// SPDX-License-Identifier: GPL-2.0
/*
* Networking over Thunderbolt/USB4 cables using USB4NET protocol
* (formerly Apple ThunderboltIP).
*
* Copyright (C) 2017, Intel Corporation
* Authors: Amir Levy <[email protected]>
* Michael Jamet <[email protected]>
* Mika Westerberg <[email protected]>
*/
#include <linux/atomic.h>
#include <linux/highmem.h>
#include <linux/if_vlan.h>
#include <linux/jhash.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/rtnetlink.h>
#include <linux/sizes.h>
#include <linux/thunderbolt.h>
#include <linux/uuid.h>
#include <linux/workqueue.h>
#include <net/ip6_checksum.h>
#include "trace.h"
/* Protocol timeouts in ms */
#define TBNET_LOGIN_DELAY 4500
#define TBNET_LOGIN_TIMEOUT 500
#define TBNET_LOGOUT_TIMEOUT 1000
#define TBNET_RING_SIZE 256
#define TBNET_LOGIN_RETRIES 60
#define TBNET_LOGOUT_RETRIES 10
#define TBNET_E2E BIT(0)
#define TBNET_MATCH_FRAGS_ID BIT(1)
#define TBNET_64K_FRAMES BIT(2)
#define TBNET_MAX_MTU SZ_64K
#define TBNET_FRAME_SIZE SZ_4K
#define TBNET_MAX_PAYLOAD_SIZE \
(TBNET_FRAME_SIZE - sizeof(struct thunderbolt_ip_frame_header))
/* Rx packets need to hold space for skb_shared_info */
#define TBNET_RX_MAX_SIZE \
(TBNET_FRAME_SIZE + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
#define TBNET_RX_PAGE_ORDER get_order(TBNET_RX_MAX_SIZE)
#define TBNET_RX_PAGE_SIZE (PAGE_SIZE << TBNET_RX_PAGE_ORDER)
#define TBNET_L0_PORT_NUM(route) ((route) & GENMASK(5, 0))
/**
* struct thunderbolt_ip_frame_header - Header for each Thunderbolt frame
* @frame_size: size of the data with the frame
* @frame_index: running index on the frames
* @frame_id: ID of the frame to match frames to specific packet
* @frame_count: how many frames assembles a full packet
*
* Each data frame passed to the high-speed DMA ring has this header. If
* the XDomain network directory announces that %TBNET_MATCH_FRAGS_ID is
* supported then @frame_id is filled, otherwise it stays %0.
*/
struct thunderbolt_ip_frame_header {
__le32 frame_size;
__le16 frame_index;
__le16 frame_id;
__le32 frame_count;
};
enum thunderbolt_ip_frame_pdf {
TBIP_PDF_FRAME_START = 1,
TBIP_PDF_FRAME_END,
};
enum thunderbolt_ip_type {
TBIP_LOGIN,
TBIP_LOGIN_RESPONSE,
TBIP_LOGOUT,
TBIP_STATUS,
};
struct thunderbolt_ip_header {
u32 route_hi;
u32 route_lo;
u32 length_sn;
uuid_t uuid;
uuid_t initiator_uuid;
uuid_t target_uuid;
u32 type;
u32 command_id;
};
#define TBIP_HDR_LENGTH_MASK GENMASK(5, 0)
#define TBIP_HDR_SN_MASK GENMASK(28, 27)
#define TBIP_HDR_SN_SHIFT 27
struct thunderbolt_ip_login {
struct thunderbolt_ip_header hdr;
u32 proto_version;
u32 transmit_path;
u32 reserved[4];
};
#define TBIP_LOGIN_PROTO_VERSION 1
struct thunderbolt_ip_login_response {
struct thunderbolt_ip_header hdr;
u32 status;
u32 receiver_mac[2];
u32 receiver_mac_len;
u32 reserved[4];
};
struct thunderbolt_ip_logout {
struct thunderbolt_ip_header hdr;
};
struct thunderbolt_ip_status {
struct thunderbolt_ip_header hdr;
u32 status;
};
struct tbnet_stats {
u64 tx_packets;
u64 rx_packets;
u64 tx_bytes;
u64 rx_bytes;
u64 rx_errors;
u64 tx_errors;
u64 rx_length_errors;
u64 rx_over_errors;
u64 rx_crc_errors;
u64 rx_missed_errors;
};
struct tbnet_frame {
struct net_device *dev;
struct page *page;
struct ring_frame frame;
};
struct tbnet_ring {
struct tbnet_frame frames[TBNET_RING_SIZE];
unsigned int cons;
unsigned int prod;
struct tb_ring *ring;
};
/**
* struct tbnet - ThunderboltIP network driver private data
* @svc: XDomain service the driver is bound to
* @xd: XDomain the service belongs to
* @handler: ThunderboltIP configuration protocol handler
* @dev: Networking device
* @napi: NAPI structure for Rx polling
* @stats: Network statistics
* @skb: Network packet that is currently processed on Rx path
* @command_id: ID used for next configuration protocol packet
* @login_sent: ThunderboltIP login message successfully sent
* @login_received: ThunderboltIP login message received from the remote
* host
* @local_transmit_path: HopID we are using to send out packets
* @remote_transmit_path: HopID the other end is using to send packets to us
* @connection_lock: Lock serializing access to @login_sent,
* @login_received and @transmit_path.
* @login_retries: Number of login retries currently done
* @login_work: Worker to send ThunderboltIP login packets
* @connected_work: Worker that finalizes the ThunderboltIP connection
* setup and enables DMA paths for high speed data
* transfers
* @disconnect_work: Worker that handles tearing down the ThunderboltIP
* connection
* @rx_hdr: Copy of the currently processed Rx frame. Used when a
* network packet consists of multiple Thunderbolt frames.
* In host byte order.
* @rx_ring: Software ring holding Rx frames
* @frame_id: Frame ID use for next Tx packet
* (if %TBNET_MATCH_FRAGS_ID is supported in both ends)
* @tx_ring: Software ring holding Tx frames
*/
struct tbnet {
const struct tb_service *svc;
struct tb_xdomain *xd;
struct tb_protocol_handler handler;
struct net_device *dev;
struct napi_struct napi;
struct tbnet_stats stats;
struct sk_buff *skb;
atomic_t command_id;
bool login_sent;
bool login_received;
int local_transmit_path;
int remote_transmit_path;
struct mutex connection_lock;
int login_retries;
struct delayed_work login_work;
struct work_struct connected_work;
struct work_struct disconnect_work;
struct thunderbolt_ip_frame_header rx_hdr;
struct tbnet_ring rx_ring;
atomic_t frame_id;
struct tbnet_ring tx_ring;
};
/* Network property directory UUID: c66189ca-1cce-4195-bdb8-49592e5f5a4f */
static const uuid_t tbnet_dir_uuid =
UUID_INIT(0xc66189ca, 0x1cce, 0x4195,
0xbd, 0xb8, 0x49, 0x59, 0x2e, 0x5f, 0x5a, 0x4f);
/* ThunderboltIP protocol UUID: 798f589e-3616-8a47-97c6-5664a920c8dd */
static const uuid_t tbnet_svc_uuid =
UUID_INIT(0x798f589e, 0x3616, 0x8a47,
0x97, 0xc6, 0x56, 0x64, 0xa9, 0x20, 0xc8, 0xdd);
static struct tb_property_dir *tbnet_dir;
static bool tbnet_e2e = true;
module_param_named(e2e, tbnet_e2e, bool, 0444);
MODULE_PARM_DESC(e2e, "USB4NET full end-to-end flow control (default: true)");
static void tbnet_fill_header(struct thunderbolt_ip_header *hdr, u64 route,
u8 sequence, const uuid_t *initiator_uuid, const uuid_t *target_uuid,
enum thunderbolt_ip_type type, size_t size, u32 command_id)
{
u32 length_sn;
/* Length does not include route_hi/lo and length_sn fields */
length_sn = (size - 3 * 4) / 4;
length_sn |= (sequence << TBIP_HDR_SN_SHIFT) & TBIP_HDR_SN_MASK;
hdr->route_hi = upper_32_bits(route);
hdr->route_lo = lower_32_bits(route);
hdr->length_sn = length_sn;
uuid_copy(&hdr->uuid, &tbnet_svc_uuid);
uuid_copy(&hdr->initiator_uuid, initiator_uuid);
uuid_copy(&hdr->target_uuid, target_uuid);
hdr->type = type;
hdr->command_id = command_id;
}
static int tbnet_login_response(struct tbnet *net, u64 route, u8 sequence,
u32 command_id)
{
struct thunderbolt_ip_login_response reply;
struct tb_xdomain *xd = net->xd;
memset(&reply, 0, sizeof(reply));
tbnet_fill_header(&reply.hdr, route, sequence, xd->local_uuid,
xd->remote_uuid, TBIP_LOGIN_RESPONSE, sizeof(reply),
command_id);
memcpy(reply.receiver_mac, net->dev->dev_addr, ETH_ALEN);
reply.receiver_mac_len = ETH_ALEN;
return tb_xdomain_response(xd, &reply, sizeof(reply),
TB_CFG_PKG_XDOMAIN_RESP);
}
static int tbnet_login_request(struct tbnet *net, u8 sequence)
{
struct thunderbolt_ip_login_response reply;
struct thunderbolt_ip_login request;
struct tb_xdomain *xd = net->xd;
memset(&request, 0, sizeof(request));
tbnet_fill_header(&request.hdr, xd->route, sequence, xd->local_uuid,
xd->remote_uuid, TBIP_LOGIN, sizeof(request),
atomic_inc_return(&net->command_id));
request.proto_version = TBIP_LOGIN_PROTO_VERSION;
request.transmit_path = net->local_transmit_path;
return tb_xdomain_request(xd, &request, sizeof(request),
TB_CFG_PKG_XDOMAIN_RESP, &reply,
sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP,
TBNET_LOGIN_TIMEOUT);
}
static int tbnet_logout_response(struct tbnet *net, u64 route, u8 sequence,
u32 command_id)
{
struct thunderbolt_ip_status reply;
struct tb_xdomain *xd = net->xd;
memset(&reply, 0, sizeof(reply));
tbnet_fill_header(&reply.hdr, route, sequence, xd->local_uuid,
xd->remote_uuid, TBIP_STATUS, sizeof(reply),
atomic_inc_return(&net->command_id));
return tb_xdomain_response(xd, &reply, sizeof(reply),
TB_CFG_PKG_XDOMAIN_RESP);
}
static int tbnet_logout_request(struct tbnet *net)
{
struct thunderbolt_ip_logout request;
struct thunderbolt_ip_status reply;
struct tb_xdomain *xd = net->xd;
memset(&request, 0, sizeof(request));
tbnet_fill_header(&request.hdr, xd->route, 0, xd->local_uuid,
xd->remote_uuid, TBIP_LOGOUT, sizeof(request),
atomic_inc_return(&net->command_id));
return tb_xdomain_request(xd, &request, sizeof(request),
TB_CFG_PKG_XDOMAIN_RESP, &reply,
sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP,
TBNET_LOGOUT_TIMEOUT);
}
static void start_login(struct tbnet *net)
{
netdev_dbg(net->dev, "login started\n");
mutex_lock(&net->connection_lock);
net->login_sent = false;
net->login_received = false;
mutex_unlock(&net->connection_lock);
queue_delayed_work(system_long_wq, &net->login_work,
msecs_to_jiffies(1000));
}
static void stop_login(struct tbnet *net)
{
cancel_delayed_work_sync(&net->login_work);
cancel_work_sync(&net->connected_work);
netdev_dbg(net->dev, "login stopped\n");
}
static inline unsigned int tbnet_frame_size(const struct tbnet_frame *tf)
{
return tf->frame.size ? : TBNET_FRAME_SIZE;
}
static void tbnet_free_buffers(struct tbnet_ring *ring)
{
unsigned int i;
for (i = 0; i < TBNET_RING_SIZE; i++) {
struct device *dma_dev = tb_ring_dma_device(ring->ring);
struct tbnet_frame *tf = &ring->frames[i];
enum dma_data_direction dir;
unsigned int order;
size_t size;
if (!tf->page)
continue;
if (ring->ring->is_tx) {
dir = DMA_TO_DEVICE;
order = 0;
size = TBNET_FRAME_SIZE;
} else {
dir = DMA_FROM_DEVICE;
order = TBNET_RX_PAGE_ORDER;
size = TBNET_RX_PAGE_SIZE;
}
trace_tbnet_free_frame(i, tf->page, tf->frame.buffer_phy, dir);
if (tf->frame.buffer_phy)
dma_unmap_page(dma_dev, tf->frame.buffer_phy, size,
dir);
__free_pages(tf->page, order);
tf->page = NULL;
}
ring->cons = 0;
ring->prod = 0;
}
static void tbnet_tear_down(struct tbnet *net, bool send_logout)
{
netif_carrier_off(net->dev);
netif_stop_queue(net->dev);
stop_login(net);
mutex_lock(&net->connection_lock);
if (net->login_sent && net->login_received) {
int ret, retries = TBNET_LOGOUT_RETRIES;
while (send_logout && retries-- > 0) {
netdev_dbg(net->dev, "sending logout request %u\n",
retries);
ret = tbnet_logout_request(net);
if (ret != -ETIMEDOUT)
break;
}
tb_ring_stop(net->rx_ring.ring);
tb_ring_stop(net->tx_ring.ring);
tbnet_free_buffers(&net->rx_ring);
tbnet_free_buffers(&net->tx_ring);
ret = tb_xdomain_disable_paths(net->xd,
net->local_transmit_path,
net->rx_ring.ring->hop,
net->remote_transmit_path,
net->tx_ring.ring->hop);
if (ret)
netdev_warn(net->dev, "failed to disable DMA paths\n");
tb_xdomain_release_in_hopid(net->xd, net->remote_transmit_path);
net->remote_transmit_path = 0;
}
net->login_retries = 0;
net->login_sent = false;
net->login_received = false;
netdev_dbg(net->dev, "network traffic stopped\n");
mutex_unlock(&net->connection_lock);
}
static int tbnet_handle_packet(const void *buf, size_t size, void *data)
{
const struct thunderbolt_ip_login *pkg = buf;
struct tbnet *net = data;
u32 command_id;
int ret = 0;
u32 sequence;
u64 route;
/* Make sure the packet is for us */
if (size < sizeof(struct thunderbolt_ip_header))
return 0;
if (!uuid_equal(&pkg->hdr.initiator_uuid, net->xd->remote_uuid))
return 0;
if (!uuid_equal(&pkg->hdr.target_uuid, net->xd->local_uuid))
return 0;
route = ((u64)pkg->hdr.route_hi << 32) | pkg->hdr.route_lo;
route &= ~BIT_ULL(63);
if (route != net->xd->route)
return 0;
sequence = pkg->hdr.length_sn & TBIP_HDR_SN_MASK;
sequence >>= TBIP_HDR_SN_SHIFT;
command_id = pkg->hdr.command_id;
switch (pkg->hdr.type) {
case TBIP_LOGIN:
netdev_dbg(net->dev, "remote login request received\n");
if (!netif_running(net->dev))
break;
ret = tbnet_login_response(net, route, sequence,
pkg->hdr.command_id);
if (!ret) {
netdev_dbg(net->dev, "remote login response sent\n");
mutex_lock(&net->connection_lock);
net->login_received = true;
net->remote_transmit_path = pkg->transmit_path;
/* If we reached the number of max retries or
* previous logout, schedule another round of
* login retries
*/
if (net->login_retries >= TBNET_LOGIN_RETRIES ||
!net->login_sent) {
net->login_retries = 0;
queue_delayed_work(system_long_wq,
&net->login_work, 0);
}
mutex_unlock(&net->connection_lock);
queue_work(system_long_wq, &net->connected_work);
}
break;
case TBIP_LOGOUT:
netdev_dbg(net->dev, "remote logout request received\n");
ret = tbnet_logout_response(net, route, sequence, command_id);
if (!ret) {
netdev_dbg(net->dev, "remote logout response sent\n");
queue_work(system_long_wq, &net->disconnect_work);
}
break;
default:
return 0;
}
if (ret)
netdev_warn(net->dev, "failed to send ThunderboltIP response\n");
return 1;
}
static unsigned int tbnet_available_buffers(const struct tbnet_ring *ring)
{
return ring->prod - ring->cons;
}
static int tbnet_alloc_rx_buffers(struct tbnet *net, unsigned int nbuffers)
{
struct tbnet_ring *ring = &net->rx_ring;
int ret;
while (nbuffers--) {
struct device *dma_dev = tb_ring_dma_device(ring->ring);
unsigned int index = ring->prod & (TBNET_RING_SIZE - 1);
struct tbnet_frame *tf = &ring->frames[index];
dma_addr_t dma_addr;
if (tf->page)
break;
/* Allocate page (order > 0) so that it can hold maximum
* ThunderboltIP frame (4kB) and the additional room for
* SKB shared info required by build_skb().
*/
tf->page = dev_alloc_pages(TBNET_RX_PAGE_ORDER);
if (!tf->page) {
ret = -ENOMEM;
goto err_free;
}
dma_addr = dma_map_page(dma_dev, tf->page, 0,
TBNET_RX_PAGE_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(dma_dev, dma_addr)) {
ret = -ENOMEM;
goto err_free;
}
tf->frame.buffer_phy = dma_addr;
tf->dev = net->dev;
trace_tbnet_alloc_rx_frame(index, tf->page, dma_addr,
DMA_FROM_DEVICE);
tb_ring_rx(ring->ring, &tf->frame);
ring->prod++;
}
return 0;
err_free:
tbnet_free_buffers(ring);
return ret;
}
static struct tbnet_frame *tbnet_get_tx_buffer(struct tbnet *net)
{
struct tbnet_ring *ring = &net->tx_ring;
struct device *dma_dev = tb_ring_dma_device(ring->ring);
struct tbnet_frame *tf;
unsigned int index;
if (!tbnet_available_buffers(ring))
return NULL;
index = ring->cons++ & (TBNET_RING_SIZE - 1);
tf = &ring->frames[index];
tf->frame.size = 0;
dma_sync_single_for_cpu(dma_dev, tf->frame.buffer_phy,
tbnet_frame_size(tf), DMA_TO_DEVICE);
return tf;
}
static void tbnet_tx_callback(struct tb_ring *ring, struct ring_frame *frame,
bool canceled)
{
struct tbnet_frame *tf = container_of(frame, typeof(*tf), frame);
struct tbnet *net = netdev_priv(tf->dev);
/* Return buffer to the ring */
net->tx_ring.prod++;
if (tbnet_available_buffers(&net->tx_ring) >= TBNET_RING_SIZE / 2)
netif_wake_queue(net->dev);
}
static int tbnet_alloc_tx_buffers(struct tbnet *net)
{
struct tbnet_ring *ring = &net->tx_ring;
struct device *dma_dev = tb_ring_dma_device(ring->ring);
unsigned int i;
for (i = 0; i < TBNET_RING_SIZE; i++) {
struct tbnet_frame *tf = &ring->frames[i];
dma_addr_t dma_addr;
tf->page = alloc_page(GFP_KERNEL);
if (!tf->page) {
tbnet_free_buffers(ring);
return -ENOMEM;
}
dma_addr = dma_map_page(dma_dev, tf->page, 0, TBNET_FRAME_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(dma_dev, dma_addr)) {
__free_page(tf->page);
tf->page = NULL;
tbnet_free_buffers(ring);
return -ENOMEM;
}
tf->dev = net->dev;
tf->frame.buffer_phy = dma_addr;
tf->frame.callback = tbnet_tx_callback;
tf->frame.sof = TBIP_PDF_FRAME_START;
tf->frame.eof = TBIP_PDF_FRAME_END;
trace_tbnet_alloc_tx_frame(i, tf->page, dma_addr, DMA_TO_DEVICE);
}
ring->cons = 0;
ring->prod = TBNET_RING_SIZE - 1;
return 0;
}
static void tbnet_connected_work(struct work_struct *work)
{
struct tbnet *net = container_of(work, typeof(*net), connected_work);
bool connected;
int ret;
if (netif_carrier_ok(net->dev))
return;
mutex_lock(&net->connection_lock);
connected = net->login_sent && net->login_received;
mutex_unlock(&net->connection_lock);
if (!connected)
return;
netdev_dbg(net->dev, "login successful, enabling paths\n");
ret = tb_xdomain_alloc_in_hopid(net->xd, net->remote_transmit_path);
if (ret != net->remote_transmit_path) {
netdev_err(net->dev, "failed to allocate Rx HopID\n");
return;
}
/* Both logins successful so enable the rings, high-speed DMA
* paths and start the network device queue.
*
* Note we enable the DMA paths last to make sure we have primed
* the Rx ring before any incoming packets are allowed to
* arrive.
*/
tb_ring_start(net->tx_ring.ring);
tb_ring_start(net->rx_ring.ring);
ret = tbnet_alloc_rx_buffers(net, TBNET_RING_SIZE);
if (ret)
goto err_stop_rings;
ret = tbnet_alloc_tx_buffers(net);
if (ret)
goto err_free_rx_buffers;
ret = tb_xdomain_enable_paths(net->xd, net->local_transmit_path,
net->rx_ring.ring->hop,
net->remote_transmit_path,
net->tx_ring.ring->hop);
if (ret) {
netdev_err(net->dev, "failed to enable DMA paths\n");
goto err_free_tx_buffers;
}
netif_carrier_on(net->dev);
netif_start_queue(net->dev);
netdev_dbg(net->dev, "network traffic started\n");
return;
err_free_tx_buffers:
tbnet_free_buffers(&net->tx_ring);
err_free_rx_buffers:
tbnet_free_buffers(&net->rx_ring);
err_stop_rings:
tb_ring_stop(net->rx_ring.ring);
tb_ring_stop(net->tx_ring.ring);
tb_xdomain_release_in_hopid(net->xd, net->remote_transmit_path);
}
static void tbnet_login_work(struct work_struct *work)
{
struct tbnet *net = container_of(work, typeof(*net), login_work.work);
unsigned long delay = msecs_to_jiffies(TBNET_LOGIN_DELAY);
int ret;
if (netif_carrier_ok(net->dev))
return;
netdev_dbg(net->dev, "sending login request, retries=%u\n",
net->login_retries);
ret = tbnet_login_request(net, net->login_retries % 4);
if (ret) {
netdev_dbg(net->dev, "sending login request failed, ret=%d\n",
ret);
if (net->login_retries++ < TBNET_LOGIN_RETRIES) {
queue_delayed_work(system_long_wq, &net->login_work,
delay);
} else {
netdev_info(net->dev, "ThunderboltIP login timed out\n");
}
} else {
netdev_dbg(net->dev, "received login reply\n");
net->login_retries = 0;
mutex_lock(&net->connection_lock);
net->login_sent = true;
mutex_unlock(&net->connection_lock);
queue_work(system_long_wq, &net->connected_work);
}
}
static void tbnet_disconnect_work(struct work_struct *work)
{
struct tbnet *net = container_of(work, typeof(*net), disconnect_work);
tbnet_tear_down(net, false);
}
static bool tbnet_check_frame(struct tbnet *net, const struct tbnet_frame *tf,
const struct thunderbolt_ip_frame_header *hdr)
{
u32 frame_id, frame_count, frame_size, frame_index;
unsigned int size;
if (tf->frame.flags & RING_DESC_CRC_ERROR) {
net->stats.rx_crc_errors++;
return false;
} else if (tf->frame.flags & RING_DESC_BUFFER_OVERRUN) {
net->stats.rx_over_errors++;
return false;
}
/* Should be greater than just header i.e. contains data */
size = tbnet_frame_size(tf);
if (size <= sizeof(*hdr)) {
net->stats.rx_length_errors++;
return false;
}
frame_count = le32_to_cpu(hdr->frame_count);
frame_size = le32_to_cpu(hdr->frame_size);
frame_index = le16_to_cpu(hdr->frame_index);
frame_id = le16_to_cpu(hdr->frame_id);
if ((frame_size > size - sizeof(*hdr)) || !frame_size) {
net->stats.rx_length_errors++;
return false;
}
/* In case we're in the middle of packet, validate the frame
* header based on first fragment of the packet.
*/
if (net->skb && net->rx_hdr.frame_count) {
/* Check the frame count fits the count field */
if (frame_count != le32_to_cpu(net->rx_hdr.frame_count)) {
net->stats.rx_length_errors++;
return false;
}
/* Check the frame identifiers are incremented correctly,
* and id is matching.
*/
if (frame_index != le16_to_cpu(net->rx_hdr.frame_index) + 1 ||
frame_id != le16_to_cpu(net->rx_hdr.frame_id)) {
net->stats.rx_missed_errors++;
return false;
}
if (net->skb->len + frame_size > TBNET_MAX_MTU) {
net->stats.rx_length_errors++;
return false;
}
return true;
}
/* Start of packet, validate the frame header */
if (frame_count == 0 || frame_count > TBNET_RING_SIZE / 4) {
net->stats.rx_length_errors++;
return false;
}
if (frame_index != 0) {
net->stats.rx_missed_errors++;
return false;
}
return true;
}
static int tbnet_poll(struct napi_struct *napi, int budget)
{
struct tbnet *net = container_of(napi, struct tbnet, napi);
unsigned int cleaned_count = tbnet_available_buffers(&net->rx_ring);
struct device *dma_dev = tb_ring_dma_device(net->rx_ring.ring);
unsigned int rx_packets = 0;
while (rx_packets < budget) {
const struct thunderbolt_ip_frame_header *hdr;
unsigned int hdr_size = sizeof(*hdr);
struct sk_buff *skb = NULL;
struct ring_frame *frame;
struct tbnet_frame *tf;
struct page *page;
bool last = true;
u32 frame_size;
/* Return some buffers to hardware, one at a time is too
* slow so allocate MAX_SKB_FRAGS buffers at the same
* time.
*/
if (cleaned_count >= MAX_SKB_FRAGS) {
tbnet_alloc_rx_buffers(net, cleaned_count);
cleaned_count = 0;
}
frame = tb_ring_poll(net->rx_ring.ring);
if (!frame)
break;
dma_unmap_page(dma_dev, frame->buffer_phy,
TBNET_RX_PAGE_SIZE, DMA_FROM_DEVICE);
tf = container_of(frame, typeof(*tf), frame);
page = tf->page;
tf->page = NULL;
net->rx_ring.cons++;
cleaned_count++;
hdr = page_address(page);
if (!tbnet_check_frame(net, tf, hdr)) {
trace_tbnet_invalid_rx_ip_frame(hdr->frame_size,
hdr->frame_id, hdr->frame_index, hdr->frame_count);
__free_pages(page, TBNET_RX_PAGE_ORDER);
dev_kfree_skb_any(net->skb);
net->skb = NULL;
continue;
}
trace_tbnet_rx_ip_frame(hdr->frame_size, hdr->frame_id,
hdr->frame_index, hdr->frame_count);
frame_size = le32_to_cpu(hdr->frame_size);
skb = net->skb;
if (!skb) {
skb = build_skb(page_address(page),
TBNET_RX_PAGE_SIZE);
if (!skb) {
__free_pages(page, TBNET_RX_PAGE_ORDER);
net->stats.rx_errors++;
break;
}
skb_reserve(skb, hdr_size);
skb_put(skb, frame_size);
net->skb = skb;
} else {
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
page, hdr_size, frame_size,
TBNET_RX_PAGE_SIZE - hdr_size);
}
net->rx_hdr.frame_size = hdr->frame_size;
net->rx_hdr.frame_count = hdr->frame_count;
net->rx_hdr.frame_index = hdr->frame_index;
net->rx_hdr.frame_id = hdr->frame_id;
last = le16_to_cpu(net->rx_hdr.frame_index) ==
le32_to_cpu(net->rx_hdr.frame_count) - 1;
rx_packets++;
net->stats.rx_bytes += frame_size;
if (last) {
skb->protocol = eth_type_trans(skb, net->dev);
trace_tbnet_rx_skb(skb);
napi_gro_receive(&net->napi, skb);
net->skb = NULL;
}
}
net->stats.rx_packets += rx_packets;
if (cleaned_count)
tbnet_alloc_rx_buffers(net, cleaned_count);
if (rx_packets >= budget)
return budget;
napi_complete_done(napi, rx_packets);
/* Re-enable the ring interrupt */
tb_ring_poll_complete(net->rx_ring.ring);
return rx_packets;
}
static void tbnet_start_poll(void *data)
{
struct tbnet *net = data;
napi_schedule(&net->napi);
}
static int tbnet_open(struct net_device *dev)
{
struct tbnet *net = netdev_priv(dev);
struct tb_xdomain *xd = net->xd;
u16 sof_mask, eof_mask;
struct tb_ring *ring;
unsigned int flags;
int hopid;
netif_carrier_off(dev);
ring = tb_ring_alloc_tx(xd->tb->nhi, -1, TBNET_RING_SIZE,
RING_FLAG_FRAME);
if (!ring) {
netdev_err(dev, "failed to allocate Tx ring\n");
return -ENOMEM;
}
net->tx_ring.ring = ring;
hopid = tb_xdomain_alloc_out_hopid(xd, -1);
if (hopid < 0) {
netdev_err(dev, "failed to allocate Tx HopID\n");
tb_ring_free(net->tx_ring.ring);
net->tx_ring.ring = NULL;
return hopid;
}
net->local_transmit_path = hopid;
sof_mask = BIT(TBIP_PDF_FRAME_START);
eof_mask = BIT(TBIP_PDF_FRAME_END);
flags = RING_FLAG_FRAME;
/* Only enable full E2E if the other end supports it too */
if (tbnet_e2e && net->svc->prtcstns & TBNET_E2E)
flags |= RING_FLAG_E2E;
ring = tb_ring_alloc_rx(xd->tb->nhi, -1, TBNET_RING_SIZE, flags,
net->tx_ring.ring->hop, sof_mask,
eof_mask, tbnet_start_poll, net);
if (!ring) {
netdev_err(dev, "failed to allocate Rx ring\n");
tb_xdomain_release_out_hopid(xd, hopid);
tb_ring_free(net->tx_ring.ring);
net->tx_ring.ring = NULL;
return -ENOMEM;
}
net->rx_ring.ring = ring;
napi_enable(&net->napi);
start_login(net);
return 0;
}
static int tbnet_stop(struct net_device *dev)
{
struct tbnet *net = netdev_priv(dev);
napi_disable(&net->napi);
cancel_work_sync(&net->disconnect_work);
tbnet_tear_down(net, true);
tb_ring_free(net->rx_ring.ring);
net->rx_ring.ring = NULL;
tb_xdomain_release_out_hopid(net->xd, net->local_transmit_path);
tb_ring_free(net->tx_ring.ring);
net->tx_ring.ring = NULL;
return 0;
}
static bool tbnet_xmit_csum_and_map(struct tbnet *net, struct sk_buff *skb,
struct tbnet_frame **frames, u32 frame_count)
{
struct thunderbolt_ip_frame_header *hdr = page_address(frames[0]->page);
struct device *dma_dev = tb_ring_dma_device(net->tx_ring.ring);
unsigned int i, len, offset = skb_transport_offset(skb);
/* Remove payload length from checksum */
u32 paylen = skb->len - skb_transport_offset(skb);
__wsum wsum = (__force __wsum)htonl(paylen);
__be16 protocol = skb->protocol;
void *data = skb->data;
void *dest = hdr + 1;
__sum16 *tucso;
if (skb->ip_summed != CHECKSUM_PARTIAL) {
/* No need to calculate checksum so we just update the
* total frame count and sync the frames for DMA.
*/
for (i = 0; i < frame_count; i++) {
hdr = page_address(frames[i]->page);
hdr->frame_count = cpu_to_le32(frame_count);
trace_tbnet_tx_ip_frame(hdr->frame_size, hdr->frame_id,
hdr->frame_index, hdr->frame_count);
dma_sync_single_for_device(dma_dev,
frames[i]->frame.buffer_phy,
tbnet_frame_size(frames[i]), DMA_TO_DEVICE);
}
return true;
}
if (protocol == htons(ETH_P_8021Q)) {
struct vlan_hdr *vhdr, vh;
vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(vh), &vh);
if (!vhdr)
return false;
protocol = vhdr->h_vlan_encapsulated_proto;
}
/* Data points on the beginning of packet.
* Check is the checksum absolute place in the packet.
* ipcso will update IP checksum.
* tucso will update TCP/UDP checksum.
*/
if (protocol == htons(ETH_P_IP)) {
__sum16 *ipcso = dest + ((void *)&(ip_hdr(skb)->check) - data);
*ipcso = 0;
*ipcso = ip_fast_csum(dest + skb_network_offset(skb),
ip_hdr(skb)->ihl);
if (ip_hdr(skb)->protocol == IPPROTO_TCP)
tucso = dest + ((void *)&(tcp_hdr(skb)->check) - data);
else if (ip_hdr(skb)->protocol == IPPROTO_UDP)
tucso = dest + ((void *)&(udp_hdr(skb)->check) - data);
else
return false;
*tucso = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, 0,
ip_hdr(skb)->protocol, 0);
} else if (skb_is_gso(skb) && skb_is_gso_v6(skb)) {
tucso = dest + ((void *)&(tcp_hdr(skb)->check) - data);
*tucso = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr, 0,
IPPROTO_TCP, 0);
} else if (protocol == htons(ETH_P_IPV6)) {
tucso = dest + skb_checksum_start_offset(skb) + skb->csum_offset;
*tucso = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr, 0,
ipv6_hdr(skb)->nexthdr, 0);
} else {
return false;
}
/* First frame was headers, rest of the frames contain data.
* Calculate checksum over each frame.
*/
for (i = 0; i < frame_count; i++) {
hdr = page_address(frames[i]->page);
dest = (void *)(hdr + 1) + offset;
len = le32_to_cpu(hdr->frame_size) - offset;
wsum = csum_partial(dest, len, wsum);
hdr->frame_count = cpu_to_le32(frame_count);
trace_tbnet_tx_ip_frame(hdr->frame_size, hdr->frame_id,
hdr->frame_index, hdr->frame_count);
offset = 0;
}
*tucso = csum_fold(wsum);
/* Checksum is finally calculated and we don't touch the memory
* anymore, so DMA sync the frames now.
*/
for (i = 0; i < frame_count; i++) {
dma_sync_single_for_device(dma_dev, frames[i]->frame.buffer_phy,
tbnet_frame_size(frames[i]), DMA_TO_DEVICE);
}
return true;
}
static void *tbnet_kmap_frag(struct sk_buff *skb, unsigned int frag_num,
unsigned int *len)
{
const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num];
*len = skb_frag_size(frag);
return kmap_local_page(skb_frag_page(frag)) + skb_frag_off(frag);
}
static netdev_tx_t tbnet_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct tbnet *net = netdev_priv(dev);
struct tbnet_frame *frames[MAX_SKB_FRAGS];
u16 frame_id = atomic_read(&net->frame_id);
struct thunderbolt_ip_frame_header *hdr;
unsigned int len = skb_headlen(skb);
unsigned int data_len = skb->len;
unsigned int nframes, i;
unsigned int frag = 0;
void *src = skb->data;
u32 frame_index = 0;
bool unmap = false;
void *dest;
trace_tbnet_tx_skb(skb);
nframes = DIV_ROUND_UP(data_len, TBNET_MAX_PAYLOAD_SIZE);
if (tbnet_available_buffers(&net->tx_ring) < nframes) {
netif_stop_queue(net->dev);
return NETDEV_TX_BUSY;
}
frames[frame_index] = tbnet_get_tx_buffer(net);
if (!frames[frame_index])
goto err_drop;
hdr = page_address(frames[frame_index]->page);
dest = hdr + 1;
/* If overall packet is bigger than the frame data size */
while (data_len > TBNET_MAX_PAYLOAD_SIZE) {
unsigned int size_left = TBNET_MAX_PAYLOAD_SIZE;
hdr->frame_size = cpu_to_le32(TBNET_MAX_PAYLOAD_SIZE);
hdr->frame_index = cpu_to_le16(frame_index);
hdr->frame_id = cpu_to_le16(frame_id);
do {
if (len > size_left) {
/* Copy data onto Tx buffer data with
* full frame size then break and go to
* next frame
*/
memcpy(dest, src, size_left);
len -= size_left;
dest += size_left;
src += size_left;
break;
}
memcpy(dest, src, len);
size_left -= len;
dest += len;
if (unmap) {
kunmap_local(src);
unmap = false;
}
/* Ensure all fragments have been processed */
if (frag < skb_shinfo(skb)->nr_frags) {
/* Map and then unmap quickly */
src = tbnet_kmap_frag(skb, frag++, &len);
unmap = true;
} else if (unlikely(size_left > 0)) {
goto err_drop;
}
} while (size_left > 0);
data_len -= TBNET_MAX_PAYLOAD_SIZE;
frame_index++;
frames[frame_index] = tbnet_get_tx_buffer(net);
if (!frames[frame_index])
goto err_drop;
hdr = page_address(frames[frame_index]->page);
dest = hdr + 1;
}
hdr->frame_size = cpu_to_le32(data_len);
hdr->frame_index = cpu_to_le16(frame_index);
hdr->frame_id = cpu_to_le16(frame_id);
frames[frame_index]->frame.size = data_len + sizeof(*hdr);
/* In case the remaining data_len is smaller than a frame */
while (len < data_len) {
memcpy(dest, src, len);
data_len -= len;
dest += len;
if (unmap) {
kunmap_local(src);
unmap = false;
}
if (frag < skb_shinfo(skb)->nr_frags) {
src = tbnet_kmap_frag(skb, frag++, &len);
unmap = true;
} else if (unlikely(data_len > 0)) {
goto err_drop;
}
}
memcpy(dest, src, data_len);
if (unmap)
kunmap_local(src);
if (!tbnet_xmit_csum_and_map(net, skb, frames, frame_index + 1))
goto err_drop;
for (i = 0; i < frame_index + 1; i++)
tb_ring_tx(net->tx_ring.ring, &frames[i]->frame);
if (net->svc->prtcstns & TBNET_MATCH_FRAGS_ID)
atomic_inc(&net->frame_id);
net->stats.tx_packets++;
net->stats.tx_bytes += skb->len;
trace_tbnet_consume_skb(skb);
dev_consume_skb_any(skb);
return NETDEV_TX_OK;
err_drop:
/* We can re-use the buffers */
net->tx_ring.cons -= frame_index;
dev_kfree_skb_any(skb);
net->stats.tx_errors++;
return NETDEV_TX_OK;
}
static void tbnet_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct tbnet *net = netdev_priv(dev);
stats->tx_packets = net->stats.tx_packets;
stats->rx_packets = net->stats.rx_packets;
stats->tx_bytes = net->stats.tx_bytes;
stats->rx_bytes = net->stats.rx_bytes;
stats->rx_errors = net->stats.rx_errors + net->stats.rx_length_errors +
net->stats.rx_over_errors + net->stats.rx_crc_errors +
net->stats.rx_missed_errors;
stats->tx_errors = net->stats.tx_errors;
stats->rx_length_errors = net->stats.rx_length_errors;
stats->rx_over_errors = net->stats.rx_over_errors;
stats->rx_crc_errors = net->stats.rx_crc_errors;
stats->rx_missed_errors = net->stats.rx_missed_errors;
}
static const struct net_device_ops tbnet_netdev_ops = {
.ndo_open = tbnet_open,
.ndo_stop = tbnet_stop,
.ndo_start_xmit = tbnet_start_xmit,
.ndo_get_stats64 = tbnet_get_stats64,
};
static void tbnet_generate_mac(struct net_device *dev)
{
const struct tbnet *net = netdev_priv(dev);
const struct tb_xdomain *xd = net->xd;
u8 addr[ETH_ALEN];
u8 phy_port;
u32 hash;
phy_port = tb_phy_port_from_link(TBNET_L0_PORT_NUM(xd->route));
/* Unicast and locally administered MAC */
addr[0] = phy_port << 4 | 0x02;
hash = jhash2((u32 *)xd->local_uuid, 4, 0);
memcpy(addr + 1, &hash, sizeof(hash));
hash = jhash2((u32 *)xd->local_uuid, 4, hash);
addr[5] = hash & 0xff;
eth_hw_addr_set(dev, addr);
}
static int tbnet_probe(struct tb_service *svc, const struct tb_service_id *id)
{
struct tb_xdomain *xd = tb_service_parent(svc);
struct net_device *dev;
struct tbnet *net;
int ret;
dev = alloc_etherdev(sizeof(*net));
if (!dev)
return -ENOMEM;
SET_NETDEV_DEV(dev, &svc->dev);
net = netdev_priv(dev);
INIT_DELAYED_WORK(&net->login_work, tbnet_login_work);
INIT_WORK(&net->connected_work, tbnet_connected_work);
INIT_WORK(&net->disconnect_work, tbnet_disconnect_work);
mutex_init(&net->connection_lock);
atomic_set(&net->command_id, 0);
atomic_set(&net->frame_id, 0);
net->svc = svc;
net->dev = dev;
net->xd = xd;
tbnet_generate_mac(dev);
strcpy(dev->name, "thunderbolt%d");
dev->netdev_ops = &tbnet_netdev_ops;
/* ThunderboltIP takes advantage of TSO packets but instead of
* segmenting them we just split the packet into Thunderbolt
* frames (maximum payload size of each frame is 4084 bytes) and
* calculate checksum over the whole packet here.
*
* The receiving side does the opposite if the host OS supports
* LRO, otherwise it needs to split the large packet into MTU
* sized smaller packets.
*
* In order to receive large packets from the networking stack,
* we need to announce support for most of the offloading
* features here.
*/
dev->hw_features = NETIF_F_SG | NETIF_F_ALL_TSO | NETIF_F_GRO |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
dev->features = dev->hw_features | NETIF_F_HIGHDMA;
dev->hard_header_len += sizeof(struct thunderbolt_ip_frame_header);
netif_napi_add(dev, &net->napi, tbnet_poll);
/* MTU range: 68 - 65522 */
dev->min_mtu = ETH_MIN_MTU;
dev->max_mtu = TBNET_MAX_MTU - ETH_HLEN;
net->handler.uuid = &tbnet_svc_uuid;
net->handler.callback = tbnet_handle_packet;
net->handler.data = net;
tb_register_protocol_handler(&net->handler);
tb_service_set_drvdata(svc, net);
ret = register_netdev(dev);
if (ret) {
tb_unregister_protocol_handler(&net->handler);
free_netdev(dev);
return ret;
}
return 0;
}
static void tbnet_remove(struct tb_service *svc)
{
struct tbnet *net = tb_service_get_drvdata(svc);
unregister_netdev(net->dev);
tb_unregister_protocol_handler(&net->handler);
free_netdev(net->dev);
}
static void tbnet_shutdown(struct tb_service *svc)
{
tbnet_tear_down(tb_service_get_drvdata(svc), true);
}
static int tbnet_suspend(struct device *dev)
{
struct tb_service *svc = tb_to_service(dev);
struct tbnet *net = tb_service_get_drvdata(svc);
stop_login(net);
if (netif_running(net->dev)) {
netif_device_detach(net->dev);
tbnet_tear_down(net, true);
}
tb_unregister_protocol_handler(&net->handler);
return 0;
}
static int tbnet_resume(struct device *dev)
{
struct tb_service *svc = tb_to_service(dev);
struct tbnet *net = tb_service_get_drvdata(svc);
tb_register_protocol_handler(&net->handler);
netif_carrier_off(net->dev);
if (netif_running(net->dev)) {
netif_device_attach(net->dev);
start_login(net);
}
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(tbnet_pm_ops, tbnet_suspend, tbnet_resume);
static const struct tb_service_id tbnet_ids[] = {
{ TB_SERVICE("network", 1) },
{ },
};
MODULE_DEVICE_TABLE(tbsvc, tbnet_ids);
static struct tb_service_driver tbnet_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "thunderbolt-net",
.pm = pm_sleep_ptr(&tbnet_pm_ops),
},
.probe = tbnet_probe,
.remove = tbnet_remove,
.shutdown = tbnet_shutdown,
.id_table = tbnet_ids,
};
static int __init tbnet_init(void)
{
unsigned int flags;
int ret;
tbnet_dir = tb_property_create_dir(&tbnet_dir_uuid);
if (!tbnet_dir)
return -ENOMEM;
tb_property_add_immediate(tbnet_dir, "prtcid", 1);
tb_property_add_immediate(tbnet_dir, "prtcvers", 1);
tb_property_add_immediate(tbnet_dir, "prtcrevs", 1);
flags = TBNET_MATCH_FRAGS_ID | TBNET_64K_FRAMES;
if (tbnet_e2e)
flags |= TBNET_E2E;
tb_property_add_immediate(tbnet_dir, "prtcstns", flags);
ret = tb_register_property_dir("network", tbnet_dir);
if (ret)
goto err_free_dir;
ret = tb_register_service_driver(&tbnet_driver);
if (ret)
goto err_unregister;
return 0;
err_unregister:
tb_unregister_property_dir("network", tbnet_dir);
err_free_dir:
tb_property_free_dir(tbnet_dir);
return ret;
}
module_init(tbnet_init);
static void __exit tbnet_exit(void)
{
tb_unregister_service_driver(&tbnet_driver);
tb_unregister_property_dir("network", tbnet_dir);
tb_property_free_dir(tbnet_dir);
}
module_exit(tbnet_exit);
MODULE_AUTHOR("Amir Levy <[email protected]>");
MODULE_AUTHOR("Michael Jamet <[email protected]>");
MODULE_AUTHOR("Mika Westerberg <[email protected]>");
MODULE_DESCRIPTION("Thunderbolt/USB4 network driver");
MODULE_LICENSE("GPL v2");