// SPDX-License-Identifier: BSD-3-Clause
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/i3c/master.h>
#include <linux/io.h>
#include "hci.h"
#include "cmd.h"
#include "ibi.h"
/*
* PIO Access Area
*/
#define pio_reg_read(r) readl(hci->PIO_regs + (PIO_##r))
#define pio_reg_write(r, v) writel(v, hci->PIO_regs + (PIO_##r))
#define PIO_COMMAND_QUEUE_PORT 0x00
#define PIO_RESPONSE_QUEUE_PORT 0x04
#define PIO_XFER_DATA_PORT 0x08
#define PIO_IBI_PORT 0x0c
#define PIO_QUEUE_THLD_CTRL 0x10
#define QUEUE_IBI_STATUS_THLD GENMASK(31, 24)
#define QUEUE_IBI_DATA_THLD GENMASK(23, 16)
#define QUEUE_RESP_BUF_THLD GENMASK(15, 8)
#define QUEUE_CMD_EMPTY_BUF_THLD GENMASK(7, 0)
#define PIO_DATA_BUFFER_THLD_CTRL 0x14
#define DATA_RX_START_THLD GENMASK(26, 24)
#define DATA_TX_START_THLD GENMASK(18, 16)
#define DATA_RX_BUF_THLD GENMASK(10, 8)
#define DATA_TX_BUF_THLD GENMASK(2, 0)
#define PIO_QUEUE_SIZE 0x18
#define TX_DATA_BUFFER_SIZE GENMASK(31, 24)
#define RX_DATA_BUFFER_SIZE GENMASK(23, 16)
#define IBI_STATUS_SIZE GENMASK(15, 8)
#define CR_QUEUE_SIZE GENMASK(7, 0)
#define PIO_INTR_STATUS 0x20
#define PIO_INTR_STATUS_ENABLE 0x24
#define PIO_INTR_SIGNAL_ENABLE 0x28
#define PIO_INTR_FORCE 0x2c
#define STAT_TRANSFER_BLOCKED BIT(25)
#define STAT_PERR_RESP_UFLOW BIT(24)
#define STAT_PERR_CMD_OFLOW BIT(23)
#define STAT_PERR_IBI_UFLOW BIT(22)
#define STAT_PERR_RX_UFLOW BIT(21)
#define STAT_PERR_TX_OFLOW BIT(20)
#define STAT_ERR_RESP_QUEUE_FULL BIT(19)
#define STAT_WARN_RESP_QUEUE_FULL BIT(18)
#define STAT_ERR_IBI_QUEUE_FULL BIT(17)
#define STAT_WARN_IBI_QUEUE_FULL BIT(16)
#define STAT_ERR_RX_DATA_FULL BIT(15)
#define STAT_WARN_RX_DATA_FULL BIT(14)
#define STAT_ERR_TX_DATA_EMPTY BIT(13)
#define STAT_WARN_TX_DATA_EMPTY BIT(12)
#define STAT_TRANSFER_ERR BIT(9)
#define STAT_WARN_INS_STOP_MODE BIT(7)
#define STAT_TRANSFER_ABORT BIT(5)
#define STAT_RESP_READY BIT(4)
#define STAT_CMD_QUEUE_READY BIT(3)
#define STAT_IBI_STATUS_THLD BIT(2)
#define STAT_RX_THLD BIT(1)
#define STAT_TX_THLD BIT(0)
#define PIO_QUEUE_CUR_STATUS 0x38
#define CUR_IBI_Q_LEVEL GENMASK(28, 20)
#define CUR_RESP_Q_LEVEL GENMASK(18, 10)
#define CUR_CMD_Q_EMPTY_LEVEL GENMASK(8, 0)
#define PIO_DATA_BUFFER_CUR_STATUS 0x3c
#define CUR_RX_BUF_LVL GENMASK(26, 16)
#define CUR_TX_BUF_LVL GENMASK(10, 0)
/*
* Handy status bit combinations
*/
#define STAT_LATENCY_WARNINGS (STAT_WARN_RESP_QUEUE_FULL | \
STAT_WARN_IBI_QUEUE_FULL | \
STAT_WARN_RX_DATA_FULL | \
STAT_WARN_TX_DATA_EMPTY | \
STAT_WARN_INS_STOP_MODE)
#define STAT_LATENCY_ERRORS (STAT_ERR_RESP_QUEUE_FULL | \
STAT_ERR_IBI_QUEUE_FULL | \
STAT_ERR_RX_DATA_FULL | \
STAT_ERR_TX_DATA_EMPTY)
#define STAT_PROG_ERRORS (STAT_TRANSFER_BLOCKED | \
STAT_PERR_RESP_UFLOW | \
STAT_PERR_CMD_OFLOW | \
STAT_PERR_IBI_UFLOW | \
STAT_PERR_RX_UFLOW | \
STAT_PERR_TX_OFLOW)
#define STAT_ALL_ERRORS (STAT_TRANSFER_ABORT | \
STAT_TRANSFER_ERR | \
STAT_LATENCY_ERRORS | \
STAT_PROG_ERRORS)
struct hci_pio_dev_ibi_data {
struct i3c_generic_ibi_pool *pool;
unsigned int max_len;
};
struct hci_pio_ibi_data {
struct i3c_ibi_slot *slot;
void *data_ptr;
unsigned int addr;
unsigned int seg_len, seg_cnt;
unsigned int max_len;
bool last_seg;
};
struct hci_pio_data {
spinlock_t lock;
struct hci_xfer *curr_xfer, *xfer_queue;
struct hci_xfer *curr_rx, *rx_queue;
struct hci_xfer *curr_tx, *tx_queue;
struct hci_xfer *curr_resp, *resp_queue;
struct hci_pio_ibi_data ibi;
unsigned int rx_thresh_size, tx_thresh_size;
unsigned int max_ibi_thresh;
u32 reg_queue_thresh;
u32 enabled_irqs;
};
static int hci_pio_init(struct i3c_hci *hci)
{
struct hci_pio_data *pio;
u32 val, size_val, rx_thresh, tx_thresh, ibi_val;
pio = kzalloc(sizeof(*pio), GFP_KERNEL);
if (!pio)
return -ENOMEM;
hci->io_data = pio;
spin_lock_init(&pio->lock);
size_val = pio_reg_read(QUEUE_SIZE);
dev_info(&hci->master.dev, "CMD/RESP FIFO = %ld entries\n",
FIELD_GET(CR_QUEUE_SIZE, size_val));
dev_info(&hci->master.dev, "IBI FIFO = %ld bytes\n",
4 * FIELD_GET(IBI_STATUS_SIZE, size_val));
dev_info(&hci->master.dev, "RX data FIFO = %d bytes\n",
4 * (2 << FIELD_GET(RX_DATA_BUFFER_SIZE, size_val)));
dev_info(&hci->master.dev, "TX data FIFO = %d bytes\n",
4 * (2 << FIELD_GET(TX_DATA_BUFFER_SIZE, size_val)));
/*
* Let's initialize data thresholds to half of the actual FIFO size.
* The start thresholds aren't used (set to 0) as the FIFO is always
* serviced before the corresponding command is queued.
*/
rx_thresh = FIELD_GET(RX_DATA_BUFFER_SIZE, size_val);
tx_thresh = FIELD_GET(TX_DATA_BUFFER_SIZE, size_val);
if (hci->version_major == 1) {
/* those are expressed as 2^[n+1), so just sub 1 if not 0 */
if (rx_thresh)
rx_thresh -= 1;
if (tx_thresh)
tx_thresh -= 1;
pio->rx_thresh_size = 2 << rx_thresh;
pio->tx_thresh_size = 2 << tx_thresh;
} else {
/* size is 2^(n+1) and threshold is 2^n i.e. already halved */
pio->rx_thresh_size = 1 << rx_thresh;
pio->tx_thresh_size = 1 << tx_thresh;
}
val = FIELD_PREP(DATA_RX_BUF_THLD, rx_thresh) |
FIELD_PREP(DATA_TX_BUF_THLD, tx_thresh);
pio_reg_write(DATA_BUFFER_THLD_CTRL, val);
/*
* Let's raise an interrupt as soon as there is one free cmd slot
* or one available response or IBI. For IBI data let's use half the
* IBI queue size within allowed bounds.
*/
ibi_val = FIELD_GET(IBI_STATUS_SIZE, size_val);
pio->max_ibi_thresh = clamp_val(ibi_val/2, 1, 63);
val = FIELD_PREP(QUEUE_IBI_STATUS_THLD, 1) |
FIELD_PREP(QUEUE_IBI_DATA_THLD, pio->max_ibi_thresh) |
FIELD_PREP(QUEUE_RESP_BUF_THLD, 1) |
FIELD_PREP(QUEUE_CMD_EMPTY_BUF_THLD, 1);
pio_reg_write(QUEUE_THLD_CTRL, val);
pio->reg_queue_thresh = val;
/* Disable all IRQs but allow all status bits */
pio_reg_write(INTR_SIGNAL_ENABLE, 0x0);
pio_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
/* Always accept error interrupts (will be activated on first xfer) */
pio->enabled_irqs = STAT_ALL_ERRORS;
return 0;
}
static void hci_pio_cleanup(struct i3c_hci *hci)
{
struct hci_pio_data *pio = hci->io_data;
pio_reg_write(INTR_SIGNAL_ENABLE, 0x0);
if (pio) {
DBG("status = %#x/%#x",
pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
BUG_ON(pio->curr_xfer);
BUG_ON(pio->curr_rx);
BUG_ON(pio->curr_tx);
BUG_ON(pio->curr_resp);
kfree(pio);
hci->io_data = NULL;
}
}
static void hci_pio_write_cmd(struct i3c_hci *hci, struct hci_xfer *xfer)
{
DBG("cmd_desc[%d] = 0x%08x", 0, xfer->cmd_desc[0]);
DBG("cmd_desc[%d] = 0x%08x", 1, xfer->cmd_desc[1]);
pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[0]);
pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[1]);
if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
DBG("cmd_desc[%d] = 0x%08x", 2, xfer->cmd_desc[2]);
DBG("cmd_desc[%d] = 0x%08x", 3, xfer->cmd_desc[3]);
pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[2]);
pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[3]);
}
}
static bool hci_pio_do_rx(struct i3c_hci *hci, struct hci_pio_data *pio)
{
struct hci_xfer *xfer = pio->curr_rx;
unsigned int nr_words;
u32 *p;
p = xfer->data;
p += (xfer->data_len - xfer->data_left) / 4;
while (xfer->data_left >= 4) {
/* bail out if FIFO hasn't reached the threshold value yet */
if (!(pio_reg_read(INTR_STATUS) & STAT_RX_THLD))
return false;
nr_words = min(xfer->data_left / 4, pio->rx_thresh_size);
/* extract data from FIFO */
xfer->data_left -= nr_words * 4;
DBG("now %d left %d", nr_words * 4, xfer->data_left);
while (nr_words--)
*p++ = pio_reg_read(XFER_DATA_PORT);
}
/* trailing data is retrieved upon response reception */
return !xfer->data_left;
}
static void hci_pio_do_trailing_rx(struct i3c_hci *hci,
struct hci_pio_data *pio, unsigned int count)
{
struct hci_xfer *xfer = pio->curr_rx;
u32 *p;
DBG("%d remaining", count);
p = xfer->data;
p += (xfer->data_len - xfer->data_left) / 4;
if (count >= 4) {
unsigned int nr_words = count / 4;
/* extract data from FIFO */
xfer->data_left -= nr_words * 4;
DBG("now %d left %d", nr_words * 4, xfer->data_left);
while (nr_words--)
*p++ = pio_reg_read(XFER_DATA_PORT);
}
count &= 3;
if (count) {
/*
* There are trailing bytes in the last word.
* Fetch it and extract bytes in an endian independent way.
* Unlike the TX case, we must not write memory past the
* end of the destination buffer.
*/
u8 *p_byte = (u8 *)p;
u32 data = pio_reg_read(XFER_DATA_PORT);
xfer->data_word_before_partial = data;
xfer->data_left -= count;
data = (__force u32) cpu_to_le32(data);
while (count--) {
*p_byte++ = data;
data >>= 8;
}
}
}
static bool hci_pio_do_tx(struct i3c_hci *hci, struct hci_pio_data *pio)
{
struct hci_xfer *xfer = pio->curr_tx;
unsigned int nr_words;
u32 *p;
p = xfer->data;
p += (xfer->data_len - xfer->data_left) / 4;
while (xfer->data_left >= 4) {
/* bail out if FIFO free space is below set threshold */
if (!(pio_reg_read(INTR_STATUS) & STAT_TX_THLD))
return false;
/* we can fill up to that TX threshold */
nr_words = min(xfer->data_left / 4, pio->tx_thresh_size);
/* push data into the FIFO */
xfer->data_left -= nr_words * 4;
DBG("now %d left %d", nr_words * 4, xfer->data_left);
while (nr_words--)
pio_reg_write(XFER_DATA_PORT, *p++);
}
if (xfer->data_left) {
/*
* There are trailing bytes to send. We can simply load
* them from memory as a word which will keep those bytes
* in their proper place even on a BE system. This will
* also get some bytes past the actual buffer but no one
* should care as they won't be sent out.
*/
if (!(pio_reg_read(INTR_STATUS) & STAT_TX_THLD))
return false;
DBG("trailing %d", xfer->data_left);
pio_reg_write(XFER_DATA_PORT, *p);
xfer->data_left = 0;
}
return true;
}
static bool hci_pio_process_rx(struct i3c_hci *hci, struct hci_pio_data *pio)
{
while (pio->curr_rx && hci_pio_do_rx(hci, pio))
pio->curr_rx = pio->curr_rx->next_data;
return !pio->curr_rx;
}
static bool hci_pio_process_tx(struct i3c_hci *hci, struct hci_pio_data *pio)
{
while (pio->curr_tx && hci_pio_do_tx(hci, pio))
pio->curr_tx = pio->curr_tx->next_data;
return !pio->curr_tx;
}
static void hci_pio_queue_data(struct i3c_hci *hci, struct hci_pio_data *pio)
{
struct hci_xfer *xfer = pio->curr_xfer;
struct hci_xfer *prev_queue_tail;
if (!xfer->data) {
xfer->data_len = xfer->data_left = 0;
return;
}
if (xfer->rnw) {
prev_queue_tail = pio->rx_queue;
pio->rx_queue = xfer;
if (pio->curr_rx) {
prev_queue_tail->next_data = xfer;
} else {
pio->curr_rx = xfer;
if (!hci_pio_process_rx(hci, pio))
pio->enabled_irqs |= STAT_RX_THLD;
}
} else {
prev_queue_tail = pio->tx_queue;
pio->tx_queue = xfer;
if (pio->curr_tx) {
prev_queue_tail->next_data = xfer;
} else {
pio->curr_tx = xfer;
if (!hci_pio_process_tx(hci, pio))
pio->enabled_irqs |= STAT_TX_THLD;
}
}
}
static void hci_pio_push_to_next_rx(struct i3c_hci *hci, struct hci_xfer *xfer,
unsigned int words_to_keep)
{
u32 *from = xfer->data;
u32 from_last;
unsigned int received, count;
received = (xfer->data_len - xfer->data_left) / 4;
if ((xfer->data_len - xfer->data_left) & 3) {
from_last = xfer->data_word_before_partial;
received += 1;
} else {
from_last = from[received];
}
from += words_to_keep;
count = received - words_to_keep;
while (count) {
unsigned int room, left, chunk, bytes_to_move;
u32 last_word;
xfer = xfer->next_data;
if (!xfer) {
dev_err(&hci->master.dev, "pushing RX data to unexistent xfer\n");
return;
}
room = DIV_ROUND_UP(xfer->data_len, 4);
left = DIV_ROUND_UP(xfer->data_left, 4);
chunk = min(count, room);
if (chunk > left) {
hci_pio_push_to_next_rx(hci, xfer, chunk - left);
left = chunk;
xfer->data_left = left * 4;
}
bytes_to_move = xfer->data_len - xfer->data_left;
if (bytes_to_move & 3) {
/* preserve word to become partial */
u32 *p = xfer->data;
xfer->data_word_before_partial = p[bytes_to_move / 4];
}
memmove(xfer->data + chunk, xfer->data, bytes_to_move);
/* treat last word specially because of partial word issues */
chunk -= 1;
memcpy(xfer->data, from, chunk * 4);
xfer->data_left -= chunk * 4;
from += chunk;
count -= chunk;
last_word = (count == 1) ? from_last : *from++;
if (xfer->data_left < 4) {
/*
* Like in hci_pio_do_trailing_rx(), preserve original
* word to be stored partially then store bytes it
* in an endian independent way.
*/
u8 *p_byte = xfer->data;
p_byte += chunk * 4;
xfer->data_word_before_partial = last_word;
last_word = (__force u32) cpu_to_le32(last_word);
while (xfer->data_left--) {
*p_byte++ = last_word;
last_word >>= 8;
}
} else {
u32 *p = xfer->data;
p[chunk] = last_word;
xfer->data_left -= 4;
}
count--;
}
}
static void hci_pio_err(struct i3c_hci *hci, struct hci_pio_data *pio,
u32 status);
static bool hci_pio_process_resp(struct i3c_hci *hci, struct hci_pio_data *pio)
{
while (pio->curr_resp &&
(pio_reg_read(INTR_STATUS) & STAT_RESP_READY)) {
struct hci_xfer *xfer = pio->curr_resp;
u32 resp = pio_reg_read(RESPONSE_QUEUE_PORT);
unsigned int tid = RESP_TID(resp);
DBG("resp = 0x%08x", resp);
if (tid != xfer->cmd_tid) {
dev_err(&hci->master.dev,
"response tid=%d when expecting %d\n",
tid, xfer->cmd_tid);
/* let's pretend it is a prog error... any of them */
hci_pio_err(hci, pio, STAT_PROG_ERRORS);
return false;
}
xfer->response = resp;
if (pio->curr_rx == xfer) {
/*
* Response availability implies RX completion.
* Retrieve trailing RX data if any.
* Note that short reads are possible.
*/
unsigned int received, expected, to_keep;
received = xfer->data_len - xfer->data_left;
expected = RESP_DATA_LENGTH(xfer->response);
if (expected > received) {
hci_pio_do_trailing_rx(hci, pio,
expected - received);
} else if (received > expected) {
/* we consumed data meant for next xfer */
to_keep = DIV_ROUND_UP(expected, 4);
hci_pio_push_to_next_rx(hci, xfer, to_keep);
}
/* then process the RX list pointer */
if (hci_pio_process_rx(hci, pio))
pio->enabled_irqs &= ~STAT_RX_THLD;
}
/*
* We're about to give back ownership of the xfer structure
* to the waiting instance. Make sure no reference to it
* still exists.
*/
if (pio->curr_rx == xfer) {
DBG("short RX ?");
pio->curr_rx = pio->curr_rx->next_data;
} else if (pio->curr_tx == xfer) {
DBG("short TX ?");
pio->curr_tx = pio->curr_tx->next_data;
} else if (xfer->data_left) {
DBG("PIO xfer count = %d after response",
xfer->data_left);
}
pio->curr_resp = xfer->next_resp;
if (xfer->completion)
complete(xfer->completion);
}
return !pio->curr_resp;
}
static void hci_pio_queue_resp(struct i3c_hci *hci, struct hci_pio_data *pio)
{
struct hci_xfer *xfer = pio->curr_xfer;
struct hci_xfer *prev_queue_tail;
if (!(xfer->cmd_desc[0] & CMD_0_ROC))
return;
prev_queue_tail = pio->resp_queue;
pio->resp_queue = xfer;
if (pio->curr_resp) {
prev_queue_tail->next_resp = xfer;
} else {
pio->curr_resp = xfer;
if (!hci_pio_process_resp(hci, pio))
pio->enabled_irqs |= STAT_RESP_READY;
}
}
static bool hci_pio_process_cmd(struct i3c_hci *hci, struct hci_pio_data *pio)
{
while (pio->curr_xfer &&
(pio_reg_read(INTR_STATUS) & STAT_CMD_QUEUE_READY)) {
/*
* Always process the data FIFO before sending the command
* so needed TX data or RX space is available upfront.
*/
hci_pio_queue_data(hci, pio);
/*
* Then queue our response request. This will also process
* the response FIFO in case it got suddenly filled up
* with results from previous commands.
*/
hci_pio_queue_resp(hci, pio);
/*
* Finally send the command.
*/
hci_pio_write_cmd(hci, pio->curr_xfer);
/*
* And move on.
*/
pio->curr_xfer = pio->curr_xfer->next_xfer;
}
return !pio->curr_xfer;
}
static int hci_pio_queue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer, int n)
{
struct hci_pio_data *pio = hci->io_data;
struct hci_xfer *prev_queue_tail;
int i;
DBG("n = %d", n);
/* link xfer instances together and initialize data count */
for (i = 0; i < n; i++) {
xfer[i].next_xfer = (i + 1 < n) ? &xfer[i + 1] : NULL;
xfer[i].next_data = NULL;
xfer[i].next_resp = NULL;
xfer[i].data_left = xfer[i].data_len;
}
spin_lock_irq(&pio->lock);
prev_queue_tail = pio->xfer_queue;
pio->xfer_queue = &xfer[n - 1];
if (pio->curr_xfer) {
prev_queue_tail->next_xfer = xfer;
} else {
pio->curr_xfer = xfer;
if (!hci_pio_process_cmd(hci, pio))
pio->enabled_irqs |= STAT_CMD_QUEUE_READY;
pio_reg_write(INTR_SIGNAL_ENABLE, pio->enabled_irqs);
DBG("status = %#x/%#x",
pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
}
spin_unlock_irq(&pio->lock);
return 0;
}
static bool hci_pio_dequeue_xfer_common(struct i3c_hci *hci,
struct hci_pio_data *pio,
struct hci_xfer *xfer, int n)
{
struct hci_xfer *p, **p_prev_next;
int i;
/*
* To safely dequeue a transfer request, it must be either entirely
* processed, or not yet processed at all. If our request tail is
* reachable from either the data or resp list that means the command
* was submitted and not yet completed.
*/
for (p = pio->curr_resp; p; p = p->next_resp)
for (i = 0; i < n; i++)
if (p == &xfer[i])
goto pio_screwed;
for (p = pio->curr_rx; p; p = p->next_data)
for (i = 0; i < n; i++)
if (p == &xfer[i])
goto pio_screwed;
for (p = pio->curr_tx; p; p = p->next_data)
for (i = 0; i < n; i++)
if (p == &xfer[i])
goto pio_screwed;
/*
* The command was completed, or wasn't yet submitted.
* Unlink it from the que if the later.
*/
p_prev_next = &pio->curr_xfer;
for (p = pio->curr_xfer; p; p = p->next_xfer) {
if (p == &xfer[0]) {
*p_prev_next = xfer[n - 1].next_xfer;
break;
}
p_prev_next = &p->next_xfer;
}
/* return true if we actually unqueued something */
return !!p;
pio_screwed:
/*
* Life is tough. We must invalidate the hardware state and
* discard everything that is still queued.
*/
for (p = pio->curr_resp; p; p = p->next_resp) {
p->response = FIELD_PREP(RESP_ERR_FIELD, RESP_ERR_HC_TERMINATED);
if (p->completion)
complete(p->completion);
}
for (p = pio->curr_xfer; p; p = p->next_xfer) {
p->response = FIELD_PREP(RESP_ERR_FIELD, RESP_ERR_HC_TERMINATED);
if (p->completion)
complete(p->completion);
}
pio->curr_xfer = pio->curr_rx = pio->curr_tx = pio->curr_resp = NULL;
return true;
}
static bool hci_pio_dequeue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer, int n)
{
struct hci_pio_data *pio = hci->io_data;
int ret;
spin_lock_irq(&pio->lock);
DBG("n=%d status=%#x/%#x", n,
pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
DBG("main_status = %#x/%#x",
readl(hci->base_regs + 0x20), readl(hci->base_regs + 0x28));
ret = hci_pio_dequeue_xfer_common(hci, pio, xfer, n);
spin_unlock_irq(&pio->lock);
return ret;
}
static void hci_pio_err(struct i3c_hci *hci, struct hci_pio_data *pio,
u32 status)
{
/* TODO: this ought to be more sophisticated eventually */
if (pio_reg_read(INTR_STATUS) & STAT_RESP_READY) {
/* this may happen when an error is signaled with ROC unset */
u32 resp = pio_reg_read(RESPONSE_QUEUE_PORT);
dev_err(&hci->master.dev,
"orphan response (%#x) on error\n", resp);
}
/* dump states on programming errors */
if (status & STAT_PROG_ERRORS) {
u32 queue = pio_reg_read(QUEUE_CUR_STATUS);
u32 data = pio_reg_read(DATA_BUFFER_CUR_STATUS);
dev_err(&hci->master.dev,
"prog error %#lx (C/R/I = %ld/%ld/%ld, TX/RX = %ld/%ld)\n",
status & STAT_PROG_ERRORS,
FIELD_GET(CUR_CMD_Q_EMPTY_LEVEL, queue),
FIELD_GET(CUR_RESP_Q_LEVEL, queue),
FIELD_GET(CUR_IBI_Q_LEVEL, queue),
FIELD_GET(CUR_TX_BUF_LVL, data),
FIELD_GET(CUR_RX_BUF_LVL, data));
}
/* just bust out everything with pending responses for now */
hci_pio_dequeue_xfer_common(hci, pio, pio->curr_resp, 1);
/* ... and half-way TX transfers if any */
if (pio->curr_tx && pio->curr_tx->data_left != pio->curr_tx->data_len)
hci_pio_dequeue_xfer_common(hci, pio, pio->curr_tx, 1);
/* then reset the hardware */
mipi_i3c_hci_pio_reset(hci);
mipi_i3c_hci_resume(hci);
DBG("status=%#x/%#x",
pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
}
static void hci_pio_set_ibi_thresh(struct i3c_hci *hci,
struct hci_pio_data *pio,
unsigned int thresh_val)
{
u32 regval = pio->reg_queue_thresh;
regval &= ~QUEUE_IBI_STATUS_THLD;
regval |= FIELD_PREP(QUEUE_IBI_STATUS_THLD, thresh_val);
/* write the threshold reg only if it changes */
if (regval != pio->reg_queue_thresh) {
pio_reg_write(QUEUE_THLD_CTRL, regval);
pio->reg_queue_thresh = regval;
DBG("%d", thresh_val);
}
}
static bool hci_pio_get_ibi_segment(struct i3c_hci *hci,
struct hci_pio_data *pio)
{
struct hci_pio_ibi_data *ibi = &pio->ibi;
unsigned int nr_words, thresh_val;
u32 *p;
p = ibi->data_ptr;
p += (ibi->seg_len - ibi->seg_cnt) / 4;
while ((nr_words = ibi->seg_cnt/4)) {
/* determine our IBI queue threshold value */
thresh_val = min(nr_words, pio->max_ibi_thresh);
hci_pio_set_ibi_thresh(hci, pio, thresh_val);
/* bail out if we don't have that amount of data ready */
if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
return false;
/* extract the data from the IBI port */
nr_words = thresh_val;
ibi->seg_cnt -= nr_words * 4;
DBG("now %d left %d", nr_words * 4, ibi->seg_cnt);
while (nr_words--)
*p++ = pio_reg_read(IBI_PORT);
}
if (ibi->seg_cnt) {
/*
* There are trailing bytes in the last word.
* Fetch it and extract bytes in an endian independent way.
* Unlike the TX case, we must not write past the end of
* the destination buffer.
*/
u32 data;
u8 *p_byte = (u8 *)p;
hci_pio_set_ibi_thresh(hci, pio, 1);
if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
return false;
DBG("trailing %d", ibi->seg_cnt);
data = pio_reg_read(IBI_PORT);
data = (__force u32) cpu_to_le32(data);
while (ibi->seg_cnt--) {
*p_byte++ = data;
data >>= 8;
}
}
return true;
}
static bool hci_pio_prep_new_ibi(struct i3c_hci *hci, struct hci_pio_data *pio)
{
struct hci_pio_ibi_data *ibi = &pio->ibi;
struct i3c_dev_desc *dev;
struct i3c_hci_dev_data *dev_data;
struct hci_pio_dev_ibi_data *dev_ibi;
u32 ibi_status;
/*
* We have a new IBI. Try to set up its payload retrieval.
* When returning true, the IBI data has to be consumed whether
* or not we are set up to capture it. If we return true with
* ibi->slot == NULL that means the data payload has to be
* drained out of the IBI port and dropped.
*/
ibi_status = pio_reg_read(IBI_PORT);
DBG("status = %#x", ibi_status);
ibi->addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
if (ibi_status & IBI_ERROR) {
dev_err(&hci->master.dev, "IBI error from %#x\n", ibi->addr);
return false;
}
ibi->last_seg = ibi_status & IBI_LAST_STATUS;
ibi->seg_len = FIELD_GET(IBI_DATA_LENGTH, ibi_status);
ibi->seg_cnt = ibi->seg_len;
dev = i3c_hci_addr_to_dev(hci, ibi->addr);
if (!dev) {
dev_err(&hci->master.dev,
"IBI for unknown device %#x\n", ibi->addr);
return true;
}
dev_data = i3c_dev_get_master_data(dev);
dev_ibi = dev_data->ibi_data;
ibi->max_len = dev_ibi->max_len;
if (ibi->seg_len > ibi->max_len) {
dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
ibi->seg_len, ibi->max_len);
return true;
}
ibi->slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
if (!ibi->slot) {
dev_err(&hci->master.dev, "no free slot for IBI\n");
} else {
ibi->slot->len = 0;
ibi->data_ptr = ibi->slot->data;
}
return true;
}
static void hci_pio_free_ibi_slot(struct i3c_hci *hci, struct hci_pio_data *pio)
{
struct hci_pio_ibi_data *ibi = &pio->ibi;
struct hci_pio_dev_ibi_data *dev_ibi;
if (ibi->slot) {
dev_ibi = ibi->slot->dev->common.master_priv;
i3c_generic_ibi_recycle_slot(dev_ibi->pool, ibi->slot);
ibi->slot = NULL;
}
}
static bool hci_pio_process_ibi(struct i3c_hci *hci, struct hci_pio_data *pio)
{
struct hci_pio_ibi_data *ibi = &pio->ibi;
if (!ibi->slot && !ibi->seg_cnt && ibi->last_seg)
if (!hci_pio_prep_new_ibi(hci, pio))
return false;
for (;;) {
u32 ibi_status;
unsigned int ibi_addr;
if (ibi->slot) {
if (!hci_pio_get_ibi_segment(hci, pio))
return false;
ibi->slot->len += ibi->seg_len;
ibi->data_ptr += ibi->seg_len;
if (ibi->last_seg) {
/* was the last segment: submit it and leave */
i3c_master_queue_ibi(ibi->slot->dev, ibi->slot);
ibi->slot = NULL;
hci_pio_set_ibi_thresh(hci, pio, 1);
return true;
}
} else if (ibi->seg_cnt) {
/*
* No slot but a non-zero count. This is the result
* of some error and the payload must be drained.
* This normally does not happen therefore no need
* to be extra optimized here.
*/
hci_pio_set_ibi_thresh(hci, pio, 1);
do {
if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
return false;
pio_reg_read(IBI_PORT);
} while (--ibi->seg_cnt);
if (ibi->last_seg)
return true;
}
/* try to move to the next segment right away */
hci_pio_set_ibi_thresh(hci, pio, 1);
if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
return false;
ibi_status = pio_reg_read(IBI_PORT);
ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
if (ibi->addr != ibi_addr) {
/* target address changed before last segment */
dev_err(&hci->master.dev,
"unexp IBI address changed from %d to %d\n",
ibi->addr, ibi_addr);
hci_pio_free_ibi_slot(hci, pio);
}
ibi->last_seg = ibi_status & IBI_LAST_STATUS;
ibi->seg_len = FIELD_GET(IBI_DATA_LENGTH, ibi_status);
ibi->seg_cnt = ibi->seg_len;
if (ibi->slot && ibi->slot->len + ibi->seg_len > ibi->max_len) {
dev_err(&hci->master.dev,
"IBI payload too big (%d > %d)\n",
ibi->slot->len + ibi->seg_len, ibi->max_len);
hci_pio_free_ibi_slot(hci, pio);
}
}
return false;
}
static int hci_pio_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
const struct i3c_ibi_setup *req)
{
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
struct i3c_generic_ibi_pool *pool;
struct hci_pio_dev_ibi_data *dev_ibi;
dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
if (!dev_ibi)
return -ENOMEM;
pool = i3c_generic_ibi_alloc_pool(dev, req);
if (IS_ERR(pool)) {
kfree(dev_ibi);
return PTR_ERR(pool);
}
dev_ibi->pool = pool;
dev_ibi->max_len = req->max_payload_len;
dev_data->ibi_data = dev_ibi;
return 0;
}
static void hci_pio_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
{
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
struct hci_pio_dev_ibi_data *dev_ibi = dev_data->ibi_data;
dev_data->ibi_data = NULL;
i3c_generic_ibi_free_pool(dev_ibi->pool);
kfree(dev_ibi);
}
static void hci_pio_recycle_ibi_slot(struct i3c_hci *hci,
struct i3c_dev_desc *dev,
struct i3c_ibi_slot *slot)
{
struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
struct hci_pio_dev_ibi_data *dev_ibi = dev_data->ibi_data;
i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
}
static bool hci_pio_irq_handler(struct i3c_hci *hci, unsigned int unused)
{
struct hci_pio_data *pio = hci->io_data;
u32 status;
spin_lock(&pio->lock);
status = pio_reg_read(INTR_STATUS);
DBG("(in) status: %#x/%#x", status, pio->enabled_irqs);
status &= pio->enabled_irqs | STAT_LATENCY_WARNINGS;
if (!status) {
spin_unlock(&pio->lock);
return false;
}
if (status & STAT_IBI_STATUS_THLD)
hci_pio_process_ibi(hci, pio);
if (status & STAT_RX_THLD)
if (hci_pio_process_rx(hci, pio))
pio->enabled_irqs &= ~STAT_RX_THLD;
if (status & STAT_TX_THLD)
if (hci_pio_process_tx(hci, pio))
pio->enabled_irqs &= ~STAT_TX_THLD;
if (status & STAT_RESP_READY)
if (hci_pio_process_resp(hci, pio))
pio->enabled_irqs &= ~STAT_RESP_READY;
if (unlikely(status & STAT_LATENCY_WARNINGS)) {
pio_reg_write(INTR_STATUS, status & STAT_LATENCY_WARNINGS);
dev_warn_ratelimited(&hci->master.dev,
"encountered warning condition %#lx\n",
status & STAT_LATENCY_WARNINGS);
}
if (unlikely(status & STAT_ALL_ERRORS)) {
pio_reg_write(INTR_STATUS, status & STAT_ALL_ERRORS);
hci_pio_err(hci, pio, status & STAT_ALL_ERRORS);
}
if (status & STAT_CMD_QUEUE_READY)
if (hci_pio_process_cmd(hci, pio))
pio->enabled_irqs &= ~STAT_CMD_QUEUE_READY;
pio_reg_write(INTR_SIGNAL_ENABLE, pio->enabled_irqs);
DBG("(out) status: %#x/%#x",
pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
spin_unlock(&pio->lock);
return true;
}
const struct hci_io_ops mipi_i3c_hci_pio = {
.init = hci_pio_init,
.cleanup = hci_pio_cleanup,
.queue_xfer = hci_pio_queue_xfer,
.dequeue_xfer = hci_pio_dequeue_xfer,
.irq_handler = hci_pio_irq_handler,
.request_ibi = hci_pio_request_ibi,
.free_ibi = hci_pio_free_ibi,
.recycle_ibi_slot = hci_pio_recycle_ibi_slot,
};