// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2022 MediaTek Inc.
*/
#include <linux/etherdevice.h>
#include <linux/of.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/thermal.h>
#include "mt7996.h"
#include "mac.h"
#include "mcu.h"
#include "coredump.h"
#include "eeprom.h"
static const struct ieee80211_iface_limit if_limits[] = {
{
.max = 1,
.types = BIT(NL80211_IFTYPE_ADHOC)
}, {
.max = 16,
.types = BIT(NL80211_IFTYPE_AP)
#ifdef CONFIG_MAC80211_MESH
| BIT(NL80211_IFTYPE_MESH_POINT)
#endif
}, {
.max = MT7996_MAX_INTERFACES,
.types = BIT(NL80211_IFTYPE_STATION)
}
};
static const struct ieee80211_iface_combination if_comb[] = {
{
.limits = if_limits,
.n_limits = ARRAY_SIZE(if_limits),
.max_interfaces = MT7996_MAX_INTERFACES,
.num_different_channels = 1,
.beacon_int_infra_match = true,
.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80) |
BIT(NL80211_CHAN_WIDTH_160),
.beacon_int_min_gcd = 100,
}
};
static ssize_t mt7996_thermal_temp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct mt7996_phy *phy = dev_get_drvdata(dev);
int i = to_sensor_dev_attr(attr)->index;
int temperature;
switch (i) {
case 0:
temperature = mt7996_mcu_get_temperature(phy);
if (temperature < 0)
return temperature;
/* display in millidegree celcius */
return sprintf(buf, "%u\n", temperature * 1000);
case 1:
case 2:
return sprintf(buf, "%u\n",
phy->throttle_temp[i - 1] * 1000);
case 3:
return sprintf(buf, "%hhu\n", phy->throttle_state);
default:
return -EINVAL;
}
}
static ssize_t mt7996_thermal_temp_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mt7996_phy *phy = dev_get_drvdata(dev);
int ret, i = to_sensor_dev_attr(attr)->index;
long val;
ret = kstrtol(buf, 10, &val);
if (ret < 0)
return ret;
mutex_lock(&phy->dev->mt76.mutex);
val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 40, 130);
/* add a safety margin ~10 */
if ((i - 1 == MT7996_CRIT_TEMP_IDX &&
val > phy->throttle_temp[MT7996_MAX_TEMP_IDX] - 10) ||
(i - 1 == MT7996_MAX_TEMP_IDX &&
val - 10 < phy->throttle_temp[MT7996_CRIT_TEMP_IDX])) {
dev_err(phy->dev->mt76.dev,
"temp1_max shall be 10 degrees higher than temp1_crit.");
mutex_unlock(&phy->dev->mt76.mutex);
return -EINVAL;
}
phy->throttle_temp[i - 1] = val;
mutex_unlock(&phy->dev->mt76.mutex);
ret = mt7996_mcu_set_thermal_protect(phy, true);
if (ret)
return ret;
return count;
}
static SENSOR_DEVICE_ATTR_RO(temp1_input, mt7996_thermal_temp, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_crit, mt7996_thermal_temp, 1);
static SENSOR_DEVICE_ATTR_RW(temp1_max, mt7996_thermal_temp, 2);
static SENSOR_DEVICE_ATTR_RO(throttle1, mt7996_thermal_temp, 3);
static struct attribute *mt7996_hwmon_attrs[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_throttle1.dev_attr.attr,
NULL,
};
ATTRIBUTE_GROUPS(mt7996_hwmon);
static int
mt7996_thermal_get_max_throttle_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
*state = MT7996_CDEV_THROTTLE_MAX;
return 0;
}
static int
mt7996_thermal_get_cur_throttle_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
struct mt7996_phy *phy = cdev->devdata;
*state = phy->cdev_state;
return 0;
}
static int
mt7996_thermal_set_cur_throttle_state(struct thermal_cooling_device *cdev,
unsigned long state)
{
struct mt7996_phy *phy = cdev->devdata;
u8 throttling = MT7996_THERMAL_THROTTLE_MAX - state;
int ret;
if (state > MT7996_CDEV_THROTTLE_MAX) {
dev_err(phy->dev->mt76.dev,
"please specify a valid throttling state\n");
return -EINVAL;
}
if (state == phy->cdev_state)
return 0;
/* cooling_device convention: 0 = no cooling, more = more cooling
* mcu convention: 1 = max cooling, more = less cooling
*/
ret = mt7996_mcu_set_thermal_throttling(phy, throttling);
if (ret)
return ret;
phy->cdev_state = state;
return 0;
}
static const struct thermal_cooling_device_ops mt7996_thermal_ops = {
.get_max_state = mt7996_thermal_get_max_throttle_state,
.get_cur_state = mt7996_thermal_get_cur_throttle_state,
.set_cur_state = mt7996_thermal_set_cur_throttle_state,
};
static void mt7996_unregister_thermal(struct mt7996_phy *phy)
{
struct wiphy *wiphy = phy->mt76->hw->wiphy;
if (!phy->cdev)
return;
sysfs_remove_link(&wiphy->dev.kobj, "cooling_device");
thermal_cooling_device_unregister(phy->cdev);
}
static int mt7996_thermal_init(struct mt7996_phy *phy)
{
struct wiphy *wiphy = phy->mt76->hw->wiphy;
struct thermal_cooling_device *cdev;
struct device *hwmon;
const char *name;
name = devm_kasprintf(&wiphy->dev, GFP_KERNEL, "mt7996_%s",
wiphy_name(wiphy));
cdev = thermal_cooling_device_register(name, phy, &mt7996_thermal_ops);
if (!IS_ERR(cdev)) {
if (sysfs_create_link(&wiphy->dev.kobj, &cdev->device.kobj,
"cooling_device") < 0)
thermal_cooling_device_unregister(cdev);
else
phy->cdev = cdev;
}
/* initialize critical/maximum high temperature */
phy->throttle_temp[MT7996_CRIT_TEMP_IDX] = MT7996_CRIT_TEMP;
phy->throttle_temp[MT7996_MAX_TEMP_IDX] = MT7996_MAX_TEMP;
if (!IS_REACHABLE(CONFIG_HWMON))
return 0;
hwmon = devm_hwmon_device_register_with_groups(&wiphy->dev, name, phy,
mt7996_hwmon_groups);
if (IS_ERR(hwmon))
return PTR_ERR(hwmon);
return 0;
}
static void mt7996_led_set_config(struct led_classdev *led_cdev,
u8 delay_on, u8 delay_off)
{
struct mt7996_dev *dev;
struct mt76_phy *mphy;
u32 val;
mphy = container_of(led_cdev, struct mt76_phy, leds.cdev);
dev = container_of(mphy->dev, struct mt7996_dev, mt76);
/* select TX blink mode, 2: only data frames */
mt76_rmw_field(dev, MT_TMAC_TCR0(mphy->band_idx), MT_TMAC_TCR0_TX_BLINK, 2);
/* enable LED */
mt76_wr(dev, MT_LED_EN(mphy->band_idx), 1);
/* set LED Tx blink on/off time */
val = FIELD_PREP(MT_LED_TX_BLINK_ON_MASK, delay_on) |
FIELD_PREP(MT_LED_TX_BLINK_OFF_MASK, delay_off);
mt76_wr(dev, MT_LED_TX_BLINK(mphy->band_idx), val);
/* turn LED off */
if (delay_off == 0xff && delay_on == 0x0) {
val = MT_LED_CTRL_POLARITY | MT_LED_CTRL_KICK;
} else {
/* control LED */
val = MT_LED_CTRL_BLINK_MODE | MT_LED_CTRL_KICK;
if (mphy->band_idx == MT_BAND1)
val |= MT_LED_CTRL_BLINK_BAND_SEL;
}
if (mphy->leds.al)
val |= MT_LED_CTRL_POLARITY;
mt76_wr(dev, MT_LED_CTRL(mphy->band_idx), val);
mt76_clear(dev, MT_LED_CTRL(mphy->band_idx), MT_LED_CTRL_KICK);
}
static int mt7996_led_set_blink(struct led_classdev *led_cdev,
unsigned long *delay_on,
unsigned long *delay_off)
{
u16 delta_on = 0, delta_off = 0;
#define HW_TICK 10
#define TO_HW_TICK(_t) (((_t) > HW_TICK) ? ((_t) / HW_TICK) : HW_TICK)
if (*delay_on)
delta_on = TO_HW_TICK(*delay_on);
if (*delay_off)
delta_off = TO_HW_TICK(*delay_off);
mt7996_led_set_config(led_cdev, delta_on, delta_off);
return 0;
}
static void mt7996_led_set_brightness(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
if (!brightness)
mt7996_led_set_config(led_cdev, 0, 0xff);
else
mt7996_led_set_config(led_cdev, 0xff, 0);
}
static void __mt7996_init_txpower(struct mt7996_phy *phy,
struct ieee80211_supported_band *sband)
{
struct mt7996_dev *dev = phy->dev;
int i, nss = hweight16(phy->mt76->chainmask);
int nss_delta = mt76_tx_power_nss_delta(nss);
int pwr_delta = mt7996_eeprom_get_power_delta(dev, sband->band);
struct mt76_power_limits limits;
for (i = 0; i < sband->n_channels; i++) {
struct ieee80211_channel *chan = &sband->channels[i];
int target_power = mt7996_eeprom_get_target_power(dev, chan);
target_power += pwr_delta;
target_power = mt76_get_rate_power_limits(phy->mt76, chan,
&limits,
target_power);
target_power += nss_delta;
target_power = DIV_ROUND_UP(target_power, 2);
chan->max_power = min_t(int, chan->max_reg_power,
target_power);
chan->orig_mpwr = target_power;
}
}
void mt7996_init_txpower(struct mt7996_phy *phy)
{
if (!phy)
return;
if (phy->mt76->cap.has_2ghz)
__mt7996_init_txpower(phy, &phy->mt76->sband_2g.sband);
if (phy->mt76->cap.has_5ghz)
__mt7996_init_txpower(phy, &phy->mt76->sband_5g.sband);
if (phy->mt76->cap.has_6ghz)
__mt7996_init_txpower(phy, &phy->mt76->sband_6g.sband);
}
static void
mt7996_regd_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct mt7996_dev *dev = mt7996_hw_dev(hw);
struct mt7996_phy *phy = mt7996_hw_phy(hw);
memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2));
dev->mt76.region = request->dfs_region;
if (dev->mt76.region == NL80211_DFS_UNSET)
mt7996_mcu_rdd_background_enable(phy, NULL);
mt7996_init_txpower(phy);
phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN;
mt7996_dfs_init_radar_detector(phy);
}
static void
mt7996_init_wiphy(struct ieee80211_hw *hw, struct mtk_wed_device *wed)
{
struct mt7996_phy *phy = mt7996_hw_phy(hw);
struct mt76_dev *mdev = &phy->dev->mt76;
struct wiphy *wiphy = hw->wiphy;
u16 max_subframes = phy->dev->has_eht ? IEEE80211_MAX_AMPDU_BUF_EHT :
IEEE80211_MAX_AMPDU_BUF_HE;
hw->queues = 4;
hw->max_rx_aggregation_subframes = max_subframes;
hw->max_tx_aggregation_subframes = max_subframes;
hw->netdev_features = NETIF_F_RXCSUM;
if (mtk_wed_device_active(wed))
hw->netdev_features |= NETIF_F_HW_TC;
hw->radiotap_timestamp.units_pos =
IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US;
phy->slottime = 9;
phy->beacon_rate = -1;
hw->sta_data_size = sizeof(struct mt7996_sta);
hw->vif_data_size = sizeof(struct mt7996_vif);
wiphy->iface_combinations = if_comb;
wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
wiphy->reg_notifier = mt7996_regd_notifier;
wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
wiphy->mbssid_max_interfaces = 16;
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BSS_COLOR);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HT);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_VHT);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HE);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_FILS_DISCOVERY);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_MU_MIMO_AIR_SNIFFER);
if (!mdev->dev->of_node ||
!of_property_read_bool(mdev->dev->of_node,
"mediatek,disable-radar-background"))
wiphy_ext_feature_set(wiphy,
NL80211_EXT_FEATURE_RADAR_BACKGROUND);
ieee80211_hw_set(hw, HAS_RATE_CONTROL);
ieee80211_hw_set(hw, SUPPORTS_TX_ENCAP_OFFLOAD);
ieee80211_hw_set(hw, SUPPORTS_RX_DECAP_OFFLOAD);
ieee80211_hw_set(hw, WANT_MONITOR_VIF);
ieee80211_hw_set(hw, SUPPORTS_MULTI_BSSID);
hw->max_tx_fragments = 4;
if (phy->mt76->cap.has_2ghz) {
phy->mt76->sband_2g.sband.ht_cap.cap |=
IEEE80211_HT_CAP_LDPC_CODING |
IEEE80211_HT_CAP_MAX_AMSDU;
phy->mt76->sband_2g.sband.ht_cap.ampdu_density =
IEEE80211_HT_MPDU_DENSITY_2;
}
if (phy->mt76->cap.has_5ghz) {
phy->mt76->sband_5g.sband.ht_cap.cap |=
IEEE80211_HT_CAP_LDPC_CODING |
IEEE80211_HT_CAP_MAX_AMSDU;
phy->mt76->sband_5g.sband.vht_cap.cap |=
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
IEEE80211_VHT_CAP_SHORT_GI_160 |
IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ;
phy->mt76->sband_5g.sband.ht_cap.ampdu_density =
IEEE80211_HT_MPDU_DENSITY_1;
ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW);
}
/* init led callbacks */
if (IS_ENABLED(CONFIG_MT76_LEDS)) {
phy->mt76->leds.cdev.brightness_set = mt7996_led_set_brightness;
phy->mt76->leds.cdev.blink_set = mt7996_led_set_blink;
}
mt76_set_stream_caps(phy->mt76, true);
mt7996_set_stream_vht_txbf_caps(phy);
mt7996_set_stream_he_eht_caps(phy);
mt7996_init_txpower(phy);
wiphy->available_antennas_rx = phy->mt76->antenna_mask;
wiphy->available_antennas_tx = phy->mt76->antenna_mask;
}
static void
mt7996_mac_init_band(struct mt7996_dev *dev, u8 band)
{
u32 mask, set;
/* clear estimated value of EIFS for Rx duration & OBSS time */
mt76_wr(dev, MT_WF_RMAC_RSVD0(band), MT_WF_RMAC_RSVD0_EIFS_CLR);
/* clear backoff time for Rx duration */
mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME1(band),
MT_WF_RMAC_MIB_NONQOSD_BACKOFF);
mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME3(band),
MT_WF_RMAC_MIB_QOS01_BACKOFF);
mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME4(band),
MT_WF_RMAC_MIB_QOS23_BACKOFF);
/* clear backoff time and set software compensation for OBSS time */
mask = MT_WF_RMAC_MIB_OBSS_BACKOFF | MT_WF_RMAC_MIB_ED_OFFSET;
set = FIELD_PREP(MT_WF_RMAC_MIB_OBSS_BACKOFF, 0) |
FIELD_PREP(MT_WF_RMAC_MIB_ED_OFFSET, 4);
mt76_rmw(dev, MT_WF_RMAC_MIB_AIRTIME0(band), mask, set);
/* filter out non-resp frames and get instanstaeous signal reporting */
mask = MT_WTBLOFF_RSCR_RCPI_MODE | MT_WTBLOFF_RSCR_RCPI_PARAM;
set = FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_MODE, 0) |
FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_PARAM, 0x3);
mt76_rmw(dev, MT_WTBLOFF_RSCR(band), mask, set);
/* MT_TXD5_TX_STATUS_HOST (MPDU format) has higher priority than
* MT_AGG_ACR_PPDU_TXS2H (PPDU format) even though ACR bit is set.
*/
mt76_set(dev, MT_AGG_ACR4(band), MT_AGG_ACR_PPDU_TXS2H);
}
static void mt7996_mac_init_basic_rates(struct mt7996_dev *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(mt76_rates); i++) {
u16 rate = mt76_rates[i].hw_value;
/* odd index for driver, even index for firmware */
u16 idx = MT7996_BASIC_RATES_TBL + 2 * i;
rate = FIELD_PREP(MT_TX_RATE_MODE, rate >> 8) |
FIELD_PREP(MT_TX_RATE_IDX, rate & GENMASK(7, 0));
mt7996_mcu_set_fixed_rate_table(&dev->phy, idx, rate, false);
}
}
void mt7996_mac_init(struct mt7996_dev *dev)
{
#define HIF_TXD_V2_1 0x21
int i;
mt76_clear(dev, MT_MDP_DCR2, MT_MDP_DCR2_RX_TRANS_SHORT);
for (i = 0; i < mt7996_wtbl_size(dev); i++)
mt7996_mac_wtbl_update(dev, i,
MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
if (IS_ENABLED(CONFIG_MT76_LEDS)) {
i = dev->mphy.leds.pin ? MT_LED_GPIO_MUX3 : MT_LED_GPIO_MUX2;
mt76_rmw_field(dev, i, MT_LED_GPIO_SEL_MASK, 4);
}
/* rro module init */
if (is_mt7996(&dev->mt76))
mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE, 2);
else
mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE,
dev->hif2 ? 7 : 0);
if (dev->has_rro) {
u16 timeout;
timeout = mt76_rr(dev, MT_HW_REV) == MT_HW_REV1 ? 512 : 128;
mt7996_mcu_set_rro(dev, UNI_RRO_SET_FLUSH_TIMEOUT, timeout);
mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 1);
mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 0);
} else {
mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 3);
mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 1);
}
mt7996_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET),
MCU_WA_PARAM_HW_PATH_HIF_VER,
HIF_TXD_V2_1, 0);
for (i = MT_BAND0; i <= MT_BAND2; i++)
mt7996_mac_init_band(dev, i);
mt7996_mac_init_basic_rates(dev);
}
int mt7996_txbf_init(struct mt7996_dev *dev)
{
int ret;
if (mt7996_band_valid(dev, MT_BAND1) ||
mt7996_band_valid(dev, MT_BAND2)) {
ret = mt7996_mcu_set_txbf(dev, BF_MOD_EN_CTRL);
if (ret)
return ret;
}
/* trigger sounding packets */
ret = mt7996_mcu_set_txbf(dev, BF_SOUNDING_ON);
if (ret)
return ret;
/* enable eBF */
return mt7996_mcu_set_txbf(dev, BF_HW_EN_UPDATE);
}
static int mt7996_register_phy(struct mt7996_dev *dev, struct mt7996_phy *phy,
enum mt76_band_id band)
{
struct mt76_phy *mphy;
u32 mac_ofs, hif1_ofs = 0;
int ret;
struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
if (!mt7996_band_valid(dev, band) || band == MT_BAND0)
return 0;
if (phy)
return 0;
if (is_mt7996(&dev->mt76) && band == MT_BAND2 && dev->hif2) {
hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0);
wed = &dev->mt76.mmio.wed_hif2;
}
mphy = mt76_alloc_phy(&dev->mt76, sizeof(*phy), &mt7996_ops, band);
if (!mphy)
return -ENOMEM;
phy = mphy->priv;
phy->dev = dev;
phy->mt76 = mphy;
mphy->dev->phys[band] = mphy;
INIT_DELAYED_WORK(&mphy->mac_work, mt7996_mac_work);
ret = mt7996_eeprom_parse_hw_cap(dev, phy);
if (ret)
goto error;
mac_ofs = band == MT_BAND2 ? MT_EE_MAC_ADDR3 : MT_EE_MAC_ADDR2;
memcpy(mphy->macaddr, dev->mt76.eeprom.data + mac_ofs, ETH_ALEN);
/* Make the extra PHY MAC address local without overlapping with
* the usual MAC address allocation scheme on multiple virtual interfaces
*/
if (!is_valid_ether_addr(mphy->macaddr)) {
memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR,
ETH_ALEN);
mphy->macaddr[0] |= 2;
mphy->macaddr[0] ^= BIT(7);
if (band == MT_BAND2)
mphy->macaddr[0] ^= BIT(6);
}
mt76_eeprom_override(mphy);
/* init wiphy according to mphy and phy */
mt7996_init_wiphy(mphy->hw, wed);
ret = mt7996_init_tx_queues(mphy->priv,
MT_TXQ_ID(band),
MT7996_TX_RING_SIZE,
MT_TXQ_RING_BASE(band) + hif1_ofs,
wed);
if (ret)
goto error;
ret = mt76_register_phy(mphy, true, mt76_rates,
ARRAY_SIZE(mt76_rates));
if (ret)
goto error;
ret = mt7996_thermal_init(phy);
if (ret)
goto error;
ret = mt7996_init_debugfs(phy);
if (ret)
goto error;
if (wed == &dev->mt76.mmio.wed_hif2 && mtk_wed_device_active(wed)) {
u32 irq_mask = dev->mt76.mmio.irqmask | MT_INT_TX_DONE_BAND2;
mt76_wr(dev, MT_INT1_MASK_CSR, irq_mask);
mtk_wed_device_start(&dev->mt76.mmio.wed_hif2, irq_mask);
}
return 0;
error:
mphy->dev->phys[band] = NULL;
ieee80211_free_hw(mphy->hw);
return ret;
}
static void
mt7996_unregister_phy(struct mt7996_phy *phy, enum mt76_band_id band)
{
struct mt76_phy *mphy;
if (!phy)
return;
mt7996_unregister_thermal(phy);
mphy = phy->dev->mt76.phys[band];
mt76_unregister_phy(mphy);
ieee80211_free_hw(mphy->hw);
phy->dev->mt76.phys[band] = NULL;
}
static void mt7996_init_work(struct work_struct *work)
{
struct mt7996_dev *dev = container_of(work, struct mt7996_dev,
init_work);
mt7996_mcu_set_eeprom(dev);
mt7996_mac_init(dev);
mt7996_txbf_init(dev);
}
void mt7996_wfsys_reset(struct mt7996_dev *dev)
{
mt76_set(dev, MT_WF_SUBSYS_RST, 0x1);
msleep(20);
mt76_clear(dev, MT_WF_SUBSYS_RST, 0x1);
msleep(20);
}
static int mt7996_wed_rro_init(struct mt7996_dev *dev)
{
#ifdef CONFIG_NET_MEDIATEK_SOC_WED
struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
u32 reg = MT_RRO_ADDR_ELEM_SEG_ADDR0;
struct mt7996_wed_rro_addr *addr;
void *ptr;
int i;
if (!dev->has_rro)
return 0;
if (!mtk_wed_device_active(wed))
return 0;
for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
MT7996_RRO_BA_BITMAP_CR_SIZE,
&dev->wed_rro.ba_bitmap[i].phy_addr,
GFP_KERNEL);
if (!ptr)
return -ENOMEM;
dev->wed_rro.ba_bitmap[i].ptr = ptr;
}
for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
int j;
ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr),
&dev->wed_rro.addr_elem[i].phy_addr,
GFP_KERNEL);
if (!ptr)
return -ENOMEM;
dev->wed_rro.addr_elem[i].ptr = ptr;
memset(dev->wed_rro.addr_elem[i].ptr, 0,
MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr));
addr = dev->wed_rro.addr_elem[i].ptr;
for (j = 0; j < MT7996_RRO_WINDOW_MAX_SIZE; j++) {
addr->signature = 0xff;
addr++;
}
wed->wlan.ind_cmd.addr_elem_phys[i] =
dev->wed_rro.addr_elem[i].phy_addr;
}
ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
MT7996_RRO_WINDOW_MAX_LEN * sizeof(*addr),
&dev->wed_rro.session.phy_addr,
GFP_KERNEL);
if (!ptr)
return -ENOMEM;
dev->wed_rro.session.ptr = ptr;
addr = dev->wed_rro.session.ptr;
for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
addr->signature = 0xff;
addr++;
}
/* rro hw init */
/* TODO: remove line after WM has set */
mt76_clear(dev, WF_RRO_AXI_MST_CFG, WF_RRO_AXI_MST_CFG_DIDX_OK);
/* setup BA bitmap cache address */
mt76_wr(dev, MT_RRO_BA_BITMAP_BASE0,
dev->wed_rro.ba_bitmap[0].phy_addr);
mt76_wr(dev, MT_RRO_BA_BITMAP_BASE1, 0);
mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT0,
dev->wed_rro.ba_bitmap[1].phy_addr);
mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT1, 0);
/* setup Address element address */
for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
mt76_wr(dev, reg, dev->wed_rro.addr_elem[i].phy_addr >> 4);
reg += 4;
}
/* setup Address element address - separate address segment mode */
mt76_wr(dev, MT_RRO_ADDR_ARRAY_BASE1,
MT_RRO_ADDR_ARRAY_ELEM_ADDR_SEG_MODE);
wed->wlan.ind_cmd.win_size = ffs(MT7996_RRO_WINDOW_MAX_LEN) - 6;
wed->wlan.ind_cmd.particular_sid = MT7996_RRO_MAX_SESSION;
wed->wlan.ind_cmd.particular_se_phys = dev->wed_rro.session.phy_addr;
wed->wlan.ind_cmd.se_group_nums = MT7996_RRO_ADDR_ELEM_LEN;
wed->wlan.ind_cmd.ack_sn_addr = MT_RRO_ACK_SN_CTRL;
mt76_wr(dev, MT_RRO_IND_CMD_SIGNATURE_BASE0, 0x15010e00);
mt76_set(dev, MT_RRO_IND_CMD_SIGNATURE_BASE1,
MT_RRO_IND_CMD_SIGNATURE_BASE1_EN);
/* particular session configure */
/* use max session idx + 1 as particular session id */
mt76_wr(dev, MT_RRO_PARTICULAR_CFG0, dev->wed_rro.session.phy_addr);
mt76_wr(dev, MT_RRO_PARTICULAR_CFG1,
MT_RRO_PARTICULAR_CONFG_EN |
FIELD_PREP(MT_RRO_PARTICULAR_SID, MT7996_RRO_MAX_SESSION));
/* interrupt enable */
mt76_wr(dev, MT_RRO_HOST_INT_ENA,
MT_RRO_HOST_INT_ENA_HOST_RRO_DONE_ENA);
/* rro ind cmd queue init */
return mt7996_dma_rro_init(dev);
#else
return 0;
#endif
}
static void mt7996_wed_rro_free(struct mt7996_dev *dev)
{
#ifdef CONFIG_NET_MEDIATEK_SOC_WED
int i;
if (!dev->has_rro)
return;
if (!mtk_wed_device_active(&dev->mt76.mmio.wed))
return;
for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
if (!dev->wed_rro.ba_bitmap[i].ptr)
continue;
dmam_free_coherent(dev->mt76.dma_dev,
MT7996_RRO_BA_BITMAP_CR_SIZE,
dev->wed_rro.ba_bitmap[i].ptr,
dev->wed_rro.ba_bitmap[i].phy_addr);
}
for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
if (!dev->wed_rro.addr_elem[i].ptr)
continue;
dmam_free_coherent(dev->mt76.dma_dev,
MT7996_RRO_WINDOW_MAX_SIZE *
sizeof(struct mt7996_wed_rro_addr),
dev->wed_rro.addr_elem[i].ptr,
dev->wed_rro.addr_elem[i].phy_addr);
}
if (!dev->wed_rro.session.ptr)
return;
dmam_free_coherent(dev->mt76.dma_dev,
MT7996_RRO_WINDOW_MAX_LEN *
sizeof(struct mt7996_wed_rro_addr),
dev->wed_rro.session.ptr,
dev->wed_rro.session.phy_addr);
#endif
}
static void mt7996_wed_rro_work(struct work_struct *work)
{
#ifdef CONFIG_NET_MEDIATEK_SOC_WED
struct mt7996_dev *dev;
LIST_HEAD(list);
dev = (struct mt7996_dev *)container_of(work, struct mt7996_dev,
wed_rro.work);
spin_lock_bh(&dev->wed_rro.lock);
list_splice_init(&dev->wed_rro.poll_list, &list);
spin_unlock_bh(&dev->wed_rro.lock);
while (!list_empty(&list)) {
struct mt7996_wed_rro_session_id *e;
int i;
e = list_first_entry(&list, struct mt7996_wed_rro_session_id,
list);
list_del_init(&e->list);
for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
void *ptr = dev->wed_rro.session.ptr;
struct mt7996_wed_rro_addr *elem;
u32 idx, elem_id = i;
if (e->id == MT7996_RRO_MAX_SESSION)
goto reset;
idx = e->id / MT7996_RRO_BA_BITMAP_SESSION_SIZE;
if (idx >= ARRAY_SIZE(dev->wed_rro.addr_elem))
goto out;
ptr = dev->wed_rro.addr_elem[idx].ptr;
elem_id +=
(e->id % MT7996_RRO_BA_BITMAP_SESSION_SIZE) *
MT7996_RRO_WINDOW_MAX_LEN;
reset:
elem = ptr + elem_id * sizeof(*elem);
elem->signature = 0xff;
}
mt7996_mcu_wed_rro_reset_sessions(dev, e->id);
out:
kfree(e);
}
#endif
}
static int mt7996_init_hardware(struct mt7996_dev *dev)
{
int ret, idx;
mt76_wr(dev, MT_INT_SOURCE_CSR, ~0);
if (is_mt7992(&dev->mt76)) {
mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND0), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND1), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
}
INIT_WORK(&dev->init_work, mt7996_init_work);
INIT_WORK(&dev->wed_rro.work, mt7996_wed_rro_work);
INIT_LIST_HEAD(&dev->wed_rro.poll_list);
spin_lock_init(&dev->wed_rro.lock);
ret = mt7996_dma_init(dev);
if (ret)
return ret;
set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
ret = mt7996_mcu_init(dev);
if (ret)
return ret;
ret = mt7996_wed_rro_init(dev);
if (ret)
return ret;
ret = mt7996_eeprom_init(dev);
if (ret < 0)
return ret;
/* Beacon and mgmt frames should occupy wcid 0 */
idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7996_WTBL_STA);
if (idx)
return -ENOSPC;
dev->mt76.global_wcid.idx = idx;
dev->mt76.global_wcid.hw_key_idx = -1;
dev->mt76.global_wcid.tx_info |= MT_WCID_TX_INFO_SET;
rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid);
return 0;
}
void mt7996_set_stream_vht_txbf_caps(struct mt7996_phy *phy)
{
int sts;
u32 *cap;
if (!phy->mt76->cap.has_5ghz)
return;
sts = hweight16(phy->mt76->chainmask);
cap = &phy->mt76->sband_5g.sband.vht_cap.cap;
*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
if (is_mt7996(phy->mt76->dev))
*cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 3);
else
*cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 4);
*cap &= ~(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK |
IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE);
if (sts < 2)
return;
*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE |
FIELD_PREP(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, sts - 1);
}
static void
mt7996_set_stream_he_txbf_caps(struct mt7996_phy *phy,
struct ieee80211_sta_he_cap *he_cap, int vif)
{
struct ieee80211_he_cap_elem *elem = &he_cap->he_cap_elem;
int sts = hweight16(phy->mt76->chainmask);
u8 c;
#ifdef CONFIG_MAC80211_MESH
if (vif == NL80211_IFTYPE_MESH_POINT)
return;
#endif
elem->phy_cap_info[3] &= ~IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
elem->phy_cap_info[4] &= ~IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
c = IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK |
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK;
elem->phy_cap_info[5] &= ~c;
c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
elem->phy_cap_info[6] &= ~c;
elem->phy_cap_info[7] &= ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
c = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO;
elem->phy_cap_info[2] |= c;
c = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE;
if (is_mt7996(phy->mt76->dev))
c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 |
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4;
else
c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 |
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5;
elem->phy_cap_info[4] |= c;
/* do not support NG16 due to spec D4.0 changes subcarrier idx */
c = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU;
if (vif == NL80211_IFTYPE_STATION)
c |= IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO;
elem->phy_cap_info[6] |= c;
if (sts < 2)
return;
/* the maximum cap is 4 x 3, (Nr, Nc) = (3, 2) */
elem->phy_cap_info[7] |= min_t(int, sts - 1, 2) << 3;
if (!(vif == NL80211_IFTYPE_AP || vif == NL80211_IFTYPE_STATION))
return;
elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
c = FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK,
sts - 1) |
FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK,
sts - 1);
elem->phy_cap_info[5] |= c;
if (vif != NL80211_IFTYPE_AP)
return;
elem->phy_cap_info[4] |= IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
elem->phy_cap_info[6] |= c;
c = IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ |
IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
elem->phy_cap_info[7] |= c;
}
static void
mt7996_init_he_caps(struct mt7996_phy *phy, enum nl80211_band band,
struct ieee80211_sband_iftype_data *data,
enum nl80211_iftype iftype)
{
struct ieee80211_sta_he_cap *he_cap = &data->he_cap;
struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem;
struct ieee80211_he_mcs_nss_supp *he_mcs = &he_cap->he_mcs_nss_supp;
int i, nss = hweight8(phy->mt76->antenna_mask);
u16 mcs_map = 0;
for (i = 0; i < 8; i++) {
if (i < nss)
mcs_map |= (IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2));
else
mcs_map |= (IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2));
}
he_cap->has_he = true;
he_cap_elem->mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE;
he_cap_elem->mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
he_cap_elem->mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU;
if (band == NL80211_BAND_2GHZ)
he_cap_elem->phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
else
he_cap_elem->phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
he_cap_elem->phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD;
he_cap_elem->phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
switch (iftype) {
case NL80211_IFTYPE_AP:
he_cap_elem->mac_cap_info[0] |= IEEE80211_HE_MAC_CAP0_TWT_RES;
he_cap_elem->mac_cap_info[2] |= IEEE80211_HE_MAC_CAP2_BSR;
he_cap_elem->mac_cap_info[4] |= IEEE80211_HE_MAC_CAP4_BQR;
he_cap_elem->mac_cap_info[5] |=
IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX;
he_cap_elem->phy_cap_info[3] |=
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
he_cap_elem->phy_cap_info[6] |=
IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
he_cap_elem->phy_cap_info[9] |=
IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
break;
case NL80211_IFTYPE_STATION:
he_cap_elem->mac_cap_info[1] |=
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US;
if (band == NL80211_BAND_2GHZ)
he_cap_elem->phy_cap_info[0] |=
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G;
else
he_cap_elem->phy_cap_info[0] |=
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G;
he_cap_elem->phy_cap_info[1] |=
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US;
he_cap_elem->phy_cap_info[3] |=
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
he_cap_elem->phy_cap_info[6] |=
IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB |
IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
he_cap_elem->phy_cap_info[7] |=
IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI;
he_cap_elem->phy_cap_info[8] |=
IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484;
he_cap_elem->phy_cap_info[9] |=
IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM |
IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU |
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB;
break;
default:
break;
}
he_mcs->rx_mcs_80 = cpu_to_le16(mcs_map);
he_mcs->tx_mcs_80 = cpu_to_le16(mcs_map);
he_mcs->rx_mcs_160 = cpu_to_le16(mcs_map);
he_mcs->tx_mcs_160 = cpu_to_le16(mcs_map);
mt7996_set_stream_he_txbf_caps(phy, he_cap, iftype);
memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres));
if (he_cap_elem->phy_cap_info[6] &
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
mt76_connac_gen_ppe_thresh(he_cap->ppe_thres, nss);
} else {
he_cap_elem->phy_cap_info[9] |=
u8_encode_bits(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US,
IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK);
}
if (band == NL80211_BAND_6GHZ) {
u16 cap = IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS |
IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
cap |= u16_encode_bits(IEEE80211_HT_MPDU_DENSITY_0_5,
IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START) |
u16_encode_bits(IEEE80211_VHT_MAX_AMPDU_1024K,
IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP) |
u16_encode_bits(IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454,
IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
data->he_6ghz_capa.capa = cpu_to_le16(cap);
}
}
static void
mt7996_init_eht_caps(struct mt7996_phy *phy, enum nl80211_band band,
struct ieee80211_sband_iftype_data *data,
enum nl80211_iftype iftype)
{
struct ieee80211_sta_eht_cap *eht_cap = &data->eht_cap;
struct ieee80211_eht_cap_elem_fixed *eht_cap_elem = &eht_cap->eht_cap_elem;
struct ieee80211_eht_mcs_nss_supp *eht_nss = &eht_cap->eht_mcs_nss_supp;
enum nl80211_chan_width width = phy->mt76->chandef.width;
int nss = hweight8(phy->mt76->antenna_mask);
int sts = hweight16(phy->mt76->chainmask);
u8 val;
if (!phy->dev->has_eht)
return;
eht_cap->has_eht = true;
eht_cap_elem->mac_cap_info[0] =
IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
IEEE80211_EHT_MAC_CAP0_OM_CONTROL;
eht_cap_elem->phy_cap_info[0] =
IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE;
/* Set the maximum capability regardless of the antenna configuration. */
val = is_mt7992(phy->mt76->dev) ? 4 : 3;
eht_cap_elem->phy_cap_info[0] |=
u8_encode_bits(u8_get_bits(val, BIT(0)),
IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK);
eht_cap_elem->phy_cap_info[1] =
u8_encode_bits(u8_get_bits(val, GENMASK(2, 1)),
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK) |
u8_encode_bits(val,
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK);
eht_cap_elem->phy_cap_info[2] =
u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK) |
u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK);
if (band == NL80211_BAND_6GHZ) {
eht_cap_elem->phy_cap_info[0] |=
IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
eht_cap_elem->phy_cap_info[1] |=
u8_encode_bits(val,
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK);
eht_cap_elem->phy_cap_info[2] |=
u8_encode_bits(sts - 1,
IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK);
}
eht_cap_elem->phy_cap_info[3] =
IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK;
eht_cap_elem->phy_cap_info[4] =
u8_encode_bits(min_t(int, sts - 1, 2),
IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK);
eht_cap_elem->phy_cap_info[5] =
u8_encode_bits(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US,
IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK) |
u8_encode_bits(u8_get_bits(0x11, GENMASK(1, 0)),
IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK);
val = width == NL80211_CHAN_WIDTH_320 ? 0xf :
width == NL80211_CHAN_WIDTH_160 ? 0x7 :
width == NL80211_CHAN_WIDTH_80 ? 0x3 : 0x1;
eht_cap_elem->phy_cap_info[6] =
u8_encode_bits(u8_get_bits(0x11, GENMASK(4, 2)),
IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK) |
u8_encode_bits(val, IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK);
val = u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_RX) |
u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_TX);
#define SET_EHT_MAX_NSS(_bw, _val) do { \
eht_nss->bw._##_bw.rx_tx_mcs9_max_nss = _val; \
eht_nss->bw._##_bw.rx_tx_mcs11_max_nss = _val; \
eht_nss->bw._##_bw.rx_tx_mcs13_max_nss = _val; \
} while (0)
SET_EHT_MAX_NSS(80, val);
SET_EHT_MAX_NSS(160, val);
if (band == NL80211_BAND_6GHZ)
SET_EHT_MAX_NSS(320, val);
#undef SET_EHT_MAX_NSS
if (iftype != NL80211_IFTYPE_AP)
return;
eht_cap_elem->phy_cap_info[3] |=
IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK;
eht_cap_elem->phy_cap_info[7] =
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ;
if (band != NL80211_BAND_6GHZ)
return;
eht_cap_elem->phy_cap_info[7] |=
IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ |
IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ;
}
static void
__mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy,
struct ieee80211_supported_band *sband,
enum nl80211_band band)
{
struct ieee80211_sband_iftype_data *data = phy->iftype[band];
int i, n = 0;
for (i = 0; i < NUM_NL80211_IFTYPES; i++) {
switch (i) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_AP:
#ifdef CONFIG_MAC80211_MESH
case NL80211_IFTYPE_MESH_POINT:
#endif
break;
default:
continue;
}
data[n].types_mask = BIT(i);
mt7996_init_he_caps(phy, band, &data[n], i);
mt7996_init_eht_caps(phy, band, &data[n], i);
n++;
}
_ieee80211_set_sband_iftype_data(sband, data, n);
}
void mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy)
{
if (phy->mt76->cap.has_2ghz)
__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_2g.sband,
NL80211_BAND_2GHZ);
if (phy->mt76->cap.has_5ghz)
__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_5g.sband,
NL80211_BAND_5GHZ);
if (phy->mt76->cap.has_6ghz)
__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_6g.sband,
NL80211_BAND_6GHZ);
}
int mt7996_register_device(struct mt7996_dev *dev)
{
struct ieee80211_hw *hw = mt76_hw(dev);
int ret;
dev->phy.dev = dev;
dev->phy.mt76 = &dev->mt76.phy;
dev->mt76.phy.priv = &dev->phy;
INIT_WORK(&dev->rc_work, mt7996_mac_sta_rc_work);
INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7996_mac_work);
INIT_LIST_HEAD(&dev->sta_rc_list);
INIT_LIST_HEAD(&dev->twt_list);
init_waitqueue_head(&dev->reset_wait);
INIT_WORK(&dev->reset_work, mt7996_mac_reset_work);
INIT_WORK(&dev->dump_work, mt7996_mac_dump_work);
mutex_init(&dev->dump_mutex);
ret = mt7996_init_hardware(dev);
if (ret)
return ret;
mt7996_init_wiphy(hw, &dev->mt76.mmio.wed);
ret = mt76_register_device(&dev->mt76, true, mt76_rates,
ARRAY_SIZE(mt76_rates));
if (ret)
return ret;
ret = mt7996_thermal_init(&dev->phy);
if (ret)
return ret;
ret = mt7996_register_phy(dev, mt7996_phy2(dev), MT_BAND1);
if (ret)
return ret;
ret = mt7996_register_phy(dev, mt7996_phy3(dev), MT_BAND2);
if (ret)
return ret;
ieee80211_queue_work(mt76_hw(dev), &dev->init_work);
dev->recovery.hw_init_done = true;
ret = mt7996_init_debugfs(&dev->phy);
if (ret)
goto error;
ret = mt7996_coredump_register(dev);
if (ret)
goto error;
return 0;
error:
cancel_work_sync(&dev->init_work);
return ret;
}
void mt7996_unregister_device(struct mt7996_dev *dev)
{
cancel_work_sync(&dev->wed_rro.work);
mt7996_unregister_phy(mt7996_phy3(dev), MT_BAND2);
mt7996_unregister_phy(mt7996_phy2(dev), MT_BAND1);
mt7996_unregister_thermal(&dev->phy);
mt7996_coredump_unregister(dev);
mt76_unregister_device(&dev->mt76);
mt7996_wed_rro_free(dev);
mt7996_mcu_exit(dev);
mt7996_tx_token_put(dev);
mt7996_dma_cleanup(dev);
tasklet_disable(&dev->mt76.irq_tasklet);
mt76_free_device(&dev->mt76);
}