// SPDX-License-Identifier: GPL-2.0-or-later
/* ZD1211 USB-WLAN driver for Linux
*
* Copyright (C) 2005-2007 Ulrich Kunitz <[email protected]>
* Copyright (C) 2006-2007 Daniel Drake <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include "zd_rf.h"
#include "zd_usb.h"
#include "zd_chip.h"
/* This RF programming code is based upon the code found in v2.16.0.0 of the
* ZyDAS vendor driver. Unlike other RF's, Ubec publish full technical specs
* for this RF on their website, so we're able to understand more than
* usual as to what is going on. Thumbs up for Ubec for doing that. */
/* The 3-wire serial interface provides access to 8 write-only registers.
* The data format is a 4 bit register address followed by a 20 bit value. */
#define UW2453_REGWRITE(reg, val) ((((reg) & 0xf) << 20) | ((val) & 0xfffff))
/* For channel tuning, we have to configure registers 1 (synthesizer), 2 (synth
* fractional divide ratio) and 3 (VCO config).
*
* We configure the RF to produce an interrupt when the PLL is locked onto
* the configured frequency. During initialization, we run through a variety
* of different VCO configurations on channel 1 until we detect a PLL lock.
* When this happens, we remember which VCO configuration produced the lock
* and use it later. Actually, we use the configuration *after* the one that
* produced the lock, which seems odd, but it works.
*
* If we do not see a PLL lock on any standard VCO config, we fall back on an
* autocal configuration, which has a fixed (as opposed to per-channel) VCO
* config and different synth values from the standard set (divide ratio
* is still shared with the standard set). */
/* The per-channel synth values for all standard VCO configurations. These get
* written to register 1. */
static const u8 uw2453_std_synth[] = {
RF_CHANNEL( 1) = 0x47,
RF_CHANNEL( 2) = 0x47,
RF_CHANNEL( 3) = 0x67,
RF_CHANNEL( 4) = 0x67,
RF_CHANNEL( 5) = 0x67,
RF_CHANNEL( 6) = 0x67,
RF_CHANNEL( 7) = 0x57,
RF_CHANNEL( 8) = 0x57,
RF_CHANNEL( 9) = 0x57,
RF_CHANNEL(10) = 0x57,
RF_CHANNEL(11) = 0x77,
RF_CHANNEL(12) = 0x77,
RF_CHANNEL(13) = 0x77,
RF_CHANNEL(14) = 0x4f,
};
/* This table stores the synthesizer fractional divide ratio for *all* VCO
* configurations (both standard and autocal). These get written to register 2.
*/
static const u16 uw2453_synth_divide[] = {
RF_CHANNEL( 1) = 0x999,
RF_CHANNEL( 2) = 0x99b,
RF_CHANNEL( 3) = 0x998,
RF_CHANNEL( 4) = 0x99a,
RF_CHANNEL( 5) = 0x999,
RF_CHANNEL( 6) = 0x99b,
RF_CHANNEL( 7) = 0x998,
RF_CHANNEL( 8) = 0x99a,
RF_CHANNEL( 9) = 0x999,
RF_CHANNEL(10) = 0x99b,
RF_CHANNEL(11) = 0x998,
RF_CHANNEL(12) = 0x99a,
RF_CHANNEL(13) = 0x999,
RF_CHANNEL(14) = 0xccc,
};
/* Here is the data for all the standard VCO configurations. We shrink our
* table a little by observing that both channels in a consecutive pair share
* the same value. We also observe that the high 4 bits ([0:3] in the specs)
* are all 'Reserved' and are always set to 0x4 - we chop them off in the data
* below. */
#define CHAN_TO_PAIRIDX(a) ((a - 1) / 2)
#define RF_CHANPAIR(a,b) [CHAN_TO_PAIRIDX(a)]
static const u16 uw2453_std_vco_cfg[][7] = {
{ /* table 1 */
RF_CHANPAIR( 1, 2) = 0x664d,
RF_CHANPAIR( 3, 4) = 0x604d,
RF_CHANPAIR( 5, 6) = 0x6675,
RF_CHANPAIR( 7, 8) = 0x6475,
RF_CHANPAIR( 9, 10) = 0x6655,
RF_CHANPAIR(11, 12) = 0x6455,
RF_CHANPAIR(13, 14) = 0x6665,
},
{ /* table 2 */
RF_CHANPAIR( 1, 2) = 0x666d,
RF_CHANPAIR( 3, 4) = 0x606d,
RF_CHANPAIR( 5, 6) = 0x664d,
RF_CHANPAIR( 7, 8) = 0x644d,
RF_CHANPAIR( 9, 10) = 0x6675,
RF_CHANPAIR(11, 12) = 0x6475,
RF_CHANPAIR(13, 14) = 0x6655,
},
{ /* table 3 */
RF_CHANPAIR( 1, 2) = 0x665d,
RF_CHANPAIR( 3, 4) = 0x605d,
RF_CHANPAIR( 5, 6) = 0x666d,
RF_CHANPAIR( 7, 8) = 0x646d,
RF_CHANPAIR( 9, 10) = 0x664d,
RF_CHANPAIR(11, 12) = 0x644d,
RF_CHANPAIR(13, 14) = 0x6675,
},
{ /* table 4 */
RF_CHANPAIR( 1, 2) = 0x667d,
RF_CHANPAIR( 3, 4) = 0x607d,
RF_CHANPAIR( 5, 6) = 0x665d,
RF_CHANPAIR( 7, 8) = 0x645d,
RF_CHANPAIR( 9, 10) = 0x666d,
RF_CHANPAIR(11, 12) = 0x646d,
RF_CHANPAIR(13, 14) = 0x664d,
},
{ /* table 5 */
RF_CHANPAIR( 1, 2) = 0x6643,
RF_CHANPAIR( 3, 4) = 0x6043,
RF_CHANPAIR( 5, 6) = 0x667d,
RF_CHANPAIR( 7, 8) = 0x647d,
RF_CHANPAIR( 9, 10) = 0x665d,
RF_CHANPAIR(11, 12) = 0x645d,
RF_CHANPAIR(13, 14) = 0x666d,
},
{ /* table 6 */
RF_CHANPAIR( 1, 2) = 0x6663,
RF_CHANPAIR( 3, 4) = 0x6063,
RF_CHANPAIR( 5, 6) = 0x6643,
RF_CHANPAIR( 7, 8) = 0x6443,
RF_CHANPAIR( 9, 10) = 0x667d,
RF_CHANPAIR(11, 12) = 0x647d,
RF_CHANPAIR(13, 14) = 0x665d,
},
{ /* table 7 */
RF_CHANPAIR( 1, 2) = 0x6653,
RF_CHANPAIR( 3, 4) = 0x6053,
RF_CHANPAIR( 5, 6) = 0x6663,
RF_CHANPAIR( 7, 8) = 0x6463,
RF_CHANPAIR( 9, 10) = 0x6643,
RF_CHANPAIR(11, 12) = 0x6443,
RF_CHANPAIR(13, 14) = 0x667d,
},
{ /* table 8 */
RF_CHANPAIR( 1, 2) = 0x6673,
RF_CHANPAIR( 3, 4) = 0x6073,
RF_CHANPAIR( 5, 6) = 0x6653,
RF_CHANPAIR( 7, 8) = 0x6453,
RF_CHANPAIR( 9, 10) = 0x6663,
RF_CHANPAIR(11, 12) = 0x6463,
RF_CHANPAIR(13, 14) = 0x6643,
},
{ /* table 9 */
RF_CHANPAIR( 1, 2) = 0x664b,
RF_CHANPAIR( 3, 4) = 0x604b,
RF_CHANPAIR( 5, 6) = 0x6673,
RF_CHANPAIR( 7, 8) = 0x6473,
RF_CHANPAIR( 9, 10) = 0x6653,
RF_CHANPAIR(11, 12) = 0x6453,
RF_CHANPAIR(13, 14) = 0x6663,
},
{ /* table 10 */
RF_CHANPAIR( 1, 2) = 0x666b,
RF_CHANPAIR( 3, 4) = 0x606b,
RF_CHANPAIR( 5, 6) = 0x664b,
RF_CHANPAIR( 7, 8) = 0x644b,
RF_CHANPAIR( 9, 10) = 0x6673,
RF_CHANPAIR(11, 12) = 0x6473,
RF_CHANPAIR(13, 14) = 0x6653,
},
{ /* table 11 */
RF_CHANPAIR( 1, 2) = 0x665b,
RF_CHANPAIR( 3, 4) = 0x605b,
RF_CHANPAIR( 5, 6) = 0x666b,
RF_CHANPAIR( 7, 8) = 0x646b,
RF_CHANPAIR( 9, 10) = 0x664b,
RF_CHANPAIR(11, 12) = 0x644b,
RF_CHANPAIR(13, 14) = 0x6673,
},
};
/* The per-channel synth values for autocal. These get written to register 1. */
static const u16 uw2453_autocal_synth[] = {
RF_CHANNEL( 1) = 0x6847,
RF_CHANNEL( 2) = 0x6847,
RF_CHANNEL( 3) = 0x6867,
RF_CHANNEL( 4) = 0x6867,
RF_CHANNEL( 5) = 0x6867,
RF_CHANNEL( 6) = 0x6867,
RF_CHANNEL( 7) = 0x6857,
RF_CHANNEL( 8) = 0x6857,
RF_CHANNEL( 9) = 0x6857,
RF_CHANNEL(10) = 0x6857,
RF_CHANNEL(11) = 0x6877,
RF_CHANNEL(12) = 0x6877,
RF_CHANNEL(13) = 0x6877,
RF_CHANNEL(14) = 0x684f,
};
/* The VCO configuration for autocal (all channels) */
static const u16 UW2453_AUTOCAL_VCO_CFG = 0x6662;
/* TX gain settings. The array index corresponds to the TX power integration
* values found in the EEPROM. The values get written to register 7. */
static u32 uw2453_txgain[] = {
[0x00] = 0x0e313,
[0x01] = 0x0fb13,
[0x02] = 0x0e093,
[0x03] = 0x0f893,
[0x04] = 0x0ea93,
[0x05] = 0x1f093,
[0x06] = 0x1f493,
[0x07] = 0x1f693,
[0x08] = 0x1f393,
[0x09] = 0x1f35b,
[0x0a] = 0x1e6db,
[0x0b] = 0x1ff3f,
[0x0c] = 0x1ffff,
[0x0d] = 0x361d7,
[0x0e] = 0x37fbf,
[0x0f] = 0x3ff8b,
[0x10] = 0x3ff33,
[0x11] = 0x3fb3f,
[0x12] = 0x3ffff,
};
/* RF-specific structure */
struct uw2453_priv {
/* index into synth/VCO config tables where PLL lock was found
* -1 means autocal */
int config;
};
#define UW2453_PRIV(rf) ((struct uw2453_priv *) (rf)->priv)
static int uw2453_synth_set_channel(struct zd_chip *chip, int channel,
bool autocal)
{
int r;
int idx = channel - 1;
u32 val;
if (autocal)
val = UW2453_REGWRITE(1, uw2453_autocal_synth[idx]);
else
val = UW2453_REGWRITE(1, uw2453_std_synth[idx]);
r = zd_rfwrite_locked(chip, val, RF_RV_BITS);
if (r)
return r;
return zd_rfwrite_locked(chip,
UW2453_REGWRITE(2, uw2453_synth_divide[idx]), RF_RV_BITS);
}
static int uw2453_write_vco_cfg(struct zd_chip *chip, u16 value)
{
/* vendor driver always sets these upper bits even though the specs say
* they are reserved */
u32 val = 0x40000 | value;
return zd_rfwrite_locked(chip, UW2453_REGWRITE(3, val), RF_RV_BITS);
}
static int uw2453_init_mode(struct zd_chip *chip)
{
static const u32 rv[] = {
UW2453_REGWRITE(0, 0x25f98), /* enter IDLE mode */
UW2453_REGWRITE(0, 0x25f9a), /* enter CAL_VCO mode */
UW2453_REGWRITE(0, 0x25f94), /* enter RX/TX mode */
UW2453_REGWRITE(0, 0x27fd4), /* power down RSSI circuit */
};
return zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS);
}
static int uw2453_set_tx_gain_level(struct zd_chip *chip, int channel)
{
u8 int_value = chip->pwr_int_values[channel - 1];
if (int_value >= ARRAY_SIZE(uw2453_txgain)) {
dev_dbg_f(zd_chip_dev(chip), "can't configure TX gain for "
"int value %x on channel %d\n", int_value, channel);
return 0;
}
return zd_rfwrite_locked(chip,
UW2453_REGWRITE(7, uw2453_txgain[int_value]), RF_RV_BITS);
}
static int uw2453_init_hw(struct zd_rf *rf)
{
int i, r;
int found_config = -1;
u16 intr_status;
struct zd_chip *chip = zd_rf_to_chip(rf);
static const struct zd_ioreq16 ioreqs[] = {
{ ZD_CR10, 0x89 }, { ZD_CR15, 0x20 },
{ ZD_CR17, 0x28 }, /* 6112 no change */
{ ZD_CR23, 0x38 }, { ZD_CR24, 0x20 }, { ZD_CR26, 0x93 },
{ ZD_CR27, 0x15 }, { ZD_CR28, 0x3e }, { ZD_CR29, 0x00 },
{ ZD_CR33, 0x28 }, { ZD_CR34, 0x30 },
{ ZD_CR35, 0x43 }, /* 6112 3e->43 */
{ ZD_CR41, 0x24 }, { ZD_CR44, 0x32 },
{ ZD_CR46, 0x92 }, /* 6112 96->92 */
{ ZD_CR47, 0x1e },
{ ZD_CR48, 0x04 }, /* 5602 Roger */
{ ZD_CR49, 0xfa }, { ZD_CR79, 0x58 }, { ZD_CR80, 0x30 },
{ ZD_CR81, 0x30 }, { ZD_CR87, 0x0a }, { ZD_CR89, 0x04 },
{ ZD_CR91, 0x00 }, { ZD_CR92, 0x0a }, { ZD_CR98, 0x8d },
{ ZD_CR99, 0x28 }, { ZD_CR100, 0x02 },
{ ZD_CR101, 0x09 }, /* 6112 13->1f 6220 1f->13 6407 13->9 */
{ ZD_CR102, 0x27 },
{ ZD_CR106, 0x1c }, /* 5d07 5112 1f->1c 6220 1c->1f
* 6221 1f->1c
*/
{ ZD_CR107, 0x1c }, /* 6220 1c->1a 5221 1a->1c */
{ ZD_CR109, 0x13 },
{ ZD_CR110, 0x1f }, /* 6112 13->1f 6221 1f->13 6407 13->0x09 */
{ ZD_CR111, 0x13 }, { ZD_CR112, 0x1f }, { ZD_CR113, 0x27 },
{ ZD_CR114, 0x23 }, /* 6221 27->23 */
{ ZD_CR115, 0x24 }, /* 6112 24->1c 6220 1c->24 */
{ ZD_CR116, 0x24 }, /* 6220 1c->24 */
{ ZD_CR117, 0xfa }, /* 6112 fa->f8 6220 f8->f4 6220 f4->fa */
{ ZD_CR118, 0xf0 }, /* 5d07 6112 f0->f2 6220 f2->f0 */
{ ZD_CR119, 0x1a }, /* 6112 1a->10 6220 10->14 6220 14->1a */
{ ZD_CR120, 0x4f },
{ ZD_CR121, 0x1f }, /* 6220 4f->1f */
{ ZD_CR122, 0xf0 }, { ZD_CR123, 0x57 }, { ZD_CR125, 0xad },
{ ZD_CR126, 0x6c }, { ZD_CR127, 0x03 },
{ ZD_CR128, 0x14 }, /* 6302 12->11 */
{ ZD_CR129, 0x12 }, /* 6301 10->0f */
{ ZD_CR130, 0x10 }, { ZD_CR137, 0x50 }, { ZD_CR138, 0xa8 },
{ ZD_CR144, 0xac }, { ZD_CR146, 0x20 }, { ZD_CR252, 0xff },
{ ZD_CR253, 0xff },
};
static const u32 rv[] = {
UW2453_REGWRITE(4, 0x2b), /* configure receiver gain */
UW2453_REGWRITE(5, 0x19e4f), /* configure transmitter gain */
UW2453_REGWRITE(6, 0xf81ad), /* enable RX/TX filter tuning */
UW2453_REGWRITE(7, 0x3fffe), /* disable TX gain in test mode */
/* enter CAL_FIL mode, TX gain set by registers, RX gain set by pins,
* RSSI circuit powered down, reduced RSSI range */
UW2453_REGWRITE(0, 0x25f9c), /* 5d01 cal_fil */
/* synthesizer configuration for channel 1 */
UW2453_REGWRITE(1, 0x47),
UW2453_REGWRITE(2, 0x999),
/* disable manual VCO band selection */
UW2453_REGWRITE(3, 0x7602),
/* enable manual VCO band selection, configure current level */
UW2453_REGWRITE(3, 0x46063),
};
r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
if (r)
return r;
r = zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS);
if (r)
return r;
r = uw2453_init_mode(chip);
if (r)
return r;
/* Try all standard VCO configuration settings on channel 1 */
for (i = 0; i < ARRAY_SIZE(uw2453_std_vco_cfg) - 1; i++) {
/* Configure synthesizer for channel 1 */
r = uw2453_synth_set_channel(chip, 1, false);
if (r)
return r;
/* Write VCO config */
r = uw2453_write_vco_cfg(chip, uw2453_std_vco_cfg[i][0]);
if (r)
return r;
/* ack interrupt event */
r = zd_iowrite16_locked(chip, 0x0f, UW2453_INTR_REG);
if (r)
return r;
/* check interrupt status */
r = zd_ioread16_locked(chip, &intr_status, UW2453_INTR_REG);
if (r)
return r;
if (!(intr_status & 0xf)) {
dev_dbg_f(zd_chip_dev(chip),
"PLL locked on configuration %d\n", i);
found_config = i;
break;
}
}
if (found_config == -1) {
/* autocal */
dev_dbg_f(zd_chip_dev(chip),
"PLL did not lock, using autocal\n");
r = uw2453_synth_set_channel(chip, 1, true);
if (r)
return r;
r = uw2453_write_vco_cfg(chip, UW2453_AUTOCAL_VCO_CFG);
if (r)
return r;
}
/* To match the vendor driver behaviour, we use the configuration after
* the one that produced a lock. */
UW2453_PRIV(rf)->config = found_config + 1;
return zd_iowrite16_locked(chip, 0x06, ZD_CR203);
}
static int uw2453_set_channel(struct zd_rf *rf, u8 channel)
{
int r;
u16 vco_cfg;
int config = UW2453_PRIV(rf)->config;
bool autocal = (config == -1);
struct zd_chip *chip = zd_rf_to_chip(rf);
static const struct zd_ioreq16 ioreqs[] = {
{ ZD_CR80, 0x30 }, { ZD_CR81, 0x30 }, { ZD_CR79, 0x58 },
{ ZD_CR12, 0xf0 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x58 },
};
r = uw2453_synth_set_channel(chip, channel, autocal);
if (r)
return r;
if (autocal)
vco_cfg = UW2453_AUTOCAL_VCO_CFG;
else
vco_cfg = uw2453_std_vco_cfg[config][CHAN_TO_PAIRIDX(channel)];
r = uw2453_write_vco_cfg(chip, vco_cfg);
if (r)
return r;
r = uw2453_init_mode(chip);
if (r)
return r;
r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
if (r)
return r;
r = uw2453_set_tx_gain_level(chip, channel);
if (r)
return r;
return zd_iowrite16_locked(chip, 0x06, ZD_CR203);
}
static int uw2453_switch_radio_on(struct zd_rf *rf)
{
int r;
struct zd_chip *chip = zd_rf_to_chip(rf);
struct zd_ioreq16 ioreqs[] = {
{ ZD_CR11, 0x00 }, { ZD_CR251, 0x3f },
};
/* enter RXTX mode */
r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f94), RF_RV_BITS);
if (r)
return r;
if (zd_chip_is_zd1211b(chip))
ioreqs[1].value = 0x7f;
return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
}
static int uw2453_switch_radio_off(struct zd_rf *rf)
{
int r;
struct zd_chip *chip = zd_rf_to_chip(rf);
static const struct zd_ioreq16 ioreqs[] = {
{ ZD_CR11, 0x04 }, { ZD_CR251, 0x2f },
};
/* enter IDLE mode */
/* FIXME: shouldn't we go to SLEEP? sent email to zydas */
r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f90), RF_RV_BITS);
if (r)
return r;
return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
}
static void uw2453_clear(struct zd_rf *rf)
{
kfree(rf->priv);
}
int zd_rf_init_uw2453(struct zd_rf *rf)
{
rf->init_hw = uw2453_init_hw;
rf->set_channel = uw2453_set_channel;
rf->switch_radio_on = uw2453_switch_radio_on;
rf->switch_radio_off = uw2453_switch_radio_off;
rf->patch_6m_band_edge = zd_rf_generic_patch_6m;
rf->clear = uw2453_clear;
/* we have our own TX integration code */
rf->update_channel_int = 0;
rf->priv = kmalloc(sizeof(struct uw2453_priv), GFP_KERNEL);
if (rf->priv == NULL)
return -ENOMEM;
return 0;
}