/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
/*
* Copyright (C) 2005-2014, 2018-2023 Intel Corporation
* Copyright (C) 2013-2015 Intel Mobile Communications GmbH
* Copyright (C) 2016-2017 Intel Deutschland GmbH
*/
#ifndef __iwl_trans_h__
#define __iwl_trans_h__
#include <linux/ieee80211.h>
#include <linux/mm.h> /* for page_address */
#include <linux/lockdep.h>
#include <linux/kernel.h>
#include "iwl-debug.h"
#include "iwl-config.h"
#include "fw/img.h"
#include "iwl-op-mode.h"
#include <linux/firmware.h>
#include "fw/api/cmdhdr.h"
#include "fw/api/txq.h"
#include "fw/api/dbg-tlv.h"
#include "iwl-dbg-tlv.h"
/**
* DOC: Transport layer - what is it ?
*
* The transport layer is the layer that deals with the HW directly. It provides
* the PCIe access to the underlying hardwarwe. The transport layer doesn't
* provide any policy, algorithm or anything of this kind, but only mechanisms
* to make the HW do something. It is not completely stateless but close to it.
*/
/**
* DOC: Life cycle of the transport layer
*
* The transport layer has a very precise life cycle.
*
* 1) A helper function is called during the module initialization and
* registers the bus driver's ops with the transport's alloc function.
* 2) Bus's probe calls to the transport layer's allocation functions.
* Of course this function is bus specific.
* 3) This allocation functions will spawn the upper layer which will
* register mac80211.
*
* 4) At some point (i.e. mac80211's start call), the op_mode will call
* the following sequence:
* start_hw
* start_fw
*
* 5) Then when finished (or reset):
* stop_device
*
* 6) Eventually, the free function will be called.
*/
/* default preset 0 (start from bit 16)*/
#define IWL_FW_DBG_DOMAIN_POS 16
#define IWL_FW_DBG_DOMAIN BIT(IWL_FW_DBG_DOMAIN_POS)
#define IWL_TRANS_FW_DBG_DOMAIN(trans) IWL_FW_INI_DOMAIN_ALWAYS_ON
#define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */
#define FH_RSCSR_FRAME_INVALID 0x55550000
#define FH_RSCSR_FRAME_ALIGN 0x40
#define FH_RSCSR_RPA_EN BIT(25)
#define FH_RSCSR_RADA_EN BIT(26)
#define FH_RSCSR_RXQ_POS 16
#define FH_RSCSR_RXQ_MASK 0x3F0000
struct iwl_rx_packet {
/*
* The first 4 bytes of the RX frame header contain both the RX frame
* size and some flags.
* Bit fields:
* 31: flag flush RB request
* 30: flag ignore TC (terminal counter) request
* 29: flag fast IRQ request
* 28-27: Reserved
* 26: RADA enabled
* 25: Offload enabled
* 24: RPF enabled
* 23: RSS enabled
* 22: Checksum enabled
* 21-16: RX queue
* 15-14: Reserved
* 13-00: RX frame size
*/
__le32 len_n_flags;
struct iwl_cmd_header hdr;
u8 data[];
} __packed;
static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
{
return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
}
static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
{
return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
}
/**
* enum CMD_MODE - how to send the host commands ?
*
* @CMD_ASYNC: Return right away and don't wait for the response
* @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
* the response. The caller needs to call iwl_free_resp when done.
* @CMD_SEND_IN_RFKILL: Send the command even if the NIC is in RF-kill.
* @CMD_BLOCK_TXQS: Block TXQs while the comment is executing.
* @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
* SUSPEND and RESUME commands. We are in D3 mode when we set
* trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
*/
enum CMD_MODE {
CMD_ASYNC = BIT(0),
CMD_WANT_SKB = BIT(1),
CMD_SEND_IN_RFKILL = BIT(2),
CMD_BLOCK_TXQS = BIT(3),
CMD_SEND_IN_D3 = BIT(4),
};
#define CMD_MODE_BITS 5
#define DEF_CMD_PAYLOAD_SIZE 320
/**
* struct iwl_device_cmd
*
* For allocation of the command and tx queues, this establishes the overall
* size of the largest command we send to uCode, except for commands that
* aren't fully copied and use other TFD space.
*
* @hdr: command header
* @payload: payload for the command
* @hdr_wide: wide command header
* @payload_wide: payload for the wide command
*/
struct iwl_device_cmd {
union {
struct {
struct iwl_cmd_header hdr; /* uCode API */
u8 payload[DEF_CMD_PAYLOAD_SIZE];
};
struct {
struct iwl_cmd_header_wide hdr_wide;
u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
sizeof(struct iwl_cmd_header_wide) +
sizeof(struct iwl_cmd_header)];
};
};
} __packed;
/**
* struct iwl_device_tx_cmd - buffer for TX command
* @hdr: the header
* @payload: the payload placeholder
*
* The actual structure is sized dynamically according to need.
*/
struct iwl_device_tx_cmd {
struct iwl_cmd_header hdr;
u8 payload[];
} __packed;
#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
/*
* number of transfer buffers (fragments) per transmit frame descriptor;
* this is just the driver's idea, the hardware supports 20
*/
#define IWL_MAX_CMD_TBS_PER_TFD 2
/**
* enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
*
* @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
* ring. The transport layer doesn't map the command's buffer to DMA, but
* rather copies it to a previously allocated DMA buffer. This flag tells
* the transport layer not to copy the command, but to map the existing
* buffer (that is passed in) instead. This saves the memcpy and allows
* commands that are bigger than the fixed buffer to be submitted.
* Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
* @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
* chunk internally and free it again after the command completes. This
* can (currently) be used only once per command.
* Note that a TFD entry after a DUP one cannot be a normal copied one.
*/
enum iwl_hcmd_dataflag {
IWL_HCMD_DFL_NOCOPY = BIT(0),
IWL_HCMD_DFL_DUP = BIT(1),
};
enum iwl_error_event_table_status {
IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
};
/**
* struct iwl_host_cmd - Host command to the uCode
*
* @data: array of chunks that composes the data of the host command
* @resp_pkt: response packet, if %CMD_WANT_SKB was set
* @_rx_page_order: (internally used to free response packet)
* @_rx_page_addr: (internally used to free response packet)
* @flags: can be CMD_*
* @len: array of the lengths of the chunks in data
* @dataflags: IWL_HCMD_DFL_*
* @id: command id of the host command, for wide commands encoding the
* version and group as well
*/
struct iwl_host_cmd {
const void *data[IWL_MAX_CMD_TBS_PER_TFD];
struct iwl_rx_packet *resp_pkt;
unsigned long _rx_page_addr;
u32 _rx_page_order;
u32 flags;
u32 id;
u16 len[IWL_MAX_CMD_TBS_PER_TFD];
u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
};
static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
{
free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
}
struct iwl_rx_cmd_buffer {
struct page *_page;
int _offset;
bool _page_stolen;
u32 _rx_page_order;
unsigned int truesize;
};
static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
{
return (void *)((unsigned long)page_address(r->_page) + r->_offset);
}
static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
{
return r->_offset;
}
static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
{
r->_page_stolen = true;
get_page(r->_page);
return r->_page;
}
static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
{
__free_pages(r->_page, r->_rx_page_order);
}
#define MAX_NO_RECLAIM_CMDS 6
#define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
/*
* Maximum number of HW queues the transport layer
* currently supports
*/
#define IWL_MAX_HW_QUEUES 32
#define IWL_MAX_TVQM_QUEUES 512
#define IWL_MAX_TID_COUNT 8
#define IWL_MGMT_TID 15
#define IWL_FRAME_LIMIT 64
#define IWL_MAX_RX_HW_QUEUES 16
#define IWL_9000_MAX_RX_HW_QUEUES 1
/**
* enum iwl_d3_status - WoWLAN image/device status
* @IWL_D3_STATUS_ALIVE: firmware is still running after resume
* @IWL_D3_STATUS_RESET: device was reset while suspended
*/
enum iwl_d3_status {
IWL_D3_STATUS_ALIVE,
IWL_D3_STATUS_RESET,
};
/**
* enum iwl_trans_status: transport status flags
* @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
* @STATUS_DEVICE_ENABLED: APM is enabled
* @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
* @STATUS_INT_ENABLED: interrupts are enabled
* @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
* @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
* @STATUS_FW_ERROR: the fw is in error state
* @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
* @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
* e.g. for testing
*/
enum iwl_trans_status {
STATUS_SYNC_HCMD_ACTIVE,
STATUS_DEVICE_ENABLED,
STATUS_TPOWER_PMI,
STATUS_INT_ENABLED,
STATUS_RFKILL_HW,
STATUS_RFKILL_OPMODE,
STATUS_FW_ERROR,
STATUS_TRANS_DEAD,
STATUS_SUPPRESS_CMD_ERROR_ONCE,
};
static inline int
iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
{
switch (rb_size) {
case IWL_AMSDU_2K:
return get_order(2 * 1024);
case IWL_AMSDU_4K:
return get_order(4 * 1024);
case IWL_AMSDU_8K:
return get_order(8 * 1024);
case IWL_AMSDU_12K:
return get_order(16 * 1024);
default:
WARN_ON(1);
return -1;
}
}
static inline int
iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
{
switch (rb_size) {
case IWL_AMSDU_2K:
return 2 * 1024;
case IWL_AMSDU_4K:
return 4 * 1024;
case IWL_AMSDU_8K:
return 8 * 1024;
case IWL_AMSDU_12K:
return 16 * 1024;
default:
WARN_ON(1);
return 0;
}
}
struct iwl_hcmd_names {
u8 cmd_id;
const char *const cmd_name;
};
#define HCMD_NAME(x) \
{ .cmd_id = x, .cmd_name = #x }
struct iwl_hcmd_arr {
const struct iwl_hcmd_names *arr;
int size;
};
#define HCMD_ARR(x) \
{ .arr = x, .size = ARRAY_SIZE(x) }
/**
* struct iwl_dump_sanitize_ops - dump sanitization operations
* @frob_txf: Scrub the TX FIFO data
* @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
* but that might be short or long (&struct iwl_cmd_header or
* &struct iwl_cmd_header_wide)
* @frob_mem: Scrub memory data
*/
struct iwl_dump_sanitize_ops {
void (*frob_txf)(void *ctx, void *buf, size_t buflen);
void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
};
/**
* struct iwl_trans_config - transport configuration
*
* @op_mode: pointer to the upper layer.
* @cmd_queue: the index of the command queue.
* Must be set before start_fw.
* @cmd_fifo: the fifo for host commands
* @no_reclaim_cmds: Some devices erroneously don't set the
* SEQ_RX_FRAME bit on some notifications, this is the
* list of such notifications to filter. Max length is
* %MAX_NO_RECLAIM_CMDS.
* @n_no_reclaim_cmds: # of commands in list
* @rx_buf_size: RX buffer size needed for A-MSDUs
* if unset 4k will be the RX buffer size
* @bc_table_dword: set to true if the BC table expects the byte count to be
* in DWORD (as opposed to bytes)
* @scd_set_active: should the transport configure the SCD for HCMD queue
* @command_groups: array of command groups, each member is an array of the
* commands in the group; for debugging only
* @command_groups_size: number of command groups, to avoid illegal access
* @cb_data_offs: offset inside skb->cb to store transport data at, must have
* space for at least two pointers
* @fw_reset_handshake: firmware supports reset flow handshake
* @queue_alloc_cmd_ver: queue allocation command version, set to 0
* for using the older SCD_QUEUE_CFG, set to the version of
* SCD_QUEUE_CONFIG_CMD otherwise.
*/
struct iwl_trans_config {
struct iwl_op_mode *op_mode;
u8 cmd_queue;
u8 cmd_fifo;
const u8 *no_reclaim_cmds;
unsigned int n_no_reclaim_cmds;
enum iwl_amsdu_size rx_buf_size;
bool bc_table_dword;
bool scd_set_active;
const struct iwl_hcmd_arr *command_groups;
int command_groups_size;
u8 cb_data_offs;
bool fw_reset_handshake;
u8 queue_alloc_cmd_ver;
};
struct iwl_trans_dump_data {
u32 len;
u8 data[];
};
struct iwl_trans;
struct iwl_trans_txq_scd_cfg {
u8 fifo;
u8 sta_id;
u8 tid;
bool aggregate;
int frame_limit;
};
/**
* struct iwl_trans_rxq_dma_data - RX queue DMA data
* @fr_bd_cb: DMA address of free BD cyclic buffer
* @fr_bd_wid: Initial write index of the free BD cyclic buffer
* @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
* @ur_bd_cb: DMA address of used BD cyclic buffer
*/
struct iwl_trans_rxq_dma_data {
u64 fr_bd_cb;
u32 fr_bd_wid;
u64 urbd_stts_wrptr;
u64 ur_bd_cb;
};
/* maximal number of DRAM MAP entries supported by FW */
#define IPC_DRAM_MAP_ENTRY_NUM_MAX 64
/**
* struct iwl_pnvm_image - contains info about the parsed pnvm image
* @chunks: array of pointers to pnvm payloads and their sizes
* @n_chunks: the number of the pnvm payloads.
* @version: the version of the loaded PNVM image
*/
struct iwl_pnvm_image {
struct {
const void *data;
u32 len;
} chunks[IPC_DRAM_MAP_ENTRY_NUM_MAX];
u32 n_chunks;
u32 version;
};
/**
* enum iwl_trans_state - state of the transport layer
*
* @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
* @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
* @IWL_TRANS_FW_ALIVE: FW has sent an alive response
*/
enum iwl_trans_state {
IWL_TRANS_NO_FW,
IWL_TRANS_FW_STARTED,
IWL_TRANS_FW_ALIVE,
};
/**
* DOC: Platform power management
*
* In system-wide power management the entire platform goes into a low
* power state (e.g. idle or suspend to RAM) at the same time and the
* device is configured as a wakeup source for the entire platform.
* This is usually triggered by userspace activity (e.g. the user
* presses the suspend button or a power management daemon decides to
* put the platform in low power mode). The device's behavior in this
* mode is dictated by the wake-on-WLAN configuration.
*
* The terms used for the device's behavior are as follows:
*
* - D0: the device is fully powered and the host is awake;
* - D3: the device is in low power mode and only reacts to
* specific events (e.g. magic-packet received or scan
* results found);
*
* These terms reflect the power modes in the firmware and are not to
* be confused with the physical device power state.
*/
/**
* enum iwl_plat_pm_mode - platform power management mode
*
* This enumeration describes the device's platform power management
* behavior when in system-wide suspend (i.e WoWLAN).
*
* @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
* device. In system-wide suspend mode, it means that the all
* connections will be closed automatically by mac80211 before
* the platform is suspended.
* @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
*/
enum iwl_plat_pm_mode {
IWL_PLAT_PM_MODE_DISABLED,
IWL_PLAT_PM_MODE_D3,
};
/**
* enum iwl_ini_cfg_state
* @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
* @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
* @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
* are corrupted. The rest of the debug TLVs will still be used
*/
enum iwl_ini_cfg_state {
IWL_INI_CFG_STATE_NOT_LOADED,
IWL_INI_CFG_STATE_LOADED,
IWL_INI_CFG_STATE_CORRUPTED,
};
/* Max time to wait for nmi interrupt */
#define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
/**
* struct iwl_dram_data
* @physical: page phy pointer
* @block: pointer to the allocated block/page
* @size: size of the block/page
*/
struct iwl_dram_data {
dma_addr_t physical;
void *block;
int size;
};
/**
* struct iwl_dram_regions - DRAM regions container structure
* @drams: array of several DRAM areas that contains the pnvm and power
* reduction table payloads.
* @n_regions: number of DRAM regions that were allocated
* @prph_scratch_mem_desc: points to a structure allocated in dram,
* designed to show FW where all the payloads are.
*/
struct iwl_dram_regions {
struct iwl_dram_data drams[IPC_DRAM_MAP_ENTRY_NUM_MAX];
struct iwl_dram_data prph_scratch_mem_desc;
u8 n_regions;
};
/**
* struct iwl_fw_mon - fw monitor per allocation id
* @num_frags: number of fragments
* @frags: an array of DRAM buffer fragments
*/
struct iwl_fw_mon {
u32 num_frags;
struct iwl_dram_data *frags;
};
/**
* struct iwl_self_init_dram - dram data used by self init process
* @fw: lmac and umac dram data
* @fw_cnt: total number of items in array
* @paging: paging dram data
* @paging_cnt: total number of items in array
*/
struct iwl_self_init_dram {
struct iwl_dram_data *fw;
int fw_cnt;
struct iwl_dram_data *paging;
int paging_cnt;
};
/**
* struct iwl_imr_data - imr dram data used during debug process
* @imr_enable: imr enable status received from fw
* @imr_size: imr dram size received from fw
* @sram_addr: sram address from debug tlv
* @sram_size: sram size from debug tlv
* @imr2sram_remainbyte: size remained after each dma transfer
* @imr_curr_addr: current dst address used during dma transfer
* @imr_base_addr: imr address received from fw
*/
struct iwl_imr_data {
u32 imr_enable;
u32 imr_size;
u32 sram_addr;
u32 sram_size;
u32 imr2sram_remainbyte;
u64 imr_curr_addr;
__le64 imr_base_addr;
};
#define IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES 32
/**
* struct iwl_pc_data - program counter details
* @pc_name: cpu name
* @pc_address: cpu program counter
*/
struct iwl_pc_data {
u8 pc_name[IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES];
u32 pc_address;
};
/**
* struct iwl_trans_debug - transport debug related data
*
* @n_dest_reg: num of reg_ops in %dbg_dest_tlv
* @rec_on: true iff there is a fw debug recording currently active
* @dest_tlv: points to the destination TLV for debug
* @conf_tlv: array of pointers to configuration TLVs for debug
* @trigger_tlv: array of pointers to triggers TLVs for debug
* @lmac_error_event_table: addrs of lmacs error tables
* @umac_error_event_table: addr of umac error table
* @tcm_error_event_table: address(es) of TCM error table(s)
* @rcm_error_event_table: address(es) of RCM error table(s)
* @error_event_table_tlv_status: bitmap that indicates what error table
* pointers was recevied via TLV. uses enum &iwl_error_event_table_status
* @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
* @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
* @fw_mon_cfg: debug buffer allocation configuration
* @fw_mon_ini: DRAM buffer fragments per allocation id
* @fw_mon: DRAM buffer for firmware monitor
* @hw_error: equals true if hw error interrupt was received from the FW
* @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
* @unsupported_region_msk: unsupported regions out of active_regions
* @active_regions: active regions
* @debug_info_tlv_list: list of debug info TLVs
* @time_point: array of debug time points
* @periodic_trig_list: periodic triggers list
* @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
* @ucode_preset: preset based on ucode
* @restart_required: indicates debug restart is required
* @last_tp_resetfw: last handling of reset during debug timepoint
* @imr_data: IMR debug data allocation
* @dump_file_name_ext: dump file name extension
* @dump_file_name_ext_valid: dump file name extension if valid or not
* @num_pc: number of program counter for cpu
* @pc_data: details of the program counter
* @yoyo_bin_loaded: tells if a yoyo debug file has been loaded
*/
struct iwl_trans_debug {
u8 n_dest_reg;
bool rec_on;
const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
u32 lmac_error_event_table[2];
u32 umac_error_event_table;
u32 tcm_error_event_table[2];
u32 rcm_error_event_table[2];
unsigned int error_event_table_tlv_status;
enum iwl_ini_cfg_state internal_ini_cfg;
enum iwl_ini_cfg_state external_ini_cfg;
struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
struct iwl_dram_data fw_mon;
bool hw_error;
enum iwl_fw_ini_buffer_location ini_dest;
u64 unsupported_region_msk;
struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
struct list_head debug_info_tlv_list;
struct iwl_dbg_tlv_time_point_data time_point[IWL_FW_INI_TIME_POINT_NUM];
struct list_head periodic_trig_list;
u32 domains_bitmap;
u32 ucode_preset;
bool restart_required;
u32 last_tp_resetfw;
struct iwl_imr_data imr_data;
u8 dump_file_name_ext[IWL_FW_INI_MAX_NAME];
bool dump_file_name_ext_valid;
u32 num_pc;
struct iwl_pc_data *pc_data;
bool yoyo_bin_loaded;
};
struct iwl_dma_ptr {
dma_addr_t dma;
void *addr;
size_t size;
};
struct iwl_cmd_meta {
/* only for SYNC commands, iff the reply skb is wanted */
struct iwl_host_cmd *source;
u32 flags: CMD_MODE_BITS;
/* sg_offset is valid if it is non-zero */
u32 sg_offset: PAGE_SHIFT;
u32 tbs;
};
/*
* The FH will write back to the first TB only, so we need to copy some data
* into the buffer regardless of whether it should be mapped or not.
* This indicates how big the first TB must be to include the scratch buffer
* and the assigned PN.
* Since PN location is 8 bytes at offset 12, it's 20 now.
* If we make it bigger then allocations will be bigger and copy slower, so
* that's probably not useful.
*/
#define IWL_FIRST_TB_SIZE 20
#define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
struct iwl_pcie_txq_entry {
void *cmd;
struct sk_buff *skb;
/* buffer to free after command completes */
const void *free_buf;
struct iwl_cmd_meta meta;
};
struct iwl_pcie_first_tb_buf {
u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
};
/**
* struct iwl_txq - Tx Queue for DMA
* @tfds: transmit frame descriptors (DMA memory)
* @first_tb_bufs: start of command headers, including scratch buffers, for
* the writeback -- this is DMA memory and an array holding one buffer
* for each command on the queue
* @first_tb_dma: DMA address for the first_tb_bufs start
* @entries: transmit entries (driver state)
* @lock: queue lock
* @reclaim_lock: reclaim lock
* @stuck_timer: timer that fires if queue gets stuck
* @trans: pointer back to transport (for timer)
* @need_update: indicates need to update read/write index
* @ampdu: true if this queue is an ampdu queue for an specific RA/TID
* @wd_timeout: queue watchdog timeout (jiffies) - per queue
* @frozen: tx stuck queue timer is frozen
* @frozen_expiry_remainder: remember how long until the timer fires
* @block: queue is blocked
* @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
* @write_ptr: 1-st empty entry (index) host_w
* @read_ptr: last used entry (index) host_r
* @dma_addr: physical addr for BD's
* @n_window: safe queue window
* @id: queue id
* @low_mark: low watermark, resume queue if free space more than this
* @high_mark: high watermark, stop queue if free space less than this
* @overflow_q: overflow queue for handling frames that didn't fit on HW queue
* @overflow_tx: need to transmit from overflow
*
* A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
* descriptors) and required locking structures.
*
* Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
* always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
* there might be HW changes in the future). For the normal TX
* queues, n_window, which is the size of the software queue data
* is also 256; however, for the command queue, n_window is only
* 32 since we don't need so many commands pending. Since the HW
* still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
* This means that we end up with the following:
* HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
* SW entries: | 0 | ... | 31 |
* where N is a number between 0 and 7. This means that the SW
* data is a window overlayed over the HW queue.
*/
struct iwl_txq {
void *tfds;
struct iwl_pcie_first_tb_buf *first_tb_bufs;
dma_addr_t first_tb_dma;
struct iwl_pcie_txq_entry *entries;
/* lock for syncing changes on the queue */
spinlock_t lock;
/* lock to prevent concurrent reclaim */
spinlock_t reclaim_lock;
unsigned long frozen_expiry_remainder;
struct timer_list stuck_timer;
struct iwl_trans *trans;
bool need_update;
bool frozen;
bool ampdu;
int block;
unsigned long wd_timeout;
struct sk_buff_head overflow_q;
struct iwl_dma_ptr bc_tbl;
int write_ptr;
int read_ptr;
dma_addr_t dma_addr;
int n_window;
u32 id;
int low_mark;
int high_mark;
bool overflow_tx;
};
/**
* struct iwl_trans - transport common data
*
* @csme_own: true if we couldn't get ownership on the device
* @op_mode: pointer to the op_mode
* @trans_cfg: the trans-specific configuration part
* @cfg: pointer to the configuration
* @drv: pointer to iwl_drv
* @state: current device state
* @status: a bit-mask of transport status flags
* @dev: pointer to struct device * that represents the device
* @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
* 0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
* @hw_rf_id: a u32 with the device RF ID
* @hw_cnv_id: a u32 with the device CNV ID
* @hw_crf_id: a u32 with the device CRF ID
* @hw_wfpm_id: a u32 with the device wfpm ID
* @hw_id: a u32 with the ID of the device / sub-device.
* Set during transport allocation.
* @hw_id_str: a string with info about HW ID. Set during transport allocation.
* @sku_id: the SKU identifier (for PNVM matching)
* @pnvm_loaded: indicates PNVM was loaded
* @hw_rev: the revision data of the HW
* @hw_rev_step: The mac step of the HW
* @pm_support: set to true in start_hw if link pm is supported
* @ltr_enabled: set to true if the LTR is enabled
* @fail_to_parse_pnvm_image: set to true if pnvm parsing failed
* @reduce_power_loaded: indicates reduced power section was loaded
* @failed_to_load_reduce_power_image: set to true if pnvm loading failed
* @command_groups: pointer to command group name list array
* @command_groups_size: array size of @command_groups
* @wide_cmd_header: true when ucode supports wide command header format
* @wait_command_queue: wait queue for sync commands
* @num_rx_queues: number of RX queues allocated by the transport;
* the transport must set this before calling iwl_drv_start()
* @iml_len: the length of the image loader
* @iml: a pointer to the image loader itself
* @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
* The user should use iwl_trans_{alloc,free}_tx_cmd.
* @dev_cmd_pool_name: name for the TX command allocation pool
* @dbgfs_dir: iwlwifi debugfs base dir for this device
* @sync_cmd_lockdep_map: lockdep map for checking sync commands
* @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
* starting the firmware, used for tracing
* @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
* start of the 802.11 header in the @rx_mpdu_cmd
* @dbg: additional debug data, see &struct iwl_trans_debug
* @init_dram: FW initialization DMA data
* @system_pm_mode: the system-wide power management mode in use.
* This mode is set dynamically, depending on the WoWLAN values
* configured from the userspace at runtime.
* @name: the device name
* @mbx_addr_0_step: step address data 0
* @mbx_addr_1_step: step address data 1
* @pcie_link_speed: current PCIe link speed (%PCI_EXP_LNKSTA_CLS_*),
* only valid for discrete (not integrated) NICs
* @invalid_tx_cmd: invalid TX command buffer
* @reduced_cap_sku: reduced capability supported SKU
* @no_160: device not supporting 160 MHz
* @step_urm: STEP is in URM, no support for MCS>9 in 320 MHz
* @trans_specific: data for the specific transport this is allocated for/with
*/
struct iwl_trans {
bool csme_own;
struct iwl_op_mode *op_mode;
const struct iwl_cfg_trans_params *trans_cfg;
const struct iwl_cfg *cfg;
struct iwl_drv *drv;
enum iwl_trans_state state;
unsigned long status;
struct device *dev;
u32 max_skb_frags;
u32 hw_rev;
u32 hw_rev_step;
u32 hw_rf_id;
u32 hw_crf_id;
u32 hw_cnv_id;
u32 hw_wfpm_id;
u32 hw_id;
char hw_id_str[52];
u32 sku_id[3];
bool reduced_cap_sku;
u8 no_160:1, step_urm:1;
u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
bool pm_support;
bool ltr_enabled;
u8 pnvm_loaded:1;
u8 fail_to_parse_pnvm_image:1;
u8 reduce_power_loaded:1;
u8 failed_to_load_reduce_power_image:1;
const struct iwl_hcmd_arr *command_groups;
int command_groups_size;
bool wide_cmd_header;
wait_queue_head_t wait_command_queue;
u8 num_rx_queues;
size_t iml_len;
u8 *iml;
/* The following fields are internal only */
struct kmem_cache *dev_cmd_pool;
char dev_cmd_pool_name[50];
struct dentry *dbgfs_dir;
#ifdef CONFIG_LOCKDEP
struct lockdep_map sync_cmd_lockdep_map;
#endif
struct iwl_trans_debug dbg;
struct iwl_self_init_dram init_dram;
enum iwl_plat_pm_mode system_pm_mode;
const char *name;
u32 mbx_addr_0_step;
u32 mbx_addr_1_step;
u8 pcie_link_speed;
struct iwl_dma_ptr invalid_tx_cmd;
/* pointer to trans specific struct */
/*Ensure that this pointer will always be aligned to sizeof pointer */
char trans_specific[] __aligned(sizeof(void *));
};
const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
void iwl_trans_configure(struct iwl_trans *trans,
const struct iwl_trans_config *trans_cfg);
int iwl_trans_start_hw(struct iwl_trans *trans);
void iwl_trans_op_mode_leave(struct iwl_trans *trans);
void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr);
int iwl_trans_start_fw(struct iwl_trans *trans, const struct fw_img *fw,
bool run_in_rfkill);
void iwl_trans_stop_device(struct iwl_trans *trans);
int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, bool reset);
int iwl_trans_d3_resume(struct iwl_trans *trans, enum iwl_d3_status *status,
bool test, bool reset);
struct iwl_trans_dump_data *
iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
const struct iwl_dump_sanitize_ops *sanitize_ops,
void *sanitize_ctx);
static inline struct iwl_device_tx_cmd *
iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
{
return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
}
int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
struct iwl_device_tx_cmd *dev_cmd)
{
kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
}
int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
struct iwl_device_tx_cmd *dev_cmd, int queue);
void iwl_trans_reclaim(struct iwl_trans *trans, int queue, int ssn,
struct sk_buff_head *skbs, bool is_flush);
void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue, int ptr);
void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
bool configure_scd);
bool iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
const struct iwl_trans_txq_scd_cfg *cfg,
unsigned int queue_wdg_timeout);
int iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
struct iwl_trans_rxq_dma_data *data);
void iwl_trans_txq_free(struct iwl_trans *trans, int queue);
int iwl_trans_txq_alloc(struct iwl_trans *trans, u32 flags, u32 sta_mask,
u8 tid, int size, unsigned int wdg_timeout);
void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
int txq_id, bool shared_mode);
static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
int fifo, int sta_id, int tid,
int frame_limit, u16 ssn,
unsigned int queue_wdg_timeout)
{
struct iwl_trans_txq_scd_cfg cfg = {
.fifo = fifo,
.sta_id = sta_id,
.tid = tid,
.frame_limit = frame_limit,
.aggregate = sta_id >= 0,
};
iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
}
static inline
void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
unsigned int queue_wdg_timeout)
{
struct iwl_trans_txq_scd_cfg cfg = {
.fifo = fifo,
.sta_id = -1,
.tid = IWL_MAX_TID_COUNT,
.frame_limit = IWL_FRAME_LIMIT,
.aggregate = false,
};
iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
}
void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
unsigned long txqs, bool freeze);
int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, u32 txqs);
int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue);
void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val);
void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val);
u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs);
u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs);
void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, u32 val);
int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
void *buf, int dwords);
int iwl_trans_read_config32(struct iwl_trans *trans, u32 ofs,
u32 *val);
#ifdef CONFIG_IWLWIFI_DEBUGFS
void iwl_trans_debugfs_cleanup(struct iwl_trans *trans);
#endif
#define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \
do { \
if (__builtin_constant_p(bufsize)) \
BUILD_BUG_ON((bufsize) % sizeof(u32)); \
iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
} while (0)
int iwl_trans_write_imr_mem(struct iwl_trans *trans, u32 dst_addr,
u64 src_addr, u32 byte_cnt);
static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
{
u32 value;
if (iwl_trans_read_mem(trans, addr, &value, 1))
return 0xa5a5a5a5;
return value;
}
int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
const void *buf, int dwords);
static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
u32 val)
{
return iwl_trans_write_mem(trans, addr, &val, 1);
}
void iwl_trans_set_pmi(struct iwl_trans *trans, bool state);
int iwl_trans_sw_reset(struct iwl_trans *trans, bool retake_ownership);
void iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg,
u32 mask, u32 value);
bool _iwl_trans_grab_nic_access(struct iwl_trans *trans);
#define iwl_trans_grab_nic_access(trans) \
__cond_lock(nic_access, \
likely(_iwl_trans_grab_nic_access(trans)))
void __releases(nic_access)
iwl_trans_release_nic_access(struct iwl_trans *trans);
static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
{
if (WARN_ON_ONCE(!trans->op_mode))
return;
/* prevent double restarts due to the same erroneous FW */
if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
trans->state = IWL_TRANS_NO_FW;
iwl_op_mode_nic_error(trans->op_mode, sync);
}
}
static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
{
return trans->state == IWL_TRANS_FW_ALIVE;
}
void iwl_trans_sync_nmi(struct iwl_trans *trans);
void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
u32 sw_err_bit);
int iwl_trans_load_pnvm(struct iwl_trans *trans,
const struct iwl_pnvm_image *pnvm_data,
const struct iwl_ucode_capabilities *capa);
void iwl_trans_set_pnvm(struct iwl_trans *trans,
const struct iwl_ucode_capabilities *capa);
int iwl_trans_load_reduce_power(struct iwl_trans *trans,
const struct iwl_pnvm_image *payloads,
const struct iwl_ucode_capabilities *capa);
void iwl_trans_set_reduce_power(struct iwl_trans *trans,
const struct iwl_ucode_capabilities *capa);
static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
{
return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
}
void iwl_trans_interrupts(struct iwl_trans *trans, bool enable);
/*****************************************************
* transport helper functions
*****************************************************/
struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
struct device *dev,
const struct iwl_cfg_trans_params *cfg_trans);
int iwl_trans_init(struct iwl_trans *trans);
void iwl_trans_free(struct iwl_trans *trans);
static inline bool iwl_trans_is_hw_error_value(u32 val)
{
return ((val & ~0xf) == 0xa5a5a5a0) || ((val & ~0xf) == 0x5a5a5a50);
}
/*****************************************************
* PCIe handling
*****************************************************/
int __must_check iwl_pci_register_driver(void);
void iwl_pci_unregister_driver(void);
void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan);
int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans,
struct iwl_host_cmd *cmd);
#endif /* __iwl_trans_h__ */