// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/media/i2c/ccs/ccs-reg-access.c
*
* Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
*
* Copyright (C) 2020 Intel Corporation
* Copyright (C) 2011--2012 Nokia Corporation
* Contact: Sakari Ailus <[email protected]>
*/
#include <linux/unaligned.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include "ccs.h"
#include "ccs-limits.h"
static u32 float_to_u32_mul_1000000(struct i2c_client *client, u32 phloat)
{
s32 exp;
u64 man;
if (phloat >= 0x80000000) {
dev_err(&client->dev, "this is a negative number\n");
return 0;
}
if (phloat == 0x7f800000)
return ~0; /* Inf. */
if ((phloat & 0x7f800000) == 0x7f800000) {
dev_err(&client->dev, "NaN or other special number\n");
return 0;
}
/* Valid cases begin here */
if (phloat == 0)
return 0; /* Valid zero */
if (phloat > 0x4f800000)
return ~0; /* larger than 4294967295 */
/*
* Unbias exponent (note how phloat is now guaranteed to
* have 0 in the high bit)
*/
exp = ((int32_t)phloat >> 23) - 127;
/* Extract mantissa, add missing '1' bit and it's in MHz */
man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL;
if (exp < 0)
man >>= -exp;
else
man <<= exp;
man >>= 23; /* Remove mantissa bias */
return man & 0xffffffff;
}
static u32 ireal32_to_u32_mul_1000000(struct i2c_client *client, u32 val)
{
if (val >> 10 > U32_MAX / 15625) {
dev_warn(&client->dev, "value %u overflows!\n", val);
return U32_MAX;
}
return ((val >> 10) * 15625) +
(val & GENMASK(9, 0)) * 15625 / 1024;
}
u32 ccs_reg_conv(struct ccs_sensor *sensor, u32 reg, u32 val)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
if (reg & CCS_FL_FLOAT_IREAL) {
if (CCS_LIM(sensor, CLOCK_CAPA_TYPE_CAPABILITY) &
CCS_CLOCK_CAPA_TYPE_CAPABILITY_IREAL)
val = ireal32_to_u32_mul_1000000(client, val);
else
val = float_to_u32_mul_1000000(client, val);
} else if (reg & CCS_FL_IREAL) {
val = ireal32_to_u32_mul_1000000(client, val);
}
return val;
}
/*
* Read a 8/16/32-bit i2c register. The value is returned in 'val'.
* Returns zero if successful, or non-zero otherwise.
*/
static int __ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val,
bool only8, bool conv)
{
u64 __val;
int rval;
rval = cci_read(sensor->regmap, reg, &__val, NULL);
if (rval < 0)
return rval;
*val = conv ? ccs_reg_conv(sensor, reg, __val) : __val;
return 0;
}
static int __ccs_static_data_read_ro_reg(struct ccs_reg *regs, size_t num_regs,
u32 reg, u32 *val)
{
unsigned int width = CCI_REG_WIDTH_BYTES(reg);
size_t i;
for (i = 0; i < num_regs; i++, regs++) {
u8 *data;
if (regs->addr + regs->len < CCS_REG_ADDR(reg) + width)
continue;
if (regs->addr > CCS_REG_ADDR(reg))
break;
data = ®s->value[CCS_REG_ADDR(reg) - regs->addr];
switch (width) {
case sizeof(u8):
*val = *data;
break;
case sizeof(u16):
*val = get_unaligned_be16(data);
break;
case sizeof(u32):
*val = get_unaligned_be32(data);
break;
default:
WARN_ON(1);
return -EINVAL;
}
return 0;
}
return -ENOENT;
}
static int
ccs_static_data_read_ro_reg(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
if (!__ccs_static_data_read_ro_reg(sensor->sdata.sensor_read_only_regs,
sensor->sdata.num_sensor_read_only_regs,
reg, val))
return 0;
return __ccs_static_data_read_ro_reg(sensor->mdata.module_read_only_regs,
sensor->mdata.num_module_read_only_regs,
reg, val);
}
static int ccs_read_addr_raw(struct ccs_sensor *sensor, u32 reg, u32 *val,
bool force8, bool quirk, bool conv, bool data)
{
int rval;
if (data) {
rval = ccs_static_data_read_ro_reg(sensor, reg, val);
if (!rval)
return 0;
}
if (quirk) {
*val = 0;
rval = ccs_call_quirk(sensor, reg_access, false, ®, val);
if (rval == -ENOIOCTLCMD)
return 0;
if (rval < 0)
return rval;
if (force8)
return __ccs_read_addr(sensor, reg, val, true, conv);
}
return __ccs_read_addr(sensor, reg, val,
ccs_needs_quirk(sensor,
CCS_QUIRK_FLAG_8BIT_READ_ONLY),
conv);
}
int ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
return ccs_read_addr_raw(sensor, reg, val, false, true, true, true);
}
int ccs_read_addr_8only(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
return ccs_read_addr_raw(sensor, reg, val, true, true, true, true);
}
int ccs_read_addr_noconv(struct ccs_sensor *sensor, u32 reg, u32 *val)
{
return ccs_read_addr_raw(sensor, reg, val, false, true, false, true);
}
/*
* Write to a 8/16-bit register.
* Returns zero if successful, or non-zero otherwise.
*/
int ccs_write_addr(struct ccs_sensor *sensor, u32 reg, u32 val)
{
unsigned int retries = 10;
int rval;
rval = ccs_call_quirk(sensor, reg_access, true, ®, &val);
if (rval == -ENOIOCTLCMD)
return 0;
if (rval < 0)
return rval;
rval = 0;
do {
if (cci_write(sensor->regmap, reg, val, &rval))
fsleep(1000);
} while (rval && --retries);
return rval;
}
#define MAX_WRITE_LEN 32U
int ccs_write_data_regs(struct ccs_sensor *sensor, struct ccs_reg *regs,
size_t num_regs)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
size_t i;
for (i = 0; i < num_regs; i++, regs++) {
unsigned char *regdata = regs->value;
unsigned int j;
int len;
for (j = 0; j < regs->len; j += len, regdata += len) {
char printbuf[(MAX_WRITE_LEN << 1) +
1 /* \0 */] = { 0 };
unsigned int retries = 10;
int rval;
len = min(regs->len - j, MAX_WRITE_LEN);
bin2hex(printbuf, regdata, len);
dev_dbg(&client->dev,
"writing msr reg 0x%4.4x value 0x%s\n",
regs->addr + j, printbuf);
do {
rval = regmap_bulk_write(sensor->regmap,
regs->addr + j,
regdata, len);
if (rval)
fsleep(1000);
} while (rval && --retries);
if (rval) {
dev_err(&client->dev,
"error writing %u octets to address 0x%4.4x\n",
len, regs->addr + j);
return rval;
}
}
}
return 0;
}