linux/drivers/usb/dwc2/core.h

/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
/*
 * core.h - DesignWare HS OTG Controller common declarations
 *
 * Copyright (C) 2004-2013 Synopsys, Inc.
 */

#ifndef __DWC2_CORE_H__
#define __DWC2_CORE_H__

#include <linux/acpi.h>
#include <linux/phy/phy.h>
#include <linux/regulator/consumer.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
#include <linux/usb/phy.h>
#include "hw.h"

/*
 * Suggested defines for tracers:
 * - no_printk:    Disable tracing
 * - pr_info:      Print this info to the console
 * - trace_printk: Print this info to trace buffer (good for verbose logging)
 */

#define DWC2_TRACE_SCHEDULER		no_printk
#define DWC2_TRACE_SCHEDULER_VB		no_printk

/* Detailed scheduler tracing, but won't overwhelm console */
#define dwc2_sch_dbg(hsotg, fmt, ...)					\
	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
			     dev_name(hsotg->dev), ##__VA_ARGS__)

/* Verbose scheduler tracing */
#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
				dev_name(hsotg->dev), ##__VA_ARGS__)

/* Maximum number of Endpoints/HostChannels */
#define MAX_EPS_CHANNELS	16

/* dwc2-hsotg declarations */
static const char * const dwc2_hsotg_supply_names[] = {
	"vusb_d",               /* digital USB supply, 1.2V */
	"vusb_a",               /* analog USB supply, 1.1V */
};

#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)

/*
 * EP0_MPS_LIMIT
 *
 * Unfortunately there seems to be a limit of the amount of data that can
 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 * packets (which practically means 1 packet and 63 bytes of data) when the
 * MPS is set to 64.
 *
 * This means if we are wanting to move >127 bytes of data, we need to
 * split the transactions up, but just doing one packet at a time does
 * not work (this may be an implicit DATA0 PID on first packet of the
 * transaction) and doing 2 packets is outside the controller's limits.
 *
 * If we try to lower the MPS size for EP0, then no transfers work properly
 * for EP0, and the system will fail basic enumeration. As no cause for this
 * has currently been found, we cannot support any large IN transfers for
 * EP0.
 */
#define EP0_MPS_LIMIT   64

struct dwc2_hsotg;
struct dwc2_hsotg_req;

/**
 * struct dwc2_hsotg_ep - driver endpoint definition.
 * @ep: The gadget layer representation of the endpoint.
 * @name: The driver generated name for the endpoint.
 * @queue: Queue of requests for this endpoint.
 * @parent: Reference back to the parent device structure.
 * @req: The current request that the endpoint is processing. This is
 *       used to indicate an request has been loaded onto the endpoint
 *       and has yet to be completed (maybe due to data move, or simply
 *       awaiting an ack from the core all the data has been completed).
 * @debugfs: File entry for debugfs file for this endpoint.
 * @dir_in: Set to true if this endpoint is of the IN direction, which
 *          means that it is sending data to the Host.
 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
 * @index: The index for the endpoint registers.
 * @mc: Multi Count - number of transactions per microframe
 * @interval: Interval for periodic endpoints, in frames or microframes.
 * @name: The name array passed to the USB core.
 * @halted: Set if the endpoint has been halted.
 * @periodic: Set if this is a periodic ep, such as Interrupt
 * @isochronous: Set if this is a isochronous ep
 * @send_zlp: Set if we need to send a zero-length packet.
 * @wedged: Set if ep is wedged.
 * @desc_list_dma: The DMA address of descriptor chain currently in use.
 * @desc_list: Pointer to descriptor DMA chain head currently in use.
 * @desc_count: Count of entries within the DMA descriptor chain of EP.
 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
 * @compl_desc: index of next descriptor to be completed by xFerComplete
 * @total_data: The total number of data bytes done.
 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 * @last_load: The offset of data for the last start of request.
 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 * @target_frame: Targeted frame num to setup next ISOC transfer
 * @frame_overrun: Indicates SOF number overrun in DSTS
 *
 * This is the driver's state for each registered endpoint, allowing it
 * to keep track of transactions that need doing. Each endpoint has a
 * lock to protect the state, to try and avoid using an overall lock
 * for the host controller as much as possible.
 *
 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 * and keep track of the amount of data in the periodic FIFO for each
 * of these as we don't have a status register that tells us how much
 * is in each of them. (note, this may actually be useless information
 * as in shared-fifo mode periodic in acts like a single-frame packet
 * buffer than a fifo)
 */
struct dwc2_hsotg_ep {
	struct usb_ep           ep;
	struct list_head        queue;
	struct dwc2_hsotg       *parent;
	struct dwc2_hsotg_req    *req;
	struct dentry           *debugfs;

	unsigned long           total_data;
	unsigned int            size_loaded;
	unsigned int            last_load;
	unsigned int            fifo_load;
	unsigned short          fifo_size;
	unsigned short		fifo_index;

	unsigned char           dir_in;
	unsigned char           map_dir;
	unsigned char           index;
	unsigned char           mc;
	u16                     interval;

	unsigned int            halted:1;
	unsigned int            periodic:1;
	unsigned int            isochronous:1;
	unsigned int            send_zlp:1;
	unsigned int            wedged:1;
	unsigned int            target_frame;
#define TARGET_FRAME_INITIAL   0xFFFFFFFF
	bool			frame_overrun;

	dma_addr_t		desc_list_dma;
	struct dwc2_dma_desc	*desc_list;
	u8			desc_count;

	unsigned int		next_desc;
	unsigned int		compl_desc;

	char                    name[10];
};

/**
 * struct dwc2_hsotg_req - data transfer request
 * @req: The USB gadget request
 * @queue: The list of requests for the endpoint this is queued for.
 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 */
struct dwc2_hsotg_req {
	struct usb_request      req;
	struct list_head        queue;
	void *saved_req_buf;
};

#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
#define call_gadget(_hs, _entry) \
do { \
	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
		(_hs)->driver && (_hs)->driver->_entry) { \
		spin_unlock(&_hs->lock); \
		(_hs)->driver->_entry(&(_hs)->gadget); \
		spin_lock(&_hs->lock); \
	} \
} while (0)
#else
#define call_gadget(_hs, _entry)	do {} while (0)
#endif

struct dwc2_hsotg;
struct dwc2_host_chan;

/* Device States */
enum dwc2_lx_state {
	DWC2_L0,	/* On state */
	DWC2_L1,	/* LPM sleep state */
	DWC2_L2,	/* USB suspend state */
	DWC2_L3,	/* Off state */
};

/* Gadget ep0 states */
enum dwc2_ep0_state {
	DWC2_EP0_SETUP,
	DWC2_EP0_DATA_IN,
	DWC2_EP0_DATA_OUT,
	DWC2_EP0_STATUS_IN,
	DWC2_EP0_STATUS_OUT,
};

/**
 * struct dwc2_core_params - Parameters for configuring the core
 *
 * @otg_caps:           Specifies the OTG capabilities. OTG caps from the platform parameters,
 *                      used to setup the:
 *                       - HNP and SRP capable
 *                       - SRP Only capable
 *                       - No HNP/SRP capable (always available)
 *                       Defaults to best available option
 *                       - OTG revision number the device is compliant with, in binary-coded
 *                         decimal (i.e. 2.0 is 0200H). (see struct usb_otg_caps)
 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
 *                      the data FIFOs. The driver will automatically detect the
 *                      value for this parameter if none is specified.
 *                       0 - Slave (always available)
 *                       1 - DMA (default, if available)
 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 *                      address DMA mode or descriptor DMA mode for accessing
 *                      the data FIFOs. The driver will automatically detect the
 *                      value for this if none is specified.
 *                       0 - Address DMA
 *                       1 - Descriptor DMA (default, if available)
 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 *                      address DMA mode or descriptor DMA mode for accessing
 *                      the data FIFOs in Full Speed mode only. The driver
 *                      will automatically detect the value for this if none is
 *                      specified.
 *                       0 - Address DMA
 *                       1 - Descriptor DMA in FS (default, if available)
 * @speed:              Specifies the maximum speed of operation in host and
 *                      device mode. The actual speed depends on the speed of
 *                      the attached device and the value of phy_type.
 *                       0 - High Speed
 *                           (default when phy_type is UTMI+ or ULPI)
 *                       1 - Full Speed
 *                           (default when phy_type is Full Speed)
 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 *                       1 - Allow dynamic FIFO sizing (default, if available)
 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 *                      are enabled for non-periodic IN endpoints in device
 *                      mode.
 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 *                      dynamic FIFO sizing is enabled
 *                       16 to 32768
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 *                      in host mode when dynamic FIFO sizing is enabled
 *                       16 to 32768
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 *                      host mode when dynamic FIFO sizing is enabled
 *                       16 to 32768
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @max_transfer_size:  The maximum transfer size supported, in bytes
 *                       2047 to 65,535
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @max_packet_count:   The maximum number of packets in a transfer
 *                       15 to 511
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @host_channels:      The number of host channel registers to use
 *                       1 to 16
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @phy_type:           Specifies the type of PHY interface to use. By default,
 *                      the driver will automatically detect the phy_type.
 *                       0 - Full Speed Phy
 *                       1 - UTMI+ Phy
 *                       2 - ULPI Phy
 *                      Defaults to best available option (2, 1, then 0)
 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 *                      ULPI phy_type, this parameter indicates the data width
 *                      between the MAC and the ULPI Wrapper.) Also, this
 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 *                      parameter was set to "8 and 16 bits", meaning that the
 *                      core has been configured to work at either data path
 *                      width.
 *                       8 or 16 (default 16 if available)
 * @eusb2_disc:         Specifies whether eUSB2 PHY disconnect support flow
 *                      applicable or no. Applicable in device mode of HSOTG
 *                      and HS IOT cores v5.00 or higher.
 *                       0 - eUSB2 PHY disconnect support flow not applicable
 *                       1 - eUSB2 PHY disconnect support flow applicable
 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 *                      data rate. This parameter is only applicable if phy_type
 *                      is ULPI.
 *                       0 - single data rate ULPI interface with 8 bit wide
 *                           data bus (default)
 *                       1 - double data rate ULPI interface with 4 bit wide
 *                           data bus
 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 *                      external supply to drive the VBus
 *                       0 - Internal supply (default)
 *                       1 - External supply
 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 *                      speed PHY. This parameter is only applicable if phy_type
 *                      is FS.
 *                       0 - No (default)
 *                       1 - Yes
 * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
 *                       0 - Disable (default)
 *                       1 - Enable
 * @acg_enable:		For enabling Active Clock Gating in the controller
 *                       0 - No
 *                       1 - Yes
 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 *                       0 - No (default)
 *                       1 - Yes
 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 *                      when attached to a Full Speed or Low Speed device in
 *                      host mode.
 *                       0 - Don't support low power mode (default)
 *                       1 - Support low power mode
 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 *                      when connected to a Low Speed device in host
 *                      mode. This parameter is applicable only if
 *                      host_support_fs_ls_low_power is enabled.
 *                       0 - 48 MHz
 *                           (default when phy_type is UTMI+ or ULPI)
 *                       1 - 6 MHz
 *                           (default when phy_type is Full Speed)
 * @oc_disable:		Flag to disable overcurrent condition.
 *			0 - Allow overcurrent condition to get detected
 *			1 - Disable overcurrent condtion to get detected
 * @ts_dline:           Enable Term Select Dline pulsing
 *                       0 - No (default)
 *                       1 - Yes
 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 *                       0 - No (default for core < 2.92a)
 *                       1 - Yes (default for core >= 2.92a)
 * @ahbcfg:             This field allows the default value of the GAHBCFG
 *                      register to be overridden
 *                       -1         - GAHBCFG value will be set to 0x06
 *                                    (INCR, default)
 *                       all others - GAHBCFG value will be overridden with
 *                                    this value
 *                      Not all bits can be controlled like this, the
 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 *                      by the driver and are ignored in this
 *                      configuration value.
 * @uframe_sched:       True to enable the microframe scheduler
 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 *                      Disable CONIDSTSCHNG controller interrupt in such
 *                      case.
 *                      0 - No (default)
 *                      1 - Yes
 * @power_down:         Specifies whether the controller support power_down.
 *			If power_down is enabled, the controller will enter
 *			power_down in both peripheral and host mode when
 *			needed.
 *			0 - No (default)
 *			1 - Partial power down
 *			2 - Hibernation
 * @no_clock_gating:	Specifies whether to avoid clock gating feature.
 *			0 - No (use clock gating)
 *			1 - Yes (avoid it)
 * @lpm:		Enable LPM support.
 *			0 - No
 *			1 - Yes
 * @lpm_clock_gating:		Enable core PHY clock gating.
 *			0 - No
 *			1 - Yes
 * @besl:		Enable LPM Errata support.
 *			0 - No
 *			1 - Yes
 * @hird_threshold_en:	HIRD or HIRD Threshold enable.
 *			0 - No
 *			1 - Yes
 * @hird_threshold:	Value of BESL or HIRD Threshold.
 * @ref_clk_per:        Indicates in terms of pico seconds the period
 *                      of ref_clk.
 *			62500 - 16MHz
 *                      58823 - 17MHz
 *                      52083 - 19.2MHz
 *			50000 - 20MHz
 *			41666 - 24MHz
 *			33333 - 30MHz (default)
 *			25000 - 40MHz
 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
 *                      the controller should generate an interrupt if the
 *                      device had been in L1 state until that period.
 *                      This is used by SW to initiate Remote WakeUp in the
 *                      controller so as to sync to the uF number from the host.
 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
 *			register.
 *			0 - Deactivate the transceiver (default)
 *			1 - Activate the transceiver
 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
 *			detection using GGPIO register.
 *			0 - Deactivate the external level detection (default)
 *			1 - Activate the external level detection
 * @activate_ingenic_overcurrent_detection: Activate Ingenic overcurrent
 *			detection.
 *			0 - Deactivate the overcurrent detection
 *			1 - Activate the overcurrent detection (default)
 * @g_dma:              Enables gadget dma usage (default: autodetect).
 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
 * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
 *			DWORDS from 16-32768 (default: 2048 if
 *			possible, otherwise autodetect).
 * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
 *			DWORDS from 16-32768 (default: 1024 if
 *			possible, otherwise autodetect).
 * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
 *			mode. Each value corresponds to one EP
 *			starting from EP1 (max 15 values). Sizes are
 *			in DWORDS with possible values from
 *			16-32768 (default: 256, 256, 256, 256, 768,
 *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
 *                      while full&low speed device connect. And change speed
 *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
 *			0 - No (default)
 *			1 - Yes
 * @service_interval:   Enable service interval based scheduling.
 *                      0 - No
 *                      1 - Yes
 *
 * The following parameters may be specified when starting the module. These
 * parameters define how the DWC_otg controller should be configured. A
 * value of -1 (or any other out of range value) for any parameter means
 * to read the value from hardware (if possible) or use the builtin
 * default described above.
 */
struct dwc2_core_params {
	struct usb_otg_caps otg_caps;
	u8 phy_type;
#define DWC2_PHY_TYPE_PARAM_FS		0
#define DWC2_PHY_TYPE_PARAM_UTMI	1
#define DWC2_PHY_TYPE_PARAM_ULPI	2

	u8 speed;
#define DWC2_SPEED_PARAM_HIGH	0
#define DWC2_SPEED_PARAM_FULL	1
#define DWC2_SPEED_PARAM_LOW	2

	u8 phy_utmi_width;
	bool eusb2_disc;
	bool phy_ulpi_ddr;
	bool phy_ulpi_ext_vbus;
	bool enable_dynamic_fifo;
	bool en_multiple_tx_fifo;
	bool i2c_enable;
	bool acg_enable;
	bool ulpi_fs_ls;
	bool ts_dline;
	bool reload_ctl;
	bool uframe_sched;
	bool external_id_pin_ctl;

	int power_down;
#define DWC2_POWER_DOWN_PARAM_NONE		0
#define DWC2_POWER_DOWN_PARAM_PARTIAL		1
#define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
	bool no_clock_gating;

	bool lpm;
	bool lpm_clock_gating;
	bool besl;
	bool hird_threshold_en;
	bool service_interval;
	u8 hird_threshold;
	bool activate_stm_fs_transceiver;
	bool activate_stm_id_vb_detection;
	bool activate_ingenic_overcurrent_detection;
	bool ipg_isoc_en;
	u16 max_packet_count;
	u32 max_transfer_size;
	u32 ahbcfg;

	/* GREFCLK parameters */
	u32 ref_clk_per;
	u16 sof_cnt_wkup_alert;

	/* Host parameters */
	bool host_dma;
	bool dma_desc_enable;
	bool dma_desc_fs_enable;
	bool host_support_fs_ls_low_power;
	bool host_ls_low_power_phy_clk;
	bool oc_disable;

	u8 host_channels;
	u16 host_rx_fifo_size;
	u16 host_nperio_tx_fifo_size;
	u16 host_perio_tx_fifo_size;

	/* Gadget parameters */
	bool g_dma;
	bool g_dma_desc;
	u32 g_rx_fifo_size;
	u32 g_np_tx_fifo_size;
	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];

	bool change_speed_quirk;
};

/**
 * struct dwc2_hw_params - Autodetected parameters.
 *
 * These parameters are the various parameters read from hardware
 * registers during initialization. They typically contain the best
 * supported or maximum value that can be configured in the
 * corresponding dwc2_core_params value.
 *
 * The values that are not in dwc2_core_params are documented below.
 *
 * @op_mode:             Mode of Operation
 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 *                       1 - SRP-Capable OTG (Host & Device)
 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 *                       3 - SRP-Capable Device
 *                       4 - Non-OTG Device
 *                       5 - SRP-Capable Host
 *                       6 - Non-OTG Host
 * @arch:                Architecture
 *                       0 - Slave only
 *                       1 - External DMA
 *                       2 - Internal DMA
 * @ipg_isoc_en:        This feature indicates that the controller supports
 *                      the worst-case scenario of Rx followed by Rx
 *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
 *                      specification for any token following ISOC OUT token.
 *                       0 - Don't support
 *                       1 - Support
 * @power_optimized:    Are power optimizations enabled?
 * @num_dev_ep:         Number of device endpoints available
 * @num_dev_in_eps:     Number of device IN endpoints available
 * @num_dev_perio_in_ep: Number of device periodic IN endpoints
 *                       available
 * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
 *                      Depth
 *                       0 to 30
 * @host_perio_tx_q_depth:
 *                      Host Mode Periodic Request Queue Depth
 *                       2, 4 or 8
 * @nperio_tx_q_depth:
 *                      Non-Periodic Request Queue Depth
 *                       2, 4 or 8
 * @hs_phy_type:         High-speed PHY interface type
 *                       0 - High-speed interface not supported
 *                       1 - UTMI+
 *                       2 - ULPI
 *                       3 - UTMI+ and ULPI
 * @fs_phy_type:         Full-speed PHY interface type
 *                       0 - Full speed interface not supported
 *                       1 - Dedicated full speed interface
 *                       2 - FS pins shared with UTMI+ pins
 *                       3 - FS pins shared with ULPI pins
 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 * @hibernation:	Is hibernation enabled?
 * @utmi_phy_data_width: UTMI+ PHY data width
 *                       0 - 8 bits
 *                       1 - 16 bits
 *                       2 - 8 or 16 bits
 * @snpsid:             Value from SNPSID register
 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 *                      address DMA mode or descriptor DMA mode for accessing
 *                      the data FIFOs. The driver will automatically detect the
 *                      value for this if none is specified.
 *                       0 - Address DMA
 *                       1 - Descriptor DMA (default, if available)
 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 *                       1 - Allow dynamic FIFO sizing (default, if available)
 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 *                      are enabled for non-periodic IN endpoints in device
 *                      mode.
 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 *                      in host mode when dynamic FIFO sizing is enabled
 *                       16 to 32768
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 *                      host mode when dynamic FIFO sizing is enabled
 *                       16 to 32768
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @max_transfer_size:  The maximum transfer size supported, in bytes
 *                       2047 to 65,535
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @max_packet_count:   The maximum number of packets in a transfer
 *                       15 to 511
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @host_channels:      The number of host channel registers to use
 *                       1 to 16
 *                      Actual maximum value is autodetected and also
 *                      the default.
 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 *			     in device mode when dynamic FIFO sizing is enabled
 *			     16 to 32768
 *			     Actual maximum value is autodetected and also
 *			     the default.
 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 *                      speed PHY. This parameter is only applicable if phy_type
 *                      is FS.
 *                       0 - No (default)
 *                       1 - Yes
 * @acg_enable:		For enabling Active Clock Gating in the controller
 *                       0 - Disable
 *                       1 - Enable
 * @lpm_mode:		For enabling Link Power Management in the controller
 *                       0 - Disable
 *                       1 - Enable
 * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
 *			FIFO sizing is enabled 16 to 32768
 *			Actual maximum value is autodetected and also
 *			the default.
 * @service_interval_mode: For enabling service interval based scheduling in the
 *                         controller.
 *                           0 - Disable
 *                           1 - Enable
 */
struct dwc2_hw_params {
	unsigned op_mode:3;
	unsigned arch:2;
	unsigned dma_desc_enable:1;
	unsigned enable_dynamic_fifo:1;
	unsigned en_multiple_tx_fifo:1;
	unsigned rx_fifo_size:16;
	unsigned host_nperio_tx_fifo_size:16;
	unsigned dev_nperio_tx_fifo_size:16;
	unsigned host_perio_tx_fifo_size:16;
	unsigned nperio_tx_q_depth:3;
	unsigned host_perio_tx_q_depth:3;
	unsigned dev_token_q_depth:5;
	unsigned max_transfer_size:26;
	unsigned max_packet_count:11;
	unsigned host_channels:5;
	unsigned hs_phy_type:2;
	unsigned fs_phy_type:2;
	unsigned i2c_enable:1;
	unsigned acg_enable:1;
	unsigned num_dev_ep:4;
	unsigned num_dev_in_eps : 4;
	unsigned num_dev_perio_in_ep:4;
	unsigned total_fifo_size:16;
	unsigned power_optimized:1;
	unsigned hibernation:1;
	unsigned utmi_phy_data_width:2;
	unsigned lpm_mode:1;
	unsigned ipg_isoc_en:1;
	unsigned service_interval_mode:1;
	u32 snpsid;
	u32 dev_ep_dirs;
	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
};

/* Size of control and EP0 buffers */
#define DWC2_CTRL_BUFF_SIZE 8

/**
 * struct dwc2_gregs_backup - Holds global registers state before
 * entering partial power down
 * @gotgctl:		Backup of GOTGCTL register
 * @gintmsk:		Backup of GINTMSK register
 * @gahbcfg:		Backup of GAHBCFG register
 * @gusbcfg:		Backup of GUSBCFG register
 * @grxfsiz:		Backup of GRXFSIZ register
 * @gnptxfsiz:		Backup of GNPTXFSIZ register
 * @gi2cctl:		Backup of GI2CCTL register
 * @glpmcfg:		Backup of GLPMCFG register
 * @gdfifocfg:		Backup of GDFIFOCFG register
 * @pcgcctl:		Backup of PCGCCTL register
 * @pcgcctl1:		Backup of PCGCCTL1 register
 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 * @gpwrdn:		Backup of GPWRDN register
 * @valid:		True if registers values backuped.
 */
struct dwc2_gregs_backup {
	u32 gotgctl;
	u32 gintmsk;
	u32 gahbcfg;
	u32 gusbcfg;
	u32 grxfsiz;
	u32 gnptxfsiz;
	u32 gi2cctl;
	u32 glpmcfg;
	u32 pcgcctl;
	u32 pcgcctl1;
	u32 gdfifocfg;
	u32 gpwrdn;
	bool valid;
};

/**
 * struct dwc2_dregs_backup - Holds device registers state before
 * entering partial power down
 * @dcfg:		Backup of DCFG register
 * @dctl:		Backup of DCTL register
 * @daintmsk:		Backup of DAINTMSK register
 * @diepmsk:		Backup of DIEPMSK register
 * @doepmsk:		Backup of DOEPMSK register
 * @diepctl:		Backup of DIEPCTL register
 * @dieptsiz:		Backup of DIEPTSIZ register
 * @diepdma:		Backup of DIEPDMA register
 * @doepctl:		Backup of DOEPCTL register
 * @doeptsiz:		Backup of DOEPTSIZ register
 * @doepdma:		Backup of DOEPDMA register
 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 * @valid:      True if registers values backuped.
 */
struct dwc2_dregs_backup {
	u32 dcfg;
	u32 dctl;
	u32 daintmsk;
	u32 diepmsk;
	u32 doepmsk;
	u32 diepctl[MAX_EPS_CHANNELS];
	u32 dieptsiz[MAX_EPS_CHANNELS];
	u32 diepdma[MAX_EPS_CHANNELS];
	u32 doepctl[MAX_EPS_CHANNELS];
	u32 doeptsiz[MAX_EPS_CHANNELS];
	u32 doepdma[MAX_EPS_CHANNELS];
	u32 dtxfsiz[MAX_EPS_CHANNELS];
	bool valid;
};

/**
 * struct dwc2_hregs_backup - Holds host registers state before
 * entering partial power down
 * @hcfg:		Backup of HCFG register
 * @hflbaddr:		Backup of HFLBADDR register
 * @haintmsk:		Backup of HAINTMSK register
 * @hcchar:		Backup of HCCHAR register
 * @hcsplt:		Backup of HCSPLT register
 * @hcintmsk:		Backup of HCINTMSK register
 * @hctsiz:		Backup of HCTSIZ register
 * @hdma:		Backup of HCDMA register
 * @hcdmab:		Backup of HCDMAB register
 * @hprt0:		Backup of HPTR0 register
 * @hfir:		Backup of HFIR register
 * @hptxfsiz:		Backup of HPTXFSIZ register
 * @valid:      True if registers values backuped.
 */
struct dwc2_hregs_backup {
	u32 hcfg;
	u32 hflbaddr;
	u32 haintmsk;
	u32 hcchar[MAX_EPS_CHANNELS];
	u32 hcsplt[MAX_EPS_CHANNELS];
	u32 hcintmsk[MAX_EPS_CHANNELS];
	u32 hctsiz[MAX_EPS_CHANNELS];
	u32 hcidma[MAX_EPS_CHANNELS];
	u32 hcidmab[MAX_EPS_CHANNELS];
	u32 hprt0;
	u32 hfir;
	u32 hptxfsiz;
	bool valid;
};

/*
 * Constants related to high speed periodic scheduling
 *
 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 * reservation point of view it's assumed that the schedule goes right back to
 * the beginning after the end of the schedule.
 *
 * What does that mean for scheduling things with a long interval?  It means
 * we'll reserve time for them in every possible microframe that they could
 * ever be scheduled in.  ...but we'll still only actually schedule them as
 * often as they were requested.
 *
 * We keep our schedule in a "bitmap" structure.  This simplifies having
 * to keep track of and merge intervals: we just let the bitmap code do most
 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 *
 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 * supposed to schedule for periodic transfers).  That's according to spec.
 *
 * Note that though we only schedule 80% of each microframe, the bitmap that we
 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 * space for each uFrame).
 *
 * Requirements:
 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 */
#define DWC2_US_PER_UFRAME		125
#define DWC2_HS_PERIODIC_US_PER_UFRAME	100

#define DWC2_HS_SCHEDULE_UFRAMES	8
#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
					 DWC2_HS_PERIODIC_US_PER_UFRAME)

/*
 * Constants related to low speed scheduling
 *
 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 * transfers.
 *
 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 * we only schedule 1 frame it means that we'll need to reserve a time every
 * frame even for things that only transfer very rarely, so something that runs
 * every 2048 frames will get time reserved in every frame.  Our low speed
 * schedule can be longer and we'll be able to handle more overlap, but that
 * will come at increased memory cost and increased time to schedule.
 *
 * Note: one other advantage of a short low speed schedule is that if we mess
 * up and miss scheduling we can jump in and use any of the slots that we
 * happened to reserve.
 *
 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 * the schedule.  There will be one schedule per TT.
 *
 * Requirements:
 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 */
#define DWC2_US_PER_SLICE	25
#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)

#define DWC2_ROUND_US_TO_SLICE(us) \
				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
				 DWC2_US_PER_SLICE)

#define DWC2_LS_PERIODIC_US_PER_FRAME \
				900
#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
				(DWC2_LS_PERIODIC_US_PER_FRAME / \
				 DWC2_US_PER_SLICE)

#define DWC2_LS_SCHEDULE_FRAMES	1
#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)

/**
 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 * and periodic schedules
 *
 * These are common for both host and peripheral modes:
 *
 * @dev:                The struct device pointer
 * @regs:		Pointer to controller regs
 * @hw_params:          Parameters that were autodetected from the
 *                      hardware registers
 * @params:	Parameters that define how the core should be configured
 * @op_state:           The operational State, during transitions (a_host=>
 *                      a_peripheral and b_device=>b_host) this may not match
 *                      the core, but allows the software to determine
 *                      transitions
 * @dr_mode:            Requested mode of operation, one of following:
 *                      - USB_DR_MODE_PERIPHERAL
 *                      - USB_DR_MODE_HOST
 *                      - USB_DR_MODE_OTG
 * @role_sw:		usb_role_switch handle
 * @role_sw_default_mode: default operation mode of controller while usb role
 *			is USB_ROLE_NONE
 * @hcd_enabled:	Host mode sub-driver initialization indicator.
 * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
 * @ll_hw_enabled:	Status of low-level hardware resources.
 * @hibernated:		True if core is hibernated
 * @in_ppd:		True if core is partial power down mode.
 * @bus_suspended:	True if bus is suspended
 * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
 *			remote wakeup.
 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
 * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
 *			suspend if we need USB to wake us up.
 * @frame_number:       Frame number read from the core. For both device
 *			and host modes. The value ranges are from 0
 *			to HFNUM_MAX_FRNUM.
 * @phy:                The otg phy transceiver structure for phy control.
 * @uphy:               The otg phy transceiver structure for old USB phy
 *                      control.
 * @plat:               The platform specific configuration data. This can be
 *                      removed once all SoCs support usb transceiver.
 * @supplies:           Definition of USB power supplies
 * @vbus_supply:        Regulator supplying vbus.
 * @usb33d:		Optional 3.3v regulator used on some stm32 devices to
 *			supply ID and VBUS detection hardware.
 * @lock:		Spinlock that protects all the driver data structures
 * @priv:		Stores a pointer to the struct usb_hcd
 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 *                      transfer are in process of being queued
 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 *                      with an I2C interface
 * @wq_otg:             Workqueue object used for handling of some interrupts
 * @wf_otg:             Work object for handling Connector ID Status Change
 *                      interrupt
 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 * @lx_state:           Lx state of connected device
 * @gr_backup: Backup of global registers during suspend
 * @dr_backup: Backup of device registers during suspend
 * @hr_backup: Backup of host registers during suspend
 * @needs_byte_swap:		Specifies whether the opposite endianness.
 *
 * These are for host mode:
 *
 * @flags:              Flags for handling root port state changes
 * @flags.d32:          Contain all root port flags
 * @flags.b:            Separate root port flags from each other
 * @flags.b.port_connect_status_change: True if root port connect status
 *                      changed
 * @flags.b.port_connect_status: True if device connected to root port
 * @flags.b.port_reset_change: True if root port reset status changed
 * @flags.b.port_enable_change: True if root port enable status changed
 * @flags.b.port_suspend_change: True if root port suspend status changed
 * @flags.b.port_over_current_change: True if root port over current state
 *                       changed.
 * @flags.b.port_l1_change: True if root port l1 status changed
 * @flags.b.reserved:   Reserved bits of root port register
 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 *                      Transfers associated with these QHs are not currently
 *                      assigned to a host channel.
 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 *                      Transfers associated with these QHs are currently
 *                      assigned to a host channel.
 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 *                      non-periodic schedule
 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
 *                      Transfers associated with these QHs are not currently
 *                      assigned to a host channel.
 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 *                      list of QHs for periodic transfers that are _not_
 *                      scheduled for the next frame. Each QH in the list has an
 *                      interval counter that determines when it needs to be
 *                      scheduled for execution. This scheduling mechanism
 *                      allows only a simple calculation for periodic bandwidth
 *                      used (i.e. must assume that all periodic transfers may
 *                      need to execute in the same frame). However, it greatly
 *                      simplifies scheduling and should be sufficient for the
 *                      vast majority of OTG hosts, which need to connect to a
 *                      small number of peripherals at one time. Items move from
 *                      this list to periodic_sched_ready when the QH interval
 *                      counter is 0 at SOF.
 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 *                      the next frame, but have not yet been assigned to host
 *                      channels. Items move from this list to
 *                      periodic_sched_assigned as host channels become
 *                      available during the current frame.
 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 *                      frame that are assigned to host channels. Items move
 *                      from this list to periodic_sched_queued as the
 *                      transactions for the QH are queued to the DWC_otg
 *                      controller.
 * @periodic_sched_queued: List of periodic QHs that have been queued for
 *                      execution. Items move from this list to either
 *                      periodic_sched_inactive or periodic_sched_ready when the
 *                      channel associated with the transfer is released. If the
 *                      interval for the QH is 1, the item moves to
 *                      periodic_sched_ready because it must be rescheduled for
 *                      the next frame. Otherwise, the item moves to
 *                      periodic_sched_inactive.
 * @split_order:        List keeping track of channels doing splits, in order.
 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 *                      This value is in microseconds per (micro)frame. The
 *                      assumption is that all periodic transfers may occur in
 *                      the same (micro)frame.
 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 *                      host is in high speed mode; low speed schedules are
 *                      stored elsewhere since we need one per TT.
 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 *                      SOF enable/disable.
 * @free_hc_list:       Free host channels in the controller. This is a list of
 *                      struct dwc2_host_chan items.
 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 *                      Currently assuming that there is a dedicated host
 *                      channel for each periodic transaction and at least one
 *                      host channel is available for non-periodic transactions.
 * @non_periodic_channels: Number of host channels assigned to non-periodic
 *                      transfers
 * @available_host_channels: Number of host channels available for the
 *			     microframe scheduler to use
 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 *                      Allows accessing a host channel descriptor given the
 *                      host channel number. This is useful in interrupt
 *                      handlers.
 * @status_buf:         Buffer used for data received during the status phase of
 *                      a control transfer.
 * @status_buf_dma:     DMA address for status_buf
 * @start_work:         Delayed work for handling host A-cable connection
 * @reset_work:         Delayed work for handling a port reset
 * @phy_reset_work:     Work structure for doing a PHY reset
 * @otg_port:           OTG port number
 * @frame_list:         Frame list
 * @frame_list_dma:     Frame list DMA address
 * @frame_list_sz:      Frame list size
 * @desc_gen_cache:     Kmem cache for generic descriptors
 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
 * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
 *
 * These are for peripheral mode:
 *
 * @driver:             USB gadget driver
 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
 * @num_of_eps:         Number of available EPs (excluding EP0)
 * @debug_root:         Root directrory for debugfs.
 * @ep0_reply:          Request used for ep0 reply.
 * @ep0_buff:           Buffer for EP0 reply data, if needed.
 * @ctrl_buff:          Buffer for EP0 control requests.
 * @ctrl_req:           Request for EP0 control packets.
 * @ep0_state:          EP0 control transfers state
 * @delayed_status:		true when gadget driver asks for delayed status
 * @test_mode:          USB test mode requested by the host
 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
 *                      remote-wakeup signalling
 * @setup_desc_dma:	EP0 setup stage desc chain DMA address
 * @setup_desc:		EP0 setup stage desc chain pointer
 * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
 * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
 * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
 * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
 * @irq:		Interrupt request line number
 * @clk:		Pointer to otg clock
 * @utmi_clk:		Pointer to utmi_clk clock
 * @reset:		Pointer to dwc2 reset controller
 * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
 * @regset:		A pointer to a struct debugfs_regset32, which contains
 *			a pointer to an array of register definitions, the
 *			array size and the base address where the register bank
 *			is to be found.
 * @last_frame_num:	Number of last frame. Range from 0 to  32768
 * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
 *			defined, for missed SOFs tracking. Array holds that
 *			frame numbers, which not equal to last_frame_num +1
 * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
 *			    defined, for missed SOFs tracking.
 *			    If current_frame_number != last_frame_num+1
 *			    then last_frame_num added to this array
 * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
 * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
 *				0 - if missed SOFs frame numbers not dumbed
 * @fifo_mem:			Total internal RAM for FIFOs (bytes)
 * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
 *			then that fifo is used
 * @gadget:		Represents a usb gadget device
 * @connected:		Used in slave mode. True if device connected with host
 * @eps_in:		The IN endpoints being supplied to the gadget framework
 * @eps_out:		The OUT endpoints being supplied to the gadget framework
 * @new_connection:	Used in host mode. True if there are new connected
 *			device
 * @enabled:		Indicates the enabling state of controller
 *
 */
struct dwc2_hsotg {
	struct device *dev;
	void __iomem *regs;
	/** Params detected from hardware */
	struct dwc2_hw_params hw_params;
	/** Params to actually use */
	struct dwc2_core_params params;
	enum usb_otg_state op_state;
	enum usb_dr_mode dr_mode;
	struct usb_role_switch *role_sw;
	enum usb_dr_mode role_sw_default_mode;
	unsigned int hcd_enabled:1;
	unsigned int gadget_enabled:1;
	unsigned int ll_hw_enabled:1;
	unsigned int hibernated:1;
	unsigned int in_ppd:1;
	bool bus_suspended;
	unsigned int reset_phy_on_wake:1;
	unsigned int need_phy_for_wake:1;
	unsigned int phy_off_for_suspend:1;
	u16 frame_number;

	struct phy *phy;
	struct usb_phy *uphy;
	struct dwc2_hsotg_plat *plat;
	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
	struct regulator *vbus_supply;
	struct regulator *usb33d;

	spinlock_t lock;
	void *priv;
	int     irq;
	struct clk *clk;
	struct clk *utmi_clk;
	struct reset_control *reset;
	struct reset_control *reset_ecc;

	unsigned int queuing_high_bandwidth:1;
	unsigned int srp_success:1;

	struct workqueue_struct *wq_otg;
	struct work_struct wf_otg;
	struct timer_list wkp_timer;
	enum dwc2_lx_state lx_state;
	struct dwc2_gregs_backup gr_backup;
	struct dwc2_dregs_backup dr_backup;
	struct dwc2_hregs_backup hr_backup;

	struct dentry *debug_root;
	struct debugfs_regset32 *regset;
	bool needs_byte_swap;

	/* DWC OTG HW Release versions */
#define DWC2_CORE_REV_4_30a	0x4f54430a
#define DWC2_CORE_REV_2_71a	0x4f54271a
#define DWC2_CORE_REV_2_72a     0x4f54272a
#define DWC2_CORE_REV_2_80a	0x4f54280a
#define DWC2_CORE_REV_2_90a	0x4f54290a
#define DWC2_CORE_REV_2_91a	0x4f54291a
#define DWC2_CORE_REV_2_92a	0x4f54292a
#define DWC2_CORE_REV_2_94a	0x4f54294a
#define DWC2_CORE_REV_3_00a	0x4f54300a
#define DWC2_CORE_REV_3_10a	0x4f54310a
#define DWC2_CORE_REV_4_00a	0x4f54400a
#define DWC2_CORE_REV_4_20a	0x4f54420a
#define DWC2_CORE_REV_5_00a	0x4f54500a
#define DWC2_FS_IOT_REV_1_00a	0x5531100a
#define DWC2_HS_IOT_REV_1_00a	0x5532100a
#define DWC2_HS_IOT_REV_5_00a	0x5532500a
#define DWC2_CORE_REV_MASK	0x0000ffff

	/* DWC OTG HW Core ID */
#define DWC2_OTG_ID		0x4f540000
#define DWC2_FS_IOT_ID		0x55310000
#define DWC2_HS_IOT_ID		0x55320000

#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
	union dwc2_hcd_internal_flags {
		u32 d32;
		struct {
			unsigned port_connect_status_change:1;
			unsigned port_connect_status:1;
			unsigned port_reset_change:1;
			unsigned port_enable_change:1;
			unsigned port_suspend_change:1;
			unsigned port_over_current_change:1;
			unsigned port_l1_change:1;
			unsigned reserved:25;
		} b;
	} flags;

	struct list_head non_periodic_sched_inactive;
	struct list_head non_periodic_sched_waiting;
	struct list_head non_periodic_sched_active;
	struct list_head *non_periodic_qh_ptr;
	struct list_head periodic_sched_inactive;
	struct list_head periodic_sched_ready;
	struct list_head periodic_sched_assigned;
	struct list_head periodic_sched_queued;
	struct list_head split_order;
	u16 periodic_usecs;
	DECLARE_BITMAP(hs_periodic_bitmap, DWC2_HS_SCHEDULE_US);
	u16 periodic_qh_count;
	bool new_connection;

	u16 last_frame_num;

#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
#define FRAME_NUM_ARRAY_SIZE 1000
	u16 *frame_num_array;
	u16 *last_frame_num_array;
	int frame_num_idx;
	int dumped_frame_num_array;
#endif

	struct list_head free_hc_list;
	int periodic_channels;
	int non_periodic_channels;
	int available_host_channels;
	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
	u8 *status_buf;
	dma_addr_t status_buf_dma;
#define DWC2_HCD_STATUS_BUF_SIZE 64

	struct delayed_work start_work;
	struct delayed_work reset_work;
	struct work_struct phy_reset_work;
	u8 otg_port;
	u32 *frame_list;
	dma_addr_t frame_list_dma;
	u32 frame_list_sz;
	struct kmem_cache *desc_gen_cache;
	struct kmem_cache *desc_hsisoc_cache;
	struct kmem_cache *unaligned_cache;
#define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024

#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */

#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
	/* Gadget structures */
	struct usb_gadget_driver *driver;
	int fifo_mem;
	unsigned int dedicated_fifos:1;
	unsigned char num_of_eps;
	u32 fifo_map;

	struct usb_request *ep0_reply;
	struct usb_request *ctrl_req;
	void *ep0_buff;
	void *ctrl_buff;
	enum dwc2_ep0_state ep0_state;
	unsigned delayed_status : 1;
	u8 test_mode;

	dma_addr_t setup_desc_dma[2];
	struct dwc2_dma_desc *setup_desc[2];
	dma_addr_t ctrl_in_desc_dma;
	struct dwc2_dma_desc *ctrl_in_desc;
	dma_addr_t ctrl_out_desc_dma;
	struct dwc2_dma_desc *ctrl_out_desc;

	struct usb_gadget gadget;
	unsigned int enabled:1;
	unsigned int connected:1;
	unsigned int remote_wakeup_allowed:1;
	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
};

/* Normal architectures just use readl/write */
static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
{
	u32 val;

	val = readl(hsotg->regs + offset);
	if (hsotg->needs_byte_swap)
		return swab32(val);
	else
		return val;
}

static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
{
	if (hsotg->needs_byte_swap)
		writel(swab32(value), hsotg->regs + offset);
	else
		writel(value, hsotg->regs + offset);

#ifdef DWC2_LOG_WRITES
	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
#endif
}

static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
				  void *buffer, unsigned int count)
{
	if (count) {
		u32 *buf = buffer;

		do {
			u32 x = dwc2_readl(hsotg, offset);
			*buf++ = x;
		} while (--count);
	}
}

static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
				   const void *buffer, unsigned int count)
{
	if (count) {
		const u32 *buf = buffer;

		do {
			dwc2_writel(hsotg, *buf++, offset);
		} while (--count);
	}
}

/* Reasons for halting a host channel */
enum dwc2_halt_status {
	DWC2_HC_XFER_NO_HALT_STATUS,
	DWC2_HC_XFER_COMPLETE,
	DWC2_HC_XFER_URB_COMPLETE,
	DWC2_HC_XFER_ACK,
	DWC2_HC_XFER_NAK,
	DWC2_HC_XFER_NYET,
	DWC2_HC_XFER_STALL,
	DWC2_HC_XFER_XACT_ERR,
	DWC2_HC_XFER_FRAME_OVERRUN,
	DWC2_HC_XFER_BABBLE_ERR,
	DWC2_HC_XFER_DATA_TOGGLE_ERR,
	DWC2_HC_XFER_AHB_ERR,
	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
	DWC2_HC_XFER_URB_DEQUEUE,
};

/* Core version information */
static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
{
	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
}

static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
{
	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
}

static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
{
	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
}

/*
 * The following functions support initialization of the core driver component
 * and the DWC_otg controller
 */
int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
				 bool restore);
int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
		int reset, int is_host);
void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);

void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);

bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);

int dwc2_check_core_version(struct dwc2_hsotg *hsotg);

/*
 * Common core Functions.
 * The following functions support managing the DWC_otg controller in either
 * device or host mode.
 */
void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);

void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);

void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
			     int is_host);
int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);

void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
void dwc2_wakeup_from_lpm_l1(struct dwc2_hsotg *hsotg, bool remotewakeup);

/* This function should be called on every hardware interrupt. */
irqreturn_t dwc2_handle_common_intr(int irq, void *dev);

/* The device ID match table */
extern const struct of_device_id dwc2_of_match_table[];
extern const struct acpi_device_id dwc2_acpi_match[];
extern const struct pci_device_id dwc2_pci_ids[];

int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);

/* Common polling functions */
int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
			    u32 timeout);
int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
			      u32 timeout);
/* Parameters */
int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
int dwc2_init_params(struct dwc2_hsotg *hsotg);

/*
 * The following functions check the controller's OTG operation mode
 * capability (GHWCFG2.OTG_MODE).
 *
 * These functions can be used before the internal hsotg->hw_params
 * are read in and cached so they always read directly from the
 * GHWCFG2 register.
 */
unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);

/*
 * Returns the mode of operation, host or device
 */
static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
{
	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
}

static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
{
	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
}

int dwc2_drd_init(struct dwc2_hsotg *hsotg);
void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
void dwc2_drd_exit(struct dwc2_hsotg *hsotg);

/*
 * Dump core registers and SPRAM
 */
void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);

/* Gadget defines */
#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
				       bool reset);
void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
#define dwc2_is_device_connected(hsotg) (hsotg->connected)
#define dwc2_is_device_enabled(hsotg) (hsotg->enabled)
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
				 int rem_wakeup, int reset);
int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
					bool restore);
void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
				   int rem_wakeup);
int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
{ hsotg->fifo_map = 0; }
#else
static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
{ return 0; }
static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
{ return 0; }
static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
{ return 0; }
static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
						     bool reset) {}
static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
					   int testmode)
{ return 0; }
#define dwc2_is_device_connected(hsotg) (0)
#define dwc2_is_device_enabled(hsotg) (0)
static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
						int remote_wakeup)
{ return 0; }
static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
					       int rem_wakeup, int reset)
{ return 0; }
static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
						      bool restore)
{ return 0; }
static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
						 int rem_wakeup) {}
static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
#endif

#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
int dwc2_port_resume(struct dwc2_hsotg *hsotg);
int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
			       int rem_wakeup, int reset);
int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
				      int rem_wakeup, bool restore);
void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
{ schedule_work(&hsotg->phy_reset_work); }
#else
static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
						   int us)
{ return 0; }
static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
{ return 0; }
static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
{ return 0; }
static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
					     int rem_wakeup, int reset)
{ return 0; }
static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
						    int rem_wakeup, bool restore)
{ return 0; }
static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
					       int rem_wakeup) {}
static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
{ return false; }
static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}

#endif

#endif /* __DWC2_CORE_H__ */