_peer_assoc_h_eht(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg)
{
const struct ieee80211_sta_eht_cap *eht_cap = &sta->deflink.eht_cap;
const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap;
const struct ieee80211_eht_mcs_nss_supp_20mhz_only *bw_20;
const struct ieee80211_eht_mcs_nss_supp_bw *bw;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
u32 *rx_mcs, *tx_mcs;
if (!sta->deflink.he_cap.has_he || !eht_cap->has_eht)
return;
arg->eht_flag = true;
if ((eht_cap->eht_cap_elem.phy_cap_info[5] &
IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) &&
eht_cap->eht_ppe_thres[0] != 0)
ath12k_mac_set_eht_ppe_threshold(eht_cap->eht_ppe_thres,
&arg->peer_eht_ppet);
memcpy(arg->peer_eht_cap_mac, eht_cap->eht_cap_elem.mac_cap_info,
sizeof(eht_cap->eht_cap_elem.mac_cap_info));
memcpy(arg->peer_eht_cap_phy, eht_cap->eht_cap_elem.phy_cap_info,
sizeof(eht_cap->eht_cap_elem.phy_cap_info));
rx_mcs = arg->peer_eht_rx_mcs_set;
tx_mcs = arg->peer_eht_tx_mcs_set;
switch (sta->deflink.bandwidth) {
case IEEE80211_STA_RX_BW_320:
bw = &eht_cap->eht_mcs_nss_supp.bw._320;
ath12k_mac_set_eht_mcs(bw->rx_tx_mcs9_max_nss,
bw->rx_tx_mcs9_max_nss,
bw->rx_tx_mcs11_max_nss,
bw->rx_tx_mcs13_max_nss,
&rx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_320],
&tx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_320]);
arg->peer_eht_mcs_count++;
fallthrough;
case IEEE80211_STA_RX_BW_160:
bw = &eht_cap->eht_mcs_nss_supp.bw._160;
ath12k_mac_set_eht_mcs(bw->rx_tx_mcs9_max_nss,
bw->rx_tx_mcs9_max_nss,
bw->rx_tx_mcs11_max_nss,
bw->rx_tx_mcs13_max_nss,
&rx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_160],
&tx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_160]);
arg->peer_eht_mcs_count++;
fallthrough;
default:
if ((he_cap->he_cap_elem.phy_cap_info[0] &
(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)) == 0) {
bw_20 = &eht_cap->eht_mcs_nss_supp.only_20mhz;
ath12k_mac_set_eht_mcs(bw_20->rx_tx_mcs7_max_nss,
bw_20->rx_tx_mcs9_max_nss,
bw_20->rx_tx_mcs11_max_nss,
bw_20->rx_tx_mcs13_max_nss,
&rx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_80],
&tx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_80]);
} else {
bw = &eht_cap->eht_mcs_nss_supp.bw._80;
ath12k_mac_set_eht_mcs(bw->rx_tx_mcs9_max_nss,
bw->rx_tx_mcs9_max_nss,
bw->rx_tx_mcs11_max_nss,
bw->rx_tx_mcs13_max_nss,
&rx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_80],
&tx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_80]);
}
arg->peer_eht_mcs_count++;
break;
}
arg->punct_bitmap = ~arvif->punct_bitmap;
}
static void ath12k_peer_assoc_prepare(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ath12k_wmi_peer_assoc_arg *arg,
bool reassoc)
{
lockdep_assert_held(&ar->conf_mutex);
memset(arg, 0, sizeof(*arg));
reinit_completion(&ar->peer_assoc_done);
arg->peer_new_assoc = !reassoc;
ath12k_peer_assoc_h_basic(ar, vif, sta, arg);
ath12k_peer_assoc_h_crypto(ar, vif, sta, arg);
ath12k_peer_assoc_h_rates(ar, vif, sta, arg);
ath12k_peer_assoc_h_ht(ar, vif, sta, arg);
ath12k_peer_assoc_h_vht(ar, vif, sta, arg);
ath12k_peer_assoc_h_he(ar, vif, sta, arg);
ath12k_peer_assoc_h_he_6ghz(ar, vif, sta, arg);
ath12k_peer_assoc_h_eht(ar, vif, sta, arg);
ath12k_peer_assoc_h_qos(ar, vif, sta, arg);
ath12k_peer_assoc_h_phymode(ar, vif, sta, arg);
ath12k_peer_assoc_h_smps(sta, arg);
/* TODO: amsdu_disable req? */
}
static int ath12k_setup_peer_smps(struct ath12k *ar, struct ath12k_vif *arvif,
const u8 *addr,
const struct ieee80211_sta_ht_cap *ht_cap,
const struct ieee80211_he_6ghz_capa *he_6ghz_capa)
{
int smps, ret = 0;
if (!ht_cap->ht_supported && !he_6ghz_capa)
return 0;
ret = ath12k_get_smps_from_capa(ht_cap, he_6ghz_capa, &smps);
if (ret < 0)
return ret;
return ath12k_wmi_set_peer_param(ar, addr, arvif->vdev_id,
WMI_PEER_MIMO_PS_STATE,
ath12k_smps_map[smps]);
}
static void ath12k_bss_assoc(struct ath12k *ar,
struct ath12k_vif *arvif,
struct ieee80211_bss_conf *bss_conf)
{
struct ieee80211_vif *vif = arvif->vif;
struct ath12k_wmi_vdev_up_params params = {};
struct ath12k_wmi_peer_assoc_arg peer_arg;
struct ieee80211_sta *ap_sta;
struct ath12k_peer *peer;
bool is_auth = false;
int ret;
lockdep_assert_held(&ar->conf_mutex);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %i assoc bssid %pM aid %d\n",
arvif->vdev_id, arvif->bssid, arvif->aid);
rcu_read_lock();
ap_sta = ieee80211_find_sta(vif, bss_conf->bssid);
if (!ap_sta) {
ath12k_warn(ar->ab, "failed to find station entry for bss %pM vdev %i\n",
bss_conf->bssid, arvif->vdev_id);
rcu_read_unlock();
return;
}
ath12k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg, false);
rcu_read_unlock();
ret = ath12k_wmi_send_peer_assoc_cmd(ar, &peer_arg);
if (ret) {
ath12k_warn(ar->ab, "failed to run peer assoc for %pM vdev %i: %d\n",
bss_conf->bssid, arvif->vdev_id, ret);
return;
}
if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) {
ath12k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n",
bss_conf->bssid, arvif->vdev_id);
return;
}
ret = ath12k_setup_peer_smps(ar, arvif, bss_conf->bssid,
&ap_sta->deflink.ht_cap,
&ap_sta->deflink.he_6ghz_capa);
if (ret) {
ath12k_warn(ar->ab, "failed to setup peer SMPS for vdev %d: %d\n",
arvif->vdev_id, ret);
return;
}
WARN_ON(arvif->is_up);
arvif->aid = vif->cfg.aid;
ether_addr_copy(arvif->bssid, bss_conf->bssid);
params.vdev_id = arvif->vdev_id;
params.aid = arvif->aid;
params.bssid = arvif->bssid;
ret = ath12k_wmi_vdev_up(ar, ¶ms);
if (ret) {
ath12k_warn(ar->ab, "failed to set vdev %d up: %d\n",
arvif->vdev_id, ret);
return;
}
arvif->is_up = true;
arvif->rekey_data.enable_offload = false;
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"mac vdev %d up (associated) bssid %pM aid %d\n",
arvif->vdev_id, bss_conf->bssid, vif->cfg.aid);
spin_lock_bh(&ar->ab->base_lock);
peer = ath12k_peer_find(ar->ab, arvif->vdev_id, arvif->bssid);
if (peer && peer->is_authorized)
is_auth = true;
spin_unlock_bh(&ar->ab->base_lock);
/* Authorize BSS Peer */
if (is_auth) {
ret = ath12k_wmi_set_peer_param(ar, arvif->bssid,
arvif->vdev_id,
WMI_PEER_AUTHORIZE,
1);
if (ret)
ath12k_warn(ar->ab, "Unable to authorize BSS peer: %d\n", ret);
}
ret = ath12k_wmi_send_obss_spr_cmd(ar, arvif->vdev_id,
&bss_conf->he_obss_pd);
if (ret)
ath12k_warn(ar->ab, "failed to set vdev %i OBSS PD parameters: %d\n",
arvif->vdev_id, ret);
}
static void ath12k_bss_disassoc(struct ath12k *ar,
struct ath12k_vif *arvif)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %i disassoc bssid %pM\n",
arvif->vdev_id, arvif->bssid);
ret = ath12k_wmi_vdev_down(ar, arvif->vdev_id);
if (ret)
ath12k_warn(ar->ab, "failed to down vdev %i: %d\n",
arvif->vdev_id, ret);
arvif->is_up = false;
memset(&arvif->rekey_data, 0, sizeof(arvif->rekey_data));
cancel_delayed_work(&arvif->connection_loss_work);
}
static u32 ath12k_mac_get_rate_hw_value(int bitrate)
{
u32 preamble;
u16 hw_value;
int rate;
size_t i;
if (ath12k_mac_bitrate_is_cck(bitrate))
preamble = WMI_RATE_PREAMBLE_CCK;
else
preamble = WMI_RATE_PREAMBLE_OFDM;
for (i = 0; i < ARRAY_SIZE(ath12k_legacy_rates); i++) {
if (ath12k_legacy_rates[i].bitrate != bitrate)
continue;
hw_value = ath12k_legacy_rates[i].hw_value;
rate = ATH12K_HW_RATE_CODE(hw_value, 0, preamble);
return rate;
}
return -EINVAL;
}
static void ath12k_recalculate_mgmt_rate(struct ath12k *ar,
struct ieee80211_vif *vif,
struct cfg80211_chan_def *def)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ieee80211_hw *hw = ath12k_ar_to_hw(ar);
const struct ieee80211_supported_band *sband;
u8 basic_rate_idx;
int hw_rate_code;
u32 vdev_param;
u16 bitrate;
int ret;
lockdep_assert_held(&ar->conf_mutex);
sband = hw->wiphy->bands[def->chan->band];
basic_rate_idx = ffs(vif->bss_conf.basic_rates) - 1;
bitrate = sband->bitrates[basic_rate_idx].bitrate;
hw_rate_code = ath12k_mac_get_rate_hw_value(bitrate);
if (hw_rate_code < 0) {
ath12k_warn(ar->ab, "bitrate not supported %d\n", bitrate);
return;
}
vdev_param = WMI_VDEV_PARAM_MGMT_RATE;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param,
hw_rate_code);
if (ret)
ath12k_warn(ar->ab, "failed to set mgmt tx rate %d\n", ret);
vdev_param = WMI_VDEV_PARAM_BEACON_RATE;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param,
hw_rate_code);
if (ret)
ath12k_warn(ar->ab, "failed to set beacon tx rate %d\n", ret);
}
static int ath12k_mac_fils_discovery(struct ath12k_vif *arvif,
struct ieee80211_bss_conf *info)
{
struct ath12k *ar = arvif->ar;
struct ieee80211_hw *hw = ath12k_ar_to_hw(ar);
struct sk_buff *tmpl;
int ret;
u32 interval;
bool unsol_bcast_probe_resp_enabled = false;
if (info->fils_discovery.max_interval) {
interval = info->fils_discovery.max_interval;
tmpl = ieee80211_get_fils_discovery_tmpl(hw, arvif->vif);
if (tmpl)
ret = ath12k_wmi_fils_discovery_tmpl(ar, arvif->vdev_id,
tmpl);
} else if (info->unsol_bcast_probe_resp_interval) {
unsol_bcast_probe_resp_enabled = 1;
interval = info->unsol_bcast_probe_resp_interval;
tmpl = ieee80211_get_unsol_bcast_probe_resp_tmpl(hw,
arvif->vif);
if (tmpl)
ret = ath12k_wmi_probe_resp_tmpl(ar, arvif->vdev_id,
tmpl);
} else { /* Disable */
return ath12k_wmi_fils_discovery(ar, arvif->vdev_id, 0, false);
}
if (!tmpl) {
ath12k_warn(ar->ab,
"mac vdev %i failed to retrieve %s template\n",
arvif->vdev_id, (unsol_bcast_probe_resp_enabled ?
"unsolicited broadcast probe response" :
"FILS discovery"));
return -EPERM;
}
kfree_skb(tmpl);
if (!ret)
ret = ath12k_wmi_fils_discovery(ar, arvif->vdev_id, interval,
unsol_bcast_probe_resp_enabled);
return ret;
}
static void ath12k_mac_vif_setup_ps(struct ath12k_vif *arvif)
{
struct ath12k *ar = arvif->ar;
struct ieee80211_vif *vif = arvif->vif;
struct ieee80211_conf *conf = &ath12k_ar_to_hw(ar)->conf;
enum wmi_sta_powersave_param param;
enum wmi_sta_ps_mode psmode;
int ret;
int timeout;
bool enable_ps;
lockdep_assert_held(&ar->conf_mutex);
if (vif->type != NL80211_IFTYPE_STATION)
return;
enable_ps = arvif->ps;
if (enable_ps) {
psmode = WMI_STA_PS_MODE_ENABLED;
param = WMI_STA_PS_PARAM_INACTIVITY_TIME;
timeout = conf->dynamic_ps_timeout;
if (timeout == 0) {
/* firmware doesn't like 0 */
timeout = ieee80211_tu_to_usec(vif->bss_conf.beacon_int) / 1000;
}
ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param,
timeout);
if (ret) {
ath12k_warn(ar->ab, "failed to set inactivity time for vdev %d: %i\n",
arvif->vdev_id, ret);
return;
}
} else {
psmode = WMI_STA_PS_MODE_DISABLED;
}
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %d psmode %s\n",
arvif->vdev_id, psmode ? "enable" : "disable");
ret = ath12k_wmi_pdev_set_ps_mode(ar, arvif->vdev_id, psmode);
if (ret)
ath12k_warn(ar->ab, "failed to set sta power save mode %d for vdev %d: %d\n",
psmode, arvif->vdev_id, ret);
}
static void ath12k_mac_bss_info_changed(struct ath12k *ar,
struct ath12k_vif *arvif,
struct ieee80211_bss_conf *info,
u64 changed)
{
struct ieee80211_vif *vif = arvif->vif;
struct ieee80211_vif_cfg *vif_cfg = &vif->cfg;
struct cfg80211_chan_def def;
u32 param_id, param_value;
enum nl80211_band band;
u32 vdev_param;
int mcast_rate;
u32 preamble;
u16 hw_value;
u16 bitrate;
int ret;
u8 rateidx;
u32 rate;
lockdep_assert_held(&ar->conf_mutex);
if (changed & BSS_CHANGED_BEACON_INT) {
arvif->beacon_interval = info->beacon_int;
param_id = WMI_VDEV_PARAM_BEACON_INTERVAL;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param_id,
arvif->beacon_interval);
if (ret)
ath12k_warn(ar->ab, "Failed to set beacon interval for VDEV: %d\n",
arvif->vdev_id);
else
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"Beacon interval: %d set for VDEV: %d\n",
arvif->beacon_interval, arvif->vdev_id);
}
if (changed & BSS_CHANGED_BEACON) {
param_id = WMI_PDEV_PARAM_BEACON_TX_MODE;
param_value = WMI_BEACON_BURST_MODE;
ret = ath12k_wmi_pdev_set_param(ar, param_id,
param_value, ar->pdev->pdev_id);
if (ret)
ath12k_warn(ar->ab, "Failed to set beacon mode for VDEV: %d\n",
arvif->vdev_id);
else
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"Set burst beacon mode for VDEV: %d\n",
arvif->vdev_id);
ret = ath12k_mac_setup_bcn_tmpl(arvif);
if (ret)
ath12k_warn(ar->ab, "failed to update bcn template: %d\n",
ret);
}
if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) {
arvif->dtim_period = info->dtim_period;
param_id = WMI_VDEV_PARAM_DTIM_PERIOD;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param_id,
arvif->dtim_period);
if (ret)
ath12k_warn(ar->ab, "Failed to set dtim period for VDEV %d: %i\n",
arvif->vdev_id, ret);
else
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"DTIM period: %d set for VDEV: %d\n",
arvif->dtim_period, arvif->vdev_id);
}
if (changed & BSS_CHANGED_SSID &&
vif->type == NL80211_IFTYPE_AP) {
arvif->u.ap.ssid_len = vif->cfg.ssid_len;
if (vif->cfg.ssid_len)
memcpy(arvif->u.ap.ssid, vif->cfg.ssid, vif->cfg.ssid_len);
arvif->u.ap.hidden_ssid = info->hidden_ssid;
}
if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid))
ether_addr_copy(arvif->bssid, info->bssid);
if (changed & BSS_CHANGED_BEACON_ENABLED) {
ath12k_control_beaconing(arvif, info);
if (arvif->is_up && vif->bss_conf.he_support &&
vif->bss_conf.he_oper.params) {
/* TODO: Extend to support 1024 BA Bitmap size */
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
WMI_VDEV_PARAM_BA_MODE,
WMI_BA_MODE_BUFFER_SIZE_256);
if (ret)
ath12k_warn(ar->ab,
"failed to set BA BUFFER SIZE 256 for vdev: %d\n",
arvif->vdev_id);
param_id = WMI_VDEV_PARAM_HEOPS_0_31;
param_value = vif->bss_conf.he_oper.params;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param_id, param_value);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"he oper param: %x set for VDEV: %d\n",
param_value, arvif->vdev_id);
if (ret)
ath12k_warn(ar->ab, "Failed to set he oper params %x for VDEV %d: %i\n",
param_value, arvif->vdev_id, ret);
}
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
u32 cts_prot;
cts_prot = !!(info->use_cts_prot);
param_id = WMI_VDEV_PARAM_PROTECTION_MODE;
if (arvif->is_started) {
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param_id, cts_prot);
if (ret)
ath12k_warn(ar->ab, "Failed to set CTS prot for VDEV: %d\n",
arvif->vdev_id);
else
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "Set CTS prot: %d for VDEV: %d\n",
cts_prot, arvif->vdev_id);
} else {
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "defer protection mode setup, vdev is not ready yet\n");
}
}
if (changed & BSS_CHANGED_ERP_SLOT) {
u32 slottime;
if (info->use_short_slot)
slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */
else
slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */
param_id = WMI_VDEV_PARAM_SLOT_TIME;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param_id, slottime);
if (ret)
ath12k_warn(ar->ab, "Failed to set erp slot for VDEV: %d\n",
arvif->vdev_id);
else
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"Set slottime: %d for VDEV: %d\n",
slottime, arvif->vdev_id);
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
u32 preamble;
if (info->use_short_preamble)
preamble = WMI_VDEV_PREAMBLE_SHORT;
else
preamble = WMI_VDEV_PREAMBLE_LONG;
param_id = WMI_VDEV_PARAM_PREAMBLE;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param_id, preamble);
if (ret)
ath12k_warn(ar->ab, "Failed to set preamble for VDEV: %d\n",
arvif->vdev_id);
else
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"Set preamble: %d for VDEV: %d\n",
preamble, arvif->vdev_id);
}
if (changed & BSS_CHANGED_ASSOC) {
if (vif->cfg.assoc)
ath12k_bss_assoc(ar, arvif, info);
else
ath12k_bss_disassoc(ar, arvif);
}
if (changed & BSS_CHANGED_TXPOWER) {
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev_id %i txpower %d\n",
arvif->vdev_id, info->txpower);
arvif->txpower = info->txpower;
ath12k_mac_txpower_recalc(ar);
}
if (changed & BSS_CHANGED_MCAST_RATE &&
!ath12k_mac_vif_chan(arvif->vif, &def)) {
band = def.chan->band;
mcast_rate = vif->bss_conf.mcast_rate[band];
if (mcast_rate > 0)
rateidx = mcast_rate - 1;
else
rateidx = ffs(vif->bss_conf.basic_rates) - 1;
if (ar->pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP)
rateidx += ATH12K_MAC_FIRST_OFDM_RATE_IDX;
bitrate = ath12k_legacy_rates[rateidx].bitrate;
hw_value = ath12k_legacy_rates[rateidx].hw_value;
if (ath12k_mac_bitrate_is_cck(bitrate))
preamble = WMI_RATE_PREAMBLE_CCK;
else
preamble = WMI_RATE_PREAMBLE_OFDM;
rate = ATH12K_HW_RATE_CODE(hw_value, 0, preamble);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"mac vdev %d mcast_rate %x\n",
arvif->vdev_id, rate);
vdev_param = WMI_VDEV_PARAM_MCAST_DATA_RATE;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
vdev_param, rate);
if (ret)
ath12k_warn(ar->ab,
"failed to set mcast rate on vdev %i: %d\n",
arvif->vdev_id, ret);
vdev_param = WMI_VDEV_PARAM_BCAST_DATA_RATE;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
vdev_param, rate);
if (ret)
ath12k_warn(ar->ab,
"failed to set bcast rate on vdev %i: %d\n",
arvif->vdev_id, ret);
}
if (changed & BSS_CHANGED_BASIC_RATES &&
!ath12k_mac_vif_chan(arvif->vif, &def))
ath12k_recalculate_mgmt_rate(ar, vif, &def);
if (changed & BSS_CHANGED_TWT) {
if (info->twt_requester || info->twt_responder)
ath12k_wmi_send_twt_enable_cmd(ar, ar->pdev->pdev_id);
else
ath12k_wmi_send_twt_disable_cmd(ar, ar->pdev->pdev_id);
}
if (changed & BSS_CHANGED_HE_OBSS_PD)
ath12k_wmi_send_obss_spr_cmd(ar, arvif->vdev_id,
&info->he_obss_pd);
if (changed & BSS_CHANGED_HE_BSS_COLOR) {
if (vif->type == NL80211_IFTYPE_AP) {
ret = ath12k_wmi_obss_color_cfg_cmd(ar,
arvif->vdev_id,
info->he_bss_color.color,
ATH12K_BSS_COLOR_AP_PERIODS,
info->he_bss_color.enabled);
if (ret)
ath12k_warn(ar->ab, "failed to set bss color collision on vdev %i: %d\n",
arvif->vdev_id, ret);
} else if (vif->type == NL80211_IFTYPE_STATION) {
ret = ath12k_wmi_send_bss_color_change_enable_cmd(ar,
arvif->vdev_id,
1);
if (ret)
ath12k_warn(ar->ab, "failed to enable bss color change on vdev %i: %d\n",
arvif->vdev_id, ret);
ret = ath12k_wmi_obss_color_cfg_cmd(ar,
arvif->vdev_id,
0,
ATH12K_BSS_COLOR_STA_PERIODS,
1);
if (ret)
ath12k_warn(ar->ab, "failed to set bss color collision on vdev %i: %d\n",
arvif->vdev_id, ret);
}
}
ath12k_mac_fils_discovery(arvif, info);
if (changed & BSS_CHANGED_PS &&
ar->ab->hw_params->supports_sta_ps) {
arvif->ps = vif_cfg->ps;
ath12k_mac_vif_setup_ps(arvif);
}
}
static struct ath12k_vif_cache *ath12k_arvif_get_cache(struct ath12k_vif *arvif)
{
if (!arvif->cache)
arvif->cache = kzalloc(sizeof(*arvif->cache), GFP_KERNEL);
return arvif->cache;
}
static void ath12k_arvif_put_cache(struct ath12k_vif *arvif)
{
kfree(arvif->cache);
arvif->cache = NULL;
}
static void ath12k_mac_op_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u64 changed)
{
struct ath12k *ar;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_vif_cache *cache;
ar = ath12k_get_ar_by_vif(hw, vif);
/* if the vdev is not created on a certain radio,
* cache the info to be updated later on vdev creation
*/
if (!ar) {
cache = ath12k_arvif_get_cache(arvif);
if (!cache)
return;
arvif->cache->bss_conf_changed |= changed;
return;
}
mutex_lock(&ar->conf_mutex);
ath12k_mac_bss_info_changed(ar, arvif, info, changed);
mutex_unlock(&ar->conf_mutex);
}
static struct ath12k*
ath12k_mac_select_scan_device(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u32 center_freq)
{
struct ath12k_hw *ah = hw->priv;
enum nl80211_band band;
struct ath12k *ar;
int i;
if (ah->num_radio == 1)
return ah->radio;
/* Currently mac80211 supports splitting scan requests into
* multiple scan requests per band.
* Loop through first channel and determine the scan radio
* TODO: There could be 5 GHz low/high channels in that case
* split the hw request and perform multiple scans
*/
if (center_freq < ATH12K_MIN_5G_FREQ)
band = NL80211_BAND_2GHZ;
else if (center_freq < ATH12K_MIN_6G_FREQ)
band = NL80211_BAND_5GHZ;
else
band = NL80211_BAND_6GHZ;
for_each_ar(ah, ar, i) {
/* TODO 5 GHz low high split changes */
if (ar->mac.sbands[band].channels)
return ar;
}
return NULL;
}
void __ath12k_mac_scan_finish(struct ath12k *ar)
{
struct ieee80211_hw *hw = ath12k_ar_to_hw(ar);
lockdep_assert_held(&ar->data_lock);
switch (ar->scan.state) {
case ATH12K_SCAN_IDLE:
break;
case ATH12K_SCAN_RUNNING:
case ATH12K_SCAN_ABORTING:
if (ar->scan.is_roc && ar->scan.roc_notify)
ieee80211_remain_on_channel_expired(hw);
fallthrough;
case ATH12K_SCAN_STARTING:
if (!ar->scan.is_roc) {
struct cfg80211_scan_info info = {
.aborted = ((ar->scan.state ==
ATH12K_SCAN_ABORTING) ||
(ar->scan.state ==
ATH12K_SCAN_STARTING)),
};
ieee80211_scan_completed(hw, &info);
}
ar->scan.state = ATH12K_SCAN_IDLE;
ar->scan_channel = NULL;
ar->scan.roc_freq = 0;
cancel_delayed_work(&ar->scan.timeout);
complete(&ar->scan.completed);
break;
}
}
void ath12k_mac_scan_finish(struct ath12k *ar)
{
spin_lock_bh(&ar->data_lock);
__ath12k_mac_scan_finish(ar);
spin_unlock_bh(&ar->data_lock);
}
static int ath12k_scan_stop(struct ath12k *ar)
{
struct ath12k_wmi_scan_cancel_arg arg = {
.req_type = WLAN_SCAN_CANCEL_SINGLE,
.scan_id = ATH12K_SCAN_ID,
};
int ret;
lockdep_assert_held(&ar->conf_mutex);
/* TODO: Fill other STOP Params */
arg.pdev_id = ar->pdev->pdev_id;
ret = ath12k_wmi_send_scan_stop_cmd(ar, &arg);
if (ret) {
ath12k_warn(ar->ab, "failed to stop wmi scan: %d\n", ret);
goto out;
}
ret = wait_for_completion_timeout(&ar->scan.completed, 3 * HZ);
if (ret == 0) {
ath12k_warn(ar->ab,
"failed to receive scan abort comple: timed out\n");
ret = -ETIMEDOUT;
} else if (ret > 0) {
ret = 0;
}
out:
/* Scan state should be updated upon scan completion but in case
* firmware fails to deliver the event (for whatever reason) it is
* desired to clean up scan state anyway. Firmware may have just
* dropped the scan completion event delivery due to transport pipe
* being overflown with data and/or it can recover on its own before
* next scan request is submitted.
*/
spin_lock_bh(&ar->data_lock);
if (ar->scan.state != ATH12K_SCAN_IDLE)
__ath12k_mac_scan_finish(ar);
spin_unlock_bh(&ar->data_lock);
return ret;
}
static void ath12k_scan_abort(struct ath12k *ar)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
switch (ar->scan.state) {
case ATH12K_SCAN_IDLE:
/* This can happen if timeout worker kicked in and called
* abortion while scan completion was being processed.
*/
break;
case ATH12K_SCAN_STARTING:
case ATH12K_SCAN_ABORTING:
ath12k_warn(ar->ab, "refusing scan abortion due to invalid scan state: %d\n",
ar->scan.state);
break;
case ATH12K_SCAN_RUNNING:
ar->scan.state = ATH12K_SCAN_ABORTING;
spin_unlock_bh(&ar->data_lock);
ret = ath12k_scan_stop(ar);
if (ret)
ath12k_warn(ar->ab, "failed to abort scan: %d\n", ret);
spin_lock_bh(&ar->data_lock);
break;
}
spin_unlock_bh(&ar->data_lock);
}
static void ath12k_scan_timeout_work(struct work_struct *work)
{
struct ath12k *ar = container_of(work, struct ath12k,
scan.timeout.work);
mutex_lock(&ar->conf_mutex);
ath12k_scan_abort(ar);
mutex_unlock(&ar->conf_mutex);
}
static int ath12k_start_scan(struct ath12k *ar,
struct ath12k_wmi_scan_req_arg *arg)
{
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath12k_wmi_send_scan_start_cmd(ar, arg);
if (ret)
return ret;
ret = wait_for_completion_timeout(&ar->scan.started, 1 * HZ);
if (ret == 0) {
ret = ath12k_scan_stop(ar);
if (ret)
ath12k_warn(ar->ab, "failed to stop scan: %d\n", ret);
return -ETIMEDOUT;
}
/* If we failed to start the scan, return error code at
* this point. This is probably due to some issue in the
* firmware, but no need to wedge the driver due to that...
*/
spin_lock_bh(&ar->data_lock);
if (ar->scan.state == ATH12K_SCAN_IDLE) {
spin_unlock_bh(&ar->data_lock);
return -EINVAL;
}
spin_unlock_bh(&ar->data_lock);
return 0;
}
static int ath12k_mac_op_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_scan_request *hw_req)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar, *prev_ar;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct cfg80211_scan_request *req = &hw_req->req;
struct ath12k_wmi_scan_req_arg *arg = NULL;
int ret;
int i;
bool create = true;
if (ah->num_radio == 1) {
WARN_ON(!arvif->is_created);
ar = ath12k_ah_to_ar(ah, 0);
goto scan;
}
/* Since the targeted scan device could depend on the frequency
* requested in the hw_req, select the corresponding radio
*/
ar = ath12k_mac_select_scan_device(hw, vif, hw_req->req.channels[0]->center_freq);
if (!ar)
return -EINVAL;
/* If the vif is already assigned to a specific vdev of an ar,
* check whether its already started, vdev which is started
* are not allowed to switch to a new radio.
* If the vdev is not started, but was earlier created on a
* different ar, delete that vdev and create a new one. We don't
* delete at the scan stop as an optimization to avoid redundant
* delete-create vdev's for the same ar, in case the request is
* always on the same band for the vif
*/
if (arvif->is_created) {
if (WARN_ON(!arvif->ar))
return -EINVAL;
if (ar != arvif->ar && arvif->is_started)
return -EINVAL;
if (ar != arvif->ar) {
/* backup the previously used ar ptr, since the vdev delete
* would assign the arvif->ar to NULL after the call
*/
prev_ar = arvif->ar;
mutex_lock(&prev_ar->conf_mutex);
ret = ath12k_mac_vdev_delete(prev_ar, vif);
mutex_unlock(&prev_ar->conf_mutex);
if (ret)
ath12k_warn(prev_ar->ab,
"unable to delete scan vdev %d\n", ret);
} else {
create = false;
}
}
if (create) {
mutex_lock(&ar->conf_mutex);
ret = ath12k_mac_vdev_create(ar, vif);
mutex_unlock(&ar->conf_mutex);
if (ret) {
ath12k_warn(ar->ab, "unable to create scan vdev %d\n", ret);
return -EINVAL;
}
}
scan:
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
switch (ar->scan.state) {
case ATH12K_SCAN_IDLE:
reinit_completion(&ar->scan.started);
reinit_completion(&ar->scan.completed);
ar->scan.state = ATH12K_SCAN_STARTING;
ar->scan.is_roc = false;
ar->scan.vdev_id = arvif->vdev_id;
ret = 0;
break;
case ATH12K_SCAN_STARTING:
case ATH12K_SCAN_RUNNING:
case ATH12K_SCAN_ABORTING:
ret = -EBUSY;
break;
}
spin_unlock_bh(&ar->data_lock);
if (ret)
goto exit;
arg = kzalloc(sizeof(*arg), GFP_KERNEL);
if (!arg) {
ret = -ENOMEM;
goto exit;
}
ath12k_wmi_start_scan_init(ar, arg);
arg->vdev_id = arvif->vdev_id;
arg->scan_id = ATH12K_SCAN_ID;
if (req->ie_len) {
arg->extraie.ptr = kmemdup(req->ie, req->ie_len, GFP_KERNEL);
if (!arg->extraie.ptr) {
ret = -ENOMEM;
goto exit;
}
arg->extraie.len = req->ie_len;
}
if (req->n_ssids) {
arg->num_ssids = req->n_ssids;
for (i = 0; i < arg->num_ssids; i++)
arg->ssid[i] = req->ssids[i];
} else {
arg->scan_f_passive = 1;
}
if (req->n_channels) {
arg->num_chan = req->n_channels;
arg->chan_list = kcalloc(arg->num_chan, sizeof(*arg->chan_list),
GFP_KERNEL);
if (!arg->chan_list) {
ret = -ENOMEM;
goto exit;
}
for (i = 0; i < arg->num_chan; i++)
arg->chan_list[i] = req->channels[i]->center_freq;
}
ret = ath12k_start_scan(ar, arg);
if (ret) {
ath12k_warn(ar->ab, "failed to start hw scan: %d\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.state = ATH12K_SCAN_IDLE;
spin_unlock_bh(&ar->data_lock);
}
/* Add a margin to account for event/command processing */
ieee80211_queue_delayed_work(ath12k_ar_to_hw(ar), &ar->scan.timeout,
msecs_to_jiffies(arg->max_scan_time +
ATH12K_MAC_SCAN_TIMEOUT_MSECS));
exit:
if (arg) {
kfree(arg->chan_list);
kfree(arg->extraie.ptr);
kfree(arg);
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath12k_mac_op_cancel_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k *ar;
if (!arvif->is_created)
return;
ar = arvif->ar;
mutex_lock(&ar->conf_mutex);
ath12k_scan_abort(ar);
mutex_unlock(&ar->conf_mutex);
cancel_delayed_work_sync(&ar->scan.timeout);
}
static int ath12k_install_key(struct ath12k_vif *arvif,
struct ieee80211_key_conf *key,
enum set_key_cmd cmd,
const u8 *macaddr, u32 flags)
{
int ret;
struct ath12k *ar = arvif->ar;
struct wmi_vdev_install_key_arg arg = {
.vdev_id = arvif->vdev_id,
.key_idx = key->keyidx,
.key_len = key->keylen,
.key_data = key->key,
.key_flags = flags,
.macaddr = macaddr,
};
lockdep_assert_held(&arvif->ar->conf_mutex);
reinit_completion(&ar->install_key_done);
if (test_bit(ATH12K_FLAG_HW_CRYPTO_DISABLED, &ar->ab->dev_flags))
return 0;
if (cmd == DISABLE_KEY) {
/* TODO: Check if FW expects value other than NONE for del */
/* arg.key_cipher = WMI_CIPHER_NONE; */
arg.key_len = 0;
arg.key_data = NULL;
goto install;
}
switch (key->cipher) {
case WLAN_CIPHER_SUITE_CCMP:
arg.key_cipher = WMI_CIPHER_AES_CCM;
/* TODO: Re-check if flag is valid */
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT;
break;
case WLAN_CIPHER_SUITE_TKIP:
arg.key_cipher = WMI_CIPHER_TKIP;
arg.key_txmic_len = 8;
arg.key_rxmic_len = 8;
break;
case WLAN_CIPHER_SUITE_CCMP_256:
arg.key_cipher = WMI_CIPHER_AES_CCM;
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
arg.key_cipher = WMI_CIPHER_AES_GCM;
break;
default:
ath12k_warn(ar->ab, "cipher %d is not supported\n", key->cipher);
return -EOPNOTSUPP;
}
if (test_bit(ATH12K_FLAG_RAW_MODE, &ar->ab->dev_flags))
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV |
IEEE80211_KEY_FLAG_RESERVE_TAILROOM;
install:
ret = ath12k_wmi_vdev_install_key(arvif->ar, &arg);
if (ret)
return ret;
if (!wait_for_completion_timeout(&ar->install_key_done, 1 * HZ))
return -ETIMEDOUT;
if (ether_addr_equal(macaddr, arvif->vif->addr))
arvif->key_cipher = key->cipher;
return ar->install_key_status ? -EINVAL : 0;
}
static int ath12k_clear_peer_keys(struct ath12k_vif *arvif,
const u8 *addr)
{
struct ath12k *ar = arvif->ar;
struct ath12k_base *ab = ar->ab;
struct ath12k_peer *peer;
int first_errno = 0;
int ret;
int i;
u32 flags = 0;
lockdep_assert_held(&ar->conf_mutex);
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find(ab, arvif->vdev_id, addr);
spin_unlock_bh(&ab->base_lock);
if (!peer)
return -ENOENT;
for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
if (!peer->keys[i])
continue;
/* key flags are not required to delete the key */
ret = ath12k_install_key(arvif, peer->keys[i],
DISABLE_KEY, addr, flags);
if (ret < 0 && first_errno == 0)
first_errno = ret;
if (ret < 0)
ath12k_warn(ab, "failed to remove peer key %d: %d\n",
i, ret);
spin_lock_bh(&ab->base_lock);
peer->keys[i] = NULL;
spin_unlock_bh(&ab->base_lock);
}
return first_errno;
}
static int ath12k_mac_set_key(struct ath12k *ar, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath12k_base *ab = ar->ab;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_peer *peer;
struct ath12k_sta *arsta;
const u8 *peer_addr;
int ret = 0;
u32 flags = 0;
lockdep_assert_held(&ar->conf_mutex);
if (test_bit(ATH12K_FLAG_HW_CRYPTO_DISABLED, &ab->dev_flags))
return 1;
if (sta)
peer_addr = sta->addr;
else if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
peer_addr = vif->bss_conf.bssid;
else
peer_addr = vif->addr;
key->hw_key_idx = key->keyidx;
/* the peer should not disappear in mid-way (unless FW goes awry) since
* we already hold conf_mutex. we just make sure its there now.
*/
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find(ab, arvif->vdev_id, peer_addr);
spin_unlock_bh(&ab->base_lock);
if (!peer) {
if (cmd == SET_KEY) {
ath12k_warn(ab, "cannot install key for non-existent peer %pM\n",
peer_addr);
ret = -EOPNOTSUPP;
goto exit;
} else {
/* if the peer doesn't exist there is no key to disable
* anymore
*/
goto exit;
}
}
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
flags |= WMI_KEY_PAIRWISE;
else
flags |= WMI_KEY_GROUP;
ret = ath12k_install_key(arvif, key, cmd, peer_addr, flags);
if (ret) {
ath12k_warn(ab, "ath12k_install_key failed (%d)\n", ret);
goto exit;
}
ret = ath12k_dp_rx_peer_pn_replay_config(arvif, peer_addr, cmd, key);
if (ret) {
ath12k_warn(ab, "failed to offload PN replay detection %d\n", ret);
goto exit;
}
spin_lock_bh(&ab->base_lock);
peer = ath12k_peer_find(ab, arvif->vdev_id, peer_addr);
if (peer && cmd == SET_KEY) {
peer->keys[key->keyidx] = key;
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) {
peer->ucast_keyidx = key->keyidx;
peer->sec_type = ath12k_dp_tx_get_encrypt_type(key->cipher);
} else {
peer->mcast_keyidx = key->keyidx;
peer->sec_type_grp = ath12k_dp_tx_get_encrypt_type(key->cipher);
}
} else if (peer && cmd == DISABLE_KEY) {
peer->keys[key->keyidx] = NULL;
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
peer->ucast_keyidx = 0;
else
peer->mcast_keyidx = 0;
} else if (!peer)
/* impossible unless FW goes crazy */
ath12k_warn(ab, "peer %pM disappeared!\n", peer_addr);
if (sta) {
arsta = ath12k_sta_to_arsta(sta);
switch (key->cipher) {
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
if (cmd == SET_KEY)
arsta->pn_type = HAL_PN_TYPE_WPA;
else
arsta->pn_type = HAL_PN_TYPE_NONE;
break;
default:
arsta->pn_type = HAL_PN_TYPE_NONE;
break;
}
}
spin_unlock_bh(&ab->base_lock);
exit:
return ret;
}
static int ath12k_mac_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_vif_cache *cache;
struct ath12k *ar;
int ret;
/* BIP needs to be done in software */
if (key->cipher == WLAN_CIPHER_SUITE_AES_CMAC ||
key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_128 ||
key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_256 ||
key->cipher == WLAN_CIPHER_SUITE_BIP_CMAC_256)
return 1;
if (key->keyidx > WMI_MAX_KEY_INDEX)
return -ENOSPC;
ar = ath12k_get_ar_by_vif(hw, vif);
if (!ar) {
/* ar is expected to be valid when sta ptr is available */
if (sta) {
WARN_ON_ONCE(1);
return -EINVAL;
}
cache = ath12k_arvif_get_cache(arvif);
if (!cache)
return -ENOSPC;
cache->key_conf.cmd = cmd;
cache->key_conf.key = key;
cache->key_conf.changed = true;
return 0;
}
mutex_lock(&ar->conf_mutex);
ret = ath12k_mac_set_key(ar, cmd, vif, sta, key);
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int
ath12k_mac_bitrate_mask_num_vht_rates(struct ath12k *ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask *mask)
{
int num_rates = 0;
int i;
for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++)
num_rates += hweight16(mask->control[band].vht_mcs[i]);
return num_rates;
}
static int
ath12k_mac_set_peer_vht_fixed_rate(struct ath12k_vif *arvif,
struct ieee80211_sta *sta,
const struct cfg80211_bitrate_mask *mask,
enum nl80211_band band)
{
struct ath12k *ar = arvif->ar;
u8 vht_rate, nss;
u32 rate_code;
int ret, i;
lockdep_assert_held(&ar->conf_mutex);
nss = 0;
for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
if (hweight16(mask->control[band].vht_mcs[i]) == 1) {
nss = i + 1;
vht_rate = ffs(mask->control[band].vht_mcs[i]) - 1;
}
}
if (!nss) {
ath12k_warn(ar->ab, "No single VHT Fixed rate found to set for %pM",
sta->addr);
return -EINVAL;
}
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"Setting Fixed VHT Rate for peer %pM. Device will not switch to any other selected rates",
sta->addr);
rate_code = ATH12K_HW_RATE_CODE(vht_rate, nss - 1,
WMI_RATE_PREAMBLE_VHT);
ret = ath12k_wmi_set_peer_param(ar, sta->addr,
arvif->vdev_id,
WMI_PEER_PARAM_FIXED_RATE,
rate_code);
if (ret)
ath12k_warn(ar->ab,
"failed to update STA %pM Fixed Rate %d: %d\n",
sta->addr, rate_code, ret);
return ret;
}
static int ath12k_station_assoc(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
bool reassoc)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_wmi_peer_assoc_arg peer_arg;
int ret;
struct cfg80211_chan_def def;
enum nl80211_band band;
struct cfg80211_bitrate_mask *mask;
u8 num_vht_rates;
lockdep_assert_held(&ar->conf_mutex);
if (WARN_ON(ath12k_mac_vif_chan(vif, &def)))
return -EPERM;
band = def.chan->band;
mask = &arvif->bitrate_mask;
ath12k_peer_assoc_prepare(ar, vif, sta, &peer_arg, reassoc);
if (peer_arg.peer_nss < 1) {
ath12k_warn(ar->ab,
"invalid peer NSS %d\n", peer_arg.peer_nss);
return -EINVAL;
}
ret = ath12k_wmi_send_peer_assoc_cmd(ar, &peer_arg);
if (ret) {
ath12k_warn(ar->ab, "failed to run peer assoc for STA %pM vdev %i: %d\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) {
ath12k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n",
sta->addr, arvif->vdev_id);
return -ETIMEDOUT;
}
num_vht_rates = ath12k_mac_bitrate_mask_num_vht_rates(ar, band, mask);
/* If single VHT rate is configured (by set_bitrate_mask()),
* peer_assoc will disable VHT. This is now enabled by a peer specific
* fixed param.
* Note that all other rates and NSS will be disabled for this peer.
*/
if (sta->deflink.vht_cap.vht_supported && num_vht_rates == 1) {
ret = ath12k_mac_set_peer_vht_fixed_rate(arvif, sta, mask,
band);
if (ret)
return ret;
}
/* Re-assoc is run only to update supported rates for given station. It
* doesn't make much sense to reconfigure the peer completely.
*/
if (reassoc)
return 0;
ret = ath12k_setup_peer_smps(ar, arvif, sta->addr,
&sta->deflink.ht_cap,
&sta->deflink.he_6ghz_capa);
if (ret) {
ath12k_warn(ar->ab, "failed to setup peer SMPS for vdev %d: %d\n",
arvif->vdev_id, ret);
return ret;
}
if (!sta->wme) {
arvif->num_legacy_stations++;
ret = ath12k_recalc_rtscts_prot(arvif);
if (ret)
return ret;
}
if (sta->wme && sta->uapsd_queues) {
ret = ath12k_peer_assoc_qos_ap(ar, arvif, sta);
if (ret) {
ath12k_warn(ar->ab, "failed to set qos params for STA %pM for vdev %i: %d\n",
sta->addr, arvif->vdev_id, ret);
return ret;
}
}
return 0;
}
static int ath12k_station_disassoc(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
int ret;
lockdep_assert_held(&ar->conf_mutex);
if (!sta->wme) {
arvif->num_legacy_stations--;
ret = ath12k_recalc_rtscts_prot(arvif);
if (ret)
return ret;
}
ret = ath12k_clear_peer_keys(arvif, sta->addr);
if (ret) {
ath12k_warn(ar->ab, "failed to clear all peer keys for vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}
static void ath12k_sta_rc_update_wk(struct work_struct *wk)
{
struct ath12k *ar;
struct ath12k_vif *arvif;
struct ath12k_sta *arsta;
struct ieee80211_sta *sta;
struct cfg80211_chan_def def;
enum nl80211_band band;
const u8 *ht_mcs_mask;
const u16 *vht_mcs_mask;
u32 changed, bw, nss, smps, bw_prev;
int err, num_vht_rates;
const struct cfg80211_bitrate_mask *mask;
struct ath12k_wmi_peer_assoc_arg peer_arg;
enum wmi_phy_mode peer_phymode;
arsta = container_of(wk, struct ath12k_sta, update_wk);
sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv);
arvif = arsta->arvif;
ar = arvif->ar;
if (WARN_ON(ath12k_mac_vif_chan(arvif->vif, &def)))
return;
band = def.chan->band;
ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
spin_lock_bh(&ar->data_lock);
changed = arsta->changed;
arsta->changed = 0;
bw = arsta->bw;
bw_prev = arsta->bw_prev;
nss = arsta->nss;
smps = arsta->smps;
spin_unlock_bh(&ar->data_lock);
mutex_lock(&ar->conf_mutex);
nss = max_t(u32, 1, nss);
nss = min(nss, max(ath12k_mac_max_ht_nss(ht_mcs_mask),
ath12k_mac_max_vht_nss(vht_mcs_mask)));
if (changed & IEEE80211_RC_BW_CHANGED) {
ath12k_peer_assoc_h_phymode(ar, arvif->vif, sta, &peer_arg);
peer_phymode = peer_arg.peer_phymode;
if (bw > bw_prev) {
/* Phymode shows maximum supported channel width, if we
* upgrade bandwidth then due to sanity check of firmware,
* we have to send WMI_PEER_PHYMODE followed by
* WMI_PEER_CHWIDTH
*/
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac bandwidth upgrade for sta %pM new %d old %d\n",
sta->addr, bw, bw_prev);
err = ath12k_wmi_set_peer_param(ar, sta->addr,
arvif->vdev_id, WMI_PEER_PHYMODE,
peer_phymode);
if (err) {
ath12k_warn(ar->ab, "failed to update STA %pM to peer phymode %d: %d\n",
sta->addr, peer_phymode, err);
goto err_rc_bw_changed;
}
err = ath12k_wmi_set_peer_param(ar, sta->addr,
arvif->vdev_id, WMI_PEER_CHWIDTH,
bw);
if (err)
ath12k_warn(ar->ab, "failed to update STA %pM to peer bandwidth %d: %d\n",
sta->addr, bw, err);
} else {
/* When we downgrade bandwidth this will conflict with phymode
* and cause to trigger firmware crash. In this case we send
* WMI_PEER_CHWIDTH followed by WMI_PEER_PHYMODE
*/
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac bandwidth downgrade for sta %pM new %d old %d\n",
sta->addr, bw, bw_prev);
err = ath12k_wmi_set_peer_param(ar, sta->addr,
arvif->vdev_id, WMI_PEER_CHWIDTH,
bw);
if (err) {
ath12k_warn(ar->ab, "failed to update STA %pM peer to bandwidth %d: %d\n",
sta->addr, bw, err);
goto err_rc_bw_changed;
}
err = ath12k_wmi_set_peer_param(ar, sta->addr,
arvif->vdev_id, WMI_PEER_PHYMODE,
peer_phymode);
if (err)
ath12k_warn(ar->ab, "failed to update STA %pM to peer phymode %d: %d\n",
sta->addr, peer_phymode, err);
}
}
if (changed & IEEE80211_RC_NSS_CHANGED) {
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac update sta %pM nss %d\n",
sta->addr, nss);
err = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id,
WMI_PEER_NSS, nss);
if (err)
ath12k_warn(ar->ab, "failed to update STA %pM nss %d: %d\n",
sta->addr, nss, err);
}
if (changed & IEEE80211_RC_SMPS_CHANGED) {
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac update sta %pM smps %d\n",
sta->addr, smps);
err = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id,
WMI_PEER_MIMO_PS_STATE, smps);
if (err)
ath12k_warn(ar->ab, "failed to update STA %pM smps %d: %d\n",
sta->addr, smps, err);
}
if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) {
mask = &arvif->bitrate_mask;
num_vht_rates = ath12k_mac_bitrate_mask_num_vht_rates(ar, band,
mask);
/* Peer_assoc_prepare will reject vht rates in
* bitrate_mask if its not available in range format and
* sets vht tx_rateset as unsupported. So multiple VHT MCS
* setting(eg. MCS 4,5,6) per peer is not supported here.
* But, Single rate in VHT mask can be set as per-peer
* fixed rate. But even if any HT rates are configured in
* the bitrate mask, device will not switch to those rates
* when per-peer Fixed rate is set.
* TODO: Check RATEMASK_CMDID to support auto rates selection
* across HT/VHT and for multiple VHT MCS support.
*/
if (sta->deflink.vht_cap.vht_supported && num_vht_rates == 1) {
ath12k_mac_set_peer_vht_fixed_rate(arvif, sta, mask,
band);
} else {
/* If the peer is non-VHT or no fixed VHT rate
* is provided in the new bitrate mask we set the
* other rates using peer_assoc command.
*/
ath12k_peer_assoc_prepare(ar, arvif->vif, sta,
&peer_arg, true);
err = ath12k_wmi_send_peer_assoc_cmd(ar, &peer_arg);
if (err)
ath12k_warn(ar->ab, "failed to run peer assoc for STA %pM vdev %i: %d\n",
sta->addr, arvif->vdev_id, err);
if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ))
ath12k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n",
sta->addr, arvif->vdev_id);
}
}
err_rc_bw_changed:
mutex_unlock(&ar->conf_mutex);
}
static int ath12k_mac_inc_num_stations(struct ath12k_vif *arvif,
struct ieee80211_sta *sta)
{
struct ath12k *ar = arvif->ar;
lockdep_assert_held(&ar->conf_mutex);
if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls)
return 0;
if (ar->num_stations >= ar->max_num_stations)
return -ENOBUFS;
ar->num_stations++;
return 0;
}
static void ath12k_mac_dec_num_stations(struct ath12k_vif *arvif,
struct ieee80211_sta *sta)
{
struct ath12k *ar = arvif->ar;
lockdep_assert_held(&ar->conf_mutex);
if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls)
return;
ar->num_stations--;
}
static int ath12k_mac_station_add(struct ath12k *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct ath12k_base *ab = ar->ab;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta);
struct ath12k_wmi_peer_create_arg peer_param;
int ret;
lockdep_assert_held(&ar->conf_mutex);
ret = ath12k_mac_inc_num_stations(arvif, sta);
if (ret) {
ath12k_warn(ab, "refusing to associate station: too many connected already (%d)\n",
ar->max_num_stations);
goto exit;
}
arsta->rx_stats = kzalloc(sizeof(*arsta->rx_stats), GFP_KERNEL);
if (!arsta->rx_stats) {
ret = -ENOMEM;
goto dec_num_station;
}
peer_param.vdev_id = arvif->vdev_id;
peer_param.peer_addr = sta->addr;
peer_param.peer_type = WMI_PEER_TYPE_DEFAULT;
ret = ath12k_peer_create(ar, arvif, sta, &peer_param);
if (ret) {
ath12k_warn(ab, "Failed to add peer: %pM for VDEV: %d\n",
sta->addr, arvif->vdev_id);
goto free_peer;
}
ath12k_dbg(ab, ATH12K_DBG_MAC, "Added peer: %pM for VDEV: %d\n",
sta->addr, arvif->vdev_id);
if (ieee80211_vif_is_mesh(vif)) {
ret = ath12k_wmi_set_peer_param(ar, sta->addr,
arvif->vdev_id,
WMI_PEER_USE_4ADDR, 1);
if (ret) {
ath12k_warn(ab, "failed to STA %pM 4addr capability: %d\n",
sta->addr, ret);
goto free_peer;
}
}
ret = ath12k_dp_peer_setup(ar, arvif->vdev_id, sta->addr);
if (ret) {
ath12k_warn(ab, "failed to setup dp for peer %pM on vdev %i (%d)\n",
sta->addr, arvif->vdev_id, ret);
goto free_peer;
}
if (ab->hw_params->vdev_start_delay &&
!arvif->is_started &&
arvif->vdev_type != WMI_VDEV_TYPE_AP) {
ret = ath12k_start_vdev_delay(ar, arvif);
if (ret) {
ath12k_warn(ab, "failed to delay vdev start: %d\n", ret);
goto free_peer;
}
}
return 0;
free_peer:
ath12k_peer_delete(ar, arvif->vdev_id, sta->addr);
dec_num_station:
ath12k_mac_dec_num_stations(arvif, sta);
exit:
return ret;
}
static u32 ath12k_mac_ieee80211_sta_bw_to_wmi(struct ath12k *ar,
struct ieee80211_sta *sta)
{
u32 bw = WMI_PEER_CHWIDTH_20MHZ;
switch (sta->deflink.bandwidth) {
case IEEE80211_STA_RX_BW_20:
bw = WMI_PEER_CHWIDTH_20MHZ;
break;
case IEEE80211_STA_RX_BW_40:
bw = WMI_PEER_CHWIDTH_40MHZ;
break;
case IEEE80211_STA_RX_BW_80:
bw = WMI_PEER_CHWIDTH_80MHZ;
break;
case IEEE80211_STA_RX_BW_160:
bw = WMI_PEER_CHWIDTH_160MHZ;
break;
case IEEE80211_STA_RX_BW_320:
bw = WMI_PEER_CHWIDTH_320MHZ;
break;
default:
ath12k_warn(ar->ab, "Invalid bandwidth %d in rc update for %pM\n",
sta->deflink.bandwidth, sta->addr);
bw = WMI_PEER_CHWIDTH_20MHZ;
break;
}
return bw;
}
static int ath12k_mac_op_sta_state(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
enum ieee80211_sta_state old_state,
enum ieee80211_sta_state new_state)
{
struct ath12k *ar;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta);
struct ath12k_peer *peer;
int ret = 0;
/* cancel must be done outside the mutex to avoid deadlock */
if ((old_state == IEEE80211_STA_NONE &&
new_state == IEEE80211_STA_NOTEXIST))
cancel_work_sync(&arsta->update_wk);
ar = ath12k_get_ar_by_vif(hw, vif);
if (!ar) {
WARN_ON_ONCE(1);
return -EINVAL;
}
mutex_lock(&ar->conf_mutex);
if (old_state == IEEE80211_STA_NOTEXIST &&
new_state == IEEE80211_STA_NONE) {
memset(arsta, 0, sizeof(*arsta));
arsta->arvif = arvif;
INIT_WORK(&arsta->update_wk, ath12k_sta_rc_update_wk);
ret = ath12k_mac_station_add(ar, vif, sta);
if (ret)
ath12k_warn(ar->ab, "Failed to add station: %pM for VDEV: %d\n",
sta->addr, arvif->vdev_id);
} else if ((old_state == IEEE80211_STA_NONE &&
new_state == IEEE80211_STA_NOTEXIST)) {
if (arvif->vdev_type == WMI_VDEV_TYPE_STA) {
ath12k_bss_disassoc(ar, arvif);
ret = ath12k_mac_vdev_stop(arvif);
if (ret)
ath12k_warn(ar->ab, "failed to stop vdev %i: %d\n",
arvif->vdev_id, ret);
}
ath12k_dp_peer_cleanup(ar, arvif->vdev_id, sta->addr);
ret = ath12k_peer_delete(ar, arvif->vdev_id, sta->addr);
if (ret)
ath12k_warn(ar->ab, "Failed to delete peer: %pM for VDEV: %d\n",
sta->addr, arvif->vdev_id);
else
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "Removed peer: %pM for VDEV: %d\n",
sta->addr, arvif->vdev_id);
ath12k_mac_dec_num_stations(arvif, sta);
spin_lock_bh(&ar->ab->base_lock);
peer = ath12k_peer_find(ar->ab, arvif->vdev_id, sta->addr);
if (peer && peer->sta == sta) {
ath12k_warn(ar->ab, "Found peer entry %pM n vdev %i after it was supposedly removed\n",
vif->addr, arvif->vdev_id);
peer->sta = NULL;
list_del(&peer->list);
kfree(peer);
ar->num_peers--;
}
spin_unlock_bh(&ar->ab->base_lock);
kfree(arsta->rx_stats);
arsta->rx_stats = NULL;
} else if (old_state == IEEE80211_STA_AUTH &&
new_state == IEEE80211_STA_ASSOC &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_MESH_POINT ||
vif->type == NL80211_IFTYPE_ADHOC)) {
ret = ath12k_station_assoc(ar, vif, sta, false);
if (ret)
ath12k_warn(ar->ab, "Failed to associate station: %pM\n",
sta->addr);
spin_lock_bh(&ar->data_lock);
arsta->bw = ath12k_mac_ieee80211_sta_bw_to_wmi(ar, sta);
arsta->bw_prev = sta->deflink.bandwidth;
spin_unlock_bh(&ar->data_lock);
} else if (old_state == IEEE80211_STA_ASSOC &&
new_state == IEEE80211_STA_AUTHORIZED) {
spin_lock_bh(&ar->ab->base_lock);
peer = ath12k_peer_find(ar->ab, arvif->vdev_id, sta->addr);
if (peer)
peer->is_authorized = true;
spin_unlock_bh(&ar->ab->base_lock);
if (vif->type == NL80211_IFTYPE_STATION && arvif->is_up) {
ret = ath12k_wmi_set_peer_param(ar, sta->addr,
arvif->vdev_id,
WMI_PEER_AUTHORIZE,
1);
if (ret)
ath12k_warn(ar->ab, "Unable to authorize peer %pM vdev %d: %d\n",
sta->addr, arvif->vdev_id, ret);
}
} else if (old_state == IEEE80211_STA_AUTHORIZED &&
new_state == IEEE80211_STA_ASSOC) {
spin_lock_bh(&ar->ab->base_lock);
peer = ath12k_peer_find(ar->ab, arvif->vdev_id, sta->addr);
if (peer)
peer->is_authorized = false;
spin_unlock_bh(&ar->ab->base_lock);
} else if (old_state == IEEE80211_STA_ASSOC &&
new_state == IEEE80211_STA_AUTH &&
(vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_MESH_POINT ||
vif->type == NL80211_IFTYPE_ADHOC)) {
ret = ath12k_station_disassoc(ar, vif, sta);
if (ret)
ath12k_warn(ar->ab, "Failed to disassociate station: %pM\n",
sta->addr);
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
static int ath12k_mac_op_sta_set_txpwr(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
int ret;
s16 txpwr;
if (sta->deflink.txpwr.type == NL80211_TX_POWER_AUTOMATIC) {
txpwr = 0;
} else {
txpwr = sta->deflink.txpwr.power;
if (!txpwr)
return -EINVAL;
}
if (txpwr > ATH12K_TX_POWER_MAX_VAL || txpwr < ATH12K_TX_POWER_MIN_VAL)
return -EINVAL;
ar = ath12k_ah_to_ar(ah, 0);
mutex_lock(&ar->conf_mutex);
ret = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id,
WMI_PEER_USE_FIXED_PWR, txpwr);
if (ret) {
ath12k_warn(ar->ab, "failed to set tx power for station ret: %d\n",
ret);
goto out;
}
out:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath12k_mac_op_sta_rc_update(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
u32 changed)
{
struct ath12k *ar;
struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta);
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_peer *peer;
u32 bw, smps;
ar = ath12k_get_ar_by_vif(hw, vif);
if (!ar) {
WARN_ON_ONCE(1);
return;
}
spin_lock_bh(&ar->ab->base_lock);
peer = ath12k_peer_find(ar->ab, arvif->vdev_id, sta->addr);
if (!peer) {
spin_unlock_bh(&ar->ab->base_lock);
ath12k_warn(ar->ab, "mac sta rc update failed to find peer %pM on vdev %i\n",
sta->addr, arvif->vdev_id);
return;
}
spin_unlock_bh(&ar->ab->base_lock);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n",
sta->addr, changed, sta->deflink.bandwidth, sta->deflink.rx_nss,
sta->deflink.smps_mode);
spin_lock_bh(&ar->data_lock);
if (changed & IEEE80211_RC_BW_CHANGED) {
bw = ath12k_mac_ieee80211_sta_bw_to_wmi(ar, sta);
arsta->bw_prev = arsta->bw;
arsta->bw = bw;
}
if (changed & IEEE80211_RC_NSS_CHANGED)
arsta->nss = sta->deflink.rx_nss;
if (changed & IEEE80211_RC_SMPS_CHANGED) {
smps = WMI_PEER_SMPS_PS_NONE;
switch (sta->deflink.smps_mode) {
case IEEE80211_SMPS_AUTOMATIC:
case IEEE80211_SMPS_OFF:
smps = WMI_PEER_SMPS_PS_NONE;
break;
case IEEE80211_SMPS_STATIC:
smps = WMI_PEER_SMPS_STATIC;
break;
case IEEE80211_SMPS_DYNAMIC:
smps = WMI_PEER_SMPS_DYNAMIC;
break;
default:
ath12k_warn(ar->ab, "Invalid smps %d in sta rc update for %pM\n",
sta->deflink.smps_mode, sta->addr);
smps = WMI_PEER_SMPS_PS_NONE;
break;
}
arsta->smps = smps;
}
arsta->changed |= changed;
spin_unlock_bh(&ar->data_lock);
ieee80211_queue_work(hw, &arsta->update_wk);
}
static int ath12k_conf_tx_uapsd(struct ath12k_vif *arvif,
u16 ac, bool enable)
{
struct ath12k *ar = arvif->ar;
u32 value;
int ret;
if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
return 0;
switch (ac) {
case IEEE80211_AC_VO:
value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC3_TRIGGER_EN;
break;
case IEEE80211_AC_VI:
value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC2_TRIGGER_EN;
break;
case IEEE80211_AC_BE:
value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC1_TRIGGER_EN;
break;
case IEEE80211_AC_BK:
value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN |
WMI_STA_PS_UAPSD_AC0_TRIGGER_EN;
break;
}
if (enable)
arvif->u.sta.uapsd |= value;
else
arvif->u.sta.uapsd &= ~value;
ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_UAPSD,
arvif->u.sta.uapsd);
if (ret) {
ath12k_warn(ar->ab, "could not set uapsd params %d\n", ret);
goto exit;
}
if (arvif->u.sta.uapsd)
value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD;
else
value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
WMI_STA_PS_PARAM_RX_WAKE_POLICY,
value);
if (ret)
ath12k_warn(ar->ab, "could not set rx wake param %d\n", ret);
exit:
return ret;
}
static int ath12k_mac_conf_tx(struct ath12k_vif *arvif,
unsigned int link_id, u16 ac,
const struct ieee80211_tx_queue_params *params)
{
struct wmi_wmm_params_arg *p = NULL;
struct ath12k *ar = arvif->ar;
struct ath12k_base *ab = ar->ab;
int ret;
lockdep_assert_held(&ar->conf_mutex);
switch (ac) {
case IEEE80211_AC_VO:
p = &arvif->wmm_params.ac_vo;
break;
case IEEE80211_AC_VI:
p = &arvif->wmm_params.ac_vi;
break;
case IEEE80211_AC_BE:
p = &arvif->wmm_params.ac_be;
break;
case IEEE80211_AC_BK:
p = &arvif->wmm_params.ac_bk;
break;
}
if (WARN_ON(!p)) {
ret = -EINVAL;
goto exit;
}
p->cwmin = params->cw_min;
p->cwmax = params->cw_max;
p->aifs = params->aifs;
p->txop = params->txop;
ret = ath12k_wmi_send_wmm_update_cmd(ar, arvif->vdev_id,
&arvif->wmm_params);
if (ret) {
ath12k_warn(ab, "pdev idx %d failed to set wmm params: %d\n",
ar->pdev_idx, ret);
goto exit;
}
ret = ath12k_conf_tx_uapsd(arvif, ac, params->uapsd);
if (ret)
ath12k_warn(ab, "pdev idx %d failed to set sta uapsd: %d\n",
ar->pdev_idx, ret);
exit:
return ret;
}
static int ath12k_mac_op_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
unsigned int link_id, u16 ac,
const struct ieee80211_tx_queue_params *params)
{
struct ath12k *ar;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_vif_cache *cache = arvif->cache;
int ret;
ar = ath12k_get_ar_by_vif(hw, vif);
if (!ar) {
/* cache the info and apply after vdev is created */
cache = ath12k_arvif_get_cache(arvif);
if (!cache)
return -ENOSPC;
cache->tx_conf.changed = true;
cache->tx_conf.ac = ac;
cache->tx_conf.tx_queue_params = *params;
return 0;
}
mutex_lock(&ar->conf_mutex);
ret = ath12k_mac_conf_tx(arvif, link_id, ac, params);
mutex_unlock(&ar->conf_mutex);
return ret;
}
static struct ieee80211_sta_ht_cap
ath12k_create_ht_cap(struct ath12k *ar, u32 ar_ht_cap, u32 rate_cap_rx_chainmask)
{
int i;
struct ieee80211_sta_ht_cap ht_cap = {0};
u32 ar_vht_cap = ar->pdev->cap.vht_cap;
if (!(ar_ht_cap & WMI_HT_CAP_ENABLED))
return ht_cap;
ht_cap.ht_supported = 1;
ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_NONE;
ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT;
if (ar_ht_cap & WMI_HT_CAP_HT20_SGI)
ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
if (ar_ht_cap & WMI_HT_CAP_HT40_SGI)
ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
if (ar_ht_cap & WMI_HT_CAP_DYNAMIC_SMPS) {
u32 smps;
smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
ht_cap.cap |= smps;
}
if (ar_ht_cap & WMI_HT_CAP_TX_STBC)
ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;
if (ar_ht_cap & WMI_HT_CAP_RX_STBC) {
u32 stbc;
stbc = ar_ht_cap;
stbc &= WMI_HT_CAP_RX_STBC;
stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT;
stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT;
stbc &= IEEE80211_HT_CAP_RX_STBC;
ht_cap.cap |= stbc;
}
if (ar_ht_cap & WMI_HT_CAP_RX_LDPC)
ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
if (ar_ht_cap & WMI_HT_CAP_L_SIG_TXOP_PROT)
ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT;
if (ar_vht_cap & WMI_VHT_CAP_MAX_MPDU_LEN_MASK)
ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;
for (i = 0; i < ar->num_rx_chains; i++) {
if (rate_cap_rx_chainmask & BIT(i))
ht_cap.mcs.rx_mask[i] = 0xFF;
}
ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
return ht_cap;
}
static int ath12k_mac_set_txbf_conf(struct ath12k_vif *arvif)
{
u32 value = 0;
struct ath12k *ar = arvif->ar;
int nsts;
int sound_dim;
u32 vht_cap = ar->pdev->cap.vht_cap;
u32 vdev_param = WMI_VDEV_PARAM_TXBF;
if (vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)) {
nsts = vht_cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK;
nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT;
value |= SM(nsts, WMI_TXBF_STS_CAP_OFFSET);
}
if (vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)) {
sound_dim = vht_cap &
IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK;
sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT;
if (sound_dim > (ar->num_tx_chains - 1))
sound_dim = ar->num_tx_chains - 1;
value |= SM(sound_dim, WMI_BF_SOUND_DIM_OFFSET);
}
if (!value)
return 0;
if (vht_cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) {
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;
if ((vht_cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) &&
arvif->vdev_type == WMI_VDEV_TYPE_AP)
value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER;
}
if (vht_cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) {
value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;
if ((vht_cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) &&
arvif->vdev_type == WMI_VDEV_TYPE_STA)
value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE;
}
return ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
vdev_param, value);
}
static void ath12k_set_vht_txbf_cap(struct ath12k *ar, u32 *vht_cap)
{
bool subfer, subfee;
int sound_dim = 0;
subfer = !!(*vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE));
subfee = !!(*vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE));
if (ar->num_tx_chains < 2) {
*vht_cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE);
subfer = false;
}
/* If SU Beaformer is not set, then disable MU Beamformer Capability */
if (!subfer)
*vht_cap &= ~(IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE);
/* If SU Beaformee is not set, then disable MU Beamformee Capability */
if (!subfee)
*vht_cap &= ~(IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE);
sound_dim = u32_get_bits(*vht_cap,
IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK);
*vht_cap = u32_replace_bits(*vht_cap, 0,
IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK);
/* TODO: Need to check invalid STS and Sound_dim values set by FW? */
/* Enable Sounding Dimension Field only if SU BF is enabled */
if (subfer) {
if (sound_dim > (ar->num_tx_chains - 1))
sound_dim = ar->num_tx_chains - 1;
*vht_cap = u32_replace_bits(*vht_cap, sound_dim,
IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK);
}
/* Use the STS advertised by FW unless SU Beamformee is not supported*/
if (!subfee)
*vht_cap &= ~(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK);
}
static struct ieee80211_sta_vht_cap
ath12k_create_vht_cap(struct ath12k *ar, u32 rate_cap_tx_chainmask,
u32 rate_cap_rx_chainmask)
{
struct ieee80211_sta_vht_cap vht_cap = {0};
u16 txmcs_map, rxmcs_map;
int i;
vht_cap.vht_supported = 1;
vht_cap.cap = ar->pdev->cap.vht_cap;
ath12k_set_vht_txbf_cap(ar, &vht_cap.cap);
/* TODO: Enable back VHT160 mode once association issues are fixed */
/* Disabling VHT160 and VHT80+80 modes */
vht_cap.cap &= ~IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
vht_cap.cap &= ~IEEE80211_VHT_CAP_SHORT_GI_160;
rxmcs_map = 0;
txmcs_map = 0;
for (i = 0; i < 8; i++) {
if (i < ar->num_tx_chains && rate_cap_tx_chainmask & BIT(i))
txmcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2);
else
txmcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2);
if (i < ar->num_rx_chains && rate_cap_rx_chainmask & BIT(i))
rxmcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2);
else
rxmcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2);
}
if (rate_cap_tx_chainmask <= 1)
vht_cap.cap &= ~IEEE80211_VHT_CAP_TXSTBC;
vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(rxmcs_map);
vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(txmcs_map);
return vht_cap;
}
static void ath12k_mac_setup_ht_vht_cap(struct ath12k *ar,
struct ath12k_pdev_cap *cap,
u32 *ht_cap_info)
{
struct ieee80211_supported_band *band;
u32 rate_cap_tx_chainmask;
u32 rate_cap_rx_chainmask;
u32 ht_cap;
rate_cap_tx_chainmask = ar->cfg_tx_chainmask >> cap->tx_chain_mask_shift;
rate_cap_rx_chainmask = ar->cfg_rx_chainmask >> cap->rx_chain_mask_shift;
if (cap->supported_bands & WMI_HOST_WLAN_2G_CAP) {
band = &ar->mac.sbands[NL80211_BAND_2GHZ];
ht_cap = cap->band[NL80211_BAND_2GHZ].ht_cap_info;
if (ht_cap_info)
*ht_cap_info = ht_cap;
band->ht_cap = ath12k_create_ht_cap(ar, ht_cap,
rate_cap_rx_chainmask);
}
if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP &&
(ar->ab->hw_params->single_pdev_only ||
!ar->supports_6ghz)) {
band = &ar->mac.sbands[NL80211_BAND_5GHZ];
ht_cap = cap->band[NL80211_BAND_5GHZ].ht_cap_info;
if (ht_cap_info)
*ht_cap_info = ht_cap;
band->ht_cap = ath12k_create_ht_cap(ar, ht_cap,
rate_cap_rx_chainmask);
band->vht_cap = ath12k_create_vht_cap(ar, rate_cap_tx_chainmask,
rate_cap_rx_chainmask);
}
}
static int ath12k_check_chain_mask(struct ath12k *ar, u32 ant, bool is_tx_ant)
{
/* TODO: Check the request chainmask against the supported
* chainmask table which is advertised in extented_service_ready event
*/
return 0;
}
static void ath12k_gen_ppe_thresh(struct ath12k_wmi_ppe_threshold_arg *fw_ppet,
u8 *he_ppet)
{
int nss, ru;
u8 bit = 7;
he_ppet[0] = fw_ppet->numss_m1 & IEEE80211_PPE_THRES_NSS_MASK;
he_ppet[0] |= (fw_ppet->ru_bit_mask <<
IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS) &
IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK;
for (nss = 0; nss <= fw_ppet->numss_m1; nss++) {
for (ru = 0; ru < 4; ru++) {
u8 val;
int i;
if ((fw_ppet->ru_bit_mask & BIT(ru)) == 0)
continue;
val = (fw_ppet->ppet16_ppet8_ru3_ru0[nss] >> (ru * 6)) &
0x3f;
val = ((val >> 3) & 0x7) | ((val & 0x7) << 3);
for (i = 5; i >= 0; i--) {
he_ppet[bit / 8] |=
((val >> i) & 0x1) << ((bit % 8));
bit++;
}
}
}
}
static void
ath12k_mac_filter_he_cap_mesh(struct ieee80211_he_cap_elem *he_cap_elem)
{
u8 m;
m = IEEE80211_HE_MAC_CAP0_TWT_RES |
IEEE80211_HE_MAC_CAP0_TWT_REQ;
he_cap_elem->mac_cap_info[0] &= ~m;
m = IEEE80211_HE_MAC_CAP2_TRS |
IEEE80211_HE_MAC_CAP2_BCAST_TWT |
IEEE80211_HE_MAC_CAP2_MU_CASCADING;
he_cap_elem->mac_cap_info[2] &= ~m;
m = IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED |
IEEE80211_HE_MAC_CAP2_BCAST_TWT |
IEEE80211_HE_MAC_CAP2_MU_CASCADING;
he_cap_elem->mac_cap_info[3] &= ~m;
m = IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG |
IEEE80211_HE_MAC_CAP4_BQR;
he_cap_elem->mac_cap_info[4] &= ~m;
m = IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION |
IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING |
IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX;
he_cap_elem->mac_cap_info[5] &= ~m;
m = IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO;
he_cap_elem->phy_cap_info[2] &= ~m;
m = IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU |
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK;
he_cap_elem->phy_cap_info[3] &= ~m;
m = IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
he_cap_elem->phy_cap_info[4] &= ~m;
m = IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK;
he_cap_elem->phy_cap_info[5] &= ~m;
m = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU |
IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB |
IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO;
he_cap_elem->phy_cap_info[6] &= ~m;
m = IEEE80211_HE_PHY_CAP7_PSR_BASED_SR |
IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ |
IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
he_cap_elem->phy_cap_info[7] &= ~m;
m = IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU;
he_cap_elem->phy_cap_info[8] &= ~m;
m = IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM |
IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU |
IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB;
he_cap_elem->phy_cap_info[9] &= ~m;
}
static __le16 ath12k_mac_setup_he_6ghz_cap(struct ath12k_pdev_cap *pcap,
struct ath12k_band_cap *bcap)
{
u8 val;
bcap->he_6ghz_capa = IEEE80211_HT_MPDU_DENSITY_NONE;
if (bcap->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS)
bcap->he_6ghz_capa |=
u32_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC,
IEEE80211_HE_6GHZ_CAP_SM_PS);
else
bcap->he_6ghz_capa |=
u32_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED,
IEEE80211_HE_6GHZ_CAP_SM_PS);
val = u32_get_bits(pcap->vht_cap,
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
bcap->he_6ghz_capa |=
u32_encode_bits(val, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
val = u32_get_bits(pcap->vht_cap,
IEEE80211_VHT_CAP_MAX_MPDU_MASK);
bcap->he_6ghz_capa |=
u32_encode_bits(val, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
if (pcap->vht_cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
bcap->he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
if (pcap->vht_cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
bcap->he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
return cpu_to_le16(bcap->he_6ghz_capa);
}
static void ath12k_mac_copy_he_cap(struct ath12k_band_cap *band_cap,
int iftype, u8 num_tx_chains,
struct ieee80211_sta_he_cap *he_cap)
{
struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem;
struct ieee80211_he_mcs_nss_supp *mcs_nss = &he_cap->he_mcs_nss_supp;
he_cap->has_he = true;
memcpy(he_cap_elem->mac_cap_info, band_cap->he_cap_info,
sizeof(he_cap_elem->mac_cap_info));
memcpy(he_cap_elem->phy_cap_info, band_cap->he_cap_phy_info,
sizeof(he_cap_elem->phy_cap_info));
he_cap_elem->mac_cap_info[1] &=
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK;
he_cap_elem->phy_cap_info[5] &=
~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK;
he_cap_elem->phy_cap_info[5] &=
~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK;
he_cap_elem->phy_cap_info[5] |= num_tx_chains - 1;
switch (iftype) {
case NL80211_IFTYPE_AP:
he_cap_elem->phy_cap_info[3] &=
~IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK;
he_cap_elem->phy_cap_info[9] |=
IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
break;
case NL80211_IFTYPE_STATION:
he_cap_elem->mac_cap_info[0] &= ~IEEE80211_HE_MAC_CAP0_TWT_RES;
he_cap_elem->mac_cap_info[0] |= IEEE80211_HE_MAC_CAP0_TWT_REQ;
he_cap_elem->phy_cap_info[9] |=
IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
break;
case NL80211_IFTYPE_MESH_POINT:
ath12k_mac_filter_he_cap_mesh(he_cap_elem);
break;
}
mcs_nss->rx_mcs_80 = cpu_to_le16(band_cap->he_mcs & 0xffff);
mcs_nss->tx_mcs_80 = cpu_to_le16(band_cap->he_mcs & 0xffff);
mcs_nss->rx_mcs_160 = cpu_to_le16((band_cap->he_mcs >> 16) & 0xffff);
mcs_nss->tx_mcs_160 = cpu_to_le16((band_cap->he_mcs >> 16) & 0xffff);
mcs_nss->rx_mcs_80p80 = cpu_to_le16((band_cap->he_mcs >> 16) & 0xffff);
mcs_nss->tx_mcs_80p80 = cpu_to_le16((band_cap->he_mcs >> 16) & 0xffff);
memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres));
if (he_cap_elem->phy_cap_info[6] &
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT)
ath12k_gen_ppe_thresh(&band_cap->he_ppet, he_cap->ppe_thres);
}
static void
ath12k_mac_copy_eht_mcs_nss(struct ath12k_band_cap *band_cap,
struct ieee80211_eht_mcs_nss_supp *mcs_nss,
const struct ieee80211_he_cap_elem *he_cap,
const struct ieee80211_eht_cap_elem_fixed *eht_cap)
{
if ((he_cap->phy_cap_info[0] &
(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)) == 0)
memcpy(&mcs_nss->only_20mhz, &band_cap->eht_mcs_20_only,
sizeof(struct ieee80211_eht_mcs_nss_supp_20mhz_only));
if (he_cap->phy_cap_info[0] &
(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G))
memcpy(&mcs_nss->bw._80, &band_cap->eht_mcs_80,
sizeof(struct ieee80211_eht_mcs_nss_supp_bw));
if (he_cap->phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
memcpy(&mcs_nss->bw._160, &band_cap->eht_mcs_160,
sizeof(struct ieee80211_eht_mcs_nss_supp_bw));
if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
memcpy(&mcs_nss->bw._320, &band_cap->eht_mcs_320,
sizeof(struct ieee80211_eht_mcs_nss_supp_bw));
}
static void ath12k_mac_copy_eht_ppe_thresh(struct ath12k_wmi_ppe_threshold_arg *fw_ppet,
struct ieee80211_sta_eht_cap *cap)
{
u16 bit = IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
u8 i, nss, ru, ppet_bit_len_per_ru = IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2;
u8p_replace_bits(&cap->eht_ppe_thres[0], fw_ppet->numss_m1,
IEEE80211_EHT_PPE_THRES_NSS_MASK);
u16p_replace_bits((u16 *)&cap->eht_ppe_thres[0], fw_ppet->ru_bit_mask,
IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
for (nss = 0; nss <= fw_ppet->numss_m1; nss++) {
for (ru = 0;
ru < hweight16(IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
ru++) {
u32 val = 0;
if ((fw_ppet->ru_bit_mask & BIT(ru)) == 0)
continue;
u32p_replace_bits(&val, fw_ppet->ppet16_ppet8_ru3_ru0[nss] >>
(ru * ppet_bit_len_per_ru),
GENMASK(ppet_bit_len_per_ru - 1, 0));
for (i = 0; i < ppet_bit_len_per_ru; i++) {
cap->eht_ppe_thres[bit / 8] |=
(((val >> i) & 0x1) << ((bit % 8)));
bit++;
}
}
}
}
static void
ath12k_mac_filter_eht_cap_mesh(struct ieee80211_eht_cap_elem_fixed
*eht_cap_elem)
{
u8 m;
m = IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS;
eht_cap_elem->mac_cap_info[0] &= ~m;
m = IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO;
eht_cap_elem->phy_cap_info[0] &= ~m;
m = IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK;
eht_cap_elem->phy_cap_info[3] &= ~m;
m = IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP |
IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI;
eht_cap_elem->phy_cap_info[4] &= ~m;
m = IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK;
eht_cap_elem->phy_cap_info[5] &= ~m;
m = IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK;
eht_cap_elem->phy_cap_info[6] &= ~m;
m = IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ;
eht_cap_elem->phy_cap_info[7] &= ~m;
}
static void ath12k_mac_copy_eht_cap(struct ath12k *ar,
struct ath12k_band_cap *band_cap,
struct ieee80211_he_cap_elem *he_cap_elem,
int iftype,
struct ieee80211_sta_eht_cap *eht_cap)
{
struct ieee80211_eht_cap_elem_fixed *eht_cap_elem = &eht_cap->eht_cap_elem;
memset(eht_cap, 0, sizeof(struct ieee80211_sta_eht_cap));
if (!(test_bit(WMI_TLV_SERVICE_11BE, ar->ab->wmi_ab.svc_map)))
return;
eht_cap->has_eht = true;
memcpy(eht_cap_elem->mac_cap_info, band_cap->eht_cap_mac_info,
sizeof(eht_cap_elem->mac_cap_info));
memcpy(eht_cap_elem->phy_cap_info, band_cap->eht_cap_phy_info,
sizeof(eht_cap_elem->phy_cap_info));
switch (iftype) {
case NL80211_IFTYPE_AP:
eht_cap_elem->phy_cap_info[0] &=
~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ;
eht_cap_elem->phy_cap_info[4] &=
~IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO;
eht_cap_elem->phy_cap_info[5] &=
~IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP;
break;
case NL80211_IFTYPE_STATION:
eht_cap_elem->phy_cap_info[7] &=
~(IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ);
eht_cap_elem->phy_cap_info[7] &=
~(IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ);
break;
case NL80211_IFTYPE_MESH_POINT:
ath12k_mac_filter_eht_cap_mesh(eht_cap_elem);
break;
default:
break;
}
ath12k_mac_copy_eht_mcs_nss(band_cap, &eht_cap->eht_mcs_nss_supp,
he_cap_elem, eht_cap_elem);
if (eht_cap_elem->phy_cap_info[5] &
IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT)
ath12k_mac_copy_eht_ppe_thresh(&band_cap->eht_ppet, eht_cap);
}
static int ath12k_mac_copy_sband_iftype_data(struct ath12k *ar,
struct ath12k_pdev_cap *cap,
struct ieee80211_sband_iftype_data *data,
int band)
{
struct ath12k_band_cap *band_cap = &cap->band[band];
int i, idx = 0;
for (i = 0; i < NUM_NL80211_IFTYPES; i++) {
struct ieee80211_sta_he_cap *he_cap = &data[idx].he_cap;
switch (i) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_MESH_POINT:
break;
default:
continue;
}
data[idx].types_mask = BIT(i);
ath12k_mac_copy_he_cap(band_cap, i, ar->num_tx_chains, he_cap);
if (band == NL80211_BAND_6GHZ) {
data[idx].he_6ghz_capa.capa =
ath12k_mac_setup_he_6ghz_cap(cap, band_cap);
}
ath12k_mac_copy_eht_cap(ar, band_cap, &he_cap->he_cap_elem, i,
&data[idx].eht_cap);
idx++;
}
return idx;
}
static void ath12k_mac_setup_sband_iftype_data(struct ath12k *ar,
struct ath12k_pdev_cap *cap)
{
struct ieee80211_supported_band *sband;
enum nl80211_band band;
int count;
if (cap->supported_bands & WMI_HOST_WLAN_2G_CAP) {
band = NL80211_BAND_2GHZ;
count = ath12k_mac_copy_sband_iftype_data(ar, cap,
ar->mac.iftype[band],
band);
sband = &ar->mac.sbands[band];
_ieee80211_set_sband_iftype_data(sband, ar->mac.iftype[band],
count);
}
if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP) {
band = NL80211_BAND_5GHZ;
count = ath12k_mac_copy_sband_iftype_data(ar, cap,
ar->mac.iftype[band],
band);
sband = &ar->mac.sbands[band];
_ieee80211_set_sband_iftype_data(sband, ar->mac.iftype[band],
count);
}
if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP &&
ar->supports_6ghz) {
band = NL80211_BAND_6GHZ;
count = ath12k_mac_copy_sband_iftype_data(ar, cap,
ar->mac.iftype[band],
band);
sband = &ar->mac.sbands[band];
_ieee80211_set_sband_iftype_data(sband, ar->mac.iftype[band],
count);
}
}
static int __ath12k_set_antenna(struct ath12k *ar, u32 tx_ant, u32 rx_ant)
{
struct ath12k_hw *ah = ath12k_ar_to_ah(ar);
int ret;
lockdep_assert_held(&ar->conf_mutex);
if (ath12k_check_chain_mask(ar, tx_ant, true))
return -EINVAL;
if (ath12k_check_chain_mask(ar, rx_ant, false))
return -EINVAL;
/* Since we advertised the max cap of all radios combined during wiphy
* registration, ensure we don't set the antenna config higher than the
* limits
*/
tx_ant = min_t(u32, tx_ant, ar->pdev->cap.tx_chain_mask);
rx_ant = min_t(u32, rx_ant, ar->pdev->cap.rx_chain_mask);
ar->cfg_tx_chainmask = tx_ant;
ar->cfg_rx_chainmask = rx_ant;
if (ah->state != ATH12K_HW_STATE_ON &&
ah->state != ATH12K_HW_STATE_RESTARTED)
return 0;
ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_TX_CHAIN_MASK,
tx_ant, ar->pdev->pdev_id);
if (ret) {
ath12k_warn(ar->ab, "failed to set tx-chainmask: %d, req 0x%x\n",
ret, tx_ant);
return ret;
}
ar->num_tx_chains = hweight32(tx_ant);
ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_RX_CHAIN_MASK,
rx_ant, ar->pdev->pdev_id);
if (ret) {
ath12k_warn(ar->ab, "failed to set rx-chainmask: %d, req 0x%x\n",
ret, rx_ant);
return ret;
}
ar->num_rx_chains = hweight32(rx_ant);
/* Reload HT/VHT/HE capability */
ath12k_mac_setup_ht_vht_cap(ar, &ar->pdev->cap, NULL);
ath12k_mac_setup_sband_iftype_data(ar, &ar->pdev->cap);
return 0;
}
static void ath12k_mgmt_over_wmi_tx_drop(struct ath12k *ar, struct sk_buff *skb)
{
int num_mgmt;
ieee80211_free_txskb(ath12k_ar_to_hw(ar), skb);
num_mgmt = atomic_dec_if_positive(&ar->num_pending_mgmt_tx);
if (num_mgmt < 0)
WARN_ON_ONCE(1);
if (!num_mgmt)
wake_up(&ar->txmgmt_empty_waitq);
}
int ath12k_mac_tx_mgmt_pending_free(int buf_id, void *skb, void *ctx)
{
struct sk_buff *msdu = skb;
struct ieee80211_tx_info *info;
struct ath12k *ar = ctx;
struct ath12k_base *ab = ar->ab;
spin_lock_bh(&ar->txmgmt_idr_lock);
idr_remove(&ar->txmgmt_idr, buf_id);
spin_unlock_bh(&ar->txmgmt_idr_lock);
dma_unmap_single(ab->dev, ATH12K_SKB_CB(msdu)->paddr, msdu->len,
DMA_TO_DEVICE);
info = IEEE80211_SKB_CB(msdu);
memset(&info->status, 0, sizeof(info->status));
ath12k_mgmt_over_wmi_tx_drop(ar, skb);
return 0;
}
static int ath12k_mac_vif_txmgmt_idr_remove(int buf_id, void *skb, void *ctx)
{
struct ieee80211_vif *vif = ctx;
struct ath12k_skb_cb *skb_cb = ATH12K_SKB_CB(skb);
struct sk_buff *msdu = skb;
struct ath12k *ar = skb_cb->ar;
struct ath12k_base *ab = ar->ab;
if (skb_cb->vif == vif) {
spin_lock_bh(&ar->txmgmt_idr_lock);
idr_remove(&ar->txmgmt_idr, buf_id);
spin_unlock_bh(&ar->txmgmt_idr_lock);
dma_unmap_single(ab->dev, skb_cb->paddr, msdu->len,
DMA_TO_DEVICE);
}
return 0;
}
static int ath12k_mac_mgmt_tx_wmi(struct ath12k *ar, struct ath12k_vif *arvif,
struct sk_buff *skb)
{
struct ath12k_base *ab = ar->ab;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ieee80211_tx_info *info;
dma_addr_t paddr;
int buf_id;
int ret;
ATH12K_SKB_CB(skb)->ar = ar;
spin_lock_bh(&ar->txmgmt_idr_lock);
buf_id = idr_alloc(&ar->txmgmt_idr, skb, 0,
ATH12K_TX_MGMT_NUM_PENDING_MAX, GFP_ATOMIC);
spin_unlock_bh(&ar->txmgmt_idr_lock);
if (buf_id < 0)
return -ENOSPC;
info = IEEE80211_SKB_CB(skb);
if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) {
if ((ieee80211_is_action(hdr->frame_control) ||
ieee80211_is_deauth(hdr->frame_control) ||
ieee80211_is_disassoc(hdr->frame_control)) &&
ieee80211_has_protected(hdr->frame_control)) {
skb_put(skb, IEEE80211_CCMP_MIC_LEN);
}
}
paddr = dma_map_single(ab->dev, skb->data, skb->len, DMA_TO_DEVICE);
if (dma_mapping_error(ab->dev, paddr)) {
ath12k_warn(ab, "failed to DMA map mgmt Tx buffer\n");
ret = -EIO;
goto err_free_idr;
}
ATH12K_SKB_CB(skb)->paddr = paddr;
ret = ath12k_wmi_mgmt_send(ar, arvif->vdev_id, buf_id, skb);
if (ret) {
ath12k_warn(ar->ab, "failed to send mgmt frame: %d\n", ret);
goto err_unmap_buf;
}
return 0;
err_unmap_buf:
dma_unmap_single(ab->dev, ATH12K_SKB_CB(skb)->paddr,
skb->len, DMA_TO_DEVICE);
err_free_idr:
spin_lock_bh(&ar->txmgmt_idr_lock);
idr_remove(&ar->txmgmt_idr, buf_id);
spin_unlock_bh(&ar->txmgmt_idr_lock);
return ret;
}
static void ath12k_mgmt_over_wmi_tx_purge(struct ath12k *ar)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(&ar->wmi_mgmt_tx_queue)) != NULL)
ath12k_mgmt_over_wmi_tx_drop(ar, skb);
}
static void ath12k_mgmt_over_wmi_tx_work(struct work_struct *work)
{
struct ath12k *ar = container_of(work, struct ath12k, wmi_mgmt_tx_work);
struct ath12k_skb_cb *skb_cb;
struct ath12k_vif *arvif;
struct sk_buff *skb;
int ret;
while ((skb = skb_dequeue(&ar->wmi_mgmt_tx_queue)) != NULL) {
skb_cb = ATH12K_SKB_CB(skb);
if (!skb_cb->vif) {
ath12k_warn(ar->ab, "no vif found for mgmt frame\n");
ath12k_mgmt_over_wmi_tx_drop(ar, skb);
continue;
}
arvif = ath12k_vif_to_arvif(skb_cb->vif);
if (ar->allocated_vdev_map & (1LL << arvif->vdev_id)) {
ret = ath12k_mac_mgmt_tx_wmi(ar, arvif, skb);
if (ret) {
ath12k_warn(ar->ab, "failed to tx mgmt frame, vdev_id %d :%d\n",
arvif->vdev_id, ret);
ath12k_mgmt_over_wmi_tx_drop(ar, skb);
}
} else {
ath12k_warn(ar->ab,
"dropping mgmt frame for vdev %d, is_started %d\n",
arvif->vdev_id,
arvif->is_started);
ath12k_mgmt_over_wmi_tx_drop(ar, skb);
}
}
}
static int ath12k_mac_mgmt_tx(struct ath12k *ar, struct sk_buff *skb,
bool is_prb_rsp)
{
struct sk_buff_head *q = &ar->wmi_mgmt_tx_queue;
if (test_bit(ATH12K_FLAG_CRASH_FLUSH, &ar->ab->dev_flags))
return -ESHUTDOWN;
/* Drop probe response packets when the pending management tx
* count has reached a certain threshold, so as to prioritize
* other mgmt packets like auth and assoc to be sent on time
* for establishing successful connections.
*/
if (is_prb_rsp &&
atomic_read(&ar->num_pending_mgmt_tx) > ATH12K_PRB_RSP_DROP_THRESHOLD) {
ath12k_warn(ar->ab,
"dropping probe response as pending queue is almost full\n");
return -ENOSPC;
}
if (skb_queue_len_lockless(q) >= ATH12K_TX_MGMT_NUM_PENDING_MAX) {
ath12k_warn(ar->ab, "mgmt tx queue is full\n");
return -ENOSPC;
}
skb_queue_tail(q, skb);
atomic_inc(&ar->num_pending_mgmt_tx);
ieee80211_queue_work(ath12k_ar_to_hw(ar), &ar->wmi_mgmt_tx_work);
return 0;
}
static void ath12k_mac_add_p2p_noa_ie(struct ath12k *ar,
struct ieee80211_vif *vif,
struct sk_buff *skb,
bool is_prb_rsp)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
if (likely(!is_prb_rsp))
return;
spin_lock_bh(&ar->data_lock);
if (arvif->u.ap.noa_data &&
!pskb_expand_head(skb, 0, arvif->u.ap.noa_len,
GFP_ATOMIC))
skb_put_data(skb, arvif->u.ap.noa_data,
arvif->u.ap.noa_len);
spin_unlock_bh(&ar->data_lock);
}
static void ath12k_mac_op_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ath12k_skb_cb *skb_cb = ATH12K_SKB_CB(skb);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k *ar = arvif->ar;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ieee80211_key_conf *key = info->control.hw_key;
u32 info_flags = info->flags;
bool is_prb_rsp;
int ret;
memset(skb_cb, 0, sizeof(*skb_cb));
skb_cb->vif = vif;
if (key) {
skb_cb->cipher = key->cipher;
skb_cb->flags |= ATH12K_SKB_CIPHER_SET;
}
is_prb_rsp = ieee80211_is_probe_resp(hdr->frame_control);
if (info_flags & IEEE80211_TX_CTL_HW_80211_ENCAP) {
skb_cb->flags |= ATH12K_SKB_HW_80211_ENCAP;
} else if (ieee80211_is_mgmt(hdr->frame_control)) {
ret = ath12k_mac_mgmt_tx(ar, skb, is_prb_rsp);
if (ret) {
ath12k_warn(ar->ab, "failed to queue management frame %d\n",
ret);
ieee80211_free_txskb(hw, skb);
}
return;
}
/* This is case only for P2P_GO */
if (vif->type == NL80211_IFTYPE_AP && vif->p2p)
ath12k_mac_add_p2p_noa_ie(ar, vif, skb, is_prb_rsp);
ret = ath12k_dp_tx(ar, arvif, skb);
if (ret) {
ath12k_warn(ar->ab, "failed to transmit frame %d\n", ret);
ieee80211_free_txskb(hw, skb);
}
}
void ath12k_mac_drain_tx(struct ath12k *ar)
{
/* make sure rcu-protected mac80211 tx path itself is drained */
synchronize_net();
cancel_work_sync(&ar->wmi_mgmt_tx_work);
ath12k_mgmt_over_wmi_tx_purge(ar);
}
static int ath12k_mac_config_mon_status_default(struct ath12k *ar, bool enable)
{
return -EOPNOTSUPP;
/* TODO: Need to support new monitor mode */
}
static int ath12k_mac_start(struct ath12k *ar)
{
struct ath12k_hw *ah = ar->ah;
struct ath12k_base *ab = ar->ab;
struct ath12k_pdev *pdev = ar->pdev;
int ret;
lockdep_assert_held(&ah->hw_mutex);
mutex_lock(&ar->conf_mutex);
ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_PMF_QOS,
1, pdev->pdev_id);
if (ret) {
ath12k_err(ab, "failed to enable PMF QOS: (%d\n", ret);
goto err;
}
ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_DYNAMIC_BW, 1,
pdev->pdev_id);
if (ret) {
ath12k_err(ab, "failed to enable dynamic bw: %d\n", ret);
goto err;
}
ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_ARP_AC_OVERRIDE,
0, pdev->pdev_id);
if (ret) {
ath12k_err(ab, "failed to set ac override for ARP: %d\n",
ret);
goto err;
}
ret = ath12k_wmi_send_dfs_phyerr_offload_enable_cmd(ar, pdev->pdev_id);
if (ret) {
ath12k_err(ab, "failed to offload radar detection: %d\n",
ret);
goto err;
}
ret = ath12k_dp_tx_htt_h2t_ppdu_stats_req(ar,
HTT_PPDU_STATS_TAG_DEFAULT);
if (ret) {
ath12k_err(ab, "failed to req ppdu stats: %d\n", ret);
goto err;
}
ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_MESH_MCAST_ENABLE,
1, pdev->pdev_id);
if (ret) {
ath12k_err(ab, "failed to enable MESH MCAST ENABLE: (%d\n", ret);
goto err;
}
__ath12k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask);
/* TODO: Do we need to enable ANI? */
ath12k_reg_update_chan_list(ar);
ar->num_started_vdevs = 0;
ar->num_created_vdevs = 0;
ar->num_peers = 0;
ar->allocated_vdev_map = 0;
/* Configure monitor status ring with default rx_filter to get rx status
* such as rssi, rx_duration.
*/
ret = ath12k_mac_config_mon_status_default(ar, true);
if (ret && (ret != -EOPNOTSUPP)) {
ath12k_err(ab, "failed to configure monitor status ring with default rx_filter: (%d)\n",
ret);
goto err;
}
if (ret == -EOPNOTSUPP)
ath12k_dbg(ab, ATH12K_DBG_MAC,
"monitor status config is not yet supported");
/* Configure the hash seed for hash based reo dest ring selection */
ath12k_wmi_pdev_lro_cfg(ar, ar->pdev->pdev_id);
/* allow device to enter IMPS */
if (ab->hw_params->idle_ps) {
ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_IDLE_PS_CONFIG,
1, pdev->pdev_id);
if (ret) {
ath12k_err(ab, "failed to enable idle ps: %d\n", ret);
goto err;
}
}
mutex_unlock(&ar->conf_mutex);
rcu_assign_pointer(ab->pdevs_active[ar->pdev_idx],
&ab->pdevs[ar->pdev_idx]);
return 0;
err:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath12k_drain_tx(struct ath12k_hw *ah)
{
struct ath12k *ar;
int i;
for_each_ar(ah, ar, i)
ath12k_mac_drain_tx(ar);
}
static int ath12k_mac_op_start(struct ieee80211_hw *hw)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar;
int ret, i;
ath12k_drain_tx(ah);
guard(mutex)(&ah->hw_mutex);
switch (ah->state) {
case ATH12K_HW_STATE_OFF:
ah->state = ATH12K_HW_STATE_ON;
break;
case ATH12K_HW_STATE_RESTARTING:
ah->state = ATH12K_HW_STATE_RESTARTED;
break;
case ATH12K_HW_STATE_RESTARTED:
case ATH12K_HW_STATE_WEDGED:
case ATH12K_HW_STATE_ON:
ah->state = ATH12K_HW_STATE_OFF;
WARN_ON(1);
return -EINVAL;
}
for_each_ar(ah, ar, i) {
ret = ath12k_mac_start(ar);
if (ret) {
ah->state = ATH12K_HW_STATE_OFF;
ath12k_err(ar->ab, "fail to start mac operations in pdev idx %d ret %d\n",
ar->pdev_idx, ret);
goto fail_start;
}
}
return 0;
fail_start:
for (; i > 0; i--) {
ar = ath12k_ah_to_ar(ah, i - 1);
ath12k_mac_stop(ar);
}
return ret;
}
int ath12k_mac_rfkill_config(struct ath12k *ar)
{
struct ath12k_base *ab = ar->ab;
u32 param;
int ret;
if (ab->hw_params->rfkill_pin == 0)
return -EOPNOTSUPP;
ath12k_dbg(ab, ATH12K_DBG_MAC,
"mac rfkill_pin %d rfkill_cfg %d rfkill_on_level %d",
ab->hw_params->rfkill_pin, ab->hw_params->rfkill_cfg,
ab->hw_params->rfkill_on_level);
param = u32_encode_bits(ab->hw_params->rfkill_on_level,
WMI_RFKILL_CFG_RADIO_LEVEL) |
u32_encode_bits(ab->hw_params->rfkill_pin,
WMI_RFKILL_CFG_GPIO_PIN_NUM) |
u32_encode_bits(ab->hw_params->rfkill_cfg,
WMI_RFKILL_CFG_PIN_AS_GPIO);
ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_HW_RFKILL_CONFIG,
param, ar->pdev->pdev_id);
if (ret) {
ath12k_warn(ab,
"failed to set rfkill config 0x%x: %d\n",
param, ret);
return ret;
}
return 0;
}
int ath12k_mac_rfkill_enable_radio(struct ath12k *ar, bool enable)
{
enum wmi_rfkill_enable_radio param;
int ret;
if (enable)
param = WMI_RFKILL_ENABLE_RADIO_ON;
else
param = WMI_RFKILL_ENABLE_RADIO_OFF;
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac %d rfkill enable %d",
ar->pdev_idx, param);
ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_RFKILL_ENABLE,
param, ar->pdev->pdev_id);
if (ret) {
ath12k_warn(ar->ab, "failed to set rfkill enable param %d: %d\n",
param, ret);
return ret;
}
return 0;
}
static void ath12k_mac_stop(struct ath12k *ar)
{
struct ath12k_hw *ah = ar->ah;
struct htt_ppdu_stats_info *ppdu_stats, *tmp;
int ret;
lockdep_assert_held(&ah->hw_mutex);
mutex_lock(&ar->conf_mutex);
ret = ath12k_mac_config_mon_status_default(ar, false);
if (ret && (ret != -EOPNOTSUPP))
ath12k_err(ar->ab, "failed to clear rx_filter for monitor status ring: (%d)\n",
ret);
clear_bit(ATH12K_CAC_RUNNING, &ar->dev_flags);
mutex_unlock(&ar->conf_mutex);
cancel_delayed_work_sync(&ar->scan.timeout);
cancel_work_sync(&ar->regd_update_work);
cancel_work_sync(&ar->ab->rfkill_work);
spin_lock_bh(&ar->data_lock);
list_for_each_entry_safe(ppdu_stats, tmp, &ar->ppdu_stats_info, list) {
list_del(&ppdu_stats->list);
kfree(ppdu_stats);
}
spin_unlock_bh(&ar->data_lock);
rcu_assign_pointer(ar->ab->pdevs_active[ar->pdev_idx], NULL);
synchronize_rcu();
atomic_set(&ar->num_pending_mgmt_tx, 0);
}
static void ath12k_mac_op_stop(struct ieee80211_hw *hw, bool suspend)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar;
int i;
ath12k_drain_tx(ah);
mutex_lock(&ah->hw_mutex);
ah->state = ATH12K_HW_STATE_OFF;
for_each_ar(ah, ar, i)
ath12k_mac_stop(ar);
mutex_unlock(&ah->hw_mutex);
}
static u8
ath12k_mac_get_vdev_stats_id(struct ath12k_vif *arvif)
{
struct ath12k_base *ab = arvif->ar->ab;
u8 vdev_stats_id = 0;
do {
if (ab->free_vdev_stats_id_map & (1LL << vdev_stats_id)) {
vdev_stats_id++;
if (vdev_stats_id >= ATH12K_MAX_VDEV_STATS_ID) {
vdev_stats_id = ATH12K_INVAL_VDEV_STATS_ID;
break;
}
} else {
ab->free_vdev_stats_id_map |= (1LL << vdev_stats_id);
break;
}
} while (vdev_stats_id);
arvif->vdev_stats_id = vdev_stats_id;
return vdev_stats_id;
}
static int ath12k_mac_setup_vdev_params_mbssid(struct ath12k_vif *arvif,
u32 *flags, u32 *tx_vdev_id)
{
struct ieee80211_vif *tx_vif = arvif->vif->mbssid_tx_vif;
struct ath12k *ar = arvif->ar;
struct ath12k_vif *tx_arvif;
if (!tx_vif)
return 0;
tx_arvif = ath12k_vif_to_arvif(tx_vif);
if (arvif->vif->bss_conf.nontransmitted) {
if (ar->ah->hw->wiphy != ieee80211_vif_to_wdev(tx_vif)->wiphy)
return -EINVAL;
*flags = WMI_VDEV_MBSSID_FLAGS_NON_TRANSMIT_AP;
*tx_vdev_id = tx_arvif->vdev_id;
} else if (tx_arvif == arvif) {
*flags = WMI_VDEV_MBSSID_FLAGS_TRANSMIT_AP;
} else {
return -EINVAL;
}
if (arvif->vif->bss_conf.ema_ap)
*flags |= WMI_VDEV_MBSSID_FLAGS_EMA_MODE;
return 0;
}
static int ath12k_mac_setup_vdev_create_arg(struct ath12k_vif *arvif,
struct ath12k_wmi_vdev_create_arg *arg)
{
struct ath12k *ar = arvif->ar;
struct ath12k_pdev *pdev = ar->pdev;
int ret;
arg->if_id = arvif->vdev_id;
arg->type = arvif->vdev_type;
arg->subtype = arvif->vdev_subtype;
arg->pdev_id = pdev->pdev_id;
arg->mbssid_flags = WMI_VDEV_MBSSID_FLAGS_NON_MBSSID_AP;
arg->mbssid_tx_vdev_id = 0;
if (!test_bit(WMI_TLV_SERVICE_MBSS_PARAM_IN_VDEV_START_SUPPORT,
ar->ab->wmi_ab.svc_map)) {
ret = ath12k_mac_setup_vdev_params_mbssid(arvif,
&arg->mbssid_flags,
&arg->mbssid_tx_vdev_id);
if (ret)
return ret;
}
if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) {
arg->chains[NL80211_BAND_2GHZ].tx = ar->num_tx_chains;
arg->chains[NL80211_BAND_2GHZ].rx = ar->num_rx_chains;
}
if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) {
arg->chains[NL80211_BAND_5GHZ].tx = ar->num_tx_chains;
arg->chains[NL80211_BAND_5GHZ].rx = ar->num_rx_chains;
}
if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP &&
ar->supports_6ghz) {
arg->chains[NL80211_BAND_6GHZ].tx = ar->num_tx_chains;
arg->chains[NL80211_BAND_6GHZ].rx = ar->num_rx_chains;
}
arg->if_stats_id = ath12k_mac_get_vdev_stats_id(arvif);
return 0;
}
static u32
ath12k_mac_prepare_he_mode(struct ath12k_pdev *pdev, u32 viftype)
{
struct ath12k_pdev_cap *pdev_cap = &pdev->cap;
struct ath12k_band_cap *cap_band = NULL;
u32 *hecap_phy_ptr = NULL;
u32 hemode;
if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP)
cap_band = &pdev_cap->band[NL80211_BAND_2GHZ];
else
cap_band = &pdev_cap->band[NL80211_BAND_5GHZ];
hecap_phy_ptr = &cap_band->he_cap_phy_info[0];
hemode = u32_encode_bits(HE_SU_BFEE_ENABLE, HE_MODE_SU_TX_BFEE) |
u32_encode_bits(HECAP_PHY_SUBFMR_GET(hecap_phy_ptr),
HE_MODE_SU_TX_BFER) |
u32_encode_bits(HECAP_PHY_ULMUMIMO_GET(hecap_phy_ptr),
HE_MODE_UL_MUMIMO);
/* TODO: WDS and other modes */
if (viftype == NL80211_IFTYPE_AP) {
hemode |= u32_encode_bits(HECAP_PHY_MUBFMR_GET(hecap_phy_ptr),
HE_MODE_MU_TX_BFER) |
u32_encode_bits(HE_DL_MUOFDMA_ENABLE, HE_MODE_DL_OFDMA) |
u32_encode_bits(HE_UL_MUOFDMA_ENABLE, HE_MODE_UL_OFDMA);
} else {
hemode |= u32_encode_bits(HE_MU_BFEE_ENABLE, HE_MODE_MU_TX_BFEE);
}
return hemode;
}
static int ath12k_set_he_mu_sounding_mode(struct ath12k *ar,
struct ath12k_vif *arvif)
{
u32 param_id, param_value;
struct ath12k_base *ab = ar->ab;
int ret;
param_id = WMI_VDEV_PARAM_SET_HEMU_MODE;
param_value = ath12k_mac_prepare_he_mode(ar->pdev, arvif->vif->type);
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param_id, param_value);
if (ret) {
ath12k_warn(ab, "failed to set vdev %d HE MU mode: %d param_value %x\n",
arvif->vdev_id, ret, param_value);
return ret;
}
param_id = WMI_VDEV_PARAM_SET_HE_SOUNDING_MODE;
param_value =
u32_encode_bits(HE_VHT_SOUNDING_MODE_ENABLE, HE_VHT_SOUNDING_MODE) |
u32_encode_bits(HE_TRIG_NONTRIG_SOUNDING_MODE_ENABLE,
HE_TRIG_NONTRIG_SOUNDING_MODE);
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param_id, param_value);
if (ret) {
ath12k_warn(ab, "failed to set vdev %d HE MU mode: %d\n",
arvif->vdev_id, ret);
return ret;
}
return ret;
}
static void ath12k_mac_update_vif_offload(struct ath12k_vif *arvif)
{
struct ieee80211_vif *vif = arvif->vif;
struct ath12k *ar = arvif->ar;
struct ath12k_base *ab = ar->ab;
u32 param_id, param_value;
int ret;
param_id = WMI_VDEV_PARAM_TX_ENCAP_TYPE;
if (vif->type != NL80211_IFTYPE_STATION &&
vif->type != NL80211_IFTYPE_AP)
vif->offload_flags &= ~(IEEE80211_OFFLOAD_ENCAP_ENABLED |
IEEE80211_OFFLOAD_DECAP_ENABLED);
if (vif->offload_flags & IEEE80211_OFFLOAD_ENCAP_ENABLED)
arvif->tx_encap_type = ATH12K_HW_TXRX_ETHERNET;
else if (test_bit(ATH12K_FLAG_RAW_MODE, &ab->dev_flags))
arvif->tx_encap_type = ATH12K_HW_TXRX_RAW;
else
arvif->tx_encap_type = ATH12K_HW_TXRX_NATIVE_WIFI;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param_id, arvif->tx_encap_type);
if (ret) {
ath12k_warn(ab, "failed to set vdev %d tx encap mode: %d\n",
arvif->vdev_id, ret);
vif->offload_flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED;
}
param_id = WMI_VDEV_PARAM_RX_DECAP_TYPE;
if (vif->offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED)
param_value = ATH12K_HW_TXRX_ETHERNET;
else if (test_bit(ATH12K_FLAG_RAW_MODE, &ab->dev_flags))
param_value = ATH12K_HW_TXRX_RAW;
else
param_value = ATH12K_HW_TXRX_NATIVE_WIFI;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param_id, param_value);
if (ret) {
ath12k_warn(ab, "failed to set vdev %d rx decap mode: %d\n",
arvif->vdev_id, ret);
vif->offload_flags &= ~IEEE80211_OFFLOAD_DECAP_ENABLED;
}
}
static void ath12k_mac_op_update_vif_offload(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
ath12k_mac_update_vif_offload(arvif);
}
static int ath12k_mac_vdev_create(struct ath12k *ar, struct ieee80211_vif *vif)
{
struct ath12k_hw *ah = ar->ah;
struct ath12k_base *ab = ar->ab;
struct ieee80211_hw *hw = ah->hw;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_wmi_vdev_create_arg vdev_arg = {0};
struct ath12k_wmi_peer_create_arg peer_param;
u32 param_id, param_value;
u16 nss;
int i;
int ret, vdev_id;
lockdep_assert_held(&ar->conf_mutex);
arvif->ar = ar;
vdev_id = __ffs64(ab->free_vdev_map);
arvif->vdev_id = vdev_id;
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE;
switch (vif->type) {
case NL80211_IFTYPE_UNSPECIFIED:
case NL80211_IFTYPE_STATION:
arvif->vdev_type = WMI_VDEV_TYPE_STA;
if (vif->p2p)
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT;
break;
case NL80211_IFTYPE_MESH_POINT:
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_MESH_11S;
fallthrough;
case NL80211_IFTYPE_AP:
arvif->vdev_type = WMI_VDEV_TYPE_AP;
if (vif->p2p)
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO;
break;
case NL80211_IFTYPE_MONITOR:
arvif->vdev_type = WMI_VDEV_TYPE_MONITOR;
ar->monitor_vdev_id = vdev_id;
break;
case NL80211_IFTYPE_P2P_DEVICE:
arvif->vdev_type = WMI_VDEV_TYPE_STA;
arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE;
break;
default:
WARN_ON(1);
break;
}
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev create id %d type %d subtype %d map %llx\n",
arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype,
ab->free_vdev_map);
vif->cab_queue = arvif->vdev_id % (ATH12K_HW_MAX_QUEUES - 1);
for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++)
vif->hw_queue[i] = i % (ATH12K_HW_MAX_QUEUES - 1);
ret = ath12k_mac_setup_vdev_create_arg(arvif, &vdev_arg);
if (ret) {
ath12k_warn(ab, "failed to create vdev parameters %d: %d\n",
arvif->vdev_id, ret);
goto err;
}
ret = ath12k_wmi_vdev_create(ar, vif->addr, &vdev_arg);
if (ret) {
ath12k_warn(ab, "failed to create WMI vdev %d: %d\n",
arvif->vdev_id, ret);
goto err;
}
ar->num_created_vdevs++;
arvif->is_created = true;
ath12k_dbg(ab, ATH12K_DBG_MAC, "vdev %pM created, vdev_id %d\n",
vif->addr, arvif->vdev_id);
ar->allocated_vdev_map |= 1LL << arvif->vdev_id;
ab->free_vdev_map &= ~(1LL << arvif->vdev_id);
spin_lock_bh(&ar->data_lock);
list_add(&arvif->list, &ar->arvifs);
spin_unlock_bh(&ar->data_lock);
ath12k_mac_update_vif_offload(arvif);
nss = hweight32(ar->cfg_tx_chainmask) ? : 1;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
WMI_VDEV_PARAM_NSS, nss);
if (ret) {
ath12k_warn(ab, "failed to set vdev %d chainmask 0x%x, nss %d :%d\n",
arvif->vdev_id, ar->cfg_tx_chainmask, nss, ret);
goto err_vdev_del;
}
switch (arvif->vdev_type) {
case WMI_VDEV_TYPE_AP:
peer_param.vdev_id = arvif->vdev_id;
peer_param.peer_addr = vif->addr;
peer_param.peer_type = WMI_PEER_TYPE_DEFAULT;
ret = ath12k_peer_create(ar, arvif, NULL, &peer_param);
if (ret) {
ath12k_warn(ab, "failed to vdev %d create peer for AP: %d\n",
arvif->vdev_id, ret);
goto err_vdev_del;
}
ret = ath12k_mac_set_kickout(arvif);
if (ret) {
ath12k_warn(ar->ab, "failed to set vdev %i kickout parameters: %d\n",
arvif->vdev_id, ret);
goto err_peer_del;
}
break;
case WMI_VDEV_TYPE_STA:
param_id = WMI_STA_PS_PARAM_RX_WAKE_POLICY;
param_value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param_id, param_value);
if (ret) {
ath12k_warn(ar->ab, "failed to set vdev %d RX wake policy: %d\n",
arvif->vdev_id, ret);
goto err_peer_del;
}
param_id = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD;
param_value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS;
ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param_id, param_value);
if (ret) {
ath12k_warn(ar->ab, "failed to set vdev %d TX wake threshold: %d\n",
arvif->vdev_id, ret);
goto err_peer_del;
}
param_id = WMI_STA_PS_PARAM_PSPOLL_COUNT;
param_value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX;
ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
param_id, param_value);
if (ret) {
ath12k_warn(ar->ab, "failed to set vdev %d pspoll count: %d\n",
arvif->vdev_id, ret);
goto err_peer_del;
}
ret = ath12k_wmi_pdev_set_ps_mode(ar, arvif->vdev_id, false);
if (ret) {
ath12k_warn(ar->ab, "failed to disable vdev %d ps mode: %d\n",
arvif->vdev_id, ret);
goto err_peer_del;
}
break;
default:
break;
}
arvif->txpower = vif->bss_conf.txpower;
ret = ath12k_mac_txpower_recalc(ar);
if (ret)
goto err_peer_del;
param_id = WMI_VDEV_PARAM_RTS_THRESHOLD;
param_value = hw->wiphy->rts_threshold;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param_id, param_value);
if (ret) {
ath12k_warn(ar->ab, "failed to set rts threshold for vdev %d: %d\n",
arvif->vdev_id, ret);
}
ath12k_dp_vdev_tx_attach(ar, arvif);
if (vif->type != NL80211_IFTYPE_MONITOR && ar->monitor_conf_enabled)
ath12k_mac_monitor_vdev_create(ar);
arvif->ar = ar;
return ret;
err_peer_del:
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
reinit_completion(&ar->peer_delete_done);
ret = ath12k_wmi_send_peer_delete_cmd(ar, vif->addr,
arvif->vdev_id);
if (ret) {
ath12k_warn(ar->ab, "failed to delete peer vdev_id %d addr %pM\n",
arvif->vdev_id, vif->addr);
goto err;
}
ret = ath12k_wait_for_peer_delete_done(ar, arvif->vdev_id,
vif->addr);
if (ret)
goto err;
ar->num_peers--;
}
err_vdev_del:
ath12k_wmi_vdev_delete(ar, arvif->vdev_id);
ar->num_created_vdevs--;
arvif->is_created = false;
arvif->ar = NULL;
ar->allocated_vdev_map &= ~(1LL << arvif->vdev_id);
ab->free_vdev_map |= 1LL << arvif->vdev_id;
ab->free_vdev_stats_id_map &= ~(1LL << arvif->vdev_stats_id);
spin_lock_bh(&ar->data_lock);
list_del(&arvif->list);
spin_unlock_bh(&ar->data_lock);
err:
arvif->ar = NULL;
return ret;
}
static void ath12k_mac_vif_cache_flush(struct ath12k *ar, struct ieee80211_vif *vif)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_vif_cache *cache = arvif->cache;
struct ath12k_base *ab = ar->ab;
int ret;
lockdep_assert_held(&ar->conf_mutex);
if (!cache)
return;
if (cache->tx_conf.changed) {
ret = ath12k_mac_conf_tx(arvif, 0, cache->tx_conf.ac,
&cache->tx_conf.tx_queue_params);
if (ret)
ath12k_warn(ab,
"unable to apply tx config parameters to vdev %d\n",
ret);
}
if (cache->bss_conf_changed) {
ath12k_mac_bss_info_changed(ar, arvif, &vif->bss_conf,
cache->bss_conf_changed);
}
if (cache->key_conf.changed) {
ret = ath12k_mac_set_key(ar, cache->key_conf.cmd, vif, NULL,
cache->key_conf.key);
if (ret)
ath12k_warn(ab, "unable to apply set key param to vdev %d ret %d\n",
arvif->vdev_id, ret);
}
ath12k_arvif_put_cache(arvif);
}
static struct ath12k *ath12k_mac_assign_vif_to_vdev(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_chanctx_conf *ctx)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_hw *ah = hw->priv;
struct ath12k *ar, *prev_ar;
struct ath12k_base *ab;
int ret;
if (ah->num_radio == 1)
ar = ah->radio;
else if (ctx)
ar = ath12k_get_ar_by_ctx(hw, ctx);
else
return NULL;
if (!ar)
return NULL;
if (arvif->ar) {
/* This is not expected really */
if (WARN_ON(!arvif->is_created)) {
arvif->ar = NULL;
return NULL;
}
if (ah->num_radio == 1)
return arvif->ar;
/* This can happen as scan vdev gets created during multiple scans
* across different radios before a vdev is brought up in
* a certain radio.
*/
if (ar != arvif->ar) {
if (WARN_ON(arvif->is_started))
return NULL;
/* backup the previously used ar ptr since arvif->ar would
* be set to NULL after vdev delete is done
*/
prev_ar = arvif->ar;
mutex_lock(&prev_ar->conf_mutex);
ret = ath12k_mac_vdev_delete(prev_ar, vif);
if (ret)
ath12k_warn(prev_ar->ab, "unable to delete vdev %d\n",
ret);
mutex_unlock(&prev_ar->conf_mutex);
}
}
ab = ar->ab;
mutex_lock(&ar->conf_mutex);
if (arvif->is_created)
goto flush;
if (vif->type == NL80211_IFTYPE_AP &&
ar->num_peers > (ar->max_num_peers - 1)) {
ath12k_warn(ab, "failed to create vdev due to insufficient peer entry resource in firmware\n");
goto unlock;
}
if (ar->num_created_vdevs > (TARGET_NUM_VDEVS - 1)) {
ath12k_warn(ab, "failed to create vdev, reached max vdev limit %d\n",
TARGET_NUM_VDEVS);
goto unlock;
}
ret = ath12k_mac_vdev_create(ar, vif);
if (ret) {
ath12k_warn(ab, "failed to create vdev %pM ret %d", vif->addr, ret);
goto unlock;
}
flush:
/* If the vdev is created during channel assign and not during
* add_interface(), Apply any parameters for the vdev which were received
* after add_interface, corresponding to this vif.
*/
ath12k_mac_vif_cache_flush(ar, vif);
unlock:
mutex_unlock(&ar->conf_mutex);
return arvif->ar;
}
static int ath12k_mac_op_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
int i;
memset(arvif, 0, sizeof(*arvif));
arvif->vif = vif;
INIT_LIST_HEAD(&arvif->list);
INIT_DELAYED_WORK(&arvif->connection_loss_work,
ath12k_mac_vif_sta_connection_loss_work);
for (i = 0; i < ARRAY_SIZE(arvif->bitrate_mask.control); i++) {
arvif->bitrate_mask.control[i].legacy = 0xffffffff;
memset(arvif->bitrate_mask.control[i].ht_mcs, 0xff,
sizeof(arvif->bitrate_mask.control[i].ht_mcs));
memset(arvif->bitrate_mask.control[i].vht_mcs, 0xff,
sizeof(arvif->bitrate_mask.control[i].vht_mcs));
}
/* Allocate Default Queue now and reassign during actual vdev create */
vif->cab_queue = ATH12K_HW_DEFAULT_QUEUE;
for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++)
vif->hw_queue[i] = ATH12K_HW_DEFAULT_QUEUE;
vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD;
/* For single radio wiphy(i.e ah->num_radio is 1), create the vdev
* during add_interface itself, for multi radio wiphy, defer the vdev
* creation until channel_assign to determine the radio on which the
* vdev needs to be created
*/
ath12k_mac_assign_vif_to_vdev(hw, vif, NULL);
return 0;
}
static void ath12k_mac_vif_unref(struct ath12k_dp *dp, struct ieee80211_vif *vif)
{
struct ath12k_tx_desc_info *tx_desc_info;
struct ath12k_skb_cb *skb_cb;
struct sk_buff *skb;
int i;
for (i = 0; i < ATH12K_HW_MAX_QUEUES; i++) {
spin_lock_bh(&dp->tx_desc_lock[i]);
list_for_each_entry(tx_desc_info, &dp->tx_desc_used_list[i],
list) {
skb = tx_desc_info->skb;
if (!skb)
continue;
skb_cb = ATH12K_SKB_CB(skb);
if (skb_cb->vif == vif)
skb_cb->vif = NULL;
}
spin_unlock_bh(&dp->tx_desc_lock[i]);
}
}
static int ath12k_mac_vdev_delete(struct ath12k *ar, struct ieee80211_vif *vif)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_base *ab = ar->ab;
unsigned long time_left;
int ret;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_delete_done);
ret = ath12k_wmi_vdev_delete(ar, arvif->vdev_id);
if (ret) {
ath12k_warn(ab, "failed to delete WMI vdev %d: %d\n",
arvif->vdev_id, ret);
goto err_vdev_del;
}
time_left = wait_for_completion_timeout(&ar->vdev_delete_done,
ATH12K_VDEV_DELETE_TIMEOUT_HZ);
if (time_left == 0) {
ath12k_warn(ab, "Timeout in receiving vdev delete response\n");
goto err_vdev_del;
}
ab->free_vdev_map |= 1LL << arvif->vdev_id;
ar->allocated_vdev_map &= ~(1LL << arvif->vdev_id);
ar->num_created_vdevs--;
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) {
ar->monitor_vdev_id = -1;
ar->monitor_vdev_created = false;
} else if (ar->monitor_vdev_created && !ar->monitor_started) {
ret = ath12k_mac_monitor_vdev_delete(ar);
}
ath12k_dbg(ab, ATH12K_DBG_MAC, "vdev %pM deleted, vdev_id %d\n",
vif->addr, arvif->vdev_id);
err_vdev_del:
spin_lock_bh(&ar->data_lock);
list_del(&arvif->list);
spin_unlock_bh(&ar->data_lock);
ath12k_peer_cleanup(ar, arvif->vdev_id);
ath12k_arvif_put_cache(arvif);
idr_for_each(&ar->txmgmt_idr,
ath12k_mac_vif_txmgmt_idr_remove, vif);
ath12k_mac_vif_unref(&ab->dp, vif);
ath12k_dp_tx_put_bank_profile(&ab->dp, arvif->bank_id);
/* Recalc txpower for remaining vdev */
ath12k_mac_txpower_recalc(ar);
/* TODO: recal traffic pause state based on the available vdevs */
arvif->is_created = false;
arvif->ar = NULL;
return ret;
}
static void ath12k_mac_op_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_base *ab;
struct ath12k *ar;
int ret;
if (!arvif->is_created) {
/* if we cached some config but never received assign chanctx,
* free the allocated cache.
*/
ath12k_arvif_put_cache(arvif);
return;
}
ar = arvif->ar;
ab = ar->ab;
cancel_delayed_work_sync(&arvif->connection_loss_work);
mutex_lock(&ar->conf_mutex);
ath12k_dbg(ab, ATH12K_DBG_MAC, "mac remove interface (vdev %d)\n",
arvif->vdev_id);
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
ret = ath12k_peer_delete(ar, arvif->vdev_id, vif->addr);
if (ret)
ath12k_warn(ab, "failed to submit AP self-peer removal on vdev %d: %d\n",
arvif->vdev_id, ret);
}
ath12k_mac_vdev_delete(ar, vif);
mutex_unlock(&ar->conf_mutex);
}
/* FIXME: Has to be verified. */
#define SUPPORTED_FILTERS \
(FIF_ALLMULTI | \
FIF_CONTROL | \
FIF_PSPOLL | \
FIF_OTHER_BSS | \
FIF_BCN_PRBRESP_PROMISC | \
FIF_PROBE_REQ | \
FIF_FCSFAIL)
static void ath12k_mac_configure_filter(struct ath12k *ar,
unsigned int total_flags)
{
bool reset_flag;
int ret;
lockdep_assert_held(&ar->conf_mutex);
ar->filter_flags = total_flags;
/* For monitor mode */
reset_flag = !(ar->filter_flags & FIF_BCN_PRBRESP_PROMISC);
ret = ath12k_dp_tx_htt_monitor_mode_ring_config(ar, reset_flag);
if (ret)
ath12k_warn(ar->ab,
"fail to set monitor filter: %d\n", ret);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"total_flags:0x%x, reset_flag:%d\n",
total_flags, reset_flag);
}
static void ath12k_mac_op_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar;
ar = ath12k_ah_to_ar(ah, 0);
mutex_lock(&ar->conf_mutex);
*total_flags &= SUPPORTED_FILTERS;
ath12k_mac_configure_filter(ar, *total_flags);
mutex_unlock(&ar->conf_mutex);
}
static int ath12k_mac_op_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
int antennas_rx = 0, antennas_tx = 0;
struct ath12k *ar;
int i;
for_each_ar(ah, ar, i) {
mutex_lock(&ar->conf_mutex);
antennas_rx = max_t(u32, antennas_rx, ar->cfg_rx_chainmask);
antennas_tx = max_t(u32, antennas_tx, ar->cfg_tx_chainmask);
mutex_unlock(&ar->conf_mutex);
}
*tx_ant = antennas_tx;
*rx_ant = antennas_rx;
return 0;
}
static int ath12k_mac_op_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar;
int ret = 0;
int i;
for_each_ar(ah, ar, i) {
mutex_lock(&ar->conf_mutex);
ret = __ath12k_set_antenna(ar, tx_ant, rx_ant);
mutex_unlock(&ar->conf_mutex);
if (ret)
break;
}
return ret;
}
static int ath12k_mac_ampdu_action(struct ath12k_vif *arvif,
struct ieee80211_ampdu_params *params)
{
struct ath12k *ar = arvif->ar;
int ret = -EINVAL;
lockdep_assert_held(&ar->conf_mutex);
switch (params->action) {
case IEEE80211_AMPDU_RX_START:
ret = ath12k_dp_rx_ampdu_start(ar, params);
break;
case IEEE80211_AMPDU_RX_STOP:
ret = ath12k_dp_rx_ampdu_stop(ar, params);
break;
case IEEE80211_AMPDU_TX_START:
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
case IEEE80211_AMPDU_TX_OPERATIONAL:
/* Tx A-MPDU aggregation offloaded to hw/fw so deny mac80211
* Tx aggregation requests.
*/
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int ath12k_mac_op_ampdu_action(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_ampdu_params *params)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
int ret = -EINVAL;
ar = ath12k_get_ar_by_vif(hw, vif);
if (!ar)
return -EINVAL;
ar = ath12k_ah_to_ar(ah, 0);
mutex_lock(&ar->conf_mutex);
ret = ath12k_mac_ampdu_action(arvif, params);
mutex_unlock(&ar->conf_mutex);
if (ret)
ath12k_warn(ar->ab, "pdev idx %d unable to perform ampdu action %d ret %d\n",
ar->pdev_idx, params->action, ret);
return ret;
}
static int ath12k_mac_op_add_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
struct ath12k *ar;
struct ath12k_base *ab;
ar = ath12k_get_ar_by_ctx(hw, ctx);
if (!ar)
return -EINVAL;
ab = ar->ab;
ath12k_dbg(ab, ATH12K_DBG_MAC,
"mac chanctx add freq %u width %d ptr %p\n",
ctx->def.chan->center_freq, ctx->def.width, ctx);
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
/* TODO: In case of multiple channel context, populate rx_channel from
* Rx PPDU desc information.
*/
ar->rx_channel = ctx->def.chan;
spin_unlock_bh(&ar->data_lock);
mutex_unlock(&ar->conf_mutex);
return 0;
}
static void ath12k_mac_op_remove_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx)
{
struct ath12k *ar;
struct ath12k_base *ab;
ar = ath12k_get_ar_by_ctx(hw, ctx);
if (!ar)
return;
ab = ar->ab;
ath12k_dbg(ab, ATH12K_DBG_MAC,
"mac chanctx remove freq %u width %d ptr %p\n",
ctx->def.chan->center_freq, ctx->def.width, ctx);
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
/* TODO: In case of there is one more channel context left, populate
* rx_channel with the channel of that remaining channel context.
*/
ar->rx_channel = NULL;
spin_unlock_bh(&ar->data_lock);
mutex_unlock(&ar->conf_mutex);
}
static enum wmi_phy_mode
ath12k_mac_check_down_grade_phy_mode(struct ath12k *ar,
enum wmi_phy_mode mode,
enum nl80211_band band,
enum nl80211_iftype type)
{
struct ieee80211_sta_eht_cap *eht_cap = NULL;
enum wmi_phy_mode down_mode;
int n = ar->mac.sbands[band].n_iftype_data;
int i;
struct ieee80211_sband_iftype_data *data;
if (mode < MODE_11BE_EHT20)
return mode;
data = ar->mac.iftype[band];
for (i = 0; i < n; i++) {
if (data[i].types_mask & BIT(type)) {
eht_cap = &data[i].eht_cap;
break;
}
}
if (eht_cap && eht_cap->has_eht)
return mode;
switch (mode) {
case MODE_11BE_EHT20:
down_mode = MODE_11AX_HE20;
break;
case MODE_11BE_EHT40:
down_mode = MODE_11AX_HE40;
break;
case MODE_11BE_EHT80:
down_mode = MODE_11AX_HE80;
break;
case MODE_11BE_EHT80_80:
down_mode = MODE_11AX_HE80_80;
break;
case MODE_11BE_EHT160:
case MODE_11BE_EHT160_160:
case MODE_11BE_EHT320:
down_mode = MODE_11AX_HE160;
break;
case MODE_11BE_EHT20_2G:
down_mode = MODE_11AX_HE20_2G;
break;
case MODE_11BE_EHT40_2G:
down_mode = MODE_11AX_HE40_2G;
break;
default:
down_mode = mode;
break;
}
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"mac vdev start phymode %s downgrade to %s\n",
ath12k_mac_phymode_str(mode),
ath12k_mac_phymode_str(down_mode));
return down_mode;
}
static int
ath12k_mac_vdev_start_restart(struct ath12k_vif *arvif,
struct ieee80211_chanctx_conf *ctx,
bool restart)
{
struct ath12k *ar = arvif->ar;
struct ath12k_base *ab = ar->ab;
struct wmi_vdev_start_req_arg arg = {};
const struct cfg80211_chan_def *chandef = &ctx->def;
int he_support = arvif->vif->bss_conf.he_support;
int ret;
lockdep_assert_held(&ar->conf_mutex);
reinit_completion(&ar->vdev_setup_done);
arg.vdev_id = arvif->vdev_id;
arg.dtim_period = arvif->dtim_period;
arg.bcn_intval = arvif->beacon_interval;
arg.punct_bitmap = ~arvif->punct_bitmap;
arg.freq = chandef->chan->center_freq;
arg.band_center_freq1 = chandef->center_freq1;
arg.band_center_freq2 = chandef->center_freq2;
arg.mode = ath12k_phymodes[chandef->chan->band][chandef->width];
arg.mode = ath12k_mac_check_down_grade_phy_mode(ar, arg.mode,
chandef->chan->band,
arvif->vif->type);
arg.min_power = 0;
arg.max_power = chandef->chan->max_power * 2;
arg.max_reg_power = chandef->chan->max_reg_power * 2;
arg.max_antenna_gain = chandef->chan->max_antenna_gain * 2;
arg.pref_tx_streams = ar->num_tx_chains;
arg.pref_rx_streams = ar->num_rx_chains;
arg.mbssid_flags = WMI_VDEV_MBSSID_FLAGS_NON_MBSSID_AP;
arg.mbssid_tx_vdev_id = 0;
if (test_bit(WMI_TLV_SERVICE_MBSS_PARAM_IN_VDEV_START_SUPPORT,
ar->ab->wmi_ab.svc_map)) {
ret = ath12k_mac_setup_vdev_params_mbssid(arvif,
&arg.mbssid_flags,
&arg.mbssid_tx_vdev_id);
if (ret)
return ret;
}
if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
arg.ssid = arvif->u.ap.ssid;
arg.ssid_len = arvif->u.ap.ssid_len;
arg.hidden_ssid = arvif->u.ap.hidden_ssid;
/* For now allow DFS for AP mode */
arg.chan_radar = !!(chandef->chan->flags & IEEE80211_CHAN_RADAR);
arg.freq2_radar = ctx->radar_enabled;
arg.passive = arg.chan_radar;
spin_lock_bh(&ab->base_lock);
arg.regdomain = ar->ab->dfs_region;
spin_unlock_bh(&ab->base_lock);
/* TODO: Notify if secondary 80Mhz also needs radar detection */
if (he_support) {
ret = ath12k_set_he_mu_sounding_mode(ar, arvif);
if (ret) {
ath12k_warn(ar->ab, "failed to set he mode vdev %i\n",
arg.vdev_id);
return ret;
}
}
}
arg.passive |= !!(chandef->chan->flags & IEEE80211_CHAN_NO_IR);
ath12k_dbg(ab, ATH12K_DBG_MAC,
"mac vdev %d start center_freq %d phymode %s punct_bitmap 0x%x\n",
arg.vdev_id, arg.freq,
ath12k_mac_phymode_str(arg.mode), arg.punct_bitmap);
ret = ath12k_wmi_vdev_start(ar, &arg, restart);
if (ret) {
ath12k_warn(ar->ab, "failed to %s WMI vdev %i\n",
restart ? "restart" : "start", arg.vdev_id);
return ret;
}
ret = ath12k_mac_vdev_setup_sync(ar);
if (ret) {
ath12k_warn(ab, "failed to synchronize setup for vdev %i %s: %d\n",
arg.vdev_id, restart ? "restart" : "start", ret);
return ret;
}
ar->num_started_vdevs++;
ath12k_dbg(ab, ATH12K_DBG_MAC, "vdev %pM started, vdev_id %d\n",
arvif->vif->addr, arvif->vdev_id);
/* Enable CAC Flag in the driver by checking the channel DFS cac time,
* i.e dfs_cac_ms value which will be valid only for radar channels
* and state as NL80211_DFS_USABLE which indicates CAC needs to be
* done before channel usage. This flags is used to drop rx packets.
* during CAC.
*/
/* TODO: Set the flag for other interface types as required */
if (arvif->vdev_type == WMI_VDEV_TYPE_AP &&
chandef->chan->dfs_cac_ms &&
chandef->chan->dfs_state == NL80211_DFS_USABLE) {
set_bit(ATH12K_CAC_RUNNING, &ar->dev_flags);
ath12k_dbg(ab, ATH12K_DBG_MAC,
"CAC Started in chan_freq %d for vdev %d\n",
arg.freq, arg.vdev_id);
}
ret = ath12k_mac_set_txbf_conf(arvif);
if (ret)
ath12k_warn(ab, "failed to set txbf conf for vdev %d: %d\n",
arvif->vdev_id, ret);
return 0;
}
static int ath12k_mac_vdev_start(struct ath12k_vif *arvif,
struct ieee80211_chanctx_conf *ctx)
{
return ath12k_mac_vdev_start_restart(arvif, ctx, false);
}
static int ath12k_mac_vdev_restart(struct ath12k_vif *arvif,
struct ieee80211_chanctx_conf *ctx)
{
return ath12k_mac_vdev_start_restart(arvif, ctx, true);
}
struct ath12k_mac_change_chanctx_arg {
struct ieee80211_chanctx_conf *ctx;
struct ieee80211_vif_chanctx_switch *vifs;
int n_vifs;
int next_vif;
struct ath12k *ar;
};
static void
ath12k_mac_change_chanctx_cnt_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_mac_change_chanctx_arg *arg = data;
if (arvif->ar != arg->ar)
return;
if (rcu_access_pointer(vif->bss_conf.chanctx_conf) != arg->ctx)
return;
arg->n_vifs++;
}
static void
ath12k_mac_change_chanctx_fill_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_mac_change_chanctx_arg *arg = data;
struct ieee80211_chanctx_conf *ctx;
if (arvif->ar != arg->ar)
return;
ctx = rcu_access_pointer(vif->bss_conf.chanctx_conf);
if (ctx != arg->ctx)
return;
if (WARN_ON(arg->next_vif == arg->n_vifs))
return;
arg->vifs[arg->next_vif].vif = vif;
arg->vifs[arg->next_vif].old_ctx = ctx;
arg->vifs[arg->next_vif].new_ctx = ctx;
arg->next_vif++;
}
static u32 ath12k_mac_nlwidth_to_wmiwidth(enum nl80211_chan_width width)
{
switch (width) {
case NL80211_CHAN_WIDTH_20:
return WMI_CHAN_WIDTH_20;
case NL80211_CHAN_WIDTH_40:
return WMI_CHAN_WIDTH_40;
case NL80211_CHAN_WIDTH_80:
return WMI_CHAN_WIDTH_80;
case NL80211_CHAN_WIDTH_160:
return WMI_CHAN_WIDTH_160;
case NL80211_CHAN_WIDTH_80P80:
return WMI_CHAN_WIDTH_80P80;
case NL80211_CHAN_WIDTH_5:
return WMI_CHAN_WIDTH_5;
case NL80211_CHAN_WIDTH_10:
return WMI_CHAN_WIDTH_10;
case NL80211_CHAN_WIDTH_320:
return WMI_CHAN_WIDTH_320;
default:
WARN_ON(1);
return WMI_CHAN_WIDTH_20;
}
}
static int ath12k_mac_update_peer_puncturing_width(struct ath12k *ar,
struct ath12k_vif *arvif,
struct cfg80211_chan_def def)
{
u32 param_id, param_value;
int ret;
if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
return 0;
param_id = WMI_PEER_CHWIDTH_PUNCTURE_20MHZ_BITMAP;
param_value = ath12k_mac_nlwidth_to_wmiwidth(def.width) |
u32_encode_bits((~def.punctured),
WMI_PEER_PUNCTURE_BITMAP);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"punctured bitmap %02x width %d vdev %d\n",
def.punctured, def.width, arvif->vdev_id);
ret = ath12k_wmi_set_peer_param(ar, arvif->bssid,
arvif->vdev_id, param_id,
param_value);
return ret;
}
static void
ath12k_mac_update_vif_chan(struct ath12k *ar,
struct ieee80211_vif_chanctx_switch *vifs,
int n_vifs)
{
struct ath12k_wmi_vdev_up_params params = {};
struct ath12k_base *ab = ar->ab;
struct ieee80211_vif *vif;
struct ath12k_vif *arvif;
int ret;
int i;
bool monitor_vif = false;
lockdep_assert_held(&ar->conf_mutex);
for (i = 0; i < n_vifs; i++) {
vif = vifs[i].vif;
arvif = ath12k_vif_to_arvif(vif);
if (vif->type == NL80211_IFTYPE_MONITOR)
monitor_vif = true;
ath12k_dbg(ab, ATH12K_DBG_MAC,
"mac chanctx switch vdev_id %i freq %u->%u width %d->%d\n",
arvif->vdev_id,
vifs[i].old_ctx->def.chan->center_freq,
vifs[i].new_ctx->def.chan->center_freq,
vifs[i].old_ctx->def.width,
vifs[i].new_ctx->def.width);
if (WARN_ON(!arvif->is_started))
continue;
arvif->punct_bitmap = vifs[i].new_ctx->def.punctured;
/* Firmware expect vdev_restart only if vdev is up.
* If vdev is down then it expect vdev_stop->vdev_start.
*/
if (arvif->is_up) {
ret = ath12k_mac_vdev_restart(arvif, vifs[i].new_ctx);
if (ret) {
ath12k_warn(ab, "failed to restart vdev %d: %d\n",
arvif->vdev_id, ret);
continue;
}
} else {
ret = ath12k_mac_vdev_stop(arvif);
if (ret) {
ath12k_warn(ab, "failed to stop vdev %d: %d\n",
arvif->vdev_id, ret);
continue;
}
ret = ath12k_mac_vdev_start(arvif, vifs[i].new_ctx);
if (ret)
ath12k_warn(ab, "failed to start vdev %d: %d\n",
arvif->vdev_id, ret);
continue;
}
ret = ath12k_mac_setup_bcn_tmpl(arvif);
if (ret)
ath12k_warn(ab, "failed to update bcn tmpl during csa: %d\n",
ret);
memset(¶ms, 0, sizeof(params));
params.vdev_id = arvif->vdev_id;
params.aid = arvif->aid;
params.bssid = arvif->bssid;
if (vif->mbssid_tx_vif) {
params.tx_bssid = ath12k_vif_to_arvif(vif->mbssid_tx_vif)->bssid;
params.nontx_profile_idx = vif->bss_conf.bssid_index;
params.nontx_profile_cnt = 1 << vif->bss_conf.bssid_indicator;
}
ret = ath12k_wmi_vdev_up(arvif->ar, ¶ms);
if (ret) {
ath12k_warn(ab, "failed to bring vdev up %d: %d\n",
arvif->vdev_id, ret);
continue;
}
ret = ath12k_mac_update_peer_puncturing_width(arvif->ar, arvif,
vifs[i].new_ctx->def);
if (ret) {
ath12k_warn(ar->ab,
"failed to update puncturing bitmap %02x and width %d: %d\n",
vifs[i].new_ctx->def.punctured,
vifs[i].new_ctx->def.width, ret);
continue;
}
}
/* Restart the internal monitor vdev on new channel */
if (!monitor_vif && ar->monitor_vdev_created) {
if (!ath12k_mac_monitor_stop(ar))
ath12k_mac_monitor_start(ar);
}
}
static void
ath12k_mac_update_active_vif_chan(struct ath12k *ar,
struct ieee80211_chanctx_conf *ctx)
{
struct ath12k_mac_change_chanctx_arg arg = { .ctx = ctx, .ar = ar };
struct ieee80211_hw *hw = ath12k_ar_to_hw(ar);
lockdep_assert_held(&ar->conf_mutex);
ieee80211_iterate_active_interfaces_atomic(hw,
IEEE80211_IFACE_ITER_NORMAL,
ath12k_mac_change_chanctx_cnt_iter,
&arg);
if (arg.n_vifs == 0)
return;
arg.vifs = kcalloc(arg.n_vifs, sizeof(arg.vifs[0]), GFP_KERNEL);
if (!arg.vifs)
return;
ieee80211_iterate_active_interfaces_atomic(hw,
IEEE80211_IFACE_ITER_NORMAL,
ath12k_mac_change_chanctx_fill_iter,
&arg);
ath12k_mac_update_vif_chan(ar, arg.vifs, arg.n_vifs);
kfree(arg.vifs);
}
static void ath12k_mac_op_change_chanctx(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx,
u32 changed)
{
struct ath12k *ar;
struct ath12k_base *ab;
ar = ath12k_get_ar_by_ctx(hw, ctx);
if (!ar)
return;
ab = ar->ab;
mutex_lock(&ar->conf_mutex);
ath12k_dbg(ab, ATH12K_DBG_MAC,
"mac chanctx change freq %u width %d ptr %p changed %x\n",
ctx->def.chan->center_freq, ctx->def.width, ctx, changed);
/* This shouldn't really happen because channel switching should use
* switch_vif_chanctx().
*/
if (WARN_ON(changed & IEEE80211_CHANCTX_CHANGE_CHANNEL))
goto unlock;
if (changed & IEEE80211_CHANCTX_CHANGE_WIDTH ||
changed & IEEE80211_CHANCTX_CHANGE_RADAR ||
changed & IEEE80211_CHANCTX_CHANGE_PUNCTURING)
ath12k_mac_update_active_vif_chan(ar, ctx);
/* TODO: Recalc radar detection */
unlock:
mutex_unlock(&ar->conf_mutex);
}
static int ath12k_start_vdev_delay(struct ath12k *ar,
struct ath12k_vif *arvif)
{
struct ath12k_base *ab = ar->ab;
struct ieee80211_vif *vif = arvif->vif;
int ret;
if (WARN_ON(arvif->is_started))
return -EBUSY;
ret = ath12k_mac_vdev_start(arvif, &arvif->chanctx);
if (ret) {
ath12k_warn(ab, "failed to start vdev %i addr %pM on freq %d: %d\n",
arvif->vdev_id, vif->addr,
arvif->chanctx.def.chan->center_freq, ret);
return ret;
}
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) {
ret = ath12k_monitor_vdev_up(ar, arvif->vdev_id);
if (ret) {
ath12k_warn(ab, "failed put monitor up: %d\n", ret);
return ret;
}
}
arvif->is_started = true;
/* TODO: Setup ps and cts/rts protection */
return 0;
}
static int
ath12k_mac_op_assign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *link_conf,
struct ieee80211_chanctx_conf *ctx)
{
struct ath12k *ar;
struct ath12k_base *ab;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
int ret;
/* For multi radio wiphy, the vdev was not created during add_interface
* create now since we have a channel ctx now to assign to a specific ar/fw
*/
ar = ath12k_mac_assign_vif_to_vdev(hw, vif, ctx);
if (!ar) {
WARN_ON(1);
return -EINVAL;
}
ab = ar->ab;
mutex_lock(&ar->conf_mutex);
ath12k_dbg(ab, ATH12K_DBG_MAC,
"mac chanctx assign ptr %p vdev_id %i\n",
ctx, arvif->vdev_id);
arvif->punct_bitmap = ctx->def.punctured;
/* for some targets bss peer must be created before vdev_start */
if (ab->hw_params->vdev_start_delay &&
arvif->vdev_type != WMI_VDEV_TYPE_AP &&
arvif->vdev_type != WMI_VDEV_TYPE_MONITOR &&
!ath12k_peer_exist_by_vdev_id(ab, arvif->vdev_id)) {
memcpy(&arvif->chanctx, ctx, sizeof(*ctx));
ret = 0;
goto out;
}
if (WARN_ON(arvif->is_started)) {
ret = -EBUSY;
goto out;
}
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) {
ret = ath12k_mac_monitor_start(ar);
if (ret)
goto out;
arvif->is_started = true;
goto out;
}
ret = ath12k_mac_vdev_start(arvif, ctx);
if (ret) {
ath12k_warn(ab, "failed to start vdev %i addr %pM on freq %d: %d\n",
arvif->vdev_id, vif->addr,
ctx->def.chan->center_freq, ret);
goto out;
}
if (arvif->vdev_type != WMI_VDEV_TYPE_MONITOR && ar->monitor_vdev_created)
ath12k_mac_monitor_start(ar);
arvif->is_started = true;
/* TODO: Setup ps and cts/rts protection */
out:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void
ath12k_mac_op_unassign_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *link_conf,
struct ieee80211_chanctx_conf *ctx)
{
struct ath12k *ar;
struct ath12k_base *ab;
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
int ret;
/* The vif is expected to be attached to an ar's VDEV.
* We leave the vif/vdev in this function as is
* and not delete the vdev symmetric to assign_vif_chanctx()
* the VDEV will be deleted and unassigned either during
* remove_interface() or when there is a change in channel
* that moves the vif to a new ar
*/
if (!arvif->is_created)
return;
ar = arvif->ar;
ab = ar->ab;
mutex_lock(&ar->conf_mutex);
ath12k_dbg(ab, ATH12K_DBG_MAC,
"mac chanctx unassign ptr %p vdev_id %i\n",
ctx, arvif->vdev_id);
WARN_ON(!arvif->is_started);
if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) {
ret = ath12k_mac_monitor_stop(ar);
if (ret) {
mutex_unlock(&ar->conf_mutex);
return;
}
arvif->is_started = false;
}
if (arvif->vdev_type != WMI_VDEV_TYPE_STA &&
arvif->vdev_type != WMI_VDEV_TYPE_MONITOR) {
ath12k_bss_disassoc(ar, arvif);
ret = ath12k_mac_vdev_stop(arvif);
if (ret)
ath12k_warn(ab, "failed to stop vdev %i: %d\n",
arvif->vdev_id, ret);
}
arvif->is_started = false;
if (arvif->vdev_type != WMI_VDEV_TYPE_MONITOR &&
ar->num_started_vdevs == 1 && ar->monitor_vdev_created)
ath12k_mac_monitor_stop(ar);
mutex_unlock(&ar->conf_mutex);
}
static int
ath12k_mac_op_switch_vif_chanctx(struct ieee80211_hw *hw,
struct ieee80211_vif_chanctx_switch *vifs,
int n_vifs,
enum ieee80211_chanctx_switch_mode mode)
{
struct ath12k *ar;
ar = ath12k_get_ar_by_ctx(hw, vifs->old_ctx);
if (!ar)
return -EINVAL;
mutex_lock(&ar->conf_mutex);
/* Switching channels across radio is not allowed */
if (ar != ath12k_get_ar_by_ctx(hw, vifs->new_ctx)) {
mutex_unlock(&ar->conf_mutex);
return -EINVAL;
}
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"mac chanctx switch n_vifs %d mode %d\n",
n_vifs, mode);
ath12k_mac_update_vif_chan(ar, vifs, n_vifs);
mutex_unlock(&ar->conf_mutex);
return 0;
}
static int
ath12k_set_vdev_param_to_all_vifs(struct ath12k *ar, int param, u32 value)
{
struct ath12k_vif *arvif;
int ret = 0;
mutex_lock(&ar->conf_mutex);
list_for_each_entry(arvif, &ar->arvifs, list) {
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "setting mac vdev %d param %d value %d\n",
param, arvif->vdev_id, value);
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
param, value);
if (ret) {
ath12k_warn(ar->ab, "failed to set param %d for vdev %d: %d\n",
param, arvif->vdev_id, ret);
break;
}
}
mutex_unlock(&ar->conf_mutex);
return ret;
}
/* mac80211 stores device specific RTS/Fragmentation threshold value,
* this is set interface specific to firmware from ath12k driver
*/
static int ath12k_mac_op_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar;
int param_id = WMI_VDEV_PARAM_RTS_THRESHOLD, ret = 0, i;
/* Currently we set the rts threshold value to all the vifs across
* all radios of the single wiphy.
* TODO Once support for vif specific RTS threshold in mac80211 is
* available, ath12k can make use of it.
*/
for_each_ar(ah, ar, i) {
ret = ath12k_set_vdev_param_to_all_vifs(ar, param_id, value);
if (ret) {
ath12k_warn(ar->ab, "failed to set RTS config for all vdevs of pdev %d",
ar->pdev->pdev_id);
break;
}
}
return ret;
}
static int ath12k_mac_op_set_frag_threshold(struct ieee80211_hw *hw, u32 value)
{
/* Even though there's a WMI vdev param for fragmentation threshold no
* known firmware actually implements it. Moreover it is not possible to
* rely frame fragmentation to mac80211 because firmware clears the
* "more fragments" bit in frame control making it impossible for remote
* devices to reassemble frames.
*
* Hence implement a dummy callback just to say fragmentation isn't
* supported. This effectively prevents mac80211 from doing frame
* fragmentation in software.
*/
return -EOPNOTSUPP;
}
static int ath12k_mac_flush(struct ath12k *ar)
{
long time_left;
int ret = 0;
time_left = wait_event_timeout(ar->dp.tx_empty_waitq,
(atomic_read(&ar->dp.num_tx_pending) == 0),
ATH12K_FLUSH_TIMEOUT);
if (time_left == 0) {
ath12k_warn(ar->ab,
"failed to flush transmit queue, data pkts pending %d\n",
atomic_read(&ar->dp.num_tx_pending));
ret = -ETIMEDOUT;
}
time_left = wait_event_timeout(ar->txmgmt_empty_waitq,
(atomic_read(&ar->num_pending_mgmt_tx) == 0),
ATH12K_FLUSH_TIMEOUT);
if (time_left == 0) {
ath12k_warn(ar->ab,
"failed to flush mgmt transmit queue, mgmt pkts pending %d\n",
atomic_read(&ar->num_pending_mgmt_tx));
ret = -ETIMEDOUT;
}
return ret;
}
int ath12k_mac_wait_tx_complete(struct ath12k *ar)
{
ath12k_mac_drain_tx(ar);
return ath12k_mac_flush(ar);
}
static void ath12k_mac_op_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u32 queues, bool drop)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar;
int i;
if (drop)
return;
/* vif can be NULL when flush() is considered for hw */
if (!vif) {
for_each_ar(ah, ar, i)
ath12k_mac_flush(ar);
return;
}
ar = ath12k_get_ar_by_vif(hw, vif);
if (!ar)
return;
ath12k_mac_flush(ar);
}
static int
ath12k_mac_bitrate_mask_num_ht_rates(struct ath12k *ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask *mask)
{
int num_rates = 0;
int i;
for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++)
num_rates += hweight16(mask->control[band].ht_mcs[i]);
return num_rates;
}
static bool
ath12k_mac_has_single_legacy_rate(struct ath12k *ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask *mask)
{
int num_rates = 0;
num_rates = hweight32(mask->control[band].legacy);
if (ath12k_mac_bitrate_mask_num_ht_rates(ar, band, mask))
return false;
if (ath12k_mac_bitrate_mask_num_vht_rates(ar, band, mask))
return false;
return num_rates == 1;
}
static bool
ath12k_mac_bitrate_mask_get_single_nss(struct ath12k *ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask *mask,
int *nss)
{
struct ieee80211_supported_band *sband = &ar->mac.sbands[band];
u16 vht_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map);
u8 ht_nss_mask = 0;
u8 vht_nss_mask = 0;
int i;
/* No need to consider legacy here. Basic rates are always present
* in bitrate mask
*/
for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) {
if (mask->control[band].ht_mcs[i] == 0)
continue;
else if (mask->control[band].ht_mcs[i] ==
sband->ht_cap.mcs.rx_mask[i])
ht_nss_mask |= BIT(i);
else
return false;
}
for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
if (mask->control[band].vht_mcs[i] == 0)
continue;
else if (mask->control[band].vht_mcs[i] ==
ath12k_mac_get_max_vht_mcs_map(vht_mcs_map, i))
vht_nss_mask |= BIT(i);
else
return false;
}
if (ht_nss_mask != vht_nss_mask)
return false;
if (ht_nss_mask == 0)
return false;
if (BIT(fls(ht_nss_mask)) - 1 != ht_nss_mask)
return false;
*nss = fls(ht_nss_mask);
return true;
}
static int
ath12k_mac_get_single_legacy_rate(struct ath12k *ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask *mask,
u32 *rate, u8 *nss)
{
int rate_idx;
u16 bitrate;
u8 preamble;
u8 hw_rate;
if (hweight32(mask->control[band].legacy) != 1)
return -EINVAL;
rate_idx = ffs(mask->control[band].legacy) - 1;
if (band == NL80211_BAND_5GHZ || band == NL80211_BAND_6GHZ)
rate_idx += ATH12K_MAC_FIRST_OFDM_RATE_IDX;
hw_rate = ath12k_legacy_rates[rate_idx].hw_value;
bitrate = ath12k_legacy_rates[rate_idx].bitrate;
if (ath12k_mac_bitrate_is_cck(bitrate))
preamble = WMI_RATE_PREAMBLE_CCK;
else
preamble = WMI_RATE_PREAMBLE_OFDM;
*nss = 1;
*rate = ATH12K_HW_RATE_CODE(hw_rate, 0, preamble);
return 0;
}
static int ath12k_mac_set_fixed_rate_params(struct ath12k_vif *arvif,
u32 rate, u8 nss, u8 sgi, u8 ldpc)
{
struct ath12k *ar = arvif->ar;
u32 vdev_param;
int ret;
lockdep_assert_held(&ar->conf_mutex);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac set fixed rate params vdev %i rate 0x%02x nss %u sgi %u\n",
arvif->vdev_id, rate, nss, sgi);
vdev_param = WMI_VDEV_PARAM_FIXED_RATE;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
vdev_param, rate);
if (ret) {
ath12k_warn(ar->ab, "failed to set fixed rate param 0x%02x: %d\n",
rate, ret);
return ret;
}
vdev_param = WMI_VDEV_PARAM_NSS;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
vdev_param, nss);
if (ret) {
ath12k_warn(ar->ab, "failed to set nss param %d: %d\n",
nss, ret);
return ret;
}
vdev_param = WMI_VDEV_PARAM_SGI;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
vdev_param, sgi);
if (ret) {
ath12k_warn(ar->ab, "failed to set sgi param %d: %d\n",
sgi, ret);
return ret;
}
vdev_param = WMI_VDEV_PARAM_LDPC;
ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
vdev_param, ldpc);
if (ret) {
ath12k_warn(ar->ab, "failed to set ldpc param %d: %d\n",
ldpc, ret);
return ret;
}
return 0;
}
static bool
ath12k_mac_vht_mcs_range_present(struct ath12k *ar,
enum nl80211_band band,
const struct cfg80211_bitrate_mask *mask)
{
int i;
u16 vht_mcs;
for (i = 0; i < NL80211_VHT_NSS_MAX; i++) {
vht_mcs = mask->control[band].vht_mcs[i];
switch (vht_mcs) {
case 0:
case BIT(8) - 1:
case BIT(9) - 1:
case BIT(10) - 1:
break;
default:
return false;
}
}
return true;
}
static void ath12k_mac_set_bitrate_mask_iter(void *data,
struct ieee80211_sta *sta)
{
struct ath12k_vif *arvif = data;
struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta);
struct ath12k *ar = arvif->ar;
if (arsta->arvif != arvif)
return;
spin_lock_bh(&ar->data_lock);
arsta->changed |= IEEE80211_RC_SUPP_RATES_CHANGED;
spin_unlock_bh(&ar->data_lock);
ieee80211_queue_work(ath12k_ar_to_hw(ar), &arsta->update_wk);
}
static void ath12k_mac_disable_peer_fixed_rate(void *data,
struct ieee80211_sta *sta)
{
struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta);
struct ath12k_vif *arvif = data;
struct ath12k *ar = arvif->ar;
int ret;
if (arsta->arvif != arvif)
return;
ret = ath12k_wmi_set_peer_param(ar, sta->addr,
arvif->vdev_id,
WMI_PEER_PARAM_FIXED_RATE,
WMI_FIXED_RATE_NONE);
if (ret)
ath12k_warn(ar->ab,
"failed to disable peer fixed rate for STA %pM ret %d\n",
sta->addr, ret);
}
static int
ath12k_mac_op_set_bitrate_mask(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const struct cfg80211_bitrate_mask *mask)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct cfg80211_chan_def def;
struct ath12k *ar = arvif->ar;
enum nl80211_band band;
const u8 *ht_mcs_mask;
const u16 *vht_mcs_mask;
u32 rate;
u8 nss;
u8 sgi;
u8 ldpc;
int single_nss;
int ret;
int num_rates;
if (ath12k_mac_vif_chan(vif, &def))
return -EPERM;
band = def.chan->band;
ht_mcs_mask = mask->control[band].ht_mcs;
vht_mcs_mask = mask->control[band].vht_mcs;
ldpc = !!(ar->ht_cap_info & WMI_HT_CAP_LDPC);
sgi = mask->control[band].gi;
if (sgi == NL80211_TXRATE_FORCE_LGI) {
ret = -EINVAL;
goto out;
}
/* mac80211 doesn't support sending a fixed HT/VHT MCS alone, rather it
* requires passing at least one of used basic rates along with them.
* Fixed rate setting across different preambles(legacy, HT, VHT) is
* not supported by the FW. Hence use of FIXED_RATE vdev param is not
* suitable for setting single HT/VHT rates.
* But, there could be a single basic rate passed from userspace which
* can be done through the FIXED_RATE param.
*/
if (ath12k_mac_has_single_legacy_rate(ar, band, mask)) {
ret = ath12k_mac_get_single_legacy_rate(ar, band, mask, &rate,
&nss);
if (ret) {
ath12k_warn(ar->ab, "failed to get single legacy rate for vdev %i: %d\n",
arvif->vdev_id, ret);
goto out;
}
ieee80211_iterate_stations_atomic(hw,
ath12k_mac_disable_peer_fixed_rate,
arvif);
} else if (ath12k_mac_bitrate_mask_get_single_nss(ar, band, mask,
&single_nss)) {
rate = WMI_FIXED_RATE_NONE;
nss = single_nss;
} else {
rate = WMI_FIXED_RATE_NONE;
nss = min_t(u32, ar->num_tx_chains,
max(ath12k_mac_max_ht_nss(ht_mcs_mask),
ath12k_mac_max_vht_nss(vht_mcs_mask)));
/* If multiple rates across different preambles are given
* we can reconfigure this info with all peers using PEER_ASSOC
* command with the below exception cases.
* - Single VHT Rate : peer_assoc command accommodates only MCS
* range values i.e 0-7, 0-8, 0-9 for VHT. Though mac80211
* mandates passing basic rates along with HT/VHT rates, FW
* doesn't allow switching from VHT to Legacy. Hence instead of
* setting legacy and VHT rates using RATEMASK_CMD vdev cmd,
* we could set this VHT rate as peer fixed rate param, which
* will override FIXED rate and FW rate control algorithm.
* If single VHT rate is passed along with HT rates, we select
* the VHT rate as fixed rate for vht peers.
* - Multiple VHT Rates : When Multiple VHT rates are given,this
* can be set using RATEMASK CMD which uses FW rate-ctl alg.
* TODO: Setting multiple VHT MCS and replacing peer_assoc with
* RATEMASK_CMDID can cover all use cases of setting rates
* across multiple preambles and rates within same type.
* But requires more validation of the command at this point.
*/
num_rates = ath12k_mac_bitrate_mask_num_vht_rates(ar, band,
mask);
if (!ath12k_mac_vht_mcs_range_present(ar, band, mask) &&
num_rates > 1) {
/* TODO: Handle multiple VHT MCS values setting using
* RATEMASK CMD
*/
ath12k_warn(ar->ab,
"Setting more than one MCS Value in bitrate mask not supported\n");
ret = -EINVAL;
goto out;
}
ieee80211_iterate_stations_atomic(hw,
ath12k_mac_disable_peer_fixed_rate,
arvif);
mutex_lock(&ar->conf_mutex);
arvif->bitrate_mask = *mask;
ieee80211_iterate_stations_atomic(hw,
ath12k_mac_set_bitrate_mask_iter,
arvif);
mutex_unlock(&ar->conf_mutex);
}
mutex_lock(&ar->conf_mutex);
ret = ath12k_mac_set_fixed_rate_params(arvif, rate, nss, sgi, ldpc);
if (ret) {
ath12k_warn(ar->ab, "failed to set fixed rate params on vdev %i: %d\n",
arvif->vdev_id, ret);
}
mutex_unlock(&ar->conf_mutex);
out:
return ret;
}
static void
ath12k_mac_op_reconfig_complete(struct ieee80211_hw *hw,
enum ieee80211_reconfig_type reconfig_type)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar;
struct ath12k_base *ab;
struct ath12k_vif *arvif;
int recovery_count, i;
if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART)
return;
guard(mutex)(&ah->hw_mutex);
if (ah->state != ATH12K_HW_STATE_RESTARTED)
return;
ah->state = ATH12K_HW_STATE_ON;
ieee80211_wake_queues(hw);
for_each_ar(ah, ar, i) {
mutex_lock(&ar->conf_mutex);
ab = ar->ab;
ath12k_warn(ar->ab, "pdev %d successfully recovered\n",
ar->pdev->pdev_id);
if (ab->is_reset) {
recovery_count = atomic_inc_return(&ab->recovery_count);
ath12k_dbg(ab, ATH12K_DBG_BOOT, "recovery count %d\n",
recovery_count);
/* When there are multiple radios in an SOC,
* the recovery has to be done for each radio
*/
if (recovery_count == ab->num_radios) {
atomic_dec(&ab->reset_count);
complete(&ab->reset_complete);
ab->is_reset = false;
atomic_set(&ab->fail_cont_count, 0);
ath12k_dbg(ab, ATH12K_DBG_BOOT, "reset success\n");
}
}
list_for_each_entry(arvif, &ar->arvifs, list) {
ath12k_dbg(ab, ATH12K_DBG_BOOT,
"reconfig cipher %d up %d vdev type %d\n",
arvif->key_cipher,
arvif->is_up,
arvif->vdev_type);
/* After trigger disconnect, then upper layer will
* trigger connect again, then the PN number of
* upper layer will be reset to keep up with AP
* side, hence PN number mismatch will not happen.
*/
if (arvif->is_up &&
arvif->vdev_type == WMI_VDEV_TYPE_STA &&
arvif->vdev_subtype == WMI_VDEV_SUBTYPE_NONE) {
ieee80211_hw_restart_disconnect(arvif->vif);
ath12k_dbg(ab, ATH12K_DBG_BOOT,
"restart disconnect\n");
}
}
mutex_unlock(&ar->conf_mutex);
}
}
static void
ath12k_mac_update_bss_chan_survey(struct ath12k *ar,
struct ieee80211_channel *channel)
{
int ret;
enum wmi_bss_chan_info_req_type type = WMI_BSS_SURVEY_REQ_TYPE_READ;
lockdep_assert_held(&ar->conf_mutex);
if (!test_bit(WMI_TLV_SERVICE_BSS_CHANNEL_INFO_64, ar->ab->wmi_ab.svc_map) ||
ar->rx_channel != channel)
return;
if (ar->scan.state != ATH12K_SCAN_IDLE) {
ath12k_dbg(ar->ab, ATH12K_DBG_MAC,
"ignoring bss chan info req while scanning..\n");
return;
}
reinit_completion(&ar->bss_survey_done);
ret = ath12k_wmi_pdev_bss_chan_info_request(ar, type);
if (ret) {
ath12k_warn(ar->ab, "failed to send pdev bss chan info request\n");
return;
}
ret = wait_for_completion_timeout(&ar->bss_survey_done, 3 * HZ);
if (ret == 0)
ath12k_warn(ar->ab, "bss channel survey timed out\n");
}
static int ath12k_mac_op_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey)
{
struct ath12k *ar;
struct ieee80211_supported_band *sband;
struct survey_info *ar_survey;
if (idx >= ATH12K_NUM_CHANS)
return -ENOENT;
sband = hw->wiphy->bands[NL80211_BAND_2GHZ];
if (sband && idx >= sband->n_channels) {
idx -= sband->n_channels;
sband = NULL;
}
if (!sband)
sband = hw->wiphy->bands[NL80211_BAND_5GHZ];
if (sband && idx >= sband->n_channels) {
idx -= sband->n_channels;
sband = NULL;
}
if (!sband)
sband = hw->wiphy->bands[NL80211_BAND_6GHZ];
if (!sband || idx >= sband->n_channels)
return -ENOENT;
ar = ath12k_mac_get_ar_by_chan(hw, &sband->channels[idx]);
if (!ar) {
if (sband->channels[idx].flags & IEEE80211_CHAN_DISABLED) {
memset(survey, 0, sizeof(*survey));
return 0;
}
return -ENOENT;
}
ar_survey = &ar->survey[idx];
mutex_lock(&ar->conf_mutex);
ath12k_mac_update_bss_chan_survey(ar, &sband->channels[idx]);
spin_lock_bh(&ar->data_lock);
memcpy(survey, ar_survey, sizeof(*survey));
spin_unlock_bh(&ar->data_lock);
survey->channel = &sband->channels[idx];
if (ar->rx_channel == survey->channel)
survey->filled |= SURVEY_INFO_IN_USE;
mutex_unlock(&ar->conf_mutex);
return 0;
}
static void ath12k_mac_op_sta_statistics(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct station_info *sinfo)
{
struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta);
sinfo->rx_duration = arsta->rx_duration;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
sinfo->tx_duration = arsta->tx_duration;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
if (!arsta->txrate.legacy && !arsta->txrate.nss)
return;
if (arsta->txrate.legacy) {
sinfo->txrate.legacy = arsta->txrate.legacy;
} else {
sinfo->txrate.mcs = arsta->txrate.mcs;
sinfo->txrate.nss = arsta->txrate.nss;
sinfo->txrate.bw = arsta->txrate.bw;
sinfo->txrate.he_gi = arsta->txrate.he_gi;
sinfo->txrate.he_dcm = arsta->txrate.he_dcm;
sinfo->txrate.he_ru_alloc = arsta->txrate.he_ru_alloc;
}
sinfo->txrate.flags = arsta->txrate.flags;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
/* TODO: Use real NF instead of default one. */
sinfo->signal = arsta->rssi_comb + ATH12K_DEFAULT_NOISE_FLOOR;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
}
static int ath12k_mac_op_cancel_remain_on_channel(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar;
ar = ath12k_ah_to_ar(ah, 0);
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
ar->scan.roc_notify = false;
spin_unlock_bh(&ar->data_lock);
ath12k_scan_abort(ar);
mutex_unlock(&ar->conf_mutex);
cancel_delayed_work_sync(&ar->scan.timeout);
return 0;
}
static int ath12k_mac_op_remain_on_channel(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_channel *chan,
int duration,
enum ieee80211_roc_type type)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k_wmi_scan_req_arg arg;
struct ath12k *ar, *prev_ar;
u32 scan_time_msec;
bool create = true;
int ret;
if (ah->num_radio == 1) {
WARN_ON(!arvif->is_created);
ar = ath12k_ah_to_ar(ah, 0);
goto scan;
}
ar = ath12k_mac_select_scan_device(hw, vif, chan->center_freq);
if (!ar)
return -EINVAL;
/* If the vif is already assigned to a specific vdev of an ar,
* check whether its already started, vdev which is started
* are not allowed to switch to a new radio.
* If the vdev is not started, but was earlier created on a
* different ar, delete that vdev and create a new one. We don't
* delete at the scan stop as an optimization to avoid redundant
* delete-create vdev's for the same ar, in case the request is
* always on the same band for the vif
*/
if (arvif->is_created) {
if (WARN_ON(!arvif->ar))
return -EINVAL;
if (ar != arvif->ar && arvif->is_started)
return -EBUSY;
if (ar != arvif->ar) {
/* backup the previously used ar ptr, since the vdev delete
* would assign the arvif->ar to NULL after the call
*/
prev_ar = arvif->ar;
mutex_lock(&prev_ar->conf_mutex);
ret = ath12k_mac_vdev_delete(prev_ar, vif);
mutex_unlock(&prev_ar->conf_mutex);
if (ret) {
ath12k_warn(prev_ar->ab,
"unable to delete scan vdev for roc: %d\n",
ret);
return ret;
}
} else {
create = false;
}
}
if (create) {
mutex_lock(&ar->conf_mutex);
ret = ath12k_mac_vdev_create(ar, vif);
mutex_unlock(&ar->conf_mutex);
if (ret) {
ath12k_warn(ar->ab, "unable to create scan vdev for roc: %d\n",
ret);
return -EINVAL;
}
}
scan:
mutex_lock(&ar->conf_mutex);
spin_lock_bh(&ar->data_lock);
switch (ar->scan.state) {
case ATH12K_SCAN_IDLE:
reinit_completion(&ar->scan.started);
reinit_completion(&ar->scan.completed);
reinit_completion(&ar->scan.on_channel);
ar->scan.state = ATH12K_SCAN_STARTING;
ar->scan.is_roc = true;
ar->scan.vdev_id = arvif->vdev_id;
ar->scan.roc_freq = chan->center_freq;
ar->scan.roc_notify = true;
ret = 0;
break;
case ATH12K_SCAN_STARTING:
case ATH12K_SCAN_RUNNING:
case ATH12K_SCAN_ABORTING:
ret = -EBUSY;
break;
}
spin_unlock_bh(&ar->data_lock);
if (ret)
goto exit;
scan_time_msec = hw->wiphy->max_remain_on_channel_duration * 2;
memset(&arg, 0, sizeof(arg));
ath12k_wmi_start_scan_init(ar, &arg);
arg.num_chan = 1;
arg.chan_list = kcalloc(arg.num_chan, sizeof(*arg.chan_list),
GFP_KERNEL);
if (!arg.chan_list) {
ret = -ENOMEM;
goto exit;
}
arg.vdev_id = arvif->vdev_id;
arg.scan_id = ATH12K_SCAN_ID;
arg.chan_list[0] = chan->center_freq;
arg.dwell_time_active = scan_time_msec;
arg.dwell_time_passive = scan_time_msec;
arg.max_scan_time = scan_time_msec;
arg.scan_f_passive = 1;
arg.burst_duration = duration;
ret = ath12k_start_scan(ar, &arg);
if (ret) {
ath12k_warn(ar->ab, "failed to start roc scan: %d\n", ret);
spin_lock_bh(&ar->data_lock);
ar->scan.state = ATH12K_SCAN_IDLE;
spin_unlock_bh(&ar->data_lock);
goto free_chan_list;
}
ret = wait_for_completion_timeout(&ar->scan.on_channel, 3 * HZ);
if (ret == 0) {
ath12k_warn(ar->ab, "failed to switch to channel for roc scan\n");
ret = ath12k_scan_stop(ar);
if (ret)
ath12k_warn(ar->ab, "failed to stop scan: %d\n", ret);
ret = -ETIMEDOUT;
goto free_chan_list;
}
ieee80211_queue_delayed_work(hw, &ar->scan.timeout,
msecs_to_jiffies(duration));
ret = 0;
free_chan_list:
kfree(arg.chan_list);
exit:
mutex_unlock(&ar->conf_mutex);
return ret;
}
static void ath12k_mac_op_set_rekey_data(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct cfg80211_gtk_rekey_data *data)
{
struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif);
struct ath12k_rekey_data *rekey_data = &arvif->rekey_data;
struct ath12k_hw *ah = ath12k_hw_to_ah(hw);
struct ath12k *ar = ath12k_ah_to_ar(ah, 0);
ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac set rekey data vdev %d\n",
arvif->vdev_id);
mutex_lock(&ar->conf_mutex);
memcpy(rekey_data->kck, data->kck, NL80211_KCK_LEN);
memcpy(rekey_data->kek, data->kek, NL80211_KEK_LEN);
/* The supplicant works on big-endian, the firmware expects it on
* little endian.
*/
rekey_data->replay_ctr = get_unaligned_be64(data->replay_ctr);
arvif->rekey_data.enable_offload = true;
ath12k_dbg_dump(ar->ab, ATH12K_DBG_MAC, "kck", NULL,
rekey_data->kck, NL80211_KCK_LEN);
ath12k_dbg_dump(ar->ab, ATH12K_DBG_MAC, "kek", NULL,
rekey_data->kck, NL80211_KEK_LEN);
ath12k_dbg_dump(ar->ab, ATH12K_DBG_MAC, "replay ctr", NULL,
&rekey_data->replay_ctr, sizeof(rekey_data->replay_ctr));
mutex_unlock(&ar->conf_mutex);
}
static const struct ieee80211_ops ath12k_ops = {
.tx = ath12k_mac_op_tx,
.wake_tx_queue = ieee80211_handle_wake_tx_queue,
.start = ath12k_mac_op_start,
.stop = ath12k_mac_op_stop,
.reconfig_complete = ath12k_mac_op_reconfig_complete,
.add_interface = ath12k_mac_op_add_interface,
.remove_interface = ath12k_mac_op_remove_interface,
.update_vif_offload = ath12k_mac_op_update_vif_offload,
.config = ath12k_mac_op_config,
.bss_info_changed = ath12k_mac_op_bss_info_changed,
.configure_filter = ath12k_mac_op_configure_filter,
.hw_scan = ath12k_mac_op_hw_scan,
.cancel_hw_scan = ath12k_mac_op_cancel_hw_scan,
.set_key = ath12k_mac_op_set_key,
.set_rekey_data = ath12k_mac_op_set_rekey_data,
.sta_state = ath12k_mac_op_sta_state,
.sta_set_txpwr = ath12k_mac_op_sta_set_txpwr,
.sta_rc_update = ath12k_mac_op_sta_rc_update,
.conf_tx = ath12k_mac_op_conf_tx,
.set_antenna = ath12k_mac_op_set_antenna,
.get_antenna = ath12k_mac_op_get_antenna,
.ampdu_action = ath12k_mac_op_ampdu_action,
.add_chanctx = ath12k_mac_op_add_chanctx,
.remove_chanctx = ath12k_mac_op_remove_chanctx,
.change_chanctx = ath12k_mac_op_change_chanctx,
.assign_vif_chanctx = ath12k_mac_op_assign_vif_chanctx,
.unassign_vif_chanctx = ath12k_mac_op_unassign_vif_chanctx,
.switch_vif_chanctx = ath12k_mac_op_switch_vif_chanctx,
.set_rts_threshold = ath12k_mac_op_set_rts_threshold,
.set_frag_threshold = ath12k_mac_op_set_frag_threshold,
.set_bitrate_mask = ath12k_mac_op_set_bitrate_mask,
.get_survey = ath12k_mac_op_get_survey,
.flush = ath12k_mac_op_flush,
.sta_statistics = ath12k_mac_op_sta_statistics,
.remain_on_channel = ath12k_mac_op_remain_on_channel,
.cancel_remain_on_channel = ath12k_mac_op_cancel_remain_on_channel,
#ifdef CONFIG_PM
.suspend = ath12k_wow_op_suspend,
.resume = ath12k_wow_op_resume,
.set_wakeup = ath12k_wow_op_set_wakeup,
#endif
};
static void ath12k_mac_update_ch_list(struct ath12k *ar,
struct ieee80211_supported_band *band,
u32 freq_low, u32 freq_high)
{
int i;
if (!(freq_low && freq_high))
return;
for (i = 0; i < band->n_channels; i++) {
if (band->channels[i].center_freq < freq_low ||
band->channels[i].center_freq > freq_high)
band->channels[i].flags |= IEEE80211_CHAN_DISABLED;
}
ar->freq_low = freq_low;
ar->freq_high = freq_high;
}
static u32 ath12k_get_phy_id(struct ath12k *ar, u32 band)
{
struct ath12k_pdev *pdev = ar->pdev;
struct ath12k_pdev_cap *pdev_cap = &pdev->cap;
if (band == WMI_HOST_WLAN_2G_CAP)
return pdev_cap->band[NL80211_BAND_2GHZ].phy_id;
if (band == WMI_HOST_WLAN_5G_CAP)
return pdev_cap->band[NL80211_BAND_5GHZ].phy_id;
ath12k_warn(ar->ab, "unsupported phy cap:%d\n", band);
return 0;
}
static int ath12k_mac_setup_channels_rates(struct ath12k *ar,
u32 supported_bands,
struct ieee80211_supported_band *bands[])
{
struct ieee80211_supported_band *band;
struct ath12k_wmi_hal_reg_capabilities_ext_arg *reg_cap;
struct ath12k_hw *ah = ar->ah;
void *channels;
u32 phy_id;
BUILD_BUG_ON((ARRAY_SIZE(ath12k_2ghz_channels) +
ARRAY_SIZE(ath12k_5ghz_channels) +
ARRAY_SIZE(ath12k_6ghz_channels)) !=
ATH12K_NUM_CHANS);
reg_cap = &ar->ab->hal_reg_cap[ar->pdev_idx];
if (supported_bands & WMI_HOST_WLAN_2G_CAP) {
channels = kmemdup(ath12k_2ghz_channels,
sizeof(ath12k_2ghz_channels),
GFP_KERNEL);
if (!channels)
return -ENOMEM;
band = &ar->mac.sbands[NL80211_BAND_2GHZ];
band->band = NL80211_BAND_2GHZ;
band->n_channels = ARRAY_SIZE(ath12k_2ghz_channels);
band->channels = channels;
band->n_bitrates = ath12k_g_rates_size;
band->bitrates = ath12k_g_rates;
bands[NL80211_BAND_2GHZ] = band;
if (ar->ab->hw_params->single_pdev_only) {
phy_id = ath12k_get_phy_id(ar, WMI_HOST_WLAN_2G_CAP);
reg_cap = &ar->ab->hal_reg_cap[phy_id];
}
ath12k_mac_update_ch_list(ar, band,
reg_cap->low_2ghz_chan,
reg_cap->high_2ghz_chan);
}
if (supported_bands & WMI_HOST_WLAN_5G_CAP) {
if (reg_cap->high_5ghz_chan >= ATH12K_MIN_6G_FREQ) {
channels = kmemdup(ath12k_6ghz_channels,
sizeof(ath12k_6ghz_channels), GFP_KERNEL);
if (!channels) {
kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
return -ENOMEM;
}
ar->supports_6ghz = true;
band = &ar->mac.sbands[NL80211_BAND_6GHZ];
band->band = NL80211_BAND_6GHZ;
band->n_channels = ARRAY_SIZE(ath12k_6ghz_channels);
band->channels = channels;
band->n_bitrates = ath12k_a_rates_size;
band->bitrates = ath12k_a_rates;
bands[NL80211_BAND_6GHZ] = band;
ath12k_mac_update_ch_list(ar, band,
reg_cap->low_5ghz_chan,
reg_cap->high_5ghz_chan);
ah->use_6ghz_regd = true;
}
if (reg_cap->low_5ghz_chan < ATH12K_MIN_6G_FREQ) {
channels = kmemdup(ath12k_5ghz_channels,
sizeof(ath12k_5ghz_channels),
GFP_KERNEL);
if (!channels) {
kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels);
return -ENOMEM;
}
band = &ar->mac.sbands[NL80211_BAND_5GHZ];
band->band = NL80211_BAND_5GHZ;
band->n_channels = ARRAY_SIZE(ath12k_5ghz_channels);
band->channels = channels;
band->n_bitrates = ath12k_a_rates_size;
band->bitrates = ath12k_a_rates;
bands[NL80211_BAND_5GHZ] = band;
if (ar->ab->hw_params->single_pdev_only) {
phy_id = ath12k_get_phy_id(ar, WMI_HOST_WLAN_5G_CAP);
reg_cap = &ar->ab->hal_reg_cap[phy_id];
}
ath12k_mac_update_ch_list(ar, band,
reg_cap->low_5ghz_chan,
reg_cap->high_5ghz_chan);
}
}
return 0;
}
static u16 ath12k_mac_get_ifmodes(struct ath12k_hw *ah)
{
struct ath12k *ar;
int i;
u16 interface_modes = U16_MAX;
for_each_ar(ah, ar, i)
interface_modes &= ar->ab->hw_params->interface_modes;
return interface_modes == U16_MAX ? 0 : interface_modes;
}
static bool ath12k_mac_is_iface_mode_enable(struct ath12k_hw *ah,
enum nl80211_iftype type)
{
struct ath12k *ar;
int i;
u16 interface_modes, mode;
bool is_enable = true;
mode = BIT(type);
for_each_ar(ah, ar, i) {
interface_modes = ar->ab->hw_params->interface_modes;
if (!(interface_modes & mode)) {
is_enable = false;
break;
}
}
return is_enable;
}
static int ath12k_mac_setup_iface_combinations(struct ath12k_hw *ah)
{
struct wiphy *wiphy = ah->hw->wiphy;
struct ieee80211_iface_combination *combinations;
struct ieee80211_iface_limit *limits;
int n_limits, max_interfaces;
bool ap, mesh, p2p;
ap = ath12k_mac_is_iface_mode_enable(ah, NL80211_IFTYPE_AP);
p2p = ath12k_mac_is_iface_mode_enable(ah, NL80211_IFTYPE_P2P_DEVICE);
mesh = IS_ENABLED(CONFIG_MAC80211_MESH) &&
ath12k_mac_is_iface_mode_enable(ah, NL80211_IFTYPE_MESH_POINT);
combinations = kzalloc(sizeof(*combinations), GFP_KERNEL);
if (!combinations)
return -ENOMEM;
if ((ap || mesh) && !p2p) {
n_limits = 2;
max_interfaces = 16;
} else if (p2p) {
n_limits = 3;
if (ap || mesh)
max_interfaces = 16;
else
max_interfaces = 3;
} else {
n_limits = 1;
max_interfaces = 1;
}
limits = kcalloc(n_limits, sizeof(*limits), GFP_KERNEL);
if (!limits) {
kfree(combinations);
return -ENOMEM;
}
limits[0].max = 1;
limits[0].types |= BIT(NL80211_IFTYPE_STATION);
if (ap || mesh || p2p)
limits[1].max = max_interfaces;
if (ap)
limits[1].types |= BIT(NL80211_IFTYPE_AP);
if (mesh)
limits[1].types |= BIT(NL80211_IFTYPE_MESH_POINT);
if (p2p) {
limits[1].types |= BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO);
limits[2].max = 1;
limits[2].types |= BIT(NL80211_IFTYPE_P2P_DEVICE);
}
combinations[0].limits = limits;
combinations[0].n_limits = n_limits;
combinations[0].max_interfaces = max_interfaces;
combinations[0].num_different_channels = 1;
combinations[0].beacon_int_infra_match = true;
combinations[0].beacon_int_min_gcd = 100;
combinations[0].radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80);
wiphy->iface_combinations = combinations;
wiphy->n_iface_combinations = 1;
return 0;
}
static const u8 ath12k_if_types_ext_capa[] = {
[0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING,
[2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT,
[7] = WLAN_EXT_CAPA8_OPMODE_NOTIF,
};
static const u8 ath12k_if_types_ext_capa_sta[] = {
[0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING,
[2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT,
[7] = WLAN_EXT_CAPA8_OPMODE_NOTIF,
[9] = WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT,
};
static const u8 ath12k_if_types_ext_capa_ap[] = {
[0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING,
[2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT,
[7] = WLAN_EXT_CAPA8_OPMODE_NOTIF,
[9] = WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT,
[10] = WLAN_EXT_CAPA11_EMA_SUPPORT,
};
static const struct wiphy_iftype_ext_capab ath12k_iftypes_ext_capa[] = {
{
.extended_capabilities = ath12k_if_types_ext_capa,
.extended_capabilities_mask = ath12k_if_types_ext_capa,
.extended_capabilities_len = sizeof(ath12k_if_types_ext_capa),
}, {
.iftype = NL80211_IFTYPE_STATION,
.extended_capabilities = ath12k_if_types_ext_capa_sta,
.extended_capabilities_mask = ath12k_if_types_ext_capa_sta,
.extended_capabilities_len =
sizeof(ath12k_if_types_ext_capa_sta),
}, {
.iftype = NL80211_IFTYPE_AP,
.extended_capabilities = ath12k_if_types_ext_capa_ap,
.extended_capabilities_mask = ath12k_if_types_ext_capa_ap,
.extended_capabilities_len =
sizeof(ath12k_if_types_ext_capa_ap),
},
};
static void ath12k_mac_cleanup_unregister(struct ath12k *ar)
{
idr_for_each(&ar->txmgmt_idr, ath12k_mac_tx_mgmt_pending_free, ar);
idr_destroy(&ar->txmgmt_idr);
kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels);
kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels);
}
static void ath12k_mac_hw_unregister(struct ath12k_hw *ah)
{
struct ieee80211_hw *hw = ah->hw;
struct wiphy *wiphy = hw->wiphy;
struct ath12k *ar;
int i;
for_each_ar(ah, ar, i) {
cancel_work_sync(&ar->regd_update_work);
ath12k_debugfs_unregister(ar);
}
ieee80211_unregister_hw(hw);
for_each_ar(ah, ar, i)
ath12k_mac_cleanup_unregister(ar);
kfree(wiphy->iface_combinations[0].limits);
kfree(wiphy->iface_combinations);
SET_IEEE80211_DEV(hw, NULL);
}
static int ath12k_mac_setup_register(struct ath12k *ar,
u32 *ht_cap,
struct ieee80211_supported_band *bands[])
{
struct ath12k_pdev_cap *cap = &ar->pdev->cap;
int ret;
init_waitqueue_head(&ar->txmgmt_empty_waitq);
idr_init(&ar->txmgmt_idr);
spin_lock_init(&ar->txmgmt_idr_lock);
ath12k_pdev_caps_update(ar);
ret = ath12k_mac_setup_channels_rates(ar,
cap->supported_bands,
bands);
if (ret)
return ret;
ath12k_mac_setup_ht_vht_cap(ar, cap, ht_cap);
ath12k_mac_setup_sband_iftype_data(ar, cap);
ar->max_num_stations = ath12k_core_get_max_station_per_radio(ar->ab);
ar->max_num_peers = ath12k_core_get_max_peers_per_radio(ar->ab);
return 0;
}
static int ath12k_mac_hw_register(struct ath12k_hw *ah)
{
struct ieee80211_hw *hw = ah->hw;
struct wiphy *wiphy = hw->wiphy;
struct ath12k *ar = ath12k_ah_to_ar(ah, 0);
struct ath12k_base *ab = ar->ab;
struct ath12k_pdev *pdev;
struct ath12k_pdev_cap *cap;
static const u32 cipher_suites[] = {
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
WLAN_CIPHER_SUITE_AES_CMAC,
WLAN_CIPHER_SUITE_BIP_CMAC_256,
WLAN_CIPHER_SUITE_BIP_GMAC_128,
WLAN_CIPHER_SUITE_BIP_GMAC_256,
WLAN_CIPHER_SUITE_GCMP,
WLAN_CIPHER_SUITE_GCMP_256,
WLAN_CIPHER_SUITE_CCMP_256,
};
int ret, i, j;
u32 ht_cap = U32_MAX, antennas_rx = 0, antennas_tx = 0;
bool is_6ghz = false, is_raw_mode = false, is_monitor_disable = false;
u8 *mac_addr = NULL;
u8 mbssid_max_interfaces = 0;
wiphy->max_ap_assoc_sta = 0;
for_each_ar(ah, ar, i) {
u32 ht_cap_info = 0;
pdev = ar->pdev;
if (ar->ab->pdevs_macaddr_valid) {
ether_addr_copy(ar->mac_addr, pdev->mac_addr);
} else {
ether_addr_copy(ar->mac_addr, ar->ab->mac_addr);
ar->mac_addr[4] += ar->pdev_idx;
}
ret = ath12k_mac_setup_register(ar, &ht_cap_info, hw->wiphy->bands);
if (ret)
goto err_cleanup_unregister;
ht_cap &= ht_cap_info;
wiphy->max_ap_assoc_sta += ar->max_num_stations;
/* Advertise the max antenna support of all radios, driver can handle
* per pdev specific antenna setting based on pdev cap when antenna
* changes are made
*/
cap = &pdev->cap;
antennas_rx = max_t(u32, antennas_rx, cap->rx_chain_mask);
antennas_tx = max_t(u32, antennas_tx, cap->tx_chain_mask);
if (ar->supports_6ghz)
is_6ghz = true;
if (test_bit(ATH12K_FLAG_RAW_MODE, &ar->ab->dev_flags))
is_raw_mode = true;
if (!ar->ab->hw_params->supports_monitor)
is_monitor_disable = true;
if (i == 0)
mac_addr = ar->mac_addr;
else
mac_addr = ab->mac_addr;
mbssid_max_interfaces += TARGET_NUM_VDEVS;
}
wiphy->available_antennas_rx = antennas_rx;
wiphy->available_antennas_tx = antennas_tx;
SET_IEEE80211_PERM_ADDR(hw, mac_addr);
SET_IEEE80211_DEV(hw, ab->dev);
ret = ath12k_mac_setup_iface_combinations(ah);
if (ret) {
ath12k_err(ab, "failed to setup interface combinations: %d\n", ret);
goto err_complete_cleanup_unregister;
}
wiphy->interface_modes = ath12k_mac_get_ifmodes(ah);
if (ah->num_radio == 1 &&
wiphy->bands[NL80211_BAND_2GHZ] &&
wiphy->bands[NL80211_BAND_5GHZ] &&
wiphy->bands[NL80211_BAND_6GHZ])
ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
ieee80211_hw_set(hw, SIGNAL_DBM);
ieee80211_hw_set(hw, SUPPORTS_PS);
ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
ieee80211_hw_set(hw, MFP_CAPABLE);
ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
ieee80211_hw_set(hw, HAS_RATE_CONTROL);
ieee80211_hw_set(hw, AP_LINK_PS);
ieee80211_hw_set(hw, SPECTRUM_MGMT);
ieee80211_hw_set(hw, CONNECTION_MONITOR);
ieee80211_hw_set(hw, SUPPORTS_PER_STA_GTK);
ieee80211_hw_set(hw, CHANCTX_STA_CSA);
ieee80211_hw_set(hw, QUEUE_CONTROL);
ieee80211_hw_set(hw, SUPPORTS_TX_FRAG);
ieee80211_hw_set(hw, REPORTS_LOW_ACK);
if ((ht_cap & WMI_HT_CAP_ENABLED) || ar->supports_6ghz) {
ieee80211_hw_set(hw, AMPDU_AGGREGATION);
ieee80211_hw_set(hw, TX_AMPDU_SETUP_IN_HW);
ieee80211_hw_set(hw, SUPPORTS_REORDERING_BUFFER);
ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
ieee80211_hw_set(hw, USES_RSS);
}
wiphy->features |= NL80211_FEATURE_STATIC_SMPS;
wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
/* TODO: Check if HT capability advertised from firmware is different
* for each band for a dual band capable radio. It will be tricky to
* handle it when the ht capability different for each band.
*/
if (ht_cap & WMI_HT_CAP_DYNAMIC_SMPS ||
(ar->supports_6ghz && ab->hw_params->supports_dynamic_smps_6ghz))
wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS;
wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID;
wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN;
hw->max_listen_interval = ATH12K_MAX_HW_LISTEN_INTERVAL;
wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
wiphy->max_remain_on_channel_duration = 5000;
wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE |
NL80211_FEATURE_AP_SCAN;
/* MLO is not yet supported so disable Wireless Extensions for now
* to make sure ath12k users don't use it. This flag can be removed
* once WIPHY_FLAG_SUPPORTS_MLO is enabled.
*/
wiphy->flags |= WIPHY_FLAG_DISABLE_WEXT;
hw->queues = ATH12K_HW_MAX_QUEUES;
wiphy->tx_queue_len = ATH12K_QUEUE_LEN;
hw->offchannel_tx_hw_queue = ATH12K_HW_MAX_QUEUES - 1;
hw->max_rx_aggregation_subframes = IEEE80211_MAX_AMPDU_BUF_EHT;
hw->vif_data_size = sizeof(struct ath12k_vif);
hw->sta_data_size = sizeof(struct ath12k_sta);
hw->extra_tx_headroom = ab->hw_params->iova_mask;
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_STA_TX_PWR);
wiphy->cipher_suites = cipher_suites;
wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
wiphy->iftype_ext_capab = ath12k_iftypes_ext_capa;
wiphy->num_iftype_ext_capab = ARRAY_SIZE(ath12k_iftypes_ext_capa);
wiphy->mbssid_max_interfaces = mbssid_max_interfaces;
wiphy->ema_max_profile_periodicity = TARGET_EMA_MAX_PROFILE_PERIOD;
if (is_6ghz) {
wiphy_ext_feature_set(wiphy,
NL80211_EXT_FEATURE_FILS_DISCOVERY);
wiphy_ext_feature_set(wiphy,
NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP);
}
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_PUNCT);
ath12k_reg_init(hw);
if (!is_raw_mode) {
hw->netdev_features = NETIF_F_HW_CSUM;
ieee80211_hw_set(hw, SW_CRYPTO_CONTROL);
ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
}
if (test_bit(WMI_TLV_SERVICE_NLO, ar->wmi->wmi_ab->svc_map)) {
wiphy->max_sched_scan_ssids = WMI_PNO_MAX_SUPP_NETWORKS;
wiphy->max_match_sets = WMI_PNO_MAX_SUPP_NETWORKS;
wiphy->max_sched_scan_ie_len = WMI_PNO_MAX_IE_LENGTH;
wiphy->max_sched_scan_plans = WMI_PNO_MAX_SCHED_SCAN_PLANS;
wiphy->max_sched_scan_plan_interval =
WMI_PNO_MAX_SCHED_SCAN_PLAN_INT;
wiphy->max_sched_scan_plan_iterations =
WMI_PNO_MAX_SCHED_SCAN_PLAN_ITRNS;
wiphy->features |= NL80211_FEATURE_ND_RANDOM_MAC_ADDR;
}
ret = ath12k_wow_init(ar);
if (ret) {
ath12k_warn(ar->ab, "failed to init wow: %d\n", ret);
goto err_free_if_combs;
}
ret = ieee80211_register_hw(hw);
if (ret) {
ath12k_err(ab, "ieee80211 registration failed: %d\n", ret);
goto err_free_if_combs;
}
if (is_monitor_disable)
/* There's a race between calling ieee80211_register_hw()
* and here where the monitor mode is enabled for a little
* while. But that time is so short and in practise it make
* a difference in real life.
*/
wiphy->interface_modes &= ~BIT(NL80211_IFTYPE_MONITOR);
for_each_ar(ah, ar, i) {
/* Apply the regd received during initialization */
ret = ath12k_regd_update(ar, true);
if (ret) {
ath12k_err(ar->ab, "ath12k regd update failed: %d\n", ret);
goto err_unregister_hw;
}
ath12k_debugfs_register(ar);
}
return 0;
err_unregister_hw:
for_each_ar(ah, ar, i)
ath12k_debugfs_unregister(ar);
ieee80211_unregister_hw(hw);
err_free_if_combs:
kfree(wiphy->iface_combinations[0].limits);
kfree(wiphy->iface_combinations);
err_complete_cleanup_unregister:
i = ah->num_radio;
err_cleanup_unregister:
for (j = 0; j < i; j++) {
ar = ath12k_ah_to_ar(ah, j);
ath12k_mac_cleanup_unregister(ar);
}
SET_IEEE80211_DEV(hw, NULL);
return ret;
}
static void ath12k_mac_setup(struct ath12k *ar)
{
struct ath12k_base *ab = ar->ab;
struct ath12k_pdev *pdev = ar->pdev;
u8 pdev_idx = ar->pdev_idx;
ar->lmac_id = ath12k_hw_get_mac_from_pdev_id(ab->hw_params, pdev_idx);
ar->wmi = &ab->wmi_ab.wmi[pdev_idx];
/* FIXME: wmi[0] is already initialized during attach,
* Should we do this again?
*/
ath12k_wmi_pdev_attach(ab, pdev_idx);
ar->cfg_tx_chainmask = pdev->cap.tx_chain_mask;
ar->cfg_rx_chainmask = pdev->cap.rx_chain_mask;
ar->num_tx_chains = hweight32(pdev->cap.tx_chain_mask);
ar->num_rx_chains = hweight32(pdev->cap.rx_chain_mask);
spin_lock_init(&ar->data_lock);
INIT_LIST_HEAD(&ar->arvifs);
INIT_LIST_HEAD(&ar->ppdu_stats_info);
mutex_init(&ar->conf_mutex);
init_completion(&ar->vdev_setup_done);
init_completion(&ar->vdev_delete_done);
init_completion(&ar->peer_assoc_done);
init_completion(&ar->peer_delete_done);
init_completion(&ar->install_key_done);
init_completion(&ar->bss_survey_done);
init_completion(&ar->scan.started);
init_completion(&ar->scan.completed);
init_completion(&ar->scan.on_channel);
INIT_DELAYED_WORK(&ar->scan.timeout, ath12k_scan_timeout_work);
INIT_WORK(&ar->regd_update_work, ath12k_regd_update_work);
INIT_WORK(&ar->wmi_mgmt_tx_work, ath12k_mgmt_over_wmi_tx_work);
skb_queue_head_init(&ar->wmi_mgmt_tx_queue);
}
int ath12k_mac_register(struct ath12k_base *ab)
{
struct ath12k_hw *ah;
int i;
int ret;
if (test_bit(ATH12K_FLAG_REGISTERED, &ab->dev_flags))
return 0;
/* Initialize channel counters frequency value in hertz */
ab->cc_freq_hz = 320000;
ab->free_vdev_map = (1LL << (ab->num_radios * TARGET_NUM_VDEVS)) - 1;
for (i = 0; i < ab->num_hw; i++) {
ah = ab->ah[i];
ret = ath12k_mac_hw_register(ah);
if (ret)
goto err;
}
return 0;
err:
for (i = i - 1; i >= 0; i--) {
ah = ab->ah[i];
if (!ah)
continue;
ath12k_mac_hw_unregister(ah);
}
return ret;
}
void ath12k_mac_unregister(struct ath12k_base *ab)
{
struct ath12k_hw *ah;
int i;
for (i = ab->num_hw - 1; i >= 0; i--) {
ah = ab->ah[i];
if (!ah)
continue;
ath12k_mac_hw_unregister(ah);
}
}
static void ath12k_mac_hw_destroy(struct ath12k_hw *ah)
{
ieee80211_free_hw(ah->hw);
}
static struct ath12k_hw *ath12k_mac_hw_allocate(struct ath12k_base *ab,
struct ath12k_pdev_map *pdev_map,
u8 num_pdev_map)
{
struct ieee80211_hw *hw;
struct ath12k *ar;
struct ath12k_pdev *pdev;
struct ath12k_hw *ah;
int i;
u8 pdev_idx;
hw = ieee80211_alloc_hw(struct_size(ah, radio, num_pdev_map),
&ath12k_ops);
if (!hw)
return NULL;
ah = ath12k_hw_to_ah(hw);
ah->hw = hw;
ah->num_radio = num_pdev_map;
mutex_init(&ah->hw_mutex);
for (i = 0; i < num_pdev_map; i++) {
ab = pdev_map[i].ab;
pdev_idx = pdev_map[i].pdev_idx;
pdev = &ab->pdevs[pdev_idx];
ar = ath12k_ah_to_ar(ah, i);
ar->ah = ah;
ar->ab = ab;
ar->hw_link_id = pdev->hw_link_id;
ar->pdev = pdev;
ar->pdev_idx = pdev_idx;
pdev->ar = ar;
ath12k_mac_setup(ar);
}
return ah;
}
void ath12k_mac_destroy(struct ath12k_base *ab)
{
struct ath12k_pdev *pdev;
int i;
for (i = 0; i < ab->num_radios; i++) {
pdev = &ab->pdevs[i];
if (!pdev->ar)
continue;
pdev->ar = NULL;
}
for (i = 0; i < ab->num_hw; i++) {
if (!ab->ah[i])
continue;
ath12k_mac_hw_destroy(ab->ah[i]);
ab->ah[i] = NULL;
}
}
int ath12k_mac_allocate(struct ath12k_base *ab)
{
struct ath12k_hw *ah;
struct ath12k_pdev_map pdev_map[MAX_RADIOS];
int ret, i, j;
u8 radio_per_hw;
if (test_bit(ATH12K_FLAG_REGISTERED, &ab->dev_flags))
return 0;
ab->num_hw = ab->num_radios;
radio_per_hw = 1;
for (i = 0; i < ab->num_hw; i++) {
for (j = 0; j < radio_per_hw; j++) {
pdev_map[j].ab = ab;
pdev_map[j].pdev_idx = (i * radio_per_hw) + j;
}
ah = ath12k_mac_hw_allocate(ab, pdev_map, radio_per_hw);
if (!ah) {
ath12k_warn(ab, "failed to allocate mac80211 hw device for hw_idx %d\n",
i);
ret = -ENOMEM;
goto err;
}
ab->ah[i] = ah;
}
ath12k_dp_pdev_pre_alloc(ab);
return 0;
err:
for (i = i - 1; i >= 0; i--) {
if (!ab->ah[i])
continue;
ath12k_mac_hw_destroy(ab->ah[i]);
ab->ah[i] = NULL;
}
return ret;
}
int ath12k_mac_vif_set_keepalive(struct ath12k_vif *arvif,
enum wmi_sta_keepalive_method method,
u32 interval)
{
struct wmi_sta_keepalive_arg arg = {};
struct ath12k *ar = arvif->ar;
int ret;
lockdep_assert_held(&ar->conf_mutex);
if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
return 0;
if (!test_bit(WMI_TLV_SERVICE_STA_KEEP_ALIVE, ar->ab->wmi_ab.svc_map))
return 0;
arg.vdev_id = arvif->vdev_id;
arg.enabled = 1;
arg.method = method;
arg.interval = interval;
ret = ath12k_wmi_sta_keepalive(ar, &arg);
if (ret) {
ath12k_warn(ar->ab, "failed to set keepalive on vdev %i: %d\n",
arvif->vdev_id, ret);
return ret;
}
return 0;
}