// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2010 Google, Inc.
* Copyright (C) 2013 NVIDIA Corporation
*
* Author:
* Erik Gilling <[email protected]>
* Benoit Goby <[email protected]>
* Venu Byravarasu <[email protected]>
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/gpio/consumer.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/resource.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/regulator/consumer.h>
#include <linux/usb/ehci_def.h>
#include <linux/usb/of.h>
#include <linux/usb/tegra_usb_phy.h>
#include <linux/usb/ulpi.h>
#define ULPI_VIEWPORT 0x170
/* PORTSC PTS/PHCD bits, Tegra20 only */
#define TEGRA_USB_PORTSC1 0x184
#define TEGRA_USB_PORTSC1_PTS(x) (((x) & 0x3) << 30)
#define TEGRA_USB_PORTSC1_PHCD BIT(23)
/* HOSTPC1 PTS/PHCD bits, Tegra30 and above */
#define TEGRA_USB_HOSTPC1_DEVLC 0x1b4
#define TEGRA_USB_HOSTPC1_DEVLC_PTS(x) (((x) & 0x7) << 29)
#define TEGRA_USB_HOSTPC1_DEVLC_PHCD BIT(22)
/* Bits of PORTSC1, which will get cleared by writing 1 into them */
#define TEGRA_PORTSC1_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC)
#define USB_SUSP_CTRL 0x400
#define USB_WAKE_ON_RESUME_EN BIT(2)
#define USB_WAKE_ON_CNNT_EN_DEV BIT(3)
#define USB_WAKE_ON_DISCON_EN_DEV BIT(4)
#define USB_SUSP_CLR BIT(5)
#define USB_PHY_CLK_VALID BIT(7)
#define UTMIP_RESET BIT(11)
#define UHSIC_RESET BIT(11)
#define UTMIP_PHY_ENABLE BIT(12)
#define ULPI_PHY_ENABLE BIT(13)
#define USB_SUSP_SET BIT(14)
#define USB_WAKEUP_DEBOUNCE_COUNT(x) (((x) & 0x7) << 16)
#define USB_PHY_VBUS_SENSORS 0x404
#define B_SESS_VLD_WAKEUP_EN BIT(14)
#define A_SESS_VLD_WAKEUP_EN BIT(22)
#define A_VBUS_VLD_WAKEUP_EN BIT(30)
#define USB_PHY_VBUS_WAKEUP_ID 0x408
#define ID_INT_EN BIT(0)
#define ID_CHG_DET BIT(1)
#define VBUS_WAKEUP_INT_EN BIT(8)
#define VBUS_WAKEUP_CHG_DET BIT(9)
#define VBUS_WAKEUP_STS BIT(10)
#define VBUS_WAKEUP_WAKEUP_EN BIT(30)
#define USB1_LEGACY_CTRL 0x410
#define USB1_NO_LEGACY_MODE BIT(0)
#define USB1_VBUS_SENSE_CTL_MASK (3 << 1)
#define USB1_VBUS_SENSE_CTL_VBUS_WAKEUP (0 << 1)
#define USB1_VBUS_SENSE_CTL_AB_SESS_VLD_OR_VBUS_WAKEUP \
(1 << 1)
#define USB1_VBUS_SENSE_CTL_AB_SESS_VLD (2 << 1)
#define USB1_VBUS_SENSE_CTL_A_SESS_VLD (3 << 1)
#define ULPI_TIMING_CTRL_0 0x424
#define ULPI_OUTPUT_PINMUX_BYP BIT(10)
#define ULPI_CLKOUT_PINMUX_BYP BIT(11)
#define ULPI_TIMING_CTRL_1 0x428
#define ULPI_DATA_TRIMMER_LOAD BIT(0)
#define ULPI_DATA_TRIMMER_SEL(x) (((x) & 0x7) << 1)
#define ULPI_STPDIRNXT_TRIMMER_LOAD BIT(16)
#define ULPI_STPDIRNXT_TRIMMER_SEL(x) (((x) & 0x7) << 17)
#define ULPI_DIR_TRIMMER_LOAD BIT(24)
#define ULPI_DIR_TRIMMER_SEL(x) (((x) & 0x7) << 25)
#define UTMIP_PLL_CFG1 0x804
#define UTMIP_XTAL_FREQ_COUNT(x) (((x) & 0xfff) << 0)
#define UTMIP_PLLU_ENABLE_DLY_COUNT(x) (((x) & 0x1f) << 27)
#define UTMIP_XCVR_CFG0 0x808
#define UTMIP_XCVR_SETUP(x) (((x) & 0xf) << 0)
#define UTMIP_XCVR_SETUP_MSB(x) ((((x) & 0x70) >> 4) << 22)
#define UTMIP_XCVR_LSRSLEW(x) (((x) & 0x3) << 8)
#define UTMIP_XCVR_LSFSLEW(x) (((x) & 0x3) << 10)
#define UTMIP_FORCE_PD_POWERDOWN BIT(14)
#define UTMIP_FORCE_PD2_POWERDOWN BIT(16)
#define UTMIP_FORCE_PDZI_POWERDOWN BIT(18)
#define UTMIP_XCVR_LSBIAS_SEL BIT(21)
#define UTMIP_XCVR_HSSLEW(x) (((x) & 0x3) << 4)
#define UTMIP_XCVR_HSSLEW_MSB(x) ((((x) & 0x1fc) >> 2) << 25)
#define UTMIP_BIAS_CFG0 0x80c
#define UTMIP_OTGPD BIT(11)
#define UTMIP_BIASPD BIT(10)
#define UTMIP_HSSQUELCH_LEVEL(x) (((x) & 0x3) << 0)
#define UTMIP_HSDISCON_LEVEL(x) (((x) & 0x3) << 2)
#define UTMIP_HSDISCON_LEVEL_MSB(x) ((((x) & 0x4) >> 2) << 24)
#define UTMIP_HSRX_CFG0 0x810
#define UTMIP_ELASTIC_LIMIT(x) (((x) & 0x1f) << 10)
#define UTMIP_IDLE_WAIT(x) (((x) & 0x1f) << 15)
#define UTMIP_HSRX_CFG1 0x814
#define UTMIP_HS_SYNC_START_DLY(x) (((x) & 0x1f) << 1)
#define UTMIP_TX_CFG0 0x820
#define UTMIP_FS_PREABMLE_J BIT(19)
#define UTMIP_HS_DISCON_DISABLE BIT(8)
#define UTMIP_MISC_CFG0 0x824
#define UTMIP_DPDM_OBSERVE BIT(26)
#define UTMIP_DPDM_OBSERVE_SEL(x) (((x) & 0xf) << 27)
#define UTMIP_DPDM_OBSERVE_SEL_FS_J UTMIP_DPDM_OBSERVE_SEL(0xf)
#define UTMIP_DPDM_OBSERVE_SEL_FS_K UTMIP_DPDM_OBSERVE_SEL(0xe)
#define UTMIP_DPDM_OBSERVE_SEL_FS_SE1 UTMIP_DPDM_OBSERVE_SEL(0xd)
#define UTMIP_DPDM_OBSERVE_SEL_FS_SE0 UTMIP_DPDM_OBSERVE_SEL(0xc)
#define UTMIP_SUSPEND_EXIT_ON_EDGE BIT(22)
#define UTMIP_MISC_CFG1 0x828
#define UTMIP_PLL_ACTIVE_DLY_COUNT(x) (((x) & 0x1f) << 18)
#define UTMIP_PLLU_STABLE_COUNT(x) (((x) & 0xfff) << 6)
#define UTMIP_DEBOUNCE_CFG0 0x82c
#define UTMIP_BIAS_DEBOUNCE_A(x) (((x) & 0xffff) << 0)
#define UTMIP_BAT_CHRG_CFG0 0x830
#define UTMIP_PD_CHRG BIT(0)
#define UTMIP_SPARE_CFG0 0x834
#define FUSE_SETUP_SEL BIT(3)
#define UTMIP_XCVR_CFG1 0x838
#define UTMIP_FORCE_PDDISC_POWERDOWN BIT(0)
#define UTMIP_FORCE_PDCHRP_POWERDOWN BIT(2)
#define UTMIP_FORCE_PDDR_POWERDOWN BIT(4)
#define UTMIP_XCVR_TERM_RANGE_ADJ(x) (((x) & 0xf) << 18)
#define UTMIP_BIAS_CFG1 0x83c
#define UTMIP_BIAS_PDTRK_COUNT(x) (((x) & 0x1f) << 3)
/* For Tegra30 and above only, the address is different in Tegra20 */
#define USB_USBMODE 0x1f8
#define USB_USBMODE_MASK (3 << 0)
#define USB_USBMODE_HOST (3 << 0)
#define USB_USBMODE_DEVICE (2 << 0)
#define PMC_USB_AO 0xf0
#define VBUS_WAKEUP_PD_P0 BIT(2)
#define ID_PD_P0 BIT(3)
static DEFINE_SPINLOCK(utmip_pad_lock);
static unsigned int utmip_pad_count;
struct tegra_xtal_freq {
unsigned int freq;
u8 enable_delay;
u8 stable_count;
u8 active_delay;
u8 xtal_freq_count;
u16 debounce;
};
static const struct tegra_xtal_freq tegra_freq_table[] = {
{
.freq = 12000000,
.enable_delay = 0x02,
.stable_count = 0x2F,
.active_delay = 0x04,
.xtal_freq_count = 0x76,
.debounce = 0x7530,
},
{
.freq = 13000000,
.enable_delay = 0x02,
.stable_count = 0x33,
.active_delay = 0x05,
.xtal_freq_count = 0x7F,
.debounce = 0x7EF4,
},
{
.freq = 19200000,
.enable_delay = 0x03,
.stable_count = 0x4B,
.active_delay = 0x06,
.xtal_freq_count = 0xBB,
.debounce = 0xBB80,
},
{
.freq = 26000000,
.enable_delay = 0x04,
.stable_count = 0x66,
.active_delay = 0x09,
.xtal_freq_count = 0xFE,
.debounce = 0xFDE8,
},
};
static inline struct tegra_usb_phy *to_tegra_usb_phy(struct usb_phy *u_phy)
{
return container_of(u_phy, struct tegra_usb_phy, u_phy);
}
static void set_pts(struct tegra_usb_phy *phy, u8 pts_val)
{
void __iomem *base = phy->regs;
u32 val;
if (phy->soc_config->has_hostpc) {
val = readl_relaxed(base + TEGRA_USB_HOSTPC1_DEVLC);
val &= ~TEGRA_USB_HOSTPC1_DEVLC_PTS(~0);
val |= TEGRA_USB_HOSTPC1_DEVLC_PTS(pts_val);
writel_relaxed(val, base + TEGRA_USB_HOSTPC1_DEVLC);
} else {
val = readl_relaxed(base + TEGRA_USB_PORTSC1);
val &= ~TEGRA_PORTSC1_RWC_BITS;
val &= ~TEGRA_USB_PORTSC1_PTS(~0);
val |= TEGRA_USB_PORTSC1_PTS(pts_val);
writel_relaxed(val, base + TEGRA_USB_PORTSC1);
}
}
static void set_phcd(struct tegra_usb_phy *phy, bool enable)
{
void __iomem *base = phy->regs;
u32 val;
if (phy->soc_config->has_hostpc) {
val = readl_relaxed(base + TEGRA_USB_HOSTPC1_DEVLC);
if (enable)
val |= TEGRA_USB_HOSTPC1_DEVLC_PHCD;
else
val &= ~TEGRA_USB_HOSTPC1_DEVLC_PHCD;
writel_relaxed(val, base + TEGRA_USB_HOSTPC1_DEVLC);
} else {
val = readl_relaxed(base + TEGRA_USB_PORTSC1) & ~PORT_RWC_BITS;
if (enable)
val |= TEGRA_USB_PORTSC1_PHCD;
else
val &= ~TEGRA_USB_PORTSC1_PHCD;
writel_relaxed(val, base + TEGRA_USB_PORTSC1);
}
}
static int utmip_pad_open(struct tegra_usb_phy *phy)
{
int ret;
ret = clk_prepare_enable(phy->pad_clk);
if (ret) {
dev_err(phy->u_phy.dev,
"Failed to enable UTMI-pads clock: %d\n", ret);
return ret;
}
spin_lock(&utmip_pad_lock);
ret = reset_control_deassert(phy->pad_rst);
if (ret) {
dev_err(phy->u_phy.dev,
"Failed to initialize UTMI-pads reset: %d\n", ret);
goto unlock;
}
ret = reset_control_assert(phy->pad_rst);
if (ret) {
dev_err(phy->u_phy.dev,
"Failed to assert UTMI-pads reset: %d\n", ret);
goto unlock;
}
udelay(1);
ret = reset_control_deassert(phy->pad_rst);
if (ret)
dev_err(phy->u_phy.dev,
"Failed to deassert UTMI-pads reset: %d\n", ret);
unlock:
spin_unlock(&utmip_pad_lock);
clk_disable_unprepare(phy->pad_clk);
return ret;
}
static int utmip_pad_close(struct tegra_usb_phy *phy)
{
int ret;
ret = clk_prepare_enable(phy->pad_clk);
if (ret) {
dev_err(phy->u_phy.dev,
"Failed to enable UTMI-pads clock: %d\n", ret);
return ret;
}
ret = reset_control_assert(phy->pad_rst);
if (ret)
dev_err(phy->u_phy.dev,
"Failed to assert UTMI-pads reset: %d\n", ret);
udelay(1);
clk_disable_unprepare(phy->pad_clk);
return ret;
}
static int utmip_pad_power_on(struct tegra_usb_phy *phy)
{
struct tegra_utmip_config *config = phy->config;
void __iomem *base = phy->pad_regs;
u32 val;
int err;
err = clk_prepare_enable(phy->pad_clk);
if (err)
return err;
spin_lock(&utmip_pad_lock);
if (utmip_pad_count++ == 0) {
val = readl_relaxed(base + UTMIP_BIAS_CFG0);
val &= ~(UTMIP_OTGPD | UTMIP_BIASPD);
if (phy->soc_config->requires_extra_tuning_parameters) {
val &= ~(UTMIP_HSSQUELCH_LEVEL(~0) |
UTMIP_HSDISCON_LEVEL(~0) |
UTMIP_HSDISCON_LEVEL_MSB(~0));
val |= UTMIP_HSSQUELCH_LEVEL(config->hssquelch_level);
val |= UTMIP_HSDISCON_LEVEL(config->hsdiscon_level);
val |= UTMIP_HSDISCON_LEVEL_MSB(config->hsdiscon_level);
}
writel_relaxed(val, base + UTMIP_BIAS_CFG0);
}
if (phy->pad_wakeup) {
phy->pad_wakeup = false;
utmip_pad_count--;
}
spin_unlock(&utmip_pad_lock);
clk_disable_unprepare(phy->pad_clk);
return 0;
}
static int utmip_pad_power_off(struct tegra_usb_phy *phy)
{
void __iomem *base = phy->pad_regs;
u32 val;
int ret;
ret = clk_prepare_enable(phy->pad_clk);
if (ret)
return ret;
spin_lock(&utmip_pad_lock);
if (!utmip_pad_count) {
dev_err(phy->u_phy.dev, "UTMIP pad already powered off\n");
ret = -EINVAL;
goto ulock;
}
/*
* In accordance to TRM, OTG and Bias pad circuits could be turned off
* to save power if wake is enabled, but the VBUS-change detection
* method is board-specific and these circuits may need to be enabled
* to generate wakeup event, hence we will just keep them both enabled.
*/
if (phy->wakeup_enabled) {
phy->pad_wakeup = true;
utmip_pad_count++;
}
if (--utmip_pad_count == 0) {
val = readl_relaxed(base + UTMIP_BIAS_CFG0);
val |= UTMIP_OTGPD | UTMIP_BIASPD;
writel_relaxed(val, base + UTMIP_BIAS_CFG0);
}
ulock:
spin_unlock(&utmip_pad_lock);
clk_disable_unprepare(phy->pad_clk);
return ret;
}
static int utmi_wait_register(void __iomem *reg, u32 mask, u32 result)
{
u32 tmp;
return readl_relaxed_poll_timeout(reg, tmp, (tmp & mask) == result,
2000, 6000);
}
static void utmi_phy_clk_disable(struct tegra_usb_phy *phy)
{
void __iomem *base = phy->regs;
u32 val;
/*
* The USB driver may have already initiated the phy clock
* disable so wait to see if the clock turns off and if not
* then proceed with gating the clock.
*/
if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID, 0) == 0)
return;
if (phy->is_legacy_phy) {
val = readl_relaxed(base + USB_SUSP_CTRL);
val |= USB_SUSP_SET;
writel_relaxed(val, base + USB_SUSP_CTRL);
usleep_range(10, 100);
val = readl_relaxed(base + USB_SUSP_CTRL);
val &= ~USB_SUSP_SET;
writel_relaxed(val, base + USB_SUSP_CTRL);
} else {
set_phcd(phy, true);
}
if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID, 0))
dev_err(phy->u_phy.dev,
"Timeout waiting for PHY to stabilize on disable\n");
}
static void utmi_phy_clk_enable(struct tegra_usb_phy *phy)
{
void __iomem *base = phy->regs;
u32 val;
/*
* The USB driver may have already initiated the phy clock
* enable so wait to see if the clock turns on and if not
* then proceed with ungating the clock.
*/
if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID,
USB_PHY_CLK_VALID) == 0)
return;
if (phy->is_legacy_phy) {
val = readl_relaxed(base + USB_SUSP_CTRL);
val |= USB_SUSP_CLR;
writel_relaxed(val, base + USB_SUSP_CTRL);
usleep_range(10, 100);
val = readl_relaxed(base + USB_SUSP_CTRL);
val &= ~USB_SUSP_CLR;
writel_relaxed(val, base + USB_SUSP_CTRL);
} else {
set_phcd(phy, false);
}
if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID,
USB_PHY_CLK_VALID))
dev_err(phy->u_phy.dev,
"Timeout waiting for PHY to stabilize on enable\n");
}
static int utmi_phy_power_on(struct tegra_usb_phy *phy)
{
struct tegra_utmip_config *config = phy->config;
void __iomem *base = phy->regs;
u32 val;
int err;
val = readl_relaxed(base + USB_SUSP_CTRL);
val |= UTMIP_RESET;
writel_relaxed(val, base + USB_SUSP_CTRL);
if (phy->is_legacy_phy) {
val = readl_relaxed(base + USB1_LEGACY_CTRL);
val |= USB1_NO_LEGACY_MODE;
writel_relaxed(val, base + USB1_LEGACY_CTRL);
}
val = readl_relaxed(base + UTMIP_TX_CFG0);
val |= UTMIP_FS_PREABMLE_J;
writel_relaxed(val, base + UTMIP_TX_CFG0);
val = readl_relaxed(base + UTMIP_HSRX_CFG0);
val &= ~(UTMIP_IDLE_WAIT(~0) | UTMIP_ELASTIC_LIMIT(~0));
val |= UTMIP_IDLE_WAIT(config->idle_wait_delay);
val |= UTMIP_ELASTIC_LIMIT(config->elastic_limit);
writel_relaxed(val, base + UTMIP_HSRX_CFG0);
val = readl_relaxed(base + UTMIP_HSRX_CFG1);
val &= ~UTMIP_HS_SYNC_START_DLY(~0);
val |= UTMIP_HS_SYNC_START_DLY(config->hssync_start_delay);
writel_relaxed(val, base + UTMIP_HSRX_CFG1);
val = readl_relaxed(base + UTMIP_DEBOUNCE_CFG0);
val &= ~UTMIP_BIAS_DEBOUNCE_A(~0);
val |= UTMIP_BIAS_DEBOUNCE_A(phy->freq->debounce);
writel_relaxed(val, base + UTMIP_DEBOUNCE_CFG0);
val = readl_relaxed(base + UTMIP_MISC_CFG0);
val &= ~UTMIP_SUSPEND_EXIT_ON_EDGE;
writel_relaxed(val, base + UTMIP_MISC_CFG0);
if (!phy->soc_config->utmi_pll_config_in_car_module) {
val = readl_relaxed(base + UTMIP_MISC_CFG1);
val &= ~(UTMIP_PLL_ACTIVE_DLY_COUNT(~0) |
UTMIP_PLLU_STABLE_COUNT(~0));
val |= UTMIP_PLL_ACTIVE_DLY_COUNT(phy->freq->active_delay) |
UTMIP_PLLU_STABLE_COUNT(phy->freq->stable_count);
writel_relaxed(val, base + UTMIP_MISC_CFG1);
val = readl_relaxed(base + UTMIP_PLL_CFG1);
val &= ~(UTMIP_XTAL_FREQ_COUNT(~0) |
UTMIP_PLLU_ENABLE_DLY_COUNT(~0));
val |= UTMIP_XTAL_FREQ_COUNT(phy->freq->xtal_freq_count) |
UTMIP_PLLU_ENABLE_DLY_COUNT(phy->freq->enable_delay);
writel_relaxed(val, base + UTMIP_PLL_CFG1);
}
val = readl_relaxed(base + USB_SUSP_CTRL);
val &= ~USB_WAKE_ON_RESUME_EN;
writel_relaxed(val, base + USB_SUSP_CTRL);
if (phy->mode != USB_DR_MODE_HOST) {
val = readl_relaxed(base + USB_SUSP_CTRL);
val &= ~(USB_WAKE_ON_CNNT_EN_DEV | USB_WAKE_ON_DISCON_EN_DEV);
writel_relaxed(val, base + USB_SUSP_CTRL);
val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID);
val &= ~VBUS_WAKEUP_WAKEUP_EN;
val &= ~(ID_CHG_DET | VBUS_WAKEUP_CHG_DET);
writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID);
val = readl_relaxed(base + USB_PHY_VBUS_SENSORS);
val &= ~(A_VBUS_VLD_WAKEUP_EN | A_SESS_VLD_WAKEUP_EN);
val &= ~(B_SESS_VLD_WAKEUP_EN);
writel_relaxed(val, base + USB_PHY_VBUS_SENSORS);
val = readl_relaxed(base + UTMIP_BAT_CHRG_CFG0);
val &= ~UTMIP_PD_CHRG;
writel_relaxed(val, base + UTMIP_BAT_CHRG_CFG0);
} else {
val = readl_relaxed(base + UTMIP_BAT_CHRG_CFG0);
val |= UTMIP_PD_CHRG;
writel_relaxed(val, base + UTMIP_BAT_CHRG_CFG0);
}
err = utmip_pad_power_on(phy);
if (err)
return err;
val = readl_relaxed(base + UTMIP_XCVR_CFG0);
val &= ~(UTMIP_FORCE_PD_POWERDOWN | UTMIP_FORCE_PD2_POWERDOWN |
UTMIP_FORCE_PDZI_POWERDOWN | UTMIP_XCVR_LSBIAS_SEL |
UTMIP_XCVR_SETUP(~0) | UTMIP_XCVR_SETUP_MSB(~0) |
UTMIP_XCVR_LSFSLEW(~0) | UTMIP_XCVR_LSRSLEW(~0));
if (!config->xcvr_setup_use_fuses) {
val |= UTMIP_XCVR_SETUP(config->xcvr_setup);
val |= UTMIP_XCVR_SETUP_MSB(config->xcvr_setup);
}
val |= UTMIP_XCVR_LSFSLEW(config->xcvr_lsfslew);
val |= UTMIP_XCVR_LSRSLEW(config->xcvr_lsrslew);
if (phy->soc_config->requires_extra_tuning_parameters) {
val &= ~(UTMIP_XCVR_HSSLEW(~0) | UTMIP_XCVR_HSSLEW_MSB(~0));
val |= UTMIP_XCVR_HSSLEW(config->xcvr_hsslew);
val |= UTMIP_XCVR_HSSLEW_MSB(config->xcvr_hsslew);
}
writel_relaxed(val, base + UTMIP_XCVR_CFG0);
val = readl_relaxed(base + UTMIP_XCVR_CFG1);
val &= ~(UTMIP_FORCE_PDDISC_POWERDOWN | UTMIP_FORCE_PDCHRP_POWERDOWN |
UTMIP_FORCE_PDDR_POWERDOWN | UTMIP_XCVR_TERM_RANGE_ADJ(~0));
val |= UTMIP_XCVR_TERM_RANGE_ADJ(config->term_range_adj);
writel_relaxed(val, base + UTMIP_XCVR_CFG1);
val = readl_relaxed(base + UTMIP_BIAS_CFG1);
val &= ~UTMIP_BIAS_PDTRK_COUNT(~0);
val |= UTMIP_BIAS_PDTRK_COUNT(0x5);
writel_relaxed(val, base + UTMIP_BIAS_CFG1);
val = readl_relaxed(base + UTMIP_SPARE_CFG0);
if (config->xcvr_setup_use_fuses)
val |= FUSE_SETUP_SEL;
else
val &= ~FUSE_SETUP_SEL;
writel_relaxed(val, base + UTMIP_SPARE_CFG0);
if (!phy->is_legacy_phy) {
val = readl_relaxed(base + USB_SUSP_CTRL);
val |= UTMIP_PHY_ENABLE;
writel_relaxed(val, base + USB_SUSP_CTRL);
}
val = readl_relaxed(base + USB_SUSP_CTRL);
val &= ~UTMIP_RESET;
writel_relaxed(val, base + USB_SUSP_CTRL);
if (phy->is_legacy_phy) {
val = readl_relaxed(base + USB1_LEGACY_CTRL);
val &= ~USB1_VBUS_SENSE_CTL_MASK;
val |= USB1_VBUS_SENSE_CTL_A_SESS_VLD;
writel_relaxed(val, base + USB1_LEGACY_CTRL);
val = readl_relaxed(base + USB_SUSP_CTRL);
val &= ~USB_SUSP_SET;
writel_relaxed(val, base + USB_SUSP_CTRL);
}
utmi_phy_clk_enable(phy);
if (phy->soc_config->requires_usbmode_setup) {
val = readl_relaxed(base + USB_USBMODE);
val &= ~USB_USBMODE_MASK;
if (phy->mode == USB_DR_MODE_HOST)
val |= USB_USBMODE_HOST;
else
val |= USB_USBMODE_DEVICE;
writel_relaxed(val, base + USB_USBMODE);
}
if (!phy->is_legacy_phy)
set_pts(phy, 0);
return 0;
}
static int utmi_phy_power_off(struct tegra_usb_phy *phy)
{
void __iomem *base = phy->regs;
u32 val;
/*
* Give hardware time to settle down after VBUS disconnection,
* otherwise PHY will immediately wake up from suspend.
*/
if (phy->wakeup_enabled && phy->mode != USB_DR_MODE_HOST)
readl_relaxed_poll_timeout(base + USB_PHY_VBUS_WAKEUP_ID,
val, !(val & VBUS_WAKEUP_STS),
5000, 100000);
utmi_phy_clk_disable(phy);
/* PHY won't resume if reset is asserted */
if (!phy->wakeup_enabled) {
val = readl_relaxed(base + USB_SUSP_CTRL);
val |= UTMIP_RESET;
writel_relaxed(val, base + USB_SUSP_CTRL);
}
val = readl_relaxed(base + UTMIP_BAT_CHRG_CFG0);
val |= UTMIP_PD_CHRG;
writel_relaxed(val, base + UTMIP_BAT_CHRG_CFG0);
if (!phy->wakeup_enabled) {
val = readl_relaxed(base + UTMIP_XCVR_CFG0);
val |= UTMIP_FORCE_PD_POWERDOWN | UTMIP_FORCE_PD2_POWERDOWN |
UTMIP_FORCE_PDZI_POWERDOWN;
writel_relaxed(val, base + UTMIP_XCVR_CFG0);
}
val = readl_relaxed(base + UTMIP_XCVR_CFG1);
val |= UTMIP_FORCE_PDDISC_POWERDOWN | UTMIP_FORCE_PDCHRP_POWERDOWN |
UTMIP_FORCE_PDDR_POWERDOWN;
writel_relaxed(val, base + UTMIP_XCVR_CFG1);
if (phy->wakeup_enabled) {
val = readl_relaxed(base + USB_SUSP_CTRL);
val &= ~USB_WAKEUP_DEBOUNCE_COUNT(~0);
val |= USB_WAKEUP_DEBOUNCE_COUNT(5);
val |= USB_WAKE_ON_RESUME_EN;
writel_relaxed(val, base + USB_SUSP_CTRL);
/*
* Ask VBUS sensor to generate wake event once cable is
* connected.
*/
if (phy->mode != USB_DR_MODE_HOST) {
val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID);
val |= VBUS_WAKEUP_WAKEUP_EN;
val &= ~(ID_CHG_DET | VBUS_WAKEUP_CHG_DET);
writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID);
val = readl_relaxed(base + USB_PHY_VBUS_SENSORS);
val |= A_VBUS_VLD_WAKEUP_EN;
writel_relaxed(val, base + USB_PHY_VBUS_SENSORS);
}
}
return utmip_pad_power_off(phy);
}
static void utmi_phy_preresume(struct tegra_usb_phy *phy)
{
void __iomem *base = phy->regs;
u32 val;
val = readl_relaxed(base + UTMIP_TX_CFG0);
val |= UTMIP_HS_DISCON_DISABLE;
writel_relaxed(val, base + UTMIP_TX_CFG0);
}
static void utmi_phy_postresume(struct tegra_usb_phy *phy)
{
void __iomem *base = phy->regs;
u32 val;
val = readl_relaxed(base + UTMIP_TX_CFG0);
val &= ~UTMIP_HS_DISCON_DISABLE;
writel_relaxed(val, base + UTMIP_TX_CFG0);
}
static void utmi_phy_restore_start(struct tegra_usb_phy *phy,
enum tegra_usb_phy_port_speed port_speed)
{
void __iomem *base = phy->regs;
u32 val;
val = readl_relaxed(base + UTMIP_MISC_CFG0);
val &= ~UTMIP_DPDM_OBSERVE_SEL(~0);
if (port_speed == TEGRA_USB_PHY_PORT_SPEED_LOW)
val |= UTMIP_DPDM_OBSERVE_SEL_FS_K;
else
val |= UTMIP_DPDM_OBSERVE_SEL_FS_J;
writel_relaxed(val, base + UTMIP_MISC_CFG0);
usleep_range(1, 10);
val = readl_relaxed(base + UTMIP_MISC_CFG0);
val |= UTMIP_DPDM_OBSERVE;
writel_relaxed(val, base + UTMIP_MISC_CFG0);
usleep_range(10, 100);
}
static void utmi_phy_restore_end(struct tegra_usb_phy *phy)
{
void __iomem *base = phy->regs;
u32 val;
val = readl_relaxed(base + UTMIP_MISC_CFG0);
val &= ~UTMIP_DPDM_OBSERVE;
writel_relaxed(val, base + UTMIP_MISC_CFG0);
usleep_range(10, 100);
}
static int ulpi_phy_power_on(struct tegra_usb_phy *phy)
{
void __iomem *base = phy->regs;
u32 val;
int err;
gpiod_set_value_cansleep(phy->reset_gpio, 1);
err = clk_prepare_enable(phy->clk);
if (err)
return err;
usleep_range(5000, 6000);
gpiod_set_value_cansleep(phy->reset_gpio, 0);
usleep_range(1000, 2000);
val = readl_relaxed(base + USB_SUSP_CTRL);
val |= UHSIC_RESET;
writel_relaxed(val, base + USB_SUSP_CTRL);
val = readl_relaxed(base + ULPI_TIMING_CTRL_0);
val |= ULPI_OUTPUT_PINMUX_BYP | ULPI_CLKOUT_PINMUX_BYP;
writel_relaxed(val, base + ULPI_TIMING_CTRL_0);
val = readl_relaxed(base + USB_SUSP_CTRL);
val |= ULPI_PHY_ENABLE;
writel_relaxed(val, base + USB_SUSP_CTRL);
val = 0;
writel_relaxed(val, base + ULPI_TIMING_CTRL_1);
val |= ULPI_DATA_TRIMMER_SEL(4);
val |= ULPI_STPDIRNXT_TRIMMER_SEL(4);
val |= ULPI_DIR_TRIMMER_SEL(4);
writel_relaxed(val, base + ULPI_TIMING_CTRL_1);
usleep_range(10, 100);
val |= ULPI_DATA_TRIMMER_LOAD;
val |= ULPI_STPDIRNXT_TRIMMER_LOAD;
val |= ULPI_DIR_TRIMMER_LOAD;
writel_relaxed(val, base + ULPI_TIMING_CTRL_1);
/* Fix VbusInvalid due to floating VBUS */
err = usb_phy_io_write(phy->ulpi, 0x40, 0x08);
if (err) {
dev_err(phy->u_phy.dev, "ULPI write failed: %d\n", err);
goto disable_clk;
}
err = usb_phy_io_write(phy->ulpi, 0x80, 0x0B);
if (err) {
dev_err(phy->u_phy.dev, "ULPI write failed: %d\n", err);
goto disable_clk;
}
val = readl_relaxed(base + USB_SUSP_CTRL);
val |= USB_SUSP_CLR;
writel_relaxed(val, base + USB_SUSP_CTRL);
usleep_range(100, 1000);
val = readl_relaxed(base + USB_SUSP_CTRL);
val &= ~USB_SUSP_CLR;
writel_relaxed(val, base + USB_SUSP_CTRL);
return 0;
disable_clk:
clk_disable_unprepare(phy->clk);
return err;
}
static int ulpi_phy_power_off(struct tegra_usb_phy *phy)
{
gpiod_set_value_cansleep(phy->reset_gpio, 1);
usleep_range(5000, 6000);
clk_disable_unprepare(phy->clk);
/*
* Wakeup currently unimplemented for ULPI, thus PHY needs to be
* force-resumed.
*/
if (WARN_ON_ONCE(phy->wakeup_enabled)) {
ulpi_phy_power_on(phy);
return -EOPNOTSUPP;
}
return 0;
}
static int tegra_usb_phy_power_on(struct tegra_usb_phy *phy)
{
int err;
if (phy->powered_on)
return 0;
if (phy->is_ulpi_phy)
err = ulpi_phy_power_on(phy);
else
err = utmi_phy_power_on(phy);
if (err)
return err;
phy->powered_on = true;
/* Let PHY settle down */
usleep_range(2000, 2500);
return 0;
}
static int tegra_usb_phy_power_off(struct tegra_usb_phy *phy)
{
int err;
if (!phy->powered_on)
return 0;
if (phy->is_ulpi_phy)
err = ulpi_phy_power_off(phy);
else
err = utmi_phy_power_off(phy);
if (err)
return err;
phy->powered_on = false;
return 0;
}
static void tegra_usb_phy_shutdown(struct usb_phy *u_phy)
{
struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy);
if (WARN_ON(!phy->freq))
return;
usb_phy_set_wakeup(u_phy, false);
tegra_usb_phy_power_off(phy);
if (!phy->is_ulpi_phy)
utmip_pad_close(phy);
regulator_disable(phy->vbus);
clk_disable_unprepare(phy->pll_u);
phy->freq = NULL;
}
static irqreturn_t tegra_usb_phy_isr(int irq, void *data)
{
u32 val, int_mask = ID_CHG_DET | VBUS_WAKEUP_CHG_DET;
struct tegra_usb_phy *phy = data;
void __iomem *base = phy->regs;
/*
* The PHY interrupt also wakes the USB controller driver since
* interrupt is shared. We don't do anything in the PHY driver,
* so just clear the interrupt.
*/
val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID);
writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID);
return val & int_mask ? IRQ_HANDLED : IRQ_NONE;
}
static int tegra_usb_phy_set_wakeup(struct usb_phy *u_phy, bool enable)
{
struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy);
void __iomem *base = phy->regs;
int ret = 0;
u32 val;
if (phy->wakeup_enabled && phy->mode != USB_DR_MODE_HOST &&
phy->irq > 0) {
disable_irq(phy->irq);
val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID);
val &= ~(ID_INT_EN | VBUS_WAKEUP_INT_EN);
writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID);
enable_irq(phy->irq);
free_irq(phy->irq, phy);
phy->wakeup_enabled = false;
}
if (enable && phy->mode != USB_DR_MODE_HOST && phy->irq > 0) {
ret = request_irq(phy->irq, tegra_usb_phy_isr, IRQF_SHARED,
dev_name(phy->u_phy.dev), phy);
if (!ret) {
disable_irq(phy->irq);
/*
* USB clock will be resumed once wake event will be
* generated. The ID-change event requires to have
* interrupts enabled, otherwise it won't be generated.
*/
val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID);
val |= ID_INT_EN | VBUS_WAKEUP_INT_EN;
writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID);
enable_irq(phy->irq);
} else {
dev_err(phy->u_phy.dev,
"Failed to request interrupt: %d", ret);
enable = false;
}
}
phy->wakeup_enabled = enable;
return ret;
}
static int tegra_usb_phy_set_suspend(struct usb_phy *u_phy, int suspend)
{
struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy);
int ret;
if (WARN_ON(!phy->freq))
return -EINVAL;
/*
* PHY is sharing IRQ with the CI driver, hence here we either
* disable interrupt for both PHY and CI or for CI only. The
* interrupt needs to be disabled while hardware is reprogrammed
* because interrupt touches the programmed registers, and thus,
* there could be a race condition.
*/
if (phy->irq > 0)
disable_irq(phy->irq);
if (suspend)
ret = tegra_usb_phy_power_off(phy);
else
ret = tegra_usb_phy_power_on(phy);
if (phy->irq > 0)
enable_irq(phy->irq);
return ret;
}
static int tegra_usb_phy_configure_pmc(struct tegra_usb_phy *phy)
{
int err, val = 0;
/* older device-trees don't have PMC regmap */
if (!phy->pmc_regmap)
return 0;
/*
* Tegra20 has a different layout of PMC USB register bits and AO is
* enabled by default after system reset on Tegra20, so assume nothing
* to do on Tegra20.
*/
if (!phy->soc_config->requires_pmc_ao_power_up)
return 0;
/* enable VBUS wake-up detector */
if (phy->mode != USB_DR_MODE_HOST)
val |= VBUS_WAKEUP_PD_P0 << phy->instance * 4;
/* enable ID-pin ACC detector for OTG mode switching */
if (phy->mode == USB_DR_MODE_OTG)
val |= ID_PD_P0 << phy->instance * 4;
/* disable detectors to reset them */
err = regmap_set_bits(phy->pmc_regmap, PMC_USB_AO, val);
if (err) {
dev_err(phy->u_phy.dev, "Failed to disable PMC AO: %d\n", err);
return err;
}
usleep_range(10, 100);
/* enable detectors */
err = regmap_clear_bits(phy->pmc_regmap, PMC_USB_AO, val);
if (err) {
dev_err(phy->u_phy.dev, "Failed to enable PMC AO: %d\n", err);
return err;
}
/* detectors starts to work after 10ms */
usleep_range(10000, 15000);
return 0;
}
static int tegra_usb_phy_init(struct usb_phy *u_phy)
{
struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy);
unsigned long parent_rate;
unsigned int i;
int err;
if (WARN_ON(phy->freq))
return 0;
err = clk_prepare_enable(phy->pll_u);
if (err)
return err;
parent_rate = clk_get_rate(clk_get_parent(phy->pll_u));
for (i = 0; i < ARRAY_SIZE(tegra_freq_table); i++) {
if (tegra_freq_table[i].freq == parent_rate) {
phy->freq = &tegra_freq_table[i];
break;
}
}
if (!phy->freq) {
dev_err(phy->u_phy.dev, "Invalid pll_u parent rate %ld\n",
parent_rate);
err = -EINVAL;
goto disable_clk;
}
err = regulator_enable(phy->vbus);
if (err) {
dev_err(phy->u_phy.dev,
"Failed to enable USB VBUS regulator: %d\n", err);
goto disable_clk;
}
if (!phy->is_ulpi_phy) {
err = utmip_pad_open(phy);
if (err)
goto disable_vbus;
}
err = tegra_usb_phy_configure_pmc(phy);
if (err)
goto close_phy;
err = tegra_usb_phy_power_on(phy);
if (err)
goto close_phy;
return 0;
close_phy:
if (!phy->is_ulpi_phy)
utmip_pad_close(phy);
disable_vbus:
regulator_disable(phy->vbus);
disable_clk:
clk_disable_unprepare(phy->pll_u);
phy->freq = NULL;
return err;
}
void tegra_usb_phy_preresume(struct usb_phy *u_phy)
{
struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy);
if (!phy->is_ulpi_phy)
utmi_phy_preresume(phy);
}
EXPORT_SYMBOL_GPL(tegra_usb_phy_preresume);
void tegra_usb_phy_postresume(struct usb_phy *u_phy)
{
struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy);
if (!phy->is_ulpi_phy)
utmi_phy_postresume(phy);
}
EXPORT_SYMBOL_GPL(tegra_usb_phy_postresume);
void tegra_ehci_phy_restore_start(struct usb_phy *u_phy,
enum tegra_usb_phy_port_speed port_speed)
{
struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy);
if (!phy->is_ulpi_phy)
utmi_phy_restore_start(phy, port_speed);
}
EXPORT_SYMBOL_GPL(tegra_ehci_phy_restore_start);
void tegra_ehci_phy_restore_end(struct usb_phy *u_phy)
{
struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy);
if (!phy->is_ulpi_phy)
utmi_phy_restore_end(phy);
}
EXPORT_SYMBOL_GPL(tegra_ehci_phy_restore_end);
static int read_utmi_param(struct platform_device *pdev, const char *param,
u8 *dest)
{
u32 value;
int err;
err = of_property_read_u32(pdev->dev.of_node, param, &value);
if (err)
dev_err(&pdev->dev,
"Failed to read USB UTMI parameter %s: %d\n",
param, err);
else
*dest = value;
return err;
}
static int utmi_phy_probe(struct tegra_usb_phy *tegra_phy,
struct platform_device *pdev)
{
struct tegra_utmip_config *config;
struct resource *res;
int err;
tegra_phy->is_ulpi_phy = false;
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res) {
dev_err(&pdev->dev, "Failed to get UTMI pad regs\n");
return -ENXIO;
}
/*
* Note that UTMI pad registers are shared by all PHYs, therefore
* devm_platform_ioremap_resource() can't be used here.
*/
tegra_phy->pad_regs = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!tegra_phy->pad_regs) {
dev_err(&pdev->dev, "Failed to remap UTMI pad regs\n");
return -ENOMEM;
}
tegra_phy->config = devm_kzalloc(&pdev->dev, sizeof(*config),
GFP_KERNEL);
if (!tegra_phy->config)
return -ENOMEM;
config = tegra_phy->config;
err = read_utmi_param(pdev, "nvidia,hssync-start-delay",
&config->hssync_start_delay);
if (err)
return err;
err = read_utmi_param(pdev, "nvidia,elastic-limit",
&config->elastic_limit);
if (err)
return err;
err = read_utmi_param(pdev, "nvidia,idle-wait-delay",
&config->idle_wait_delay);
if (err)
return err;
err = read_utmi_param(pdev, "nvidia,term-range-adj",
&config->term_range_adj);
if (err)
return err;
err = read_utmi_param(pdev, "nvidia,xcvr-lsfslew",
&config->xcvr_lsfslew);
if (err)
return err;
err = read_utmi_param(pdev, "nvidia,xcvr-lsrslew",
&config->xcvr_lsrslew);
if (err)
return err;
if (tegra_phy->soc_config->requires_extra_tuning_parameters) {
err = read_utmi_param(pdev, "nvidia,xcvr-hsslew",
&config->xcvr_hsslew);
if (err)
return err;
err = read_utmi_param(pdev, "nvidia,hssquelch-level",
&config->hssquelch_level);
if (err)
return err;
err = read_utmi_param(pdev, "nvidia,hsdiscon-level",
&config->hsdiscon_level);
if (err)
return err;
}
config->xcvr_setup_use_fuses = of_property_read_bool(
pdev->dev.of_node, "nvidia,xcvr-setup-use-fuses");
if (!config->xcvr_setup_use_fuses) {
err = read_utmi_param(pdev, "nvidia,xcvr-setup",
&config->xcvr_setup);
if (err)
return err;
}
return 0;
}
static void tegra_usb_phy_put_pmc_device(void *dev)
{
put_device(dev);
}
static int tegra_usb_phy_parse_pmc(struct device *dev,
struct tegra_usb_phy *phy)
{
struct platform_device *pmc_pdev;
struct of_phandle_args args;
int err;
err = of_parse_phandle_with_fixed_args(dev->of_node, "nvidia,pmc",
1, 0, &args);
if (err) {
if (err != -ENOENT)
return err;
dev_warn_once(dev, "nvidia,pmc is missing, please update your device-tree\n");
return 0;
}
pmc_pdev = of_find_device_by_node(args.np);
of_node_put(args.np);
if (!pmc_pdev)
return -ENODEV;
err = devm_add_action_or_reset(dev, tegra_usb_phy_put_pmc_device,
&pmc_pdev->dev);
if (err)
return err;
if (!platform_get_drvdata(pmc_pdev))
return -EPROBE_DEFER;
phy->pmc_regmap = dev_get_regmap(&pmc_pdev->dev, "usb_sleepwalk");
if (!phy->pmc_regmap)
return -EINVAL;
phy->instance = args.args[0];
return 0;
}
static const struct tegra_phy_soc_config tegra20_soc_config = {
.utmi_pll_config_in_car_module = false,
.has_hostpc = false,
.requires_usbmode_setup = false,
.requires_extra_tuning_parameters = false,
.requires_pmc_ao_power_up = false,
};
static const struct tegra_phy_soc_config tegra30_soc_config = {
.utmi_pll_config_in_car_module = true,
.has_hostpc = true,
.requires_usbmode_setup = true,
.requires_extra_tuning_parameters = true,
.requires_pmc_ao_power_up = true,
};
static const struct of_device_id tegra_usb_phy_id_table[] = {
{ .compatible = "nvidia,tegra30-usb-phy", .data = &tegra30_soc_config },
{ .compatible = "nvidia,tegra20-usb-phy", .data = &tegra20_soc_config },
{ },
};
MODULE_DEVICE_TABLE(of, tegra_usb_phy_id_table);
static int tegra_usb_phy_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct tegra_usb_phy *tegra_phy;
enum usb_phy_interface phy_type;
struct reset_control *reset;
struct gpio_desc *gpiod;
struct resource *res;
struct usb_phy *phy;
int err;
tegra_phy = devm_kzalloc(&pdev->dev, sizeof(*tegra_phy), GFP_KERNEL);
if (!tegra_phy)
return -ENOMEM;
tegra_phy->soc_config = of_device_get_match_data(&pdev->dev);
tegra_phy->irq = platform_get_irq_optional(pdev, 0);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "Failed to get I/O memory\n");
return -ENXIO;
}
/*
* Note that PHY and USB controller are using shared registers,
* therefore devm_platform_ioremap_resource() can't be used here.
*/
tegra_phy->regs = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!tegra_phy->regs) {
dev_err(&pdev->dev, "Failed to remap I/O memory\n");
return -ENOMEM;
}
tegra_phy->is_legacy_phy =
of_property_read_bool(np, "nvidia,has-legacy-mode");
if (of_property_present(np, "dr_mode"))
tegra_phy->mode = usb_get_dr_mode(&pdev->dev);
else
tegra_phy->mode = USB_DR_MODE_HOST;
if (tegra_phy->mode == USB_DR_MODE_UNKNOWN) {
dev_err(&pdev->dev, "dr_mode is invalid\n");
return -EINVAL;
}
/* On some boards, the VBUS regulator doesn't need to be controlled */
tegra_phy->vbus = devm_regulator_get(&pdev->dev, "vbus");
if (IS_ERR(tegra_phy->vbus))
return PTR_ERR(tegra_phy->vbus);
tegra_phy->pll_u = devm_clk_get(&pdev->dev, "pll_u");
err = PTR_ERR_OR_ZERO(tegra_phy->pll_u);
if (err) {
dev_err(&pdev->dev, "Failed to get pll_u clock: %d\n", err);
return err;
}
err = tegra_usb_phy_parse_pmc(&pdev->dev, tegra_phy);
if (err) {
dev_err_probe(&pdev->dev, err, "Failed to get PMC regmap\n");
return err;
}
phy_type = of_usb_get_phy_mode(np);
switch (phy_type) {
case USBPHY_INTERFACE_MODE_UTMI:
err = utmi_phy_probe(tegra_phy, pdev);
if (err)
return err;
tegra_phy->pad_clk = devm_clk_get(&pdev->dev, "utmi-pads");
err = PTR_ERR_OR_ZERO(tegra_phy->pad_clk);
if (err) {
dev_err(&pdev->dev,
"Failed to get UTMIP pad clock: %d\n", err);
return err;
}
reset = devm_reset_control_get_optional_shared(&pdev->dev,
"utmi-pads");
err = PTR_ERR_OR_ZERO(reset);
if (err) {
dev_err(&pdev->dev,
"Failed to get UTMI-pads reset: %d\n", err);
return err;
}
tegra_phy->pad_rst = reset;
break;
case USBPHY_INTERFACE_MODE_ULPI:
tegra_phy->is_ulpi_phy = true;
tegra_phy->clk = devm_clk_get(&pdev->dev, "ulpi-link");
err = PTR_ERR_OR_ZERO(tegra_phy->clk);
if (err) {
dev_err(&pdev->dev,
"Failed to get ULPI clock: %d\n", err);
return err;
}
gpiod = devm_gpiod_get(&pdev->dev, "nvidia,phy-reset",
GPIOD_OUT_HIGH);
err = PTR_ERR_OR_ZERO(gpiod);
if (err) {
dev_err(&pdev->dev,
"Request failed for reset GPIO: %d\n", err);
return err;
}
err = gpiod_set_consumer_name(gpiod, "ulpi_phy_reset_b");
if (err) {
dev_err(&pdev->dev,
"Failed to set up reset GPIO name: %d\n", err);
return err;
}
tegra_phy->reset_gpio = gpiod;
phy = devm_otg_ulpi_create(&pdev->dev,
&ulpi_viewport_access_ops, 0);
if (!phy) {
dev_err(&pdev->dev, "Failed to create ULPI OTG\n");
return -ENOMEM;
}
tegra_phy->ulpi = phy;
tegra_phy->ulpi->io_priv = tegra_phy->regs + ULPI_VIEWPORT;
break;
default:
dev_err(&pdev->dev, "phy_type %u is invalid or unsupported\n",
phy_type);
return -EINVAL;
}
tegra_phy->u_phy.dev = &pdev->dev;
tegra_phy->u_phy.init = tegra_usb_phy_init;
tegra_phy->u_phy.shutdown = tegra_usb_phy_shutdown;
tegra_phy->u_phy.set_wakeup = tegra_usb_phy_set_wakeup;
tegra_phy->u_phy.set_suspend = tegra_usb_phy_set_suspend;
platform_set_drvdata(pdev, tegra_phy);
return usb_add_phy_dev(&tegra_phy->u_phy);
}
static void tegra_usb_phy_remove(struct platform_device *pdev)
{
struct tegra_usb_phy *tegra_phy = platform_get_drvdata(pdev);
usb_remove_phy(&tegra_phy->u_phy);
}
static struct platform_driver tegra_usb_phy_driver = {
.probe = tegra_usb_phy_probe,
.remove_new = tegra_usb_phy_remove,
.driver = {
.name = "tegra-phy",
.of_match_table = tegra_usb_phy_id_table,
},
};
module_platform_driver(tegra_usb_phy_driver);
MODULE_DESCRIPTION("Tegra USB PHY driver");
MODULE_LICENSE("GPL v2");