// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2014 Felix Fietkau <[email protected]>
* Copyright (C) 2015 Jakub Kicinski <[email protected]>
* Copyright (C) 2018 Stanislaw Gruszka <[email protected]>
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/etherdevice.h>
#include <linux/unaligned.h>
#include "mt76x0.h"
#include "eeprom.h"
#include "../mt76x02_phy.h"
#define MT_MAP_READS DIV_ROUND_UP(MT_EFUSE_USAGE_MAP_SIZE, 16)
static int
mt76x0_efuse_physical_size_check(struct mt76x02_dev *dev)
{
u8 data[MT_MAP_READS * 16];
int ret, i;
u32 start = 0, end = 0, cnt_free;
ret = mt76x02_get_efuse_data(dev, MT_EE_USAGE_MAP_START, data,
sizeof(data), MT_EE_PHYSICAL_READ);
if (ret)
return ret;
for (i = 0; i < MT_EFUSE_USAGE_MAP_SIZE; i++)
if (!data[i]) {
if (!start)
start = MT_EE_USAGE_MAP_START + i;
end = MT_EE_USAGE_MAP_START + i;
}
cnt_free = end - start + 1;
if (MT_EFUSE_USAGE_MAP_SIZE - cnt_free < 5) {
dev_err(dev->mt76.dev,
"driver does not support default EEPROM\n");
return -EINVAL;
}
return 0;
}
static void mt76x0_set_chip_cap(struct mt76x02_dev *dev)
{
u16 nic_conf0 = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_0);
u16 nic_conf1 = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_1);
mt76x02_eeprom_parse_hw_cap(dev);
dev_dbg(dev->mt76.dev, "2GHz %d 5GHz %d\n",
dev->mphy.cap.has_2ghz, dev->mphy.cap.has_5ghz);
if (dev->no_2ghz) {
dev->mphy.cap.has_2ghz = false;
dev_dbg(dev->mt76.dev, "mask out 2GHz support\n");
}
if (is_mt7630(dev)) {
dev->mphy.cap.has_5ghz = false;
dev_dbg(dev->mt76.dev, "mask out 5GHz support\n");
}
if (!mt76x02_field_valid(nic_conf1 & 0xff))
nic_conf1 &= 0xff00;
if (nic_conf1 & MT_EE_NIC_CONF_1_HW_RF_CTRL)
dev_dbg(dev->mt76.dev,
"driver does not support HW RF ctrl\n");
if (!mt76x02_field_valid(nic_conf0 >> 8))
return;
if (FIELD_GET(MT_EE_NIC_CONF_0_RX_PATH, nic_conf0) > 1 ||
FIELD_GET(MT_EE_NIC_CONF_0_TX_PATH, nic_conf0) > 1)
dev_err(dev->mt76.dev, "invalid tx-rx stream\n");
}
static void mt76x0_set_temp_offset(struct mt76x02_dev *dev)
{
u8 val;
val = mt76x02_eeprom_get(dev, MT_EE_2G_TARGET_POWER) >> 8;
if (mt76x02_field_valid(val))
dev->cal.rx.temp_offset = mt76x02_sign_extend(val, 8);
else
dev->cal.rx.temp_offset = -10;
}
static void mt76x0_set_freq_offset(struct mt76x02_dev *dev)
{
struct mt76x02_rx_freq_cal *caldata = &dev->cal.rx;
u8 val;
val = mt76x02_eeprom_get(dev, MT_EE_FREQ_OFFSET);
if (!mt76x02_field_valid(val))
val = 0;
caldata->freq_offset = val;
val = mt76x02_eeprom_get(dev, MT_EE_TSSI_BOUND4) >> 8;
if (!mt76x02_field_valid(val))
val = 0;
caldata->freq_offset -= mt76x02_sign_extend(val, 8);
}
void mt76x0_read_rx_gain(struct mt76x02_dev *dev)
{
struct ieee80211_channel *chan = dev->mphy.chandef.chan;
struct mt76x02_rx_freq_cal *caldata = &dev->cal.rx;
s8 val, lna_5g[3], lna_2g;
u16 rssi_offset;
int i;
mt76x02_get_rx_gain(dev, chan->band, &rssi_offset, &lna_2g, lna_5g);
caldata->lna_gain = mt76x02_get_lna_gain(dev, &lna_2g, lna_5g, chan);
for (i = 0; i < ARRAY_SIZE(caldata->rssi_offset); i++) {
val = rssi_offset >> (8 * i);
if (val < -10 || val > 10)
val = 0;
caldata->rssi_offset[i] = val;
}
}
static s8 mt76x0_get_delta(struct mt76x02_dev *dev)
{
struct cfg80211_chan_def *chandef = &dev->mphy.chandef;
u8 val;
if (chandef->width == NL80211_CHAN_WIDTH_80) {
val = mt76x02_eeprom_get(dev, MT_EE_5G_TARGET_POWER) >> 8;
} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
u16 data;
data = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW40);
if (chandef->chan->band == NL80211_BAND_5GHZ)
val = data >> 8;
else
val = data;
} else {
return 0;
}
return mt76x02_rate_power_val(val);
}
void mt76x0_get_tx_power_per_rate(struct mt76x02_dev *dev,
struct ieee80211_channel *chan,
struct mt76x02_rate_power *t)
{
bool is_2ghz = chan->band == NL80211_BAND_2GHZ;
u16 val, addr;
s8 delta;
memset(t, 0, sizeof(*t));
/* cck 1M, 2M, 5.5M, 11M */
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_BYRATE_BASE);
t->cck[0] = t->cck[1] = s6_to_s8(val);
t->cck[2] = t->cck[3] = s6_to_s8(val >> 8);
/* ofdm 6M, 9M, 12M, 18M */
addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 2 : 0x120;
val = mt76x02_eeprom_get(dev, addr);
t->ofdm[0] = t->ofdm[1] = s6_to_s8(val);
t->ofdm[2] = t->ofdm[3] = s6_to_s8(val >> 8);
/* ofdm 24M, 36M, 48M, 54M */
addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 4 : 0x122;
val = mt76x02_eeprom_get(dev, addr);
t->ofdm[4] = t->ofdm[5] = s6_to_s8(val);
t->ofdm[6] = t->ofdm[7] = s6_to_s8(val >> 8);
/* ht-vht mcs 1ss 0, 1, 2, 3 */
addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 6 : 0x124;
val = mt76x02_eeprom_get(dev, addr);
t->ht[0] = t->ht[1] = s6_to_s8(val);
t->ht[2] = t->ht[3] = s6_to_s8(val >> 8);
/* ht-vht mcs 1ss 4, 5, 6 */
addr = is_2ghz ? MT_EE_TX_POWER_BYRATE_BASE + 8 : 0x126;
val = mt76x02_eeprom_get(dev, addr);
t->ht[4] = t->ht[5] = s6_to_s8(val);
t->ht[6] = t->ht[7] = s6_to_s8(val >> 8);
/* vht mcs 8, 9 5GHz */
val = mt76x02_eeprom_get(dev, 0x12c);
t->vht[0] = s6_to_s8(val);
t->vht[1] = s6_to_s8(val >> 8);
delta = mt76x0_tssi_enabled(dev) ? 0 : mt76x0_get_delta(dev);
mt76x02_add_rate_power_offset(t, delta);
}
void mt76x0_get_power_info(struct mt76x02_dev *dev,
struct ieee80211_channel *chan, s8 *tp)
{
static const struct mt76x0_chan_map {
u8 chan;
u8 offset;
} chan_map[] = {
{ 2, 0 }, { 4, 2 }, { 6, 4 }, { 8, 6 },
{ 10, 8 }, { 12, 10 }, { 14, 12 }, { 38, 0 },
{ 44, 2 }, { 48, 4 }, { 54, 6 }, { 60, 8 },
{ 64, 10 }, { 102, 12 }, { 108, 14 }, { 112, 16 },
{ 118, 18 }, { 124, 20 }, { 128, 22 }, { 134, 24 },
{ 140, 26 }, { 151, 28 }, { 157, 30 }, { 161, 32 },
{ 167, 34 }, { 171, 36 }, { 175, 38 },
};
u8 offset, addr;
int i, idx = 0;
u16 data;
if (mt76x0_tssi_enabled(dev)) {
s8 target_power;
if (chan->band == NL80211_BAND_5GHZ)
data = mt76x02_eeprom_get(dev, MT_EE_5G_TARGET_POWER);
else
data = mt76x02_eeprom_get(dev, MT_EE_2G_TARGET_POWER);
target_power = (data & 0xff) - dev->rate_power.ofdm[7];
*tp = target_power + mt76x0_get_delta(dev);
return;
}
for (i = 0; i < ARRAY_SIZE(chan_map); i++) {
if (chan->hw_value <= chan_map[i].chan) {
idx = (chan->hw_value == chan_map[i].chan);
offset = chan_map[i].offset;
break;
}
}
if (i == ARRAY_SIZE(chan_map))
offset = chan_map[0].offset;
if (chan->band == NL80211_BAND_2GHZ) {
addr = MT_EE_TX_POWER_DELTA_BW80 + offset;
} else {
switch (chan->hw_value) {
case 42:
offset = 2;
break;
case 58:
offset = 8;
break;
case 106:
offset = 14;
break;
case 122:
offset = 20;
break;
case 155:
offset = 30;
break;
default:
break;
}
addr = MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE + 2 + offset;
}
data = mt76x02_eeprom_get(dev, addr);
*tp = data >> (8 * idx);
if (*tp < 0 || *tp > 0x3f)
*tp = 5;
}
static int mt76x0_check_eeprom(struct mt76x02_dev *dev)
{
u16 val;
val = get_unaligned_le16(dev->mt76.eeprom.data);
if (!val)
val = get_unaligned_le16(dev->mt76.eeprom.data +
MT_EE_PCI_ID);
switch (val) {
case 0x7650:
case 0x7610:
return 0;
default:
dev_err(dev->mt76.dev, "EEPROM data check failed: %04x\n",
val);
return -EINVAL;
}
}
static int mt76x0_load_eeprom(struct mt76x02_dev *dev)
{
int found;
found = mt76_eeprom_init(&dev->mt76, MT76X0_EEPROM_SIZE);
if (found < 0)
return found;
if (found && !mt76x0_check_eeprom(dev))
return 0;
found = mt76x0_efuse_physical_size_check(dev);
if (found < 0)
return found;
return mt76x02_get_efuse_data(dev, 0, dev->mt76.eeprom.data,
MT76X0_EEPROM_SIZE, MT_EE_READ);
}
int mt76x0_eeprom_init(struct mt76x02_dev *dev)
{
u8 version, fae;
u16 data;
int err;
err = mt76x0_load_eeprom(dev);
if (err < 0)
return err;
data = mt76x02_eeprom_get(dev, MT_EE_VERSION);
version = data >> 8;
fae = data;
if (version > MT76X0U_EE_MAX_VER)
dev_warn(dev->mt76.dev,
"Warning: unsupported EEPROM version %02hhx\n",
version);
dev_info(dev->mt76.dev, "EEPROM ver:%02hhx fae:%02hhx\n",
version, fae);
memcpy(dev->mphy.macaddr, (u8 *)dev->mt76.eeprom.data + MT_EE_MAC_ADDR,
ETH_ALEN);
mt76_eeprom_override(&dev->mphy);
mt76x02_mac_setaddr(dev, dev->mphy.macaddr);
mt76x0_set_chip_cap(dev);
mt76x0_set_freq_offset(dev);
mt76x0_set_temp_offset(dev);
return 0;
}
MODULE_DESCRIPTION("MediaTek MT76x EEPROM helpers");
MODULE_LICENSE("Dual BSD/GPL");