// SPDX-License-Identifier: GPL-2.0
/*
* drivers/rtc/rtc-pcf85363.c
*
* Driver for NXP PCF85363 real-time clock.
*
* Copyright (C) 2017 Eric Nelson
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/bcd.h>
#include <linux/of.h>
#include <linux/regmap.h>
/*
* Date/Time registers
*/
#define DT_100THS 0x00
#define DT_SECS 0x01
#define DT_MINUTES 0x02
#define DT_HOURS 0x03
#define DT_DAYS 0x04
#define DT_WEEKDAYS 0x05
#define DT_MONTHS 0x06
#define DT_YEARS 0x07
/*
* Alarm registers
*/
#define DT_SECOND_ALM1 0x08
#define DT_MINUTE_ALM1 0x09
#define DT_HOUR_ALM1 0x0a
#define DT_DAY_ALM1 0x0b
#define DT_MONTH_ALM1 0x0c
#define DT_MINUTE_ALM2 0x0d
#define DT_HOUR_ALM2 0x0e
#define DT_WEEKDAY_ALM2 0x0f
#define DT_ALARM_EN 0x10
/*
* Time stamp registers
*/
#define DT_TIMESTAMP1 0x11
#define DT_TIMESTAMP2 0x17
#define DT_TIMESTAMP3 0x1d
#define DT_TS_MODE 0x23
/*
* control registers
*/
#define CTRL_OFFSET 0x24
#define CTRL_OSCILLATOR 0x25
#define CTRL_BATTERY 0x26
#define CTRL_PIN_IO 0x27
#define CTRL_FUNCTION 0x28
#define CTRL_INTA_EN 0x29
#define CTRL_INTB_EN 0x2a
#define CTRL_FLAGS 0x2b
#define CTRL_RAMBYTE 0x2c
#define CTRL_WDOG 0x2d
#define CTRL_STOP_EN 0x2e
#define CTRL_RESETS 0x2f
#define CTRL_RAM 0x40
#define ALRM_SEC_A1E BIT(0)
#define ALRM_MIN_A1E BIT(1)
#define ALRM_HR_A1E BIT(2)
#define ALRM_DAY_A1E BIT(3)
#define ALRM_MON_A1E BIT(4)
#define ALRM_MIN_A2E BIT(5)
#define ALRM_HR_A2E BIT(6)
#define ALRM_DAY_A2E BIT(7)
#define INT_WDIE BIT(0)
#define INT_BSIE BIT(1)
#define INT_TSRIE BIT(2)
#define INT_A2IE BIT(3)
#define INT_A1IE BIT(4)
#define INT_OIE BIT(5)
#define INT_PIE BIT(6)
#define INT_ILP BIT(7)
#define FLAGS_TSR1F BIT(0)
#define FLAGS_TSR2F BIT(1)
#define FLAGS_TSR3F BIT(2)
#define FLAGS_BSF BIT(3)
#define FLAGS_WDF BIT(4)
#define FLAGS_A1F BIT(5)
#define FLAGS_A2F BIT(6)
#define FLAGS_PIF BIT(7)
#define PIN_IO_INTAPM GENMASK(1, 0)
#define PIN_IO_INTA_CLK 0
#define PIN_IO_INTA_BAT 1
#define PIN_IO_INTA_OUT 2
#define PIN_IO_INTA_HIZ 3
#define OSC_CAP_SEL GENMASK(1, 0)
#define OSC_CAP_6000 0x01
#define OSC_CAP_12500 0x02
#define STOP_EN_STOP BIT(0)
#define RESET_CPR 0xa4
#define NVRAM_SIZE 0x40
struct pcf85363 {
struct rtc_device *rtc;
struct regmap *regmap;
};
struct pcf85x63_config {
struct regmap_config regmap;
unsigned int num_nvram;
};
static int pcf85363_load_capacitance(struct pcf85363 *pcf85363, struct device_node *node)
{
u32 load = 7000;
u8 value = 0;
of_property_read_u32(node, "quartz-load-femtofarads", &load);
switch (load) {
default:
dev_warn(&pcf85363->rtc->dev, "Unknown quartz-load-femtofarads value: %d. Assuming 7000",
load);
fallthrough;
case 7000:
break;
case 6000:
value = OSC_CAP_6000;
break;
case 12500:
value = OSC_CAP_12500;
break;
}
return regmap_update_bits(pcf85363->regmap, CTRL_OSCILLATOR,
OSC_CAP_SEL, value);
}
static int pcf85363_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
unsigned char buf[DT_YEARS + 1];
int ret, len = sizeof(buf);
/* read the RTC date and time registers all at once */
ret = regmap_bulk_read(pcf85363->regmap, DT_100THS, buf, len);
if (ret) {
dev_err(dev, "%s: error %d\n", __func__, ret);
return ret;
}
tm->tm_year = bcd2bin(buf[DT_YEARS]);
/* adjust for 1900 base of rtc_time */
tm->tm_year += 100;
tm->tm_wday = buf[DT_WEEKDAYS] & 7;
buf[DT_SECS] &= 0x7F;
tm->tm_sec = bcd2bin(buf[DT_SECS]);
buf[DT_MINUTES] &= 0x7F;
tm->tm_min = bcd2bin(buf[DT_MINUTES]);
tm->tm_hour = bcd2bin(buf[DT_HOURS]);
tm->tm_mday = bcd2bin(buf[DT_DAYS]);
tm->tm_mon = bcd2bin(buf[DT_MONTHS]) - 1;
return 0;
}
static int pcf85363_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
unsigned char tmp[11];
unsigned char *buf = &tmp[2];
int ret;
tmp[0] = STOP_EN_STOP;
tmp[1] = RESET_CPR;
buf[DT_100THS] = 0;
buf[DT_SECS] = bin2bcd(tm->tm_sec);
buf[DT_MINUTES] = bin2bcd(tm->tm_min);
buf[DT_HOURS] = bin2bcd(tm->tm_hour);
buf[DT_DAYS] = bin2bcd(tm->tm_mday);
buf[DT_WEEKDAYS] = tm->tm_wday;
buf[DT_MONTHS] = bin2bcd(tm->tm_mon + 1);
buf[DT_YEARS] = bin2bcd(tm->tm_year % 100);
ret = regmap_bulk_write(pcf85363->regmap, CTRL_STOP_EN,
tmp, 2);
if (ret)
return ret;
ret = regmap_bulk_write(pcf85363->regmap, DT_100THS,
buf, sizeof(tmp) - 2);
if (ret)
return ret;
return regmap_write(pcf85363->regmap, CTRL_STOP_EN, 0);
}
static int pcf85363_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
unsigned char buf[DT_MONTH_ALM1 - DT_SECOND_ALM1 + 1];
unsigned int val;
int ret;
ret = regmap_bulk_read(pcf85363->regmap, DT_SECOND_ALM1, buf,
sizeof(buf));
if (ret)
return ret;
alrm->time.tm_sec = bcd2bin(buf[0]);
alrm->time.tm_min = bcd2bin(buf[1]);
alrm->time.tm_hour = bcd2bin(buf[2]);
alrm->time.tm_mday = bcd2bin(buf[3]);
alrm->time.tm_mon = bcd2bin(buf[4]) - 1;
ret = regmap_read(pcf85363->regmap, CTRL_INTA_EN, &val);
if (ret)
return ret;
alrm->enabled = !!(val & INT_A1IE);
return 0;
}
static int _pcf85363_rtc_alarm_irq_enable(struct pcf85363 *pcf85363, unsigned
int enabled)
{
unsigned int alarm_flags = ALRM_SEC_A1E | ALRM_MIN_A1E | ALRM_HR_A1E |
ALRM_DAY_A1E | ALRM_MON_A1E;
int ret;
ret = regmap_update_bits(pcf85363->regmap, DT_ALARM_EN, alarm_flags,
enabled ? alarm_flags : 0);
if (ret)
return ret;
ret = regmap_update_bits(pcf85363->regmap, CTRL_INTA_EN,
INT_A1IE, enabled ? INT_A1IE : 0);
if (ret || enabled)
return ret;
/* clear current flags */
return regmap_update_bits(pcf85363->regmap, CTRL_FLAGS, FLAGS_A1F, 0);
}
static int pcf85363_rtc_alarm_irq_enable(struct device *dev,
unsigned int enabled)
{
struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
return _pcf85363_rtc_alarm_irq_enable(pcf85363, enabled);
}
static int pcf85363_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
unsigned char buf[DT_MONTH_ALM1 - DT_SECOND_ALM1 + 1];
int ret;
buf[0] = bin2bcd(alrm->time.tm_sec);
buf[1] = bin2bcd(alrm->time.tm_min);
buf[2] = bin2bcd(alrm->time.tm_hour);
buf[3] = bin2bcd(alrm->time.tm_mday);
buf[4] = bin2bcd(alrm->time.tm_mon + 1);
/*
* Disable the alarm interrupt before changing the value to avoid
* spurious interrupts
*/
ret = _pcf85363_rtc_alarm_irq_enable(pcf85363, 0);
if (ret)
return ret;
ret = regmap_bulk_write(pcf85363->regmap, DT_SECOND_ALM1, buf,
sizeof(buf));
if (ret)
return ret;
return _pcf85363_rtc_alarm_irq_enable(pcf85363, alrm->enabled);
}
static irqreturn_t pcf85363_rtc_handle_irq(int irq, void *dev_id)
{
struct pcf85363 *pcf85363 = i2c_get_clientdata(dev_id);
unsigned int flags;
int err;
err = regmap_read(pcf85363->regmap, CTRL_FLAGS, &flags);
if (err)
return IRQ_NONE;
if (flags & FLAGS_A1F) {
rtc_update_irq(pcf85363->rtc, 1, RTC_IRQF | RTC_AF);
regmap_update_bits(pcf85363->regmap, CTRL_FLAGS, FLAGS_A1F, 0);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static const struct rtc_class_ops rtc_ops = {
.read_time = pcf85363_rtc_read_time,
.set_time = pcf85363_rtc_set_time,
.read_alarm = pcf85363_rtc_read_alarm,
.set_alarm = pcf85363_rtc_set_alarm,
.alarm_irq_enable = pcf85363_rtc_alarm_irq_enable,
};
static int pcf85363_nvram_read(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct pcf85363 *pcf85363 = priv;
return regmap_bulk_read(pcf85363->regmap, CTRL_RAM + offset,
val, bytes);
}
static int pcf85363_nvram_write(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct pcf85363 *pcf85363 = priv;
return regmap_bulk_write(pcf85363->regmap, CTRL_RAM + offset,
val, bytes);
}
static int pcf85x63_nvram_read(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct pcf85363 *pcf85363 = priv;
unsigned int tmp_val;
int ret;
ret = regmap_read(pcf85363->regmap, CTRL_RAMBYTE, &tmp_val);
(*(unsigned char *) val) = (unsigned char) tmp_val;
return ret;
}
static int pcf85x63_nvram_write(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct pcf85363 *pcf85363 = priv;
unsigned char tmp_val;
tmp_val = *((unsigned char *)val);
return regmap_write(pcf85363->regmap, CTRL_RAMBYTE,
(unsigned int)tmp_val);
}
static const struct pcf85x63_config pcf_85263_config = {
.regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x2f,
},
.num_nvram = 1
};
static const struct pcf85x63_config pcf_85363_config = {
.regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x7f,
},
.num_nvram = 2
};
static int pcf85363_probe(struct i2c_client *client)
{
struct pcf85363 *pcf85363;
const struct pcf85x63_config *config = &pcf_85363_config;
const void *data = of_device_get_match_data(&client->dev);
static struct nvmem_config nvmem_cfg[] = {
{
.name = "pcf85x63-",
.word_size = 1,
.stride = 1,
.size = 1,
.reg_read = pcf85x63_nvram_read,
.reg_write = pcf85x63_nvram_write,
}, {
.name = "pcf85363-",
.word_size = 1,
.stride = 1,
.size = NVRAM_SIZE,
.reg_read = pcf85363_nvram_read,
.reg_write = pcf85363_nvram_write,
},
};
int ret, i, err;
bool wakeup_source;
if (data)
config = data;
pcf85363 = devm_kzalloc(&client->dev, sizeof(struct pcf85363),
GFP_KERNEL);
if (!pcf85363)
return -ENOMEM;
pcf85363->regmap = devm_regmap_init_i2c(client, &config->regmap);
if (IS_ERR(pcf85363->regmap)) {
dev_err(&client->dev, "regmap allocation failed\n");
return PTR_ERR(pcf85363->regmap);
}
i2c_set_clientdata(client, pcf85363);
pcf85363->rtc = devm_rtc_allocate_device(&client->dev);
if (IS_ERR(pcf85363->rtc))
return PTR_ERR(pcf85363->rtc);
err = pcf85363_load_capacitance(pcf85363, client->dev.of_node);
if (err < 0)
dev_warn(&client->dev, "failed to set xtal load capacitance: %d",
err);
pcf85363->rtc->ops = &rtc_ops;
pcf85363->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
pcf85363->rtc->range_max = RTC_TIMESTAMP_END_2099;
wakeup_source = device_property_read_bool(&client->dev,
"wakeup-source");
if (client->irq > 0 || wakeup_source) {
regmap_write(pcf85363->regmap, CTRL_FLAGS, 0);
regmap_update_bits(pcf85363->regmap, CTRL_PIN_IO,
PIN_IO_INTAPM, PIN_IO_INTA_OUT);
}
if (client->irq > 0) {
unsigned long irqflags = IRQF_TRIGGER_LOW;
if (dev_fwnode(&client->dev))
irqflags = 0;
ret = devm_request_threaded_irq(&client->dev, client->irq,
NULL, pcf85363_rtc_handle_irq,
irqflags | IRQF_ONESHOT,
"pcf85363", client);
if (ret) {
dev_warn(&client->dev,
"unable to request IRQ, alarms disabled\n");
client->irq = 0;
}
}
if (client->irq > 0 || wakeup_source) {
device_init_wakeup(&client->dev, true);
set_bit(RTC_FEATURE_ALARM, pcf85363->rtc->features);
} else {
clear_bit(RTC_FEATURE_ALARM, pcf85363->rtc->features);
}
ret = devm_rtc_register_device(pcf85363->rtc);
for (i = 0; i < config->num_nvram; i++) {
nvmem_cfg[i].priv = pcf85363;
devm_rtc_nvmem_register(pcf85363->rtc, &nvmem_cfg[i]);
}
return ret;
}
static const __maybe_unused struct of_device_id dev_ids[] = {
{ .compatible = "nxp,pcf85263", .data = &pcf_85263_config },
{ .compatible = "nxp,pcf85363", .data = &pcf_85363_config },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, dev_ids);
static struct i2c_driver pcf85363_driver = {
.driver = {
.name = "pcf85363",
.of_match_table = of_match_ptr(dev_ids),
},
.probe = pcf85363_probe,
};
module_i2c_driver(pcf85363_driver);
MODULE_AUTHOR("Eric Nelson");
MODULE_DESCRIPTION("pcf85263/pcf85363 I2C RTC driver");
MODULE_LICENSE("GPL");