/* Linux device driver for RTL8180 / RTL8185 / RTL8187SE
*
* Copyright 2007 Michael Wu <[email protected]>
* Copyright 2007,2014 Andrea Merello <[email protected]>
*
* Based on the r8180 driver, which is:
* Copyright 2004-2005 Andrea Merello <[email protected]>, et al.
*
* Thanks to Realtek for their support!
*
************************************************************************
*
* The driver was extended to the RTL8187SE in 2014 by
* Andrea Merello <[email protected]>
*
* based also on:
* - portions of rtl8187se Linux staging driver, Copyright Realtek corp.
* (available in drivers/staging/rtl8187se directory of Linux 3.14)
* - other GPL, unpublished (until now), Linux driver code,
* Copyright Larry Finger <[email protected]>
*
* A huge thanks goes to Sara V. Nari who forgives me when I'm
* sitting in front of my laptop at evening, week-end, night...
*
* A special thanks goes to Antonio Cuni, who helped me with
* some python userspace stuff I used to debug RTL8187SE code, and who
* bought a laptop with an unsupported Wi-Fi card some years ago...
*
* Thanks to Larry Finger for writing some code for rtl8187se and for
* his suggestions.
*
* Thanks to Dan Carpenter for reviewing my initial patch and for his
* suggestions.
*
* Thanks to Bernhard Schiffner for his help in testing and for his
* suggestions.
*
************************************************************************
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/eeprom_93cx6.h>
#include <linux/module.h>
#include <net/mac80211.h>
#include "rtl8180.h"
#include "rtl8225.h"
#include "sa2400.h"
#include "max2820.h"
#include "grf5101.h"
#include "rtl8225se.h"
MODULE_AUTHOR("Michael Wu <[email protected]>");
MODULE_AUTHOR("Andrea Merello <[email protected]>");
MODULE_DESCRIPTION("RTL8180 / RTL8185 / RTL8187SE PCI wireless driver");
MODULE_LICENSE("GPL");
static const struct pci_device_id rtl8180_table[] = {
/* rtl8187se */
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8199) },
/* rtl8185 */
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8185) },
{ PCI_DEVICE(PCI_VENDOR_ID_BELKIN, 0x700f) },
{ PCI_DEVICE(PCI_VENDOR_ID_BELKIN, 0x701f) },
/* rtl8180 */
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8180) },
{ PCI_DEVICE(0x1799, 0x6001) },
{ PCI_DEVICE(0x1799, 0x6020) },
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x3300) },
{ PCI_DEVICE(0x1186, 0x3301) },
{ PCI_DEVICE(0x1432, 0x7106) },
{ }
};
MODULE_DEVICE_TABLE(pci, rtl8180_table);
static const struct ieee80211_rate rtl818x_rates[] = {
{ .bitrate = 10, .hw_value = 0, },
{ .bitrate = 20, .hw_value = 1, },
{ .bitrate = 55, .hw_value = 2, },
{ .bitrate = 110, .hw_value = 3, },
{ .bitrate = 60, .hw_value = 4, },
{ .bitrate = 90, .hw_value = 5, },
{ .bitrate = 120, .hw_value = 6, },
{ .bitrate = 180, .hw_value = 7, },
{ .bitrate = 240, .hw_value = 8, },
{ .bitrate = 360, .hw_value = 9, },
{ .bitrate = 480, .hw_value = 10, },
{ .bitrate = 540, .hw_value = 11, },
};
static const struct ieee80211_channel rtl818x_channels[] = {
{ .center_freq = 2412 },
{ .center_freq = 2417 },
{ .center_freq = 2422 },
{ .center_freq = 2427 },
{ .center_freq = 2432 },
{ .center_freq = 2437 },
{ .center_freq = 2442 },
{ .center_freq = 2447 },
{ .center_freq = 2452 },
{ .center_freq = 2457 },
{ .center_freq = 2462 },
{ .center_freq = 2467 },
{ .center_freq = 2472 },
{ .center_freq = 2484 },
};
/* Queues for rtl8187se card
*
* name | reg | queue
* BC | 7 | 6
* MG | 1 | 0
* HI | 6 | 1
* VO | 5 | 2
* VI | 4 | 3
* BE | 3 | 4
* BK | 2 | 5
*
* The complete map for DMA kick reg using use all queue is:
* static const int rtl8187se_queues_map[RTL8187SE_NR_TX_QUEUES] =
* {1, 6, 5, 4, 3, 2, 7};
*
* .. but.. Because for mac80211 4 queues are enough for QoS we use this
*
* name | reg | queue
* BC | 7 | 4 <- currently not used yet
* MG | 1 | x <- Not used
* HI | 6 | x <- Not used
* VO | 5 | 0 <- used
* VI | 4 | 1 <- used
* BE | 3 | 2 <- used
* BK | 2 | 3 <- used
*
* Beacon queue could be used, but this is not finished yet.
*
* I thougth about using the other two queues but I decided not to do this:
*
* - I'm unsure whether the mac80211 will ever try to use more than 4 queues
* by itself.
*
* - I could route MGMT frames (currently sent over VO queue) to the MGMT
* queue but since mac80211 will do not know about it, I will probably gain
* some HW priority whenever the VO queue is not empty, but this gain is
* limited by the fact that I had to stop the mac80211 queue whenever one of
* the VO or MGMT queues is full, stopping also submitting of MGMT frame
* to the driver.
*
* - I don't know how to set in the HW the contention window params for MGMT
* and HI-prio queues.
*/
static const int rtl8187se_queues_map[RTL8187SE_NR_TX_QUEUES] = {5, 4, 3, 2, 7};
/* Queues for rtl8180/rtl8185 cards
*
* name | reg | prio
* BC | 7 | 3
* HI | 6 | 0
* NO | 5 | 1
* LO | 4 | 2
*
* The complete map for DMA kick reg using all queue is:
* static const int rtl8180_queues_map[RTL8180_NR_TX_QUEUES] = {6, 5, 4, 7};
*
* .. but .. Because the mac80211 needs at least 4 queues for QoS or
* otherwise QoS can't be done, we use just one.
* Beacon queue could be used, but this is not finished yet.
* Actual map is:
*
* name | reg | prio
* BC | 7 | 1 <- currently not used yet.
* HI | 6 | x <- not used
* NO | 5 | x <- not used
* LO | 4 | 0 <- used
*/
static const int rtl8180_queues_map[RTL8180_NR_TX_QUEUES] = {4, 7};
/* LNA gain table for rtl8187se */
static const u8 rtl8187se_lna_gain[4] = {02, 17, 29, 39};
void rtl8180_write_phy(struct ieee80211_hw *dev, u8 addr, u32 data)
{
struct rtl8180_priv *priv = dev->priv;
int i = 10;
u32 buf;
buf = (data << 8) | addr;
rtl818x_iowrite32(priv, (__le32 __iomem *)&priv->map->PHY[0], buf | 0x80);
while (i--) {
rtl818x_iowrite32(priv, (__le32 __iomem *)&priv->map->PHY[0], buf);
if (rtl818x_ioread8(priv, &priv->map->PHY[2]) == (data & 0xFF))
return;
}
}
static void rtl8180_handle_rx(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl818x_rx_cmd_desc *cmd_desc;
unsigned int count = 32;
u8 agc, sq;
s8 signal = 1;
dma_addr_t mapping;
while (count--) {
void *entry = priv->rx_ring + priv->rx_idx * priv->rx_ring_sz;
struct sk_buff *skb = priv->rx_buf[priv->rx_idx];
u32 flags, flags2, flags3 = 0;
u64 tsft;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
struct rtl8187se_rx_desc *desc = entry;
flags = le32_to_cpu(desc->flags);
/* if ownership flag is set, then we can trust the
* HW has written other fields. We must not trust
* other descriptor data read before we checked (read)
* the ownership flag
*/
rmb();
flags3 = le32_to_cpu(desc->flags3);
flags2 = le32_to_cpu(desc->flags2);
tsft = le64_to_cpu(desc->tsft);
} else {
struct rtl8180_rx_desc *desc = entry;
flags = le32_to_cpu(desc->flags);
/* same as above */
rmb();
flags2 = le32_to_cpu(desc->flags2);
tsft = le64_to_cpu(desc->tsft);
}
if (flags & RTL818X_RX_DESC_FLAG_OWN)
return;
if (unlikely(flags & (RTL818X_RX_DESC_FLAG_DMA_FAIL |
RTL818X_RX_DESC_FLAG_FOF |
RTL818X_RX_DESC_FLAG_RX_ERR)))
goto done;
else {
struct ieee80211_rx_status rx_status = {0};
struct sk_buff *new_skb = dev_alloc_skb(MAX_RX_SIZE);
if (unlikely(!new_skb))
goto done;
mapping = dma_map_single(&priv->pdev->dev,
skb_tail_pointer(new_skb),
MAX_RX_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(&priv->pdev->dev, mapping)) {
kfree_skb(new_skb);
dev_err(&priv->pdev->dev, "RX DMA map error\n");
goto done;
}
dma_unmap_single(&priv->pdev->dev,
*((dma_addr_t *)skb->cb),
MAX_RX_SIZE, DMA_FROM_DEVICE);
skb_put(skb, flags & 0xFFF);
rx_status.antenna = (flags2 >> 15) & 1;
rx_status.rate_idx = (flags >> 20) & 0xF;
agc = (flags2 >> 17) & 0x7F;
switch (priv->chip_family) {
case RTL818X_CHIP_FAMILY_RTL8185:
if (rx_status.rate_idx > 3)
signal = -clamp_t(u8, agc, 25, 90) - 9;
else
signal = -clamp_t(u8, agc, 30, 95);
break;
case RTL818X_CHIP_FAMILY_RTL8180:
sq = flags2 & 0xff;
signal = priv->rf->calc_rssi(agc, sq);
break;
case RTL818X_CHIP_FAMILY_RTL8187SE:
/* OFDM measure reported by HW is signed,
* in 0.5dBm unit, with zero centered @ -41dBm
* input signal.
*/
if (rx_status.rate_idx > 3) {
signal = (s8)((flags3 >> 16) & 0xff);
signal = signal / 2 - 41;
} else {
int idx, bb;
idx = (agc & 0x60) >> 5;
bb = (agc & 0x1F) * 2;
/* bias + BB gain + LNA gain */
signal = 4 - bb - rtl8187se_lna_gain[idx];
}
break;
}
rx_status.signal = signal;
rx_status.freq = dev->conf.chandef.chan->center_freq;
rx_status.band = dev->conf.chandef.chan->band;
rx_status.mactime = tsft;
rx_status.flag |= RX_FLAG_MACTIME_START;
if (flags & RTL818X_RX_DESC_FLAG_SPLCP)
rx_status.enc_flags |= RX_ENC_FLAG_SHORTPRE;
if (flags & RTL818X_RX_DESC_FLAG_CRC32_ERR)
rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));
ieee80211_rx_irqsafe(dev, skb);
skb = new_skb;
priv->rx_buf[priv->rx_idx] = skb;
*((dma_addr_t *) skb->cb) = mapping;
}
done:
cmd_desc = entry;
cmd_desc->rx_buf = cpu_to_le32(*((dma_addr_t *)skb->cb));
cmd_desc->flags = cpu_to_le32(RTL818X_RX_DESC_FLAG_OWN |
MAX_RX_SIZE);
if (priv->rx_idx == 31)
cmd_desc->flags |=
cpu_to_le32(RTL818X_RX_DESC_FLAG_EOR);
priv->rx_idx = (priv->rx_idx + 1) % 32;
}
}
static void rtl8180_handle_tx(struct ieee80211_hw *dev, unsigned int prio)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_tx_ring *ring = &priv->tx_ring[prio];
while (skb_queue_len(&ring->queue)) {
struct rtl8180_tx_desc *entry = &ring->desc[ring->idx];
struct sk_buff *skb;
struct ieee80211_tx_info *info;
u32 flags = le32_to_cpu(entry->flags);
if (flags & RTL818X_TX_DESC_FLAG_OWN)
return;
ring->idx = (ring->idx + 1) % ring->entries;
skb = __skb_dequeue(&ring->queue);
dma_unmap_single(&priv->pdev->dev, le32_to_cpu(entry->tx_buf),
skb->len, DMA_TO_DEVICE);
info = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(info);
if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
(flags & RTL818X_TX_DESC_FLAG_TX_OK))
info->flags |= IEEE80211_TX_STAT_ACK;
info->status.rates[0].count = (flags & 0xFF) + 1;
ieee80211_tx_status_irqsafe(dev, skb);
if (ring->entries - skb_queue_len(&ring->queue) == 2)
ieee80211_wake_queue(dev, prio);
}
}
static irqreturn_t rtl8187se_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *dev = dev_id;
struct rtl8180_priv *priv = dev->priv;
u32 reg;
unsigned long flags;
static int desc_err;
spin_lock_irqsave(&priv->lock, flags);
/* Note: 32-bit interrupt status */
reg = rtl818x_ioread32(priv, &priv->map->INT_STATUS_SE);
if (unlikely(reg == 0xFFFFFFFF)) {
spin_unlock_irqrestore(&priv->lock, flags);
return IRQ_HANDLED;
}
rtl818x_iowrite32(priv, &priv->map->INT_STATUS_SE, reg);
if (reg & IMR_TIMEOUT1)
rtl818x_iowrite32(priv, &priv->map->INT_TIMEOUT, 0);
if (reg & (IMR_TBDOK | IMR_TBDER))
rtl8180_handle_tx(dev, 4);
if (reg & (IMR_TVODOK | IMR_TVODER))
rtl8180_handle_tx(dev, 0);
if (reg & (IMR_TVIDOK | IMR_TVIDER))
rtl8180_handle_tx(dev, 1);
if (reg & (IMR_TBEDOK | IMR_TBEDER))
rtl8180_handle_tx(dev, 2);
if (reg & (IMR_TBKDOK | IMR_TBKDER))
rtl8180_handle_tx(dev, 3);
if (reg & (IMR_ROK | IMR_RER | RTL818X_INT_SE_RX_DU | IMR_RQOSOK))
rtl8180_handle_rx(dev);
/* The interface sometimes generates several RX DMA descriptor errors
* at startup. Do not report these.
*/
if ((reg & RTL818X_INT_SE_RX_DU) && desc_err++ > 2)
if (net_ratelimit())
wiphy_err(dev->wiphy, "No RX DMA Descriptor avail\n");
spin_unlock_irqrestore(&priv->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t rtl8180_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *dev = dev_id;
struct rtl8180_priv *priv = dev->priv;
u16 reg;
spin_lock(&priv->lock);
reg = rtl818x_ioread16(priv, &priv->map->INT_STATUS);
if (unlikely(reg == 0xFFFF)) {
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
rtl818x_iowrite16(priv, &priv->map->INT_STATUS, reg);
if (reg & (RTL818X_INT_TXB_OK | RTL818X_INT_TXB_ERR))
rtl8180_handle_tx(dev, 1);
if (reg & (RTL818X_INT_TXL_OK | RTL818X_INT_TXL_ERR))
rtl8180_handle_tx(dev, 0);
if (reg & (RTL818X_INT_RX_OK | RTL818X_INT_RX_ERR))
rtl8180_handle_rx(dev);
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
static void rtl8180_tx(struct ieee80211_hw *dev,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_tx_ring *ring;
struct rtl8180_tx_desc *entry;
unsigned int prio = 0;
unsigned long flags;
unsigned int idx, hw_prio;
dma_addr_t mapping;
u32 tx_flags;
u8 rc_flags;
u16 plcp_len = 0;
__le16 rts_duration = 0;
/* do arithmetic and then convert to le16 */
u16 frame_duration = 0;
/* rtl8180/rtl8185 only has one useable tx queue */
if (dev->queues > IEEE80211_AC_BK)
prio = skb_get_queue_mapping(skb);
ring = &priv->tx_ring[prio];
mapping = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
if (dma_mapping_error(&priv->pdev->dev, mapping)) {
kfree_skb(skb);
dev_err(&priv->pdev->dev, "TX DMA mapping error\n");
return;
}
tx_flags = RTL818X_TX_DESC_FLAG_OWN | RTL818X_TX_DESC_FLAG_FS |
RTL818X_TX_DESC_FLAG_LS |
(ieee80211_get_tx_rate(dev, info)->hw_value << 24) |
skb->len;
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180)
tx_flags |= RTL818X_TX_DESC_FLAG_DMA |
RTL818X_TX_DESC_FLAG_NO_ENC;
rc_flags = info->control.rates[0].flags;
/* HW will perform RTS-CTS when only RTS flags is set.
* HW will perform CTS-to-self when both RTS and CTS flags are set.
* RTS rate and RTS duration will be used also for CTS-to-self.
*/
if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
tx_flags |= RTL818X_TX_DESC_FLAG_RTS;
tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
rts_duration = ieee80211_rts_duration(dev, priv->vif,
skb->len, info);
} else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
tx_flags |= RTL818X_TX_DESC_FLAG_RTS | RTL818X_TX_DESC_FLAG_CTS;
tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
rts_duration = ieee80211_ctstoself_duration(dev, priv->vif,
skb->len, info);
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180) {
unsigned int remainder;
plcp_len = DIV_ROUND_UP(16 * (skb->len + 4),
(ieee80211_get_tx_rate(dev, info)->bitrate * 2) / 10);
remainder = (16 * (skb->len + 4)) %
((ieee80211_get_tx_rate(dev, info)->bitrate * 2) / 10);
if (remainder <= 6)
plcp_len |= 1 << 15;
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
__le16 duration;
/* SIFS time (required by HW) is already included by
* ieee80211_generic_frame_duration
*/
duration = ieee80211_generic_frame_duration(dev, priv->vif,
NL80211_BAND_2GHZ, skb->len,
ieee80211_get_tx_rate(dev, info));
frame_duration = priv->ack_time + le16_to_cpu(duration);
}
spin_lock_irqsave(&priv->lock, flags);
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
priv->seqno += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
}
idx = (ring->idx + skb_queue_len(&ring->queue)) % ring->entries;
entry = &ring->desc[idx];
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
entry->frame_duration = cpu_to_le16(frame_duration);
entry->frame_len_se = cpu_to_le16(skb->len);
/* tpc polarity */
entry->flags3 = cpu_to_le16(1<<4);
} else
entry->frame_len = cpu_to_le32(skb->len);
entry->rts_duration = rts_duration;
entry->plcp_len = cpu_to_le16(plcp_len);
entry->tx_buf = cpu_to_le32(mapping);
entry->retry_limit = info->control.rates[0].count - 1;
/* We must be sure that tx_flags is written last because the HW
* looks at it to check if the rest of data is valid or not
*/
wmb();
entry->flags = cpu_to_le32(tx_flags);
/* We must be sure this has been written before followings HW
* register write, because this write will made the HW attempts
* to DMA the just-written data
*/
wmb();
__skb_queue_tail(&ring->queue, skb);
if (ring->entries - skb_queue_len(&ring->queue) < 2)
ieee80211_stop_queue(dev, prio);
spin_unlock_irqrestore(&priv->lock, flags);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
/* just poll: rings are stopped with TPPollStop reg */
hw_prio = rtl8187se_queues_map[prio];
rtl818x_iowrite8(priv, &priv->map->TX_DMA_POLLING,
(1 << hw_prio));
} else {
hw_prio = rtl8180_queues_map[prio];
rtl818x_iowrite8(priv, &priv->map->TX_DMA_POLLING,
(1 << hw_prio) | /* ring to poll */
(1<<1) | (1<<2));/* stopped rings */
}
}
static void rtl8180_set_anaparam3(struct rtl8180_priv *priv, u16 anaparam3)
{
u8 reg;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg | RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite16(priv, &priv->map->ANAPARAM3, anaparam3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg & ~RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_NORMAL);
}
void rtl8180_set_anaparam2(struct rtl8180_priv *priv, u32 anaparam2)
{
u8 reg;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg | RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite32(priv, &priv->map->ANAPARAM2, anaparam2);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg & ~RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_NORMAL);
}
void rtl8180_set_anaparam(struct rtl8180_priv *priv, u32 anaparam)
{
u8 reg;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg | RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite32(priv, &priv->map->ANAPARAM, anaparam);
rtl818x_iowrite8(priv, &priv->map->CONFIG3,
reg & ~RTL818X_CONFIG3_ANAPARAM_WRITE);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
}
static void rtl8187se_mac_config(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
u8 reg;
rtl818x_iowrite32(priv, REG_ADDR4(0x1F0), 0);
rtl818x_ioread32(priv, REG_ADDR4(0x1F0));
rtl818x_iowrite32(priv, REG_ADDR4(0x1F4), 0);
rtl818x_ioread32(priv, REG_ADDR4(0x1F4));
rtl818x_iowrite8(priv, REG_ADDR1(0x1F8), 0);
rtl818x_ioread8(priv, REG_ADDR1(0x1F8));
/* Enable DA10 TX power saving */
reg = rtl818x_ioread8(priv, &priv->map->PHY_PR);
rtl818x_iowrite8(priv, &priv->map->PHY_PR, reg | 0x04);
/* Power */
rtl818x_iowrite16(priv, PI_DATA_REG, 0x1000);
rtl818x_iowrite16(priv, SI_DATA_REG, 0x1000);
/* AFE - default to power ON */
rtl818x_iowrite16(priv, REG_ADDR2(0x370), 0x0560);
rtl818x_iowrite16(priv, REG_ADDR2(0x372), 0x0560);
rtl818x_iowrite16(priv, REG_ADDR2(0x374), 0x0DA4);
rtl818x_iowrite16(priv, REG_ADDR2(0x376), 0x0DA4);
rtl818x_iowrite16(priv, REG_ADDR2(0x378), 0x0560);
rtl818x_iowrite16(priv, REG_ADDR2(0x37A), 0x0560);
rtl818x_iowrite16(priv, REG_ADDR2(0x37C), 0x00EC);
rtl818x_iowrite16(priv, REG_ADDR2(0x37E), 0x00EC);
rtl818x_iowrite8(priv, REG_ADDR1(0x24E), 0x01);
/* unknown, needed for suspend to RAM resume */
rtl818x_iowrite8(priv, REG_ADDR1(0x0A), 0x72);
}
static void rtl8187se_set_antenna_config(struct ieee80211_hw *dev, u8 def_ant,
bool diversity)
{
struct rtl8180_priv *priv = dev->priv;
rtl8225_write_phy_cck(dev, 0x0C, 0x09);
if (diversity) {
if (def_ant == 1) {
rtl818x_iowrite8(priv, &priv->map->TX_ANTENNA, 0x00);
rtl8225_write_phy_cck(dev, 0x11, 0xBB);
rtl8225_write_phy_cck(dev, 0x01, 0xC7);
rtl8225_write_phy_ofdm(dev, 0x0D, 0x54);
rtl8225_write_phy_ofdm(dev, 0x18, 0xB2);
} else { /* main antenna */
rtl818x_iowrite8(priv, &priv->map->TX_ANTENNA, 0x03);
rtl8225_write_phy_cck(dev, 0x11, 0x9B);
rtl8225_write_phy_cck(dev, 0x01, 0xC7);
rtl8225_write_phy_ofdm(dev, 0x0D, 0x5C);
rtl8225_write_phy_ofdm(dev, 0x18, 0xB2);
}
} else { /* disable antenna diversity */
if (def_ant == 1) {
rtl818x_iowrite8(priv, &priv->map->TX_ANTENNA, 0x00);
rtl8225_write_phy_cck(dev, 0x11, 0xBB);
rtl8225_write_phy_cck(dev, 0x01, 0x47);
rtl8225_write_phy_ofdm(dev, 0x0D, 0x54);
rtl8225_write_phy_ofdm(dev, 0x18, 0x32);
} else { /* main antenna */
rtl818x_iowrite8(priv, &priv->map->TX_ANTENNA, 0x03);
rtl8225_write_phy_cck(dev, 0x11, 0x9B);
rtl8225_write_phy_cck(dev, 0x01, 0x47);
rtl8225_write_phy_ofdm(dev, 0x0D, 0x5C);
rtl8225_write_phy_ofdm(dev, 0x18, 0x32);
}
}
/* priv->curr_ant = def_ant; */
}
static void rtl8180_int_enable(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
rtl818x_iowrite32(priv, &priv->map->IMR,
IMR_TBDER | IMR_TBDOK |
IMR_TVODER | IMR_TVODOK |
IMR_TVIDER | IMR_TVIDOK |
IMR_TBEDER | IMR_TBEDOK |
IMR_TBKDER | IMR_TBKDOK |
IMR_RDU | IMR_RER |
IMR_ROK | IMR_RQOSOK);
} else {
rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0xFFFF);
}
}
static void rtl8180_int_disable(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
rtl818x_iowrite32(priv, &priv->map->IMR, 0);
} else {
rtl818x_iowrite16(priv, &priv->map->INT_MASK, 0);
}
}
static void rtl8180_conf_basic_rates(struct ieee80211_hw *dev,
u32 basic_mask)
{
struct rtl8180_priv *priv = dev->priv;
u16 reg;
u32 resp_mask;
u8 basic_max;
u8 resp_max, resp_min;
resp_mask = basic_mask;
/* IEEE80211 says the response rate should be equal to the highest basic
* rate that is not faster than received frame. But it says also that if
* the basic rate set does not contains any rate for the current
* modulation class then mandatory rate set must be used for that
* modulation class. Eventually add OFDM mandatory rates..
*/
if ((resp_mask & 0xf) == resp_mask)
resp_mask |= 0x150; /* 6, 12, 24Mbps */
switch (priv->chip_family) {
case RTL818X_CHIP_FAMILY_RTL8180:
/* in 8180 this is NOT a BITMAP */
basic_max = fls(basic_mask) - 1;
reg = rtl818x_ioread16(priv, &priv->map->BRSR);
reg &= ~3;
reg |= basic_max;
rtl818x_iowrite16(priv, &priv->map->BRSR, reg);
break;
case RTL818X_CHIP_FAMILY_RTL8185:
resp_max = fls(resp_mask) - 1;
resp_min = ffs(resp_mask) - 1;
/* in 8185 this is a BITMAP */
rtl818x_iowrite16(priv, &priv->map->BRSR, basic_mask);
rtl818x_iowrite8(priv, &priv->map->RESP_RATE, (resp_max << 4) |
resp_min);
break;
case RTL818X_CHIP_FAMILY_RTL8187SE:
/* in 8187se this is a BITMAP. BRSR reg actually sets
* response rates.
*/
rtl818x_iowrite16(priv, &priv->map->BRSR_8187SE, resp_mask);
break;
}
}
static void rtl8180_config_cardbus(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
u16 reg16;
u8 reg8;
reg8 = rtl818x_ioread8(priv, &priv->map->CONFIG3);
reg8 |= 1 << 1;
rtl818x_iowrite8(priv, &priv->map->CONFIG3, reg8);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
rtl818x_iowrite16(priv, FEMR_SE, 0xffff);
} else {
reg16 = rtl818x_ioread16(priv, &priv->map->FEMR);
reg16 |= (1 << 15) | (1 << 14) | (1 << 4);
rtl818x_iowrite16(priv, &priv->map->FEMR, reg16);
}
}
static int rtl8180_init_hw(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
u16 reg;
u32 reg32;
rtl818x_iowrite8(priv, &priv->map->CMD, 0);
rtl818x_ioread8(priv, &priv->map->CMD);
msleep(10);
/* reset */
rtl8180_int_disable(dev);
rtl818x_ioread8(priv, &priv->map->CMD);
reg = rtl818x_ioread8(priv, &priv->map->CMD);
reg &= (1 << 1);
reg |= RTL818X_CMD_RESET;
rtl818x_iowrite8(priv, &priv->map->CMD, RTL818X_CMD_RESET);
rtl818x_ioread8(priv, &priv->map->CMD);
msleep(200);
/* check success of reset */
if (rtl818x_ioread8(priv, &priv->map->CMD) & RTL818X_CMD_RESET) {
wiphy_err(dev->wiphy, "reset timeout!\n");
return -ETIMEDOUT;
}
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_LOAD);
rtl818x_ioread8(priv, &priv->map->CMD);
msleep(200);
if (rtl818x_ioread8(priv, &priv->map->CONFIG3) & (1 << 3)) {
rtl8180_config_cardbus(dev);
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
rtl818x_iowrite8(priv, &priv->map->MSR, RTL818X_MSR_ENEDCA);
else
rtl818x_iowrite8(priv, &priv->map->MSR, 0);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180)
rtl8180_set_anaparam(priv, priv->anaparam);
rtl818x_iowrite32(priv, &priv->map->RDSAR, priv->rx_ring_dma);
/* mac80211 queue have higher prio for lower index. The last queue
* (that mac80211 is not aware of) is reserved for beacons (and have
* the highest priority on the NIC)
*/
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8187SE) {
rtl818x_iowrite32(priv, &priv->map->TBDA,
priv->tx_ring[1].dma);
rtl818x_iowrite32(priv, &priv->map->TLPDA,
priv->tx_ring[0].dma);
} else {
rtl818x_iowrite32(priv, &priv->map->TBDA,
priv->tx_ring[4].dma);
rtl818x_iowrite32(priv, &priv->map->TVODA,
priv->tx_ring[0].dma);
rtl818x_iowrite32(priv, &priv->map->TVIDA,
priv->tx_ring[1].dma);
rtl818x_iowrite32(priv, &priv->map->TBEDA,
priv->tx_ring[2].dma);
rtl818x_iowrite32(priv, &priv->map->TBKDA,
priv->tx_ring[3].dma);
}
/* TODO: necessary? specs indicate not */
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG2);
rtl818x_iowrite8(priv, &priv->map->CONFIG2, reg & ~(1 << 3));
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8185) {
reg = rtl818x_ioread8(priv, &priv->map->CONFIG2);
rtl818x_iowrite8(priv, &priv->map->CONFIG2, reg | (1 << 4));
}
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
/* TODO: set CONFIG5 for calibrating AGC on rtl8180 + philips radio? */
/* TODO: turn off hw wep on rtl8180 */
rtl818x_iowrite32(priv, &priv->map->INT_TIMEOUT, 0);
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180) {
rtl818x_iowrite8(priv, &priv->map->WPA_CONF, 0);
rtl818x_iowrite8(priv, &priv->map->RATE_FALLBACK, 0);
} else {
rtl818x_iowrite8(priv, &priv->map->SECURITY, 0);
rtl818x_iowrite8(priv, &priv->map->PHY_DELAY, 0x6);
rtl818x_iowrite8(priv, &priv->map->CARRIER_SENSE_COUNTER, 0x4C);
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8185) {
/* TODO: set ClkRun enable? necessary? */
reg = rtl818x_ioread8(priv, &priv->map->GP_ENABLE);
rtl818x_iowrite8(priv, &priv->map->GP_ENABLE, reg & ~(1 << 6));
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG3);
rtl818x_iowrite8(priv, &priv->map->CONFIG3, reg | (1 << 2));
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
/* fix eccessive IFS after CTS-to-self */
if (priv->map_pio) {
u8 reg;
reg = rtl818x_ioread8(priv, &priv->map->PGSELECT);
rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg | 1);
rtl818x_iowrite8(priv, REG_ADDR1(0xff), 0x35);
rtl818x_iowrite8(priv, &priv->map->PGSELECT, reg);
} else
rtl818x_iowrite8(priv, REG_ADDR1(0x1ff), 0x35);
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
/* the set auto rate fallback bitmask from 1M to 54 Mb/s */
rtl818x_iowrite16(priv, ARFR, 0xFFF);
rtl818x_ioread16(priv, ARFR);
/* stop unused queus (no dma alloc) */
rtl818x_iowrite8(priv, &priv->map->TPPOLL_STOP,
RTL818x_TPPOLL_STOP_MG | RTL818x_TPPOLL_STOP_HI);
rtl818x_iowrite8(priv, &priv->map->ACM_CONTROL, 0x00);
rtl818x_iowrite16(priv, &priv->map->TID_AC_MAP, 0xFA50);
rtl818x_iowrite16(priv, &priv->map->INT_MIG, 0);
/* some black magic here.. */
rtl8187se_mac_config(dev);
rtl818x_iowrite16(priv, RFSW_CTRL, 0x569A);
rtl818x_ioread16(priv, RFSW_CTRL);
rtl8180_set_anaparam(priv, RTL8225SE_ANAPARAM_ON);
rtl8180_set_anaparam2(priv, RTL8225SE_ANAPARAM2_ON);
rtl8180_set_anaparam3(priv, RTL8225SE_ANAPARAM3);
rtl818x_iowrite8(priv, &priv->map->CONFIG5,
rtl818x_ioread8(priv, &priv->map->CONFIG5) & 0x7F);
/*probably this switch led on */
rtl818x_iowrite8(priv, &priv->map->PGSELECT,
rtl818x_ioread8(priv, &priv->map->PGSELECT) | 0x08);
rtl818x_iowrite16(priv, &priv->map->RFPinsOutput, 0x0480);
rtl818x_iowrite16(priv, &priv->map->RFPinsEnable, 0x1BFF);
rtl818x_iowrite16(priv, &priv->map->RFPinsSelect, 0x2488);
rtl818x_iowrite32(priv, &priv->map->RF_TIMING, 0x4003);
/* the reference code mac hardcode table write
* this reg by doing byte-wide accesses.
* It does it just for lowest and highest byte..
*/
reg32 = rtl818x_ioread32(priv, &priv->map->RF_PARA);
reg32 &= 0x00ffff00;
reg32 |= 0xb8000054;
rtl818x_iowrite32(priv, &priv->map->RF_PARA, reg32);
} else
/* stop unused queus (no dma alloc) */
rtl818x_iowrite8(priv, &priv->map->TX_DMA_POLLING,
(1<<1) | (1<<2));
priv->rf->init(dev);
/* default basic rates are 1,2 Mbps for rtl8180. 1,2,6,9,12,18,24 Mbps
* otherwise. bitmask 0x3 and 0x01f3 respectively.
* NOTE: currenty rtl8225 RF code changes basic rates, so we need to do
* this after rf init.
* TODO: try to find out whether RF code really needs to do this..
*/
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180)
rtl8180_conf_basic_rates(dev, 0x3);
else
rtl8180_conf_basic_rates(dev, 0x1f3);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
rtl8187se_set_antenna_config(dev,
priv->antenna_diversity_default,
priv->antenna_diversity_en);
return 0;
}
static int rtl8180_init_rx_ring(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl818x_rx_cmd_desc *entry;
int i;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
priv->rx_ring_sz = sizeof(struct rtl8187se_rx_desc);
else
priv->rx_ring_sz = sizeof(struct rtl8180_rx_desc);
priv->rx_ring = dma_alloc_coherent(&priv->pdev->dev,
priv->rx_ring_sz * 32,
&priv->rx_ring_dma, GFP_KERNEL);
if (!priv->rx_ring || (unsigned long)priv->rx_ring & 0xFF) {
wiphy_err(dev->wiphy, "Cannot allocate RX ring\n");
return -ENOMEM;
}
priv->rx_idx = 0;
for (i = 0; i < 32; i++) {
struct sk_buff *skb = dev_alloc_skb(MAX_RX_SIZE);
dma_addr_t *mapping;
entry = priv->rx_ring + priv->rx_ring_sz*i;
if (!skb) {
dma_free_coherent(&priv->pdev->dev,
priv->rx_ring_sz * 32,
priv->rx_ring, priv->rx_ring_dma);
wiphy_err(dev->wiphy, "Cannot allocate RX skb\n");
return -ENOMEM;
}
priv->rx_buf[i] = skb;
mapping = (dma_addr_t *)skb->cb;
*mapping = dma_map_single(&priv->pdev->dev,
skb_tail_pointer(skb), MAX_RX_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(&priv->pdev->dev, *mapping)) {
kfree_skb(skb);
dma_free_coherent(&priv->pdev->dev,
priv->rx_ring_sz * 32,
priv->rx_ring, priv->rx_ring_dma);
wiphy_err(dev->wiphy, "Cannot map DMA for RX skb\n");
return -ENOMEM;
}
entry->rx_buf = cpu_to_le32(*mapping);
entry->flags = cpu_to_le32(RTL818X_RX_DESC_FLAG_OWN |
MAX_RX_SIZE);
}
entry->flags |= cpu_to_le32(RTL818X_RX_DESC_FLAG_EOR);
return 0;
}
static void rtl8180_free_rx_ring(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
int i;
for (i = 0; i < 32; i++) {
struct sk_buff *skb = priv->rx_buf[i];
if (!skb)
continue;
dma_unmap_single(&priv->pdev->dev, *((dma_addr_t *)skb->cb),
MAX_RX_SIZE, DMA_FROM_DEVICE);
kfree_skb(skb);
}
dma_free_coherent(&priv->pdev->dev, priv->rx_ring_sz * 32,
priv->rx_ring, priv->rx_ring_dma);
priv->rx_ring = NULL;
}
static int rtl8180_init_tx_ring(struct ieee80211_hw *dev,
unsigned int prio, unsigned int entries)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_tx_desc *ring;
dma_addr_t dma;
int i;
ring = dma_alloc_coherent(&priv->pdev->dev, sizeof(*ring) * entries,
&dma, GFP_KERNEL);
if (!ring || (unsigned long)ring & 0xFF) {
wiphy_err(dev->wiphy, "Cannot allocate TX ring (prio = %d)\n",
prio);
return -ENOMEM;
}
priv->tx_ring[prio].desc = ring;
priv->tx_ring[prio].dma = dma;
priv->tx_ring[prio].idx = 0;
priv->tx_ring[prio].entries = entries;
skb_queue_head_init(&priv->tx_ring[prio].queue);
for (i = 0; i < entries; i++)
ring[i].next_tx_desc =
cpu_to_le32((u32)dma + ((i + 1) % entries) * sizeof(*ring));
return 0;
}
static void rtl8180_free_tx_ring(struct ieee80211_hw *dev, unsigned int prio)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_tx_ring *ring = &priv->tx_ring[prio];
while (skb_queue_len(&ring->queue)) {
struct rtl8180_tx_desc *entry = &ring->desc[ring->idx];
struct sk_buff *skb = __skb_dequeue(&ring->queue);
dma_unmap_single(&priv->pdev->dev, le32_to_cpu(entry->tx_buf),
skb->len, DMA_TO_DEVICE);
kfree_skb(skb);
ring->idx = (ring->idx + 1) % ring->entries;
}
dma_free_coherent(&priv->pdev->dev,
sizeof(*ring->desc) * ring->entries, ring->desc,
ring->dma);
ring->desc = NULL;
}
static int rtl8180_start(struct ieee80211_hw *dev)
{
struct rtl8180_priv *priv = dev->priv;
int ret, i;
u32 reg;
ret = rtl8180_init_rx_ring(dev);
if (ret)
return ret;
for (i = 0; i < (dev->queues + 1); i++)
if ((ret = rtl8180_init_tx_ring(dev, i, 16)))
goto err_free_rings;
ret = rtl8180_init_hw(dev);
if (ret)
goto err_free_rings;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
ret = request_irq(priv->pdev->irq, rtl8187se_interrupt,
IRQF_SHARED, KBUILD_MODNAME, dev);
} else {
ret = request_irq(priv->pdev->irq, rtl8180_interrupt,
IRQF_SHARED, KBUILD_MODNAME, dev);
}
if (ret) {
wiphy_err(dev->wiphy, "failed to register IRQ handler\n");
goto err_free_rings;
}
rtl8180_int_enable(dev);
/* in rtl8187se at MAR regs offset there is the management
* TX descriptor DMA addres..
*/
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8187SE) {
rtl818x_iowrite32(priv, &priv->map->MAR[0], ~0);
rtl818x_iowrite32(priv, &priv->map->MAR[1], ~0);
}
reg = RTL818X_RX_CONF_ONLYERLPKT |
RTL818X_RX_CONF_RX_AUTORESETPHY |
RTL818X_RX_CONF_MGMT |
RTL818X_RX_CONF_DATA |
(7 << 8 /* MAX RX DMA */) |
RTL818X_RX_CONF_BROADCAST |
RTL818X_RX_CONF_NICMAC;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8185)
reg |= RTL818X_RX_CONF_CSDM1 | RTL818X_RX_CONF_CSDM2;
else if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180) {
reg |= (priv->rfparam & RF_PARAM_CARRIERSENSE1)
? RTL818X_RX_CONF_CSDM1 : 0;
reg |= (priv->rfparam & RF_PARAM_CARRIERSENSE2)
? RTL818X_RX_CONF_CSDM2 : 0;
} else {
reg &= ~(RTL818X_RX_CONF_CSDM1 | RTL818X_RX_CONF_CSDM2);
}
priv->rx_conf = reg;
rtl818x_iowrite32(priv, &priv->map->RX_CONF, reg);
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180) {
reg = rtl818x_ioread8(priv, &priv->map->CW_CONF);
/* CW is not on per-packet basis.
* in rtl8185 the CW_VALUE reg is used.
* in rtl8187se the AC param regs are used.
*/
reg &= ~RTL818X_CW_CONF_PERPACKET_CW;
/* retry limit IS on per-packet basis.
* the short and long retry limit in TX_CONF
* reg are ignored
*/
reg |= RTL818X_CW_CONF_PERPACKET_RETRY;
rtl818x_iowrite8(priv, &priv->map->CW_CONF, reg);
reg = rtl818x_ioread8(priv, &priv->map->TX_AGC_CTL);
/* TX antenna and TX gain are not on per-packet basis.
* TX Antenna is selected by ANTSEL reg (RX in BB regs).
* TX gain is selected with CCK_TX_AGC and OFDM_TX_AGC regs
*/
reg &= ~RTL818X_TX_AGC_CTL_PERPACKET_GAIN;
reg &= ~RTL818X_TX_AGC_CTL_PERPACKET_ANTSEL;
reg |= RTL818X_TX_AGC_CTL_FEEDBACK_ANT;
rtl818x_iowrite8(priv, &priv->map->TX_AGC_CTL, reg);
/* disable early TX */
rtl818x_iowrite8(priv, (u8 __iomem *)priv->map + 0xec, 0x3f);
}
reg = rtl818x_ioread32(priv, &priv->map->TX_CONF);
reg |= (6 << 21 /* MAX TX DMA */) |
RTL818X_TX_CONF_NO_ICV;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
reg |= 1<<30; /* "duration procedure mode" */
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180)
reg &= ~RTL818X_TX_CONF_PROBE_DTS;
else
reg &= ~RTL818X_TX_CONF_HW_SEQNUM;
reg &= ~RTL818X_TX_CONF_DISCW;
/* different meaning, same value on both rtl8185 and rtl8180 */
reg &= ~RTL818X_TX_CONF_SAT_HWPLCP;
rtl818x_iowrite32(priv, &priv->map->TX_CONF, reg);
reg = rtl818x_ioread8(priv, &priv->map->CMD);
reg |= RTL818X_CMD_RX_ENABLE;
reg |= RTL818X_CMD_TX_ENABLE;
rtl818x_iowrite8(priv, &priv->map->CMD, reg);
return 0;
err_free_rings:
rtl8180_free_rx_ring(dev);
for (i = 0; i < (dev->queues + 1); i++)
if (priv->tx_ring[i].desc)
rtl8180_free_tx_ring(dev, i);
return ret;
}
static void rtl8180_stop(struct ieee80211_hw *dev, bool suspend)
{
struct rtl8180_priv *priv = dev->priv;
u8 reg;
int i;
rtl8180_int_disable(dev);
reg = rtl818x_ioread8(priv, &priv->map->CMD);
reg &= ~RTL818X_CMD_TX_ENABLE;
reg &= ~RTL818X_CMD_RX_ENABLE;
rtl818x_iowrite8(priv, &priv->map->CMD, reg);
priv->rf->stop(dev);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
reg = rtl818x_ioread8(priv, &priv->map->CONFIG4);
rtl818x_iowrite8(priv, &priv->map->CONFIG4, reg | RTL818X_CONFIG4_VCOOFF);
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
free_irq(priv->pdev->irq, dev);
rtl8180_free_rx_ring(dev);
for (i = 0; i < (dev->queues + 1); i++)
rtl8180_free_tx_ring(dev, i);
}
static u64 rtl8180_get_tsf(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct rtl8180_priv *priv = dev->priv;
return rtl818x_ioread32(priv, &priv->map->TSFT[0]) |
(u64)(rtl818x_ioread32(priv, &priv->map->TSFT[1])) << 32;
}
static void rtl8180_beacon_work(struct work_struct *work)
{
struct rtl8180_vif *vif_priv =
container_of(work, struct rtl8180_vif, beacon_work.work);
struct ieee80211_vif *vif =
container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
struct ieee80211_hw *dev = vif_priv->dev;
struct ieee80211_mgmt *mgmt;
struct sk_buff *skb;
/* don't overflow the tx ring */
if (ieee80211_queue_stopped(dev, 0))
goto resched;
/* grab a fresh beacon */
skb = ieee80211_beacon_get(dev, vif, 0);
if (!skb)
goto resched;
/*
* update beacon timestamp w/ TSF value
* TODO: make hardware update beacon timestamp
*/
mgmt = (struct ieee80211_mgmt *)skb->data;
mgmt->u.beacon.timestamp = cpu_to_le64(rtl8180_get_tsf(dev, vif));
/* TODO: use actual beacon queue */
skb_set_queue_mapping(skb, 0);
rtl8180_tx(dev, NULL, skb);
resched:
/*
* schedule next beacon
* TODO: use hardware support for beacon timing
*/
schedule_delayed_work(&vif_priv->beacon_work,
usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
}
static int rtl8180_add_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_vif *vif_priv;
/*
* We only support one active interface at a time.
*/
if (priv->vif)
return -EBUSY;
switch (vif->type) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
break;
default:
return -EOPNOTSUPP;
}
priv->vif = vif;
/* Initialize driver private area */
vif_priv = (struct rtl8180_vif *)&vif->drv_priv;
vif_priv->dev = dev;
INIT_DELAYED_WORK(&vif_priv->beacon_work, rtl8180_beacon_work);
vif_priv->enable_beacon = false;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_CONFIG);
rtl818x_iowrite32(priv, (__le32 __iomem *)&priv->map->MAC[0],
le32_to_cpu(*(__le32 *)vif->addr));
rtl818x_iowrite16(priv, (__le16 __iomem *)&priv->map->MAC[4],
le16_to_cpu(*(__le16 *)(vif->addr + 4)));
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, RTL818X_EEPROM_CMD_NORMAL);
return 0;
}
static void rtl8180_remove_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct rtl8180_priv *priv = dev->priv;
priv->vif = NULL;
}
static int rtl8180_config(struct ieee80211_hw *dev, u32 changed)
{
struct rtl8180_priv *priv = dev->priv;
struct ieee80211_conf *conf = &dev->conf;
priv->rf->set_chan(dev, conf);
return 0;
}
static void rtl8187se_conf_ac_parm(struct ieee80211_hw *dev, u8 queue)
{
const struct ieee80211_tx_queue_params *params;
struct rtl8180_priv *priv = dev->priv;
/* hw value */
u32 ac_param;
u8 aifs;
u8 txop;
u8 cw_min, cw_max;
params = &priv->queue_param[queue];
cw_min = fls(params->cw_min);
cw_max = fls(params->cw_max);
aifs = 10 + params->aifs * priv->slot_time;
/* TODO: check if txop HW is in us (mult by 32) */
txop = params->txop;
ac_param = txop << AC_PARAM_TXOP_LIMIT_SHIFT |
cw_max << AC_PARAM_ECW_MAX_SHIFT |
cw_min << AC_PARAM_ECW_MIN_SHIFT |
aifs << AC_PARAM_AIFS_SHIFT;
switch (queue) {
case IEEE80211_AC_BK:
rtl818x_iowrite32(priv, &priv->map->AC_BK_PARAM, ac_param);
break;
case IEEE80211_AC_BE:
rtl818x_iowrite32(priv, &priv->map->AC_BE_PARAM, ac_param);
break;
case IEEE80211_AC_VI:
rtl818x_iowrite32(priv, &priv->map->AC_VI_PARAM, ac_param);
break;
case IEEE80211_AC_VO:
rtl818x_iowrite32(priv, &priv->map->AC_VO_PARAM, ac_param);
break;
}
}
static int rtl8180_conf_tx(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
unsigned int link_id, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct rtl8180_priv *priv = dev->priv;
u8 cw_min, cw_max;
/* nothing to do ? */
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180)
return 0;
cw_min = fls(params->cw_min);
cw_max = fls(params->cw_max);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
priv->queue_param[queue] = *params;
rtl8187se_conf_ac_parm(dev, queue);
} else
rtl818x_iowrite8(priv, &priv->map->CW_VAL,
(cw_max << 4) | cw_min);
return 0;
}
static void rtl8180_conf_erp(struct ieee80211_hw *dev,
struct ieee80211_bss_conf *info)
{
struct rtl8180_priv *priv = dev->priv;
u8 sifs, difs;
int eifs;
u8 hw_eifs;
/* TODO: should we do something ? */
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180)
return;
/* I _hope_ this means 10uS for the HW.
* In reference code it is 0x22 for
* both rtl8187L and rtl8187SE
*/
sifs = 0x22;
if (info->use_short_slot)
priv->slot_time = 9;
else
priv->slot_time = 20;
/* 10 is SIFS time in uS */
difs = 10 + 2 * priv->slot_time;
eifs = 10 + difs + priv->ack_time;
/* HW should use 4uS units for EIFS (I'm sure for rtl8185)*/
hw_eifs = DIV_ROUND_UP(eifs, 4);
rtl818x_iowrite8(priv, &priv->map->SLOT, priv->slot_time);
rtl818x_iowrite8(priv, &priv->map->SIFS, sifs);
rtl818x_iowrite8(priv, &priv->map->DIFS, difs);
/* from reference code. set ack timeout reg = eifs reg */
rtl818x_iowrite8(priv, &priv->map->CARRIER_SENSE_COUNTER, hw_eifs);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
rtl818x_iowrite8(priv, &priv->map->EIFS_8187SE, hw_eifs);
else if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8185) {
/* rtl8187/rtl8185 HW bug. After EIFS is elapsed,
* the HW still wait for DIFS.
* HW uses 4uS units for EIFS.
*/
hw_eifs = DIV_ROUND_UP(eifs - difs, 4);
rtl818x_iowrite8(priv, &priv->map->EIFS, hw_eifs);
}
}
static void rtl8180_bss_info_changed(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u64 changed)
{
struct rtl8180_priv *priv = dev->priv;
struct rtl8180_vif *vif_priv;
int i;
u8 reg;
vif_priv = (struct rtl8180_vif *)&vif->drv_priv;
if (changed & BSS_CHANGED_BSSID) {
rtl818x_iowrite16(priv, (__le16 __iomem *)&priv->map->BSSID[0],
le16_to_cpu(*(__le16 *)info->bssid));
rtl818x_iowrite32(priv, (__le32 __iomem *)&priv->map->BSSID[2],
le32_to_cpu(*(__le32 *)(info->bssid + 2)));
if (is_valid_ether_addr(info->bssid)) {
if (vif->type == NL80211_IFTYPE_ADHOC)
reg = RTL818X_MSR_ADHOC;
else
reg = RTL818X_MSR_INFRA;
} else
reg = RTL818X_MSR_NO_LINK;
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
reg |= RTL818X_MSR_ENEDCA;
rtl818x_iowrite8(priv, &priv->map->MSR, reg);
}
if (changed & BSS_CHANGED_BASIC_RATES)
rtl8180_conf_basic_rates(dev, info->basic_rates);
if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
/* when preamble changes, acktime duration changes, and erp must
* be recalculated. ACK time is calculated at lowest rate.
* Since mac80211 include SIFS time we remove it (-10)
*/
priv->ack_time =
le16_to_cpu(ieee80211_generic_frame_duration(dev,
priv->vif,
NL80211_BAND_2GHZ, 10,
&priv->rates[0])) - 10;
rtl8180_conf_erp(dev, info);
/* mac80211 supplies aifs_n to driver and calls
* conf_tx callback whether aifs_n changes, NOT
* when aifs changes.
* Aifs should be recalculated if slot changes.
*/
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
for (i = 0; i < 4; i++)
rtl8187se_conf_ac_parm(dev, i);
}
}
if (changed & BSS_CHANGED_BEACON_ENABLED)
vif_priv->enable_beacon = info->enable_beacon;
if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
cancel_delayed_work_sync(&vif_priv->beacon_work);
if (vif_priv->enable_beacon)
schedule_work(&vif_priv->beacon_work.work);
}
}
static u64 rtl8180_prepare_multicast(struct ieee80211_hw *dev,
struct netdev_hw_addr_list *mc_list)
{
return netdev_hw_addr_list_count(mc_list);
}
static void rtl8180_configure_filter(struct ieee80211_hw *dev,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
struct rtl8180_priv *priv = dev->priv;
if (changed_flags & FIF_FCSFAIL)
priv->rx_conf ^= RTL818X_RX_CONF_FCS;
if (changed_flags & FIF_CONTROL)
priv->rx_conf ^= RTL818X_RX_CONF_CTRL;
if (changed_flags & FIF_OTHER_BSS)
priv->rx_conf ^= RTL818X_RX_CONF_MONITOR;
if (*total_flags & FIF_ALLMULTI || multicast > 0)
priv->rx_conf |= RTL818X_RX_CONF_MULTICAST;
else
priv->rx_conf &= ~RTL818X_RX_CONF_MULTICAST;
*total_flags = 0;
if (priv->rx_conf & RTL818X_RX_CONF_FCS)
*total_flags |= FIF_FCSFAIL;
if (priv->rx_conf & RTL818X_RX_CONF_CTRL)
*total_flags |= FIF_CONTROL;
if (priv->rx_conf & RTL818X_RX_CONF_MONITOR)
*total_flags |= FIF_OTHER_BSS;
if (priv->rx_conf & RTL818X_RX_CONF_MULTICAST)
*total_flags |= FIF_ALLMULTI;
rtl818x_iowrite32(priv, &priv->map->RX_CONF, priv->rx_conf);
}
static const struct ieee80211_ops rtl8180_ops = {
.add_chanctx = ieee80211_emulate_add_chanctx,
.remove_chanctx = ieee80211_emulate_remove_chanctx,
.change_chanctx = ieee80211_emulate_change_chanctx,
.switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx,
.tx = rtl8180_tx,
.wake_tx_queue = ieee80211_handle_wake_tx_queue,
.start = rtl8180_start,
.stop = rtl8180_stop,
.add_interface = rtl8180_add_interface,
.remove_interface = rtl8180_remove_interface,
.config = rtl8180_config,
.bss_info_changed = rtl8180_bss_info_changed,
.conf_tx = rtl8180_conf_tx,
.prepare_multicast = rtl8180_prepare_multicast,
.configure_filter = rtl8180_configure_filter,
.get_tsf = rtl8180_get_tsf,
};
static void rtl8180_eeprom_register_read(struct eeprom_93cx6 *eeprom)
{
struct rtl8180_priv *priv = eeprom->data;
u8 reg = rtl818x_ioread8(priv, &priv->map->EEPROM_CMD);
eeprom->reg_data_in = reg & RTL818X_EEPROM_CMD_WRITE;
eeprom->reg_data_out = reg & RTL818X_EEPROM_CMD_READ;
eeprom->reg_data_clock = reg & RTL818X_EEPROM_CMD_CK;
eeprom->reg_chip_select = reg & RTL818X_EEPROM_CMD_CS;
}
static void rtl8180_eeprom_register_write(struct eeprom_93cx6 *eeprom)
{
struct rtl8180_priv *priv = eeprom->data;
u8 reg = 2 << 6;
if (eeprom->reg_data_in)
reg |= RTL818X_EEPROM_CMD_WRITE;
if (eeprom->reg_data_out)
reg |= RTL818X_EEPROM_CMD_READ;
if (eeprom->reg_data_clock)
reg |= RTL818X_EEPROM_CMD_CK;
if (eeprom->reg_chip_select)
reg |= RTL818X_EEPROM_CMD_CS;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD, reg);
rtl818x_ioread8(priv, &priv->map->EEPROM_CMD);
udelay(10);
}
static void rtl8180_eeprom_read(struct rtl8180_priv *priv)
{
struct eeprom_93cx6 eeprom;
int eeprom_cck_table_adr;
u16 eeprom_val;
int i;
eeprom.data = priv;
eeprom.register_read = rtl8180_eeprom_register_read;
eeprom.register_write = rtl8180_eeprom_register_write;
if (rtl818x_ioread32(priv, &priv->map->RX_CONF) & (1 << 6))
eeprom.width = PCI_EEPROM_WIDTH_93C66;
else
eeprom.width = PCI_EEPROM_WIDTH_93C46;
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_PROGRAM);
rtl818x_ioread8(priv, &priv->map->EEPROM_CMD);
udelay(10);
eeprom_93cx6_read(&eeprom, 0x06, &eeprom_val);
eeprom_val &= 0xFF;
priv->rf_type = eeprom_val;
eeprom_93cx6_read(&eeprom, 0x17, &eeprom_val);
priv->csthreshold = eeprom_val >> 8;
eeprom_93cx6_multiread(&eeprom, 0x7, (__le16 *)priv->mac_addr, 3);
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
eeprom_cck_table_adr = 0x30;
else
eeprom_cck_table_adr = 0x10;
/* CCK TX power */
for (i = 0; i < 14; i += 2) {
u16 txpwr;
eeprom_93cx6_read(&eeprom, eeprom_cck_table_adr + (i >> 1),
&txpwr);
priv->channels[i].hw_value = txpwr & 0xFF;
priv->channels[i + 1].hw_value = txpwr >> 8;
}
/* OFDM TX power */
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180) {
for (i = 0; i < 14; i += 2) {
u16 txpwr;
eeprom_93cx6_read(&eeprom, 0x20 + (i >> 1), &txpwr);
priv->channels[i].hw_value |= (txpwr & 0xFF) << 8;
priv->channels[i + 1].hw_value |= txpwr & 0xFF00;
}
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8180) {
__le32 anaparam;
eeprom_93cx6_multiread(&eeprom, 0xD, (__le16 *)&anaparam, 2);
priv->anaparam = le32_to_cpu(anaparam);
eeprom_93cx6_read(&eeprom, 0x19, &priv->rfparam);
}
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE) {
eeprom_93cx6_read(&eeprom, 0x3F, &eeprom_val);
priv->antenna_diversity_en = !!(eeprom_val & 0x100);
priv->antenna_diversity_default = (eeprom_val & 0xC00) == 0x400;
eeprom_93cx6_read(&eeprom, 0x7C, &eeprom_val);
priv->xtal_out = eeprom_val & 0xF;
priv->xtal_in = (eeprom_val & 0xF0) >> 4;
priv->xtal_cal = !!(eeprom_val & 0x1000);
priv->thermal_meter_val = (eeprom_val & 0xF00) >> 8;
priv->thermal_meter_en = !!(eeprom_val & 0x2000);
}
rtl818x_iowrite8(priv, &priv->map->EEPROM_CMD,
RTL818X_EEPROM_CMD_NORMAL);
}
static int rtl8180_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct ieee80211_hw *dev;
struct rtl8180_priv *priv;
unsigned long mem_len;
unsigned int io_len;
int err;
const char *chip_name, *rf_name = NULL;
u32 reg;
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR "%s (rtl8180): Cannot enable new PCI device\n",
pci_name(pdev));
return err;
}
err = pci_request_regions(pdev, KBUILD_MODNAME);
if (err) {
printk(KERN_ERR "%s (rtl8180): Cannot obtain PCI resources\n",
pci_name(pdev));
goto err_disable_dev;
}
io_len = pci_resource_len(pdev, 0);
mem_len = pci_resource_len(pdev, 1);
if (mem_len < sizeof(struct rtl818x_csr) ||
io_len < sizeof(struct rtl818x_csr)) {
printk(KERN_ERR "%s (rtl8180): Too short PCI resources\n",
pci_name(pdev));
err = -ENOMEM;
goto err_free_reg;
}
if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) ||
(err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
printk(KERN_ERR "%s (rtl8180): No suitable DMA available\n",
pci_name(pdev));
goto err_free_reg;
}
pci_set_master(pdev);
dev = ieee80211_alloc_hw(sizeof(*priv), &rtl8180_ops);
if (!dev) {
printk(KERN_ERR "%s (rtl8180): ieee80211 alloc failed\n",
pci_name(pdev));
err = -ENOMEM;
goto err_free_reg;
}
priv = dev->priv;
priv->pdev = pdev;
dev->max_rates = 1;
SET_IEEE80211_DEV(dev, &pdev->dev);
pci_set_drvdata(pdev, dev);
priv->map_pio = false;
priv->map = pci_iomap(pdev, 1, mem_len);
if (!priv->map) {
priv->map = pci_iomap(pdev, 0, io_len);
priv->map_pio = true;
}
if (!priv->map) {
dev_err(&pdev->dev, "Cannot map device memory/PIO\n");
err = -ENOMEM;
goto err_free_dev;
}
BUILD_BUG_ON(sizeof(priv->channels) != sizeof(rtl818x_channels));
BUILD_BUG_ON(sizeof(priv->rates) != sizeof(rtl818x_rates));
memcpy(priv->channels, rtl818x_channels, sizeof(rtl818x_channels));
memcpy(priv->rates, rtl818x_rates, sizeof(rtl818x_rates));
priv->band.band = NL80211_BAND_2GHZ;
priv->band.channels = priv->channels;
priv->band.n_channels = ARRAY_SIZE(rtl818x_channels);
priv->band.bitrates = priv->rates;
priv->band.n_bitrates = 4;
dev->wiphy->bands[NL80211_BAND_2GHZ] = &priv->band;
ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
ieee80211_hw_set(dev, RX_INCLUDES_FCS);
dev->vif_data_size = sizeof(struct rtl8180_vif);
dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
dev->max_signal = 65;
reg = rtl818x_ioread32(priv, &priv->map->TX_CONF);
reg &= RTL818X_TX_CONF_HWVER_MASK;
switch (reg) {
case RTL818X_TX_CONF_R8180_ABCD:
chip_name = "RTL8180";
priv->chip_family = RTL818X_CHIP_FAMILY_RTL8180;
break;
case RTL818X_TX_CONF_R8180_F:
chip_name = "RTL8180vF";
priv->chip_family = RTL818X_CHIP_FAMILY_RTL8180;
break;
case RTL818X_TX_CONF_R8185_ABC:
chip_name = "RTL8185";
priv->chip_family = RTL818X_CHIP_FAMILY_RTL8185;
break;
case RTL818X_TX_CONF_R8185_D:
chip_name = "RTL8185vD";
priv->chip_family = RTL818X_CHIP_FAMILY_RTL8185;
break;
case RTL818X_TX_CONF_RTL8187SE:
chip_name = "RTL8187SE";
if (priv->map_pio) {
dev_err(&pdev->dev,
"MMIO failed. PIO not supported on RTL8187SE\n");
err = -ENOMEM;
goto err_iounmap;
}
priv->chip_family = RTL818X_CHIP_FAMILY_RTL8187SE;
break;
default:
printk(KERN_ERR "%s (rtl8180): Unknown chip! (0x%x)\n",
pci_name(pdev), reg >> 25);
err = -ENODEV;
goto err_iounmap;
}
/* we declare to MAC80211 all the queues except for beacon queue
* that will be eventually handled by DRV.
* TX rings are arranged in such a way that lower is the IDX,
* higher is the priority, in order to achieve direct mapping
* with mac80211, however the beacon queue is an exception and it
* is mapped on the highst tx ring IDX.
*/
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
dev->queues = RTL8187SE_NR_TX_QUEUES - 1;
else
dev->queues = RTL8180_NR_TX_QUEUES - 1;
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180) {
priv->band.n_bitrates = ARRAY_SIZE(rtl818x_rates);
pci_try_set_mwi(pdev);
}
if (priv->chip_family != RTL818X_CHIP_FAMILY_RTL8180)
ieee80211_hw_set(dev, SIGNAL_DBM);
else
ieee80211_hw_set(dev, SIGNAL_UNSPEC);
wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
rtl8180_eeprom_read(priv);
switch (priv->rf_type) {
case 1: rf_name = "Intersil";
break;
case 2: rf_name = "RFMD";
break;
case 3: priv->rf = &sa2400_rf_ops;
break;
case 4: priv->rf = &max2820_rf_ops;
break;
case 5: priv->rf = &grf5101_rf_ops;
break;
case 9:
if (priv->chip_family == RTL818X_CHIP_FAMILY_RTL8187SE)
priv->rf = rtl8187se_detect_rf(dev);
else
priv->rf = rtl8180_detect_rf(dev);
break;
case 10:
rf_name = "RTL8255";
break;
default:
printk(KERN_ERR "%s (rtl8180): Unknown RF! (0x%x)\n",
pci_name(pdev), priv->rf_type);
err = -ENODEV;
goto err_iounmap;
}
if (!priv->rf) {
printk(KERN_ERR "%s (rtl8180): %s RF frontend not supported!\n",
pci_name(pdev), rf_name);
err = -ENODEV;
goto err_iounmap;
}
if (!is_valid_ether_addr(priv->mac_addr)) {
printk(KERN_WARNING "%s (rtl8180): Invalid hwaddr! Using"
" randomly generated MAC addr\n", pci_name(pdev));
eth_random_addr(priv->mac_addr);
}
SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
spin_lock_init(&priv->lock);
err = ieee80211_register_hw(dev);
if (err) {
printk(KERN_ERR "%s (rtl8180): Cannot register device\n",
pci_name(pdev));
goto err_iounmap;
}
wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
priv->mac_addr, chip_name, priv->rf->name);
return 0;
err_iounmap:
pci_iounmap(pdev, priv->map);
err_free_dev:
ieee80211_free_hw(dev);
err_free_reg:
pci_release_regions(pdev);
err_disable_dev:
pci_disable_device(pdev);
return err;
}
static void rtl8180_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *dev = pci_get_drvdata(pdev);
struct rtl8180_priv *priv;
if (!dev)
return;
ieee80211_unregister_hw(dev);
priv = dev->priv;
pci_iounmap(pdev, priv->map);
pci_release_regions(pdev);
pci_disable_device(pdev);
ieee80211_free_hw(dev);
}
#define rtl8180_suspend NULL
#define rtl8180_resume NULL
static SIMPLE_DEV_PM_OPS(rtl8180_pm_ops, rtl8180_suspend, rtl8180_resume);
static struct pci_driver rtl8180_driver = {
.name = KBUILD_MODNAME,
.id_table = rtl8180_table,
.probe = rtl8180_probe,
.remove = rtl8180_remove,
.driver.pm = &rtl8180_pm_ops,
};
module_pci_driver(rtl8180_driver);