linux/drivers/media/platform/mediatek/vcodec/decoder/vdec/vdec_vp9_req_lat_if.c

// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2021 MediaTek Inc.
 * Author: George Sun <[email protected]>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <media/videobuf2-dma-contig.h>
#include <media/v4l2-vp9.h>

#include "../mtk_vcodec_dec.h"
#include "../../common/mtk_vcodec_intr.h"
#include "../vdec_drv_base.h"
#include "../vdec_drv_if.h"
#include "../vdec_vpu_if.h"

/* reset_frame_context defined in VP9 spec */
#define VP9_RESET_FRAME_CONTEXT_NONE0 0
#define VP9_RESET_FRAME_CONTEXT_NONE1 1
#define VP9_RESET_FRAME_CONTEXT_SPEC 2
#define VP9_RESET_FRAME_CONTEXT_ALL 3

#define VP9_TILE_BUF_SIZE 4096
#define VP9_PROB_BUF_SIZE 2560
#define VP9_COUNTS_BUF_SIZE 16384

#define HDR_FLAG(x) (!!((hdr)->flags & V4L2_VP9_FRAME_FLAG_##x))
#define LF_FLAG(x) (!!((lf)->flags & V4L2_VP9_LOOP_FILTER_FLAG_##x))
#define SEG_FLAG(x) (!!((seg)->flags & V4L2_VP9_SEGMENTATION_FLAG_##x))
#define VP9_BAND_6(band) ((band) == 0 ? 3 : 6)

/*
 * struct vdec_vp9_slice_frame_ctx - vp9 prob tables footprint
 */
struct vdec_vp9_slice_frame_ctx {
	struct {
		u8 probs[6][3];
		u8 padding[2];
	} coef_probs[4][2][2][6];

	u8 y_mode_prob[4][16];
	u8 switch_interp_prob[4][16];
	u8 seg[32];  /* ignore */
	u8 comp_inter_prob[16];
	u8 comp_ref_prob[16];
	u8 single_ref_prob[5][2];
	u8 single_ref_prob_padding[6];

	u8 joint[3];
	u8 joint_padding[13];
	struct {
		u8 sign;
		u8 classes[10];
		u8 padding[5];
	} sign_classes[2];
	struct {
		u8 class0[1];
		u8 bits[10];
		u8 padding[5];
	} class0_bits[2];
	struct {
		u8 class0_fp[2][3];
		u8 fp[3];
		u8 class0_hp;
		u8 hp;
		u8 padding[5];
	} class0_fp_hp[2];

	u8 uv_mode_prob[10][16];
	u8 uv_mode_prob_padding[2][16];

	u8 partition_prob[16][4];

	u8 inter_mode_probs[7][4];
	u8 skip_probs[4];

	u8 tx_p8x8[2][4];
	u8 tx_p16x16[2][4];
	u8 tx_p32x32[2][4];
	u8 intra_inter_prob[8];
};

/*
 * struct vdec_vp9_slice_frame_counts - vp9 counts tables footprint
 */
struct vdec_vp9_slice_frame_counts {
	union {
		struct {
			u32 band_0[3];
			u32 padding0[1];
			u32 band_1_5[5][6];
			u32 padding1[2];
		} eob_branch[4][2][2];
		u32 eob_branch_space[256 * 4];
	};

	struct {
		u32 band_0[3][4];
		u32 band_1_5[5][6][4];
	} coef_probs[4][2][2];

	u32 intra_inter[4][2];
	u32 comp_inter[5][2];
	u32 comp_inter_padding[2];
	u32 comp_ref[5][2];
	u32 comp_ref_padding[2];
	u32 single_ref[5][2][2];
	u32 inter_mode[7][4];
	u32 y_mode[4][12];
	u32 uv_mode[10][10];
	u32 partition[16][4];
	u32 switchable_interp[4][4];

	u32 tx_p8x8[2][2];
	u32 tx_p16x16[2][4];
	u32 tx_p32x32[2][4];

	u32 skip[3][4];

	u32 joint[4];

	struct {
		u32 sign[2];
		u32 class0[2];
		u32 classes[12];
		u32 bits[10][2];
		u32 padding[4];
		u32 class0_fp[2][4];
		u32 fp[4];
		u32 class0_hp[2];
		u32 hp[2];
	} mvcomp[2];

	u32 reserved[126][4];
};

/**
 * struct vdec_vp9_slice_counts_map - vp9 counts tables to map
 *                                    v4l2_vp9_frame_symbol_counts
 * @skip:	skip counts.
 * @y_mode:	Y prediction mode counts.
 * @filter:	interpolation filter counts.
 * @sign:	motion vector sign counts.
 * @classes:	motion vector class counts.
 * @class0:	motion vector class0 bit counts.
 * @bits:	motion vector bits counts.
 * @class0_fp:	motion vector class0 fractional bit counts.
 * @fp:	motion vector fractional bit counts.
 * @class0_hp:	motion vector class0 high precision fractional bit counts.
 * @hp:	motion vector high precision fractional bit counts.
 */
struct vdec_vp9_slice_counts_map {
	u32 skip[3][2];
	u32 y_mode[4][10];
	u32 filter[4][3];
	u32 sign[2][2];
	u32 classes[2][11];
	u32 class0[2][2];
	u32 bits[2][10][2];
	u32 class0_fp[2][2][4];
	u32 fp[2][4];
	u32 class0_hp[2][2];
	u32 hp[2][2];
};

/*
 * struct vdec_vp9_slice_uncompressed_header - vp9 uncompressed header syntax
 *                                             used for decoding
 */
struct vdec_vp9_slice_uncompressed_header {
	u8 profile;
	u8 last_frame_type;
	u8 frame_type;

	u8 last_show_frame;
	u8 show_frame;
	u8 error_resilient_mode;

	u8 bit_depth;
	u8 padding0[1];
	u16 last_frame_width;
	u16 last_frame_height;
	u16 frame_width;
	u16 frame_height;

	u8 intra_only;
	u8 reset_frame_context;
	u8 ref_frame_sign_bias[4];
	u8 allow_high_precision_mv;
	u8 interpolation_filter;

	u8 refresh_frame_context;
	u8 frame_parallel_decoding_mode;
	u8 frame_context_idx;

	/* loop_filter_params */
	u8 loop_filter_level;
	u8 loop_filter_sharpness;
	u8 loop_filter_delta_enabled;
	s8 loop_filter_ref_deltas[4];
	s8 loop_filter_mode_deltas[2];

	/* quantization_params */
	u8 base_q_idx;
	s8 delta_q_y_dc;
	s8 delta_q_uv_dc;
	s8 delta_q_uv_ac;

	/* segmentation_params */
	u8 segmentation_enabled;
	u8 segmentation_update_map;
	u8 segmentation_tree_probs[7];
	u8 padding1[1];
	u8 segmentation_temporal_udpate;
	u8 segmentation_pred_prob[3];
	u8 segmentation_update_data;
	u8 segmentation_abs_or_delta_update;
	u8 feature_enabled[8];
	s16 feature_value[8][4];

	/* tile_info */
	u8 tile_cols_log2;
	u8 tile_rows_log2;
	u8 padding2[2];

	u16 uncompressed_header_size;
	u16 header_size_in_bytes;

	/* LAT OUT, CORE IN */
	u32 dequant[8][4];
};

/*
 * struct vdec_vp9_slice_compressed_header - vp9 compressed header syntax
 *                                           used for decoding.
 */
struct vdec_vp9_slice_compressed_header {
	u8 tx_mode;
	u8 ref_mode;
	u8 comp_fixed_ref;
	u8 comp_var_ref[2];
	u8 padding[3];
};

/*
 * struct vdec_vp9_slice_tiles - vp9 tile syntax
 */
struct vdec_vp9_slice_tiles {
	u32 size[4][64];
	u32 mi_rows[4];
	u32 mi_cols[64];
	u8 actual_rows;
	u8 padding[7];
};

/*
 * struct vdec_vp9_slice_reference - vp9 reference frame information
 */
struct vdec_vp9_slice_reference {
	u16 frame_width;
	u16 frame_height;
	u8 bit_depth;
	u8 subsampling_x;
	u8 subsampling_y;
	u8 padding;
};

/*
 * struct vdec_vp9_slice_frame - vp9 syntax used for decoding
 */
struct vdec_vp9_slice_frame {
	struct vdec_vp9_slice_uncompressed_header uh;
	struct vdec_vp9_slice_compressed_header ch;
	struct vdec_vp9_slice_tiles tiles;
	struct vdec_vp9_slice_reference ref[3];
};

/*
 * struct vdec_vp9_slice_init_vsi - VSI used to initialize instance
 */
struct vdec_vp9_slice_init_vsi {
	unsigned int architecture;
	unsigned int reserved;
	u64 core_vsi;
	/* default frame context's position in MicroP */
	u64 default_frame_ctx;
};

/*
 * struct vdec_vp9_slice_mem - memory address and size
 */
struct vdec_vp9_slice_mem {
	union {
		u64 buf;
		dma_addr_t dma_addr;
	};
	union {
		size_t size;
		dma_addr_t dma_addr_end;
		u64 padding;
	};
};

/*
 * struct vdec_vp9_slice_bs - input buffer for decoding
 */
struct vdec_vp9_slice_bs {
	struct vdec_vp9_slice_mem buf;
	struct vdec_vp9_slice_mem frame;
};

/*
 * struct vdec_vp9_slice_fb - frame buffer for decoding
 */
struct vdec_vp9_slice_fb {
	struct vdec_vp9_slice_mem y;
	struct vdec_vp9_slice_mem c;
};

/*
 * struct vdec_vp9_slice_state - decoding state
 */
struct vdec_vp9_slice_state {
	int err;
	unsigned int full;
	unsigned int timeout;
	unsigned int perf;

	unsigned int crc[12];
};

/**
 * struct vdec_vp9_slice_vsi - exchange decoding information
 *                             between Main CPU and MicroP
 *
 * @bs:	input buffer
 * @fb:	output buffer
 * @ref:	3 reference buffers
 * @mv:	mv working buffer
 * @seg:	segmentation working buffer
 * @tile:	tile buffer
 * @prob:	prob table buffer, used to set/update prob table
 * @counts:	counts table buffer, used to update prob table
 * @ube:	general buffer
 * @trans:	trans buffer position in general buffer
 * @err_map:	error buffer
 * @row_info:	row info buffer
 * @frame:	decoding syntax
 * @state:	decoding state
 */
struct vdec_vp9_slice_vsi {
	/* used in LAT stage */
	struct vdec_vp9_slice_bs bs;
	/* used in Core stage */
	struct vdec_vp9_slice_fb fb;
	struct vdec_vp9_slice_fb ref[3];

	struct vdec_vp9_slice_mem mv[2];
	struct vdec_vp9_slice_mem seg[2];
	struct vdec_vp9_slice_mem tile;
	struct vdec_vp9_slice_mem prob;
	struct vdec_vp9_slice_mem counts;

	/* LAT stage's output, Core stage's input */
	struct vdec_vp9_slice_mem ube;
	struct vdec_vp9_slice_mem trans;
	struct vdec_vp9_slice_mem err_map;
	struct vdec_vp9_slice_mem row_info;

	/* decoding parameters */
	struct vdec_vp9_slice_frame frame;

	struct vdec_vp9_slice_state state;
};

/**
 * struct vdec_vp9_slice_pfc - per-frame context that contains a local vsi.
 *                             pass it from lat to core
 *
 * @vsi:	local vsi. copy to/from remote vsi before/after decoding
 * @ref_idx:	reference buffer index
 * @seq:	picture sequence
 * @state:	decoding state
 */
struct vdec_vp9_slice_pfc {
	struct vdec_vp9_slice_vsi vsi;

	u64 ref_idx[3];

	int seq;

	/* LAT/Core CRC */
	struct vdec_vp9_slice_state state[2];
};

/*
 * enum vdec_vp9_slice_resolution_level
 */
enum vdec_vp9_slice_resolution_level {
	VP9_RES_NONE,
	VP9_RES_FHD,
	VP9_RES_4K,
	VP9_RES_8K,
};

/*
 * struct vdec_vp9_slice_ref - picture's width & height should kept
 *                             for later decoding as reference picture
 */
struct vdec_vp9_slice_ref {
	unsigned int width;
	unsigned int height;
};

/**
 * struct vdec_vp9_slice_instance - represent one vp9 instance
 *
 * @ctx:		pointer to codec's context
 * @vpu:		VPU instance
 * @seq:		global picture sequence
 * @level:		level of current resolution
 * @width:		width of last picture
 * @height:		height of last picture
 * @frame_type:	frame_type of last picture
 * @irq:		irq to Main CPU or MicroP
 * @show_frame:	show_frame of last picture
 * @dpb:		picture information (width/height) for reference
 * @mv:		mv working buffer
 * @seg:		segmentation working buffer
 * @tile:		tile buffer
 * @prob:		prob table buffer, used to set/update prob table
 * @counts:		counts table buffer, used to update prob table
 * @frame_ctx:		4 frame context according to VP9 Spec
 * @frame_ctx_helper:	4 frame context according to newest kernel spec
 * @dirty:		state of each frame context
 * @init_vsi:		vsi used for initialized VP9 instance
 * @vsi:		vsi used for decoding/flush ...
 * @core_vsi:		vsi used for Core stage
 *
 * @sc_pfc:		per frame context single core
 * @counts_map:	used map to counts_helper
 * @counts_helper:	counts table according to newest kernel spec
 */
struct vdec_vp9_slice_instance {
	struct mtk_vcodec_dec_ctx *ctx;
	struct vdec_vpu_inst vpu;

	int seq;

	enum vdec_vp9_slice_resolution_level level;

	/* for resolution change and get_pic_info */
	unsigned int width;
	unsigned int height;

	/* for last_frame_type */
	unsigned int frame_type;
	unsigned int irq;

	unsigned int show_frame;

	/* maintain vp9 reference frame state */
	struct vdec_vp9_slice_ref dpb[VB2_MAX_FRAME];

	/*
	 * normal working buffers
	 * mv[0]/seg[0]/tile/prob/counts is used for LAT
	 * mv[1]/seg[1] is used for CORE
	 */
	struct mtk_vcodec_mem mv[2];
	struct mtk_vcodec_mem seg[2];
	struct mtk_vcodec_mem tile;
	struct mtk_vcodec_mem prob;
	struct mtk_vcodec_mem counts;

	/* 4 prob tables */
	struct vdec_vp9_slice_frame_ctx frame_ctx[4];
	/*4 helper tables */
	struct v4l2_vp9_frame_context frame_ctx_helper;
	unsigned char dirty[4];

	/* MicroP vsi */
	union {
		struct vdec_vp9_slice_init_vsi *init_vsi;
		struct vdec_vp9_slice_vsi *vsi;
	};
	struct vdec_vp9_slice_vsi *core_vsi;

	struct vdec_vp9_slice_pfc sc_pfc;
	struct vdec_vp9_slice_counts_map counts_map;
	struct v4l2_vp9_frame_symbol_counts counts_helper;
};

/*
 * all VP9 instances could share this default frame context.
 */
static struct vdec_vp9_slice_frame_ctx *vdec_vp9_slice_default_frame_ctx;
static DEFINE_MUTEX(vdec_vp9_slice_frame_ctx_lock);

static int vdec_vp9_slice_core_decode(struct vdec_lat_buf *lat_buf);

static int vdec_vp9_slice_init_default_frame_ctx(struct vdec_vp9_slice_instance *instance)
{
	struct vdec_vp9_slice_frame_ctx *remote_frame_ctx;
	struct vdec_vp9_slice_frame_ctx *frame_ctx;
	struct mtk_vcodec_dec_ctx *ctx;
	struct vdec_vp9_slice_init_vsi *vsi;
	int ret = 0;

	ctx = instance->ctx;
	vsi = instance->vpu.vsi;
	if (!ctx || !vsi)
		return -EINVAL;

	remote_frame_ctx = mtk_vcodec_fw_map_dm_addr(ctx->dev->fw_handler,
						     (u32)vsi->default_frame_ctx);
	if (!remote_frame_ctx) {
		mtk_vdec_err(ctx, "failed to map default frame ctx\n");
		return -EINVAL;
	}

	mutex_lock(&vdec_vp9_slice_frame_ctx_lock);
	if (vdec_vp9_slice_default_frame_ctx)
		goto out;

	frame_ctx = kmemdup(remote_frame_ctx, sizeof(*frame_ctx), GFP_KERNEL);
	if (!frame_ctx) {
		ret = -ENOMEM;
		goto out;
	}

	vdec_vp9_slice_default_frame_ctx = frame_ctx;

out:
	mutex_unlock(&vdec_vp9_slice_frame_ctx_lock);

	return ret;
}

static int vdec_vp9_slice_alloc_working_buffer(struct vdec_vp9_slice_instance *instance,
					       struct vdec_vp9_slice_vsi *vsi)
{
	struct mtk_vcodec_dec_ctx *ctx = instance->ctx;
	enum vdec_vp9_slice_resolution_level level;
	/* super blocks */
	unsigned int max_sb_w;
	unsigned int max_sb_h;
	unsigned int max_w;
	unsigned int max_h;
	unsigned int w;
	unsigned int h;
	size_t size;
	int ret;
	int i;

	w = vsi->frame.uh.frame_width;
	h = vsi->frame.uh.frame_height;

	if (w > VCODEC_DEC_4K_CODED_WIDTH ||
	    h > VCODEC_DEC_4K_CODED_HEIGHT) {
		return -EINVAL;
	} else if (w > MTK_VDEC_MAX_W || h > MTK_VDEC_MAX_H) {
		/* 4K */
		level = VP9_RES_4K;
		max_w = VCODEC_DEC_4K_CODED_WIDTH;
		max_h = VCODEC_DEC_4K_CODED_HEIGHT;
	} else {
		/* FHD */
		level = VP9_RES_FHD;
		max_w = MTK_VDEC_MAX_W;
		max_h = MTK_VDEC_MAX_H;
	}

	if (level == instance->level)
		return 0;

	mtk_vdec_debug(ctx, "resolution level changed, from %u to %u, %ux%u",
		       instance->level, level, w, h);

	max_sb_w = DIV_ROUND_UP(max_w, 64);
	max_sb_h = DIV_ROUND_UP(max_h, 64);
	ret = -ENOMEM;

	/*
	 * Lat-flush must wait core idle, otherwise core will
	 * use released buffers
	 */

	size = (max_sb_w * max_sb_h + 2) * 576;
	for (i = 0; i < 2; i++) {
		if (instance->mv[i].va)
			mtk_vcodec_mem_free(ctx, &instance->mv[i]);
		instance->mv[i].size = size;
		if (mtk_vcodec_mem_alloc(ctx, &instance->mv[i]))
			goto err;
	}

	size = (max_sb_w * max_sb_h * 32) + 256;
	for (i = 0; i < 2; i++) {
		if (instance->seg[i].va)
			mtk_vcodec_mem_free(ctx, &instance->seg[i]);
		instance->seg[i].size = size;
		if (mtk_vcodec_mem_alloc(ctx, &instance->seg[i]))
			goto err;
	}

	if (!instance->tile.va) {
		instance->tile.size = VP9_TILE_BUF_SIZE;
		if (mtk_vcodec_mem_alloc(ctx, &instance->tile))
			goto err;
	}

	if (!instance->prob.va) {
		instance->prob.size = VP9_PROB_BUF_SIZE;
		if (mtk_vcodec_mem_alloc(ctx, &instance->prob))
			goto err;
	}

	if (!instance->counts.va) {
		instance->counts.size = VP9_COUNTS_BUF_SIZE;
		if (mtk_vcodec_mem_alloc(ctx, &instance->counts))
			goto err;
	}

	instance->level = level;
	return 0;

err:
	instance->level = VP9_RES_NONE;
	return ret;
}

static void vdec_vp9_slice_free_working_buffer(struct vdec_vp9_slice_instance *instance)
{
	struct mtk_vcodec_dec_ctx *ctx = instance->ctx;
	int i;

	for (i = 0; i < ARRAY_SIZE(instance->mv); i++) {
		if (instance->mv[i].va)
			mtk_vcodec_mem_free(ctx, &instance->mv[i]);
	}
	for (i = 0; i < ARRAY_SIZE(instance->seg); i++) {
		if (instance->seg[i].va)
			mtk_vcodec_mem_free(ctx, &instance->seg[i]);
	}
	if (instance->tile.va)
		mtk_vcodec_mem_free(ctx, &instance->tile);
	if (instance->prob.va)
		mtk_vcodec_mem_free(ctx, &instance->prob);
	if (instance->counts.va)
		mtk_vcodec_mem_free(ctx, &instance->counts);

	instance->level = VP9_RES_NONE;
}

static void vdec_vp9_slice_vsi_from_remote(struct vdec_vp9_slice_vsi *vsi,
					   struct vdec_vp9_slice_vsi *remote_vsi,
					   int skip)
{
	struct vdec_vp9_slice_frame *rf;
	struct vdec_vp9_slice_frame *f;

	/*
	 * compressed header
	 * dequant
	 * buffer position
	 * decode state
	 */
	if (!skip) {
		rf = &remote_vsi->frame;
		f = &vsi->frame;
		memcpy(&f->ch, &rf->ch, sizeof(f->ch));
		memcpy(&f->uh.dequant, &rf->uh.dequant, sizeof(f->uh.dequant));
		memcpy(&vsi->trans, &remote_vsi->trans, sizeof(vsi->trans));
	}

	memcpy(&vsi->state, &remote_vsi->state, sizeof(vsi->state));
}

static void vdec_vp9_slice_vsi_to_remote(struct vdec_vp9_slice_vsi *vsi,
					 struct vdec_vp9_slice_vsi *remote_vsi)
{
	memcpy(remote_vsi, vsi, sizeof(*vsi));
}

static int vdec_vp9_slice_tile_offset(int idx, int mi_num, int tile_log2)
{
	int sbs = (mi_num + 7) >> 3;
	int offset = ((idx * sbs) >> tile_log2) << 3;

	return min(offset, mi_num);
}

static
int vdec_vp9_slice_setup_single_from_src_to_dst(struct vdec_vp9_slice_instance *instance)
{
	struct vb2_v4l2_buffer *src;
	struct vb2_v4l2_buffer *dst;

	src = v4l2_m2m_next_src_buf(instance->ctx->m2m_ctx);
	if (!src)
		return -EINVAL;

	dst = v4l2_m2m_next_dst_buf(instance->ctx->m2m_ctx);
	if (!dst)
		return -EINVAL;

	v4l2_m2m_buf_copy_metadata(src, dst, true);

	return 0;
}

static int vdec_vp9_slice_setup_lat_from_src_buf(struct vdec_vp9_slice_instance *instance,
						 struct vdec_lat_buf *lat_buf)
{
	struct vb2_v4l2_buffer *src;
	struct vb2_v4l2_buffer *dst;

	src = v4l2_m2m_next_src_buf(instance->ctx->m2m_ctx);
	if (!src)
		return -EINVAL;

	lat_buf->src_buf_req = src->vb2_buf.req_obj.req;

	dst = &lat_buf->ts_info;
	v4l2_m2m_buf_copy_metadata(src, dst, true);
	return 0;
}

static void vdec_vp9_slice_setup_hdr(struct vdec_vp9_slice_instance *instance,
				     struct vdec_vp9_slice_uncompressed_header *uh,
				     struct v4l2_ctrl_vp9_frame *hdr)
{
	int i;

	uh->profile = hdr->profile;
	uh->last_frame_type = instance->frame_type;
	uh->frame_type = !HDR_FLAG(KEY_FRAME);
	uh->last_show_frame = instance->show_frame;
	uh->show_frame = HDR_FLAG(SHOW_FRAME);
	uh->error_resilient_mode = HDR_FLAG(ERROR_RESILIENT);
	uh->bit_depth = hdr->bit_depth;
	uh->last_frame_width = instance->width;
	uh->last_frame_height = instance->height;
	uh->frame_width = hdr->frame_width_minus_1 + 1;
	uh->frame_height = hdr->frame_height_minus_1 + 1;
	uh->intra_only = HDR_FLAG(INTRA_ONLY);
	/* map v4l2 enum to values defined in VP9 spec for firmware */
	switch (hdr->reset_frame_context) {
	case V4L2_VP9_RESET_FRAME_CTX_NONE:
		uh->reset_frame_context = VP9_RESET_FRAME_CONTEXT_NONE0;
		break;
	case V4L2_VP9_RESET_FRAME_CTX_SPEC:
		uh->reset_frame_context = VP9_RESET_FRAME_CONTEXT_SPEC;
		break;
	case V4L2_VP9_RESET_FRAME_CTX_ALL:
		uh->reset_frame_context = VP9_RESET_FRAME_CONTEXT_ALL;
		break;
	default:
		uh->reset_frame_context = VP9_RESET_FRAME_CONTEXT_NONE0;
		break;
	}
	/*
	 * ref_frame_sign_bias specifies the intended direction
	 * of the motion vector in time for each reference frame.
	 * - INTRA_FRAME = 0,
	 * - LAST_FRAME = 1,
	 * - GOLDEN_FRAME = 2,
	 * - ALTREF_FRAME = 3,
	 * ref_frame_sign_bias[INTRA_FRAME] is always 0
	 * and VDA only passes another 3 directions
	 */
	uh->ref_frame_sign_bias[0] = 0;
	for (i = 0; i < 3; i++)
		uh->ref_frame_sign_bias[i + 1] =
			!!(hdr->ref_frame_sign_bias & (1 << i));
	uh->allow_high_precision_mv = HDR_FLAG(ALLOW_HIGH_PREC_MV);
	uh->interpolation_filter = hdr->interpolation_filter;
	uh->refresh_frame_context = HDR_FLAG(REFRESH_FRAME_CTX);
	uh->frame_parallel_decoding_mode = HDR_FLAG(PARALLEL_DEC_MODE);
	uh->frame_context_idx = hdr->frame_context_idx;

	/* tile info */
	uh->tile_cols_log2 = hdr->tile_cols_log2;
	uh->tile_rows_log2 = hdr->tile_rows_log2;

	uh->uncompressed_header_size = hdr->uncompressed_header_size;
	uh->header_size_in_bytes = hdr->compressed_header_size;
}

static void vdec_vp9_slice_setup_frame_ctx(struct vdec_vp9_slice_instance *instance,
					   struct vdec_vp9_slice_uncompressed_header *uh,
					   struct v4l2_ctrl_vp9_frame *hdr)
{
	int error_resilient_mode;
	int reset_frame_context;
	int key_frame;
	int intra_only;
	int i;

	key_frame = HDR_FLAG(KEY_FRAME);
	intra_only = HDR_FLAG(INTRA_ONLY);
	error_resilient_mode = HDR_FLAG(ERROR_RESILIENT);
	reset_frame_context = uh->reset_frame_context;

	/*
	 * according to "6.2 Uncompressed header syntax" in
	 * "VP9 Bitstream & Decoding Process Specification",
	 * reset @frame_context_idx when (FrameIsIntra || error_resilient_mode)
	 */
	if (key_frame || intra_only || error_resilient_mode) {
		/*
		 * @reset_frame_context specifies
		 * whether the frame context should be
		 * reset to default values:
		 * 0 or 1 means do not reset any frame context
		 * 2 resets just the context specified in the frame header
		 * 3 resets all contexts
		 */
		if (key_frame || error_resilient_mode ||
		    reset_frame_context == 3) {
			/* use default table */
			for (i = 0; i < 4; i++)
				instance->dirty[i] = 0;
		} else if (reset_frame_context == 2) {
			instance->dirty[uh->frame_context_idx] = 0;
		}
		uh->frame_context_idx = 0;
	}
}

static void vdec_vp9_slice_setup_loop_filter(struct vdec_vp9_slice_uncompressed_header *uh,
					     struct v4l2_vp9_loop_filter *lf)
{
	int i;

	uh->loop_filter_level = lf->level;
	uh->loop_filter_sharpness = lf->sharpness;
	uh->loop_filter_delta_enabled = LF_FLAG(DELTA_ENABLED);
	for (i = 0; i < 4; i++)
		uh->loop_filter_ref_deltas[i] = lf->ref_deltas[i];
	for (i = 0; i < 2; i++)
		uh->loop_filter_mode_deltas[i] = lf->mode_deltas[i];
}

static void vdec_vp9_slice_setup_quantization(struct vdec_vp9_slice_uncompressed_header *uh,
					      struct v4l2_vp9_quantization *quant)
{
	uh->base_q_idx = quant->base_q_idx;
	uh->delta_q_y_dc = quant->delta_q_y_dc;
	uh->delta_q_uv_dc = quant->delta_q_uv_dc;
	uh->delta_q_uv_ac = quant->delta_q_uv_ac;
}

static void vdec_vp9_slice_setup_segmentation(struct vdec_vp9_slice_uncompressed_header *uh,
					      struct v4l2_vp9_segmentation *seg)
{
	int i;
	int j;

	uh->segmentation_enabled = SEG_FLAG(ENABLED);
	uh->segmentation_update_map = SEG_FLAG(UPDATE_MAP);
	for (i = 0; i < 7; i++)
		uh->segmentation_tree_probs[i] = seg->tree_probs[i];
	uh->segmentation_temporal_udpate = SEG_FLAG(TEMPORAL_UPDATE);
	for (i = 0; i < 3; i++)
		uh->segmentation_pred_prob[i] = seg->pred_probs[i];
	uh->segmentation_update_data = SEG_FLAG(UPDATE_DATA);
	uh->segmentation_abs_or_delta_update = SEG_FLAG(ABS_OR_DELTA_UPDATE);
	for (i = 0; i < 8; i++) {
		uh->feature_enabled[i] = seg->feature_enabled[i];
		for (j = 0; j < 4; j++)
			uh->feature_value[i][j] = seg->feature_data[i][j];
	}
}

static int vdec_vp9_slice_setup_tile(struct vdec_vp9_slice_vsi *vsi,
				     struct v4l2_ctrl_vp9_frame *hdr)
{
	unsigned int rows_log2;
	unsigned int cols_log2;
	unsigned int rows;
	unsigned int cols;
	unsigned int mi_rows;
	unsigned int mi_cols;
	struct vdec_vp9_slice_tiles *tiles;
	int offset;
	int start;
	int end;
	int i;

	rows_log2 = hdr->tile_rows_log2;
	cols_log2 = hdr->tile_cols_log2;
	rows = 1 << rows_log2;
	cols = 1 << cols_log2;
	tiles = &vsi->frame.tiles;
	tiles->actual_rows = 0;

	if (rows > 4 || cols > 64)
		return -EINVAL;

	/* setup mi rows/cols information */
	mi_rows = (hdr->frame_height_minus_1 + 1 + 7) >> 3;
	mi_cols = (hdr->frame_width_minus_1 + 1 + 7) >> 3;

	for (i = 0; i < rows; i++) {
		start = vdec_vp9_slice_tile_offset(i, mi_rows, rows_log2);
		end = vdec_vp9_slice_tile_offset(i + 1, mi_rows, rows_log2);
		offset = end - start;
		tiles->mi_rows[i] = (offset + 7) >> 3;
		if (tiles->mi_rows[i])
			tiles->actual_rows++;
	}

	for (i = 0; i < cols; i++) {
		start = vdec_vp9_slice_tile_offset(i, mi_cols, cols_log2);
		end = vdec_vp9_slice_tile_offset(i + 1, mi_cols, cols_log2);
		offset = end - start;
		tiles->mi_cols[i] = (offset + 7) >> 3;
	}

	return 0;
}

static void vdec_vp9_slice_setup_state(struct vdec_vp9_slice_vsi *vsi)
{
	memset(&vsi->state, 0, sizeof(vsi->state));
}

static void vdec_vp9_slice_setup_ref_idx(struct vdec_vp9_slice_pfc *pfc,
					 struct v4l2_ctrl_vp9_frame *hdr)
{
	pfc->ref_idx[0] = hdr->last_frame_ts;
	pfc->ref_idx[1] = hdr->golden_frame_ts;
	pfc->ref_idx[2] = hdr->alt_frame_ts;
}

static int vdec_vp9_slice_setup_pfc(struct vdec_vp9_slice_instance *instance,
				    struct vdec_vp9_slice_pfc *pfc)
{
	struct v4l2_ctrl_vp9_frame *hdr;
	struct vdec_vp9_slice_uncompressed_header *uh;
	struct v4l2_ctrl *hdr_ctrl;
	struct vdec_vp9_slice_vsi *vsi;
	int ret;

	/* frame header */
	hdr_ctrl = v4l2_ctrl_find(&instance->ctx->ctrl_hdl, V4L2_CID_STATELESS_VP9_FRAME);
	if (!hdr_ctrl || !hdr_ctrl->p_cur.p)
		return -EINVAL;

	hdr = hdr_ctrl->p_cur.p;
	vsi = &pfc->vsi;
	uh = &vsi->frame.uh;

	/* setup vsi information */
	vdec_vp9_slice_setup_hdr(instance, uh, hdr);
	vdec_vp9_slice_setup_frame_ctx(instance, uh, hdr);
	vdec_vp9_slice_setup_loop_filter(uh, &hdr->lf);
	vdec_vp9_slice_setup_quantization(uh, &hdr->quant);
	vdec_vp9_slice_setup_segmentation(uh, &hdr->seg);
	ret = vdec_vp9_slice_setup_tile(vsi, hdr);
	if (ret)
		return ret;
	vdec_vp9_slice_setup_state(vsi);

	/* core stage needs buffer index to get ref y/c ... */
	vdec_vp9_slice_setup_ref_idx(pfc, hdr);

	pfc->seq = instance->seq;
	instance->seq++;

	return 0;
}

static int vdec_vp9_slice_setup_lat_buffer(struct vdec_vp9_slice_instance *instance,
					   struct vdec_vp9_slice_vsi *vsi,
					   struct mtk_vcodec_mem *bs,
					   struct vdec_lat_buf *lat_buf)
{
	int i;

	vsi->bs.buf.dma_addr = bs->dma_addr;
	vsi->bs.buf.size = bs->size;
	vsi->bs.frame.dma_addr = bs->dma_addr;
	vsi->bs.frame.size = bs->size;

	for (i = 0; i < 2; i++) {
		vsi->mv[i].dma_addr = instance->mv[i].dma_addr;
		vsi->mv[i].size = instance->mv[i].size;
	}
	for (i = 0; i < 2; i++) {
		vsi->seg[i].dma_addr = instance->seg[i].dma_addr;
		vsi->seg[i].size = instance->seg[i].size;
	}
	vsi->tile.dma_addr = instance->tile.dma_addr;
	vsi->tile.size = instance->tile.size;
	vsi->prob.dma_addr = instance->prob.dma_addr;
	vsi->prob.size = instance->prob.size;
	vsi->counts.dma_addr = instance->counts.dma_addr;
	vsi->counts.size = instance->counts.size;

	vsi->ube.dma_addr = lat_buf->ctx->msg_queue.wdma_addr.dma_addr;
	vsi->ube.size = lat_buf->ctx->msg_queue.wdma_addr.size;
	vsi->trans.dma_addr = lat_buf->ctx->msg_queue.wdma_wptr_addr;
	/* used to store trans end */
	vsi->trans.dma_addr_end = lat_buf->ctx->msg_queue.wdma_rptr_addr;
	vsi->err_map.dma_addr = lat_buf->wdma_err_addr.dma_addr;
	vsi->err_map.size = lat_buf->wdma_err_addr.size;

	vsi->row_info.buf = 0;
	vsi->row_info.size = 0;

	return 0;
}

static int vdec_vp9_slice_setup_prob_buffer(struct vdec_vp9_slice_instance *instance,
					    struct vdec_vp9_slice_vsi *vsi)
{
	struct vdec_vp9_slice_frame_ctx *frame_ctx;
	struct vdec_vp9_slice_uncompressed_header *uh;

	uh = &vsi->frame.uh;

	mtk_vdec_debug(instance->ctx, "ctx dirty %u idx %d\n",
		       instance->dirty[uh->frame_context_idx],
		       uh->frame_context_idx);

	if (instance->dirty[uh->frame_context_idx])
		frame_ctx = &instance->frame_ctx[uh->frame_context_idx];
	else
		frame_ctx = vdec_vp9_slice_default_frame_ctx;
	memcpy(instance->prob.va, frame_ctx, sizeof(*frame_ctx));

	return 0;
}

static void vdec_vp9_slice_setup_seg_buffer(struct vdec_vp9_slice_instance *instance,
					    struct vdec_vp9_slice_vsi *vsi,
					    struct mtk_vcodec_mem *buf)
{
	struct vdec_vp9_slice_uncompressed_header *uh;

	/* reset segment buffer */
	uh = &vsi->frame.uh;
	if (uh->frame_type == 0 ||
	    uh->intra_only ||
	    uh->error_resilient_mode ||
	    uh->frame_width != instance->width ||
	    uh->frame_height != instance->height) {
		mtk_vdec_debug(instance->ctx, "reset seg\n");
		memset(buf->va, 0, buf->size);
	}
}

/*
 * parse tiles according to `6.4 Decode tiles syntax`
 * in "vp9-bitstream-specification"
 *
 * frame contains uncompress header, compressed header and several tiles.
 * this function parses tiles' position and size, stores them to tile buffer
 * for decoding.
 */
static int vdec_vp9_slice_setup_tile_buffer(struct vdec_vp9_slice_instance *instance,
					    struct vdec_vp9_slice_vsi *vsi,
					    struct mtk_vcodec_mem *bs)
{
	struct vdec_vp9_slice_uncompressed_header *uh;
	unsigned int rows_log2;
	unsigned int cols_log2;
	unsigned int rows;
	unsigned int cols;
	unsigned int mi_row;
	unsigned int mi_col;
	unsigned int offset;
	dma_addr_t pa;
	unsigned int size;
	struct vdec_vp9_slice_tiles *tiles;
	unsigned char *pos;
	unsigned char *end;
	unsigned char *va;
	unsigned int *tb;
	int i;
	int j;

	uh = &vsi->frame.uh;
	rows_log2 = uh->tile_rows_log2;
	cols_log2 = uh->tile_cols_log2;
	rows = 1 << rows_log2;
	cols = 1 << cols_log2;

	if (rows > 4 || cols > 64) {
		mtk_vdec_err(instance->ctx, "tile_rows %u tile_cols %u\n", rows, cols);
		return -EINVAL;
	}

	offset = uh->uncompressed_header_size +
		uh->header_size_in_bytes;
	if (bs->size <= offset) {
		mtk_vdec_err(instance->ctx, "bs size %zu tile offset %u\n", bs->size, offset);
		return -EINVAL;
	}

	tiles = &vsi->frame.tiles;
	/* setup tile buffer */

	va = (unsigned char *)bs->va;
	pos = va + offset;
	end = va + bs->size;
	/* truncated */
	pa = bs->dma_addr + offset;
	tb = instance->tile.va;
	for (i = 0; i < rows; i++) {
		for (j = 0; j < cols; j++) {
			if (i == rows - 1 &&
			    j == cols - 1) {
				size = (unsigned int)(end - pos);
			} else {
				if (end - pos < 4)
					return -EINVAL;

				size = (pos[0] << 24) | (pos[1] << 16) |
					(pos[2] << 8) | pos[3];
				pos += 4;
				pa += 4;
				offset += 4;
				if (end - pos < size)
					return -EINVAL;
			}
			tiles->size[i][j] = size;
			if (tiles->mi_rows[i]) {
				*tb++ = (size << 3) + ((offset << 3) & 0x7f);
				*tb++ = pa & ~0xf;
				*tb++ = (pa << 3) & 0x7f;
				mi_row = (tiles->mi_rows[i] - 1) & 0x1ff;
				mi_col = (tiles->mi_cols[j] - 1) & 0x3f;
				*tb++ = (mi_row << 6) + mi_col;
			}
			pos += size;
			pa += size;
			offset += size;
		}
	}

	return 0;
}

static int vdec_vp9_slice_setup_lat(struct vdec_vp9_slice_instance *instance,
				    struct mtk_vcodec_mem *bs,
				    struct vdec_lat_buf *lat_buf,
				    struct vdec_vp9_slice_pfc *pfc)
{
	struct vdec_vp9_slice_vsi *vsi = &pfc->vsi;
	int ret;

	ret = vdec_vp9_slice_setup_lat_from_src_buf(instance, lat_buf);
	if (ret)
		goto err;

	ret = vdec_vp9_slice_setup_pfc(instance, pfc);
	if (ret)
		goto err;

	ret = vdec_vp9_slice_alloc_working_buffer(instance, vsi);
	if (ret)
		goto err;

	ret = vdec_vp9_slice_setup_lat_buffer(instance, vsi, bs, lat_buf);
	if (ret)
		goto err;

	vdec_vp9_slice_setup_seg_buffer(instance, vsi, &instance->seg[0]);

	/* setup prob/tile buffers for LAT */

	ret = vdec_vp9_slice_setup_prob_buffer(instance, vsi);
	if (ret)
		goto err;

	ret = vdec_vp9_slice_setup_tile_buffer(instance, vsi, bs);
	if (ret)
		goto err;

	return 0;

err:
	return ret;
}

static
void vdec_vp9_slice_map_counts_eob_coef(unsigned int i, unsigned int j, unsigned int k,
					struct vdec_vp9_slice_frame_counts *counts,
					struct v4l2_vp9_frame_symbol_counts *counts_helper)
{
	u32 l = 0, m;

	/*
	 * helper eo -> mtk eo
	 * helpre e1 -> mtk c3
	 * helper c0 -> c0
	 * helper c1 -> c1
	 * helper c2 -> c2
	 */
	for (m = 0; m < 3; m++) {
		counts_helper->coeff[i][j][k][l][m] =
			(u32 (*)[3]) & counts->coef_probs[i][j][k].band_0[m];
		counts_helper->eob[i][j][k][l][m][0] =
			&counts->eob_branch[i][j][k].band_0[m];
		counts_helper->eob[i][j][k][l][m][1] =
			&counts->coef_probs[i][j][k].band_0[m][3];
	}

	for (l = 1; l < 6; l++) {
		for (m = 0; m < 6; m++) {
			counts_helper->coeff[i][j][k][l][m] =
				(u32 (*)[3]) & counts->coef_probs[i][j][k].band_1_5[l - 1][m];
			counts_helper->eob[i][j][k][l][m][0] =
				&counts->eob_branch[i][j][k].band_1_5[l - 1][m];
			counts_helper->eob[i][j][k][l][m][1] =
				&counts->coef_probs[i][j][k].band_1_5[l - 1][m][3];
		}
	}
}

static void vdec_vp9_slice_counts_map_helper(struct vdec_vp9_slice_counts_map *counts_map,
					     struct vdec_vp9_slice_frame_counts *counts,
					     struct v4l2_vp9_frame_symbol_counts *counts_helper)
{
	int i, j, k;

	counts_helper->partition = &counts->partition;
	counts_helper->intra_inter = &counts->intra_inter;
	counts_helper->tx32p = &counts->tx_p32x32;
	counts_helper->tx16p = &counts->tx_p16x16;
	counts_helper->tx8p = &counts->tx_p8x8;
	counts_helper->uv_mode = &counts->uv_mode;

	counts_helper->comp = &counts->comp_inter;
	counts_helper->comp_ref = &counts->comp_ref;
	counts_helper->single_ref = &counts->single_ref;
	counts_helper->mv_mode = &counts->inter_mode;
	counts_helper->mv_joint = &counts->joint;

	for (i = 0; i < ARRAY_SIZE(counts_map->skip); i++)
		memcpy(counts_map->skip[i], counts->skip[i],
		       sizeof(counts_map->skip[0]));
	counts_helper->skip = &counts_map->skip;

	for (i = 0; i < ARRAY_SIZE(counts_map->y_mode); i++)
		memcpy(counts_map->y_mode[i], counts->y_mode[i],
		       sizeof(counts_map->y_mode[0]));
	counts_helper->y_mode = &counts_map->y_mode;

	for (i = 0; i < ARRAY_SIZE(counts_map->filter); i++)
		memcpy(counts_map->filter[i], counts->switchable_interp[i],
		       sizeof(counts_map->filter[0]));
	counts_helper->filter = &counts_map->filter;

	for (i = 0; i < ARRAY_SIZE(counts_map->sign); i++)
		memcpy(counts_map->sign[i], counts->mvcomp[i].sign,
		       sizeof(counts_map->sign[0]));
	counts_helper->sign = &counts_map->sign;

	for (i = 0; i < ARRAY_SIZE(counts_map->classes); i++)
		memcpy(counts_map->classes[i], counts->mvcomp[i].classes,
		       sizeof(counts_map->classes[0]));
	counts_helper->classes = &counts_map->classes;

	for (i = 0; i < ARRAY_SIZE(counts_map->class0); i++)
		memcpy(counts_map->class0[i], counts->mvcomp[i].class0,
		       sizeof(counts_map->class0[0]));
	counts_helper->class0 = &counts_map->class0;

	for (i = 0; i < ARRAY_SIZE(counts_map->bits); i++)
		for (j = 0; j < ARRAY_SIZE(counts_map->bits[0]); j++)
			memcpy(counts_map->bits[i][j], counts->mvcomp[i].bits[j],
			       sizeof(counts_map->bits[0][0]));
	counts_helper->bits = &counts_map->bits;

	for (i = 0; i < ARRAY_SIZE(counts_map->class0_fp); i++)
		for (j = 0; j < ARRAY_SIZE(counts_map->class0_fp[0]); j++)
			memcpy(counts_map->class0_fp[i][j], counts->mvcomp[i].class0_fp[j],
			       sizeof(counts_map->class0_fp[0][0]));
	counts_helper->class0_fp = &counts_map->class0_fp;

	for (i = 0; i < ARRAY_SIZE(counts_map->fp); i++)
		memcpy(counts_map->fp[i], counts->mvcomp[i].fp,
		       sizeof(counts_map->fp[0]));
	counts_helper->fp = &counts_map->fp;

	for (i = 0; i < ARRAY_SIZE(counts_map->class0_hp); i++)
		memcpy(counts_map->class0_hp[i], counts->mvcomp[i].class0_hp,
		       sizeof(counts_map->class0_hp[0]));
	counts_helper->class0_hp = &counts_map->class0_hp;

	for (i = 0; i < ARRAY_SIZE(counts_map->hp); i++)
		memcpy(counts_map->hp[i], counts->mvcomp[i].hp, sizeof(counts_map->hp[0]));

	counts_helper->hp = &counts_map->hp;

	for (i = 0; i < 4; i++)
		for (j = 0; j < 2; j++)
			for (k = 0; k < 2; k++)
				vdec_vp9_slice_map_counts_eob_coef(i, j, k, counts, counts_helper);
}

static void vdec_vp9_slice_map_to_coef(unsigned int i, unsigned int j, unsigned int k,
				       struct vdec_vp9_slice_frame_ctx *frame_ctx,
				       struct v4l2_vp9_frame_context *frame_ctx_helper)
{
	u32 l, m;

	for (l = 0; l < ARRAY_SIZE(frame_ctx_helper->coef[0][0][0]); l++) {
		for (m = 0; m < VP9_BAND_6(l); m++) {
			memcpy(frame_ctx_helper->coef[i][j][k][l][m],
			       frame_ctx->coef_probs[i][j][k][l].probs[m],
			       sizeof(frame_ctx_helper->coef[i][j][k][l][0]));
		}
	}
}

static void vdec_vp9_slice_map_from_coef(unsigned int i, unsigned int j, unsigned int k,
					 struct vdec_vp9_slice_frame_ctx *frame_ctx,
					 struct v4l2_vp9_frame_context *frame_ctx_helper)
{
	u32 l, m;

	for (l = 0; l < ARRAY_SIZE(frame_ctx_helper->coef[0][0][0]); l++) {
		for (m = 0; m < VP9_BAND_6(l); m++) {
			memcpy(frame_ctx->coef_probs[i][j][k][l].probs[m],
			       frame_ctx_helper->coef[i][j][k][l][m],
			       sizeof(frame_ctx_helper->coef[i][j][k][l][0]));
		}
	}
}

static
void vdec_vp9_slice_framectx_map_helper(bool frame_is_intra,
					struct vdec_vp9_slice_frame_ctx *pre_frame_ctx,
					struct vdec_vp9_slice_frame_ctx *frame_ctx,
					struct v4l2_vp9_frame_context *frame_ctx_helper)
{
	struct v4l2_vp9_frame_mv_context *mv = &frame_ctx_helper->mv;
	u32 i, j, k;

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->coef); i++)
		for (j = 0; j < ARRAY_SIZE(frame_ctx_helper->coef[0]); j++)
			for (k = 0; k < ARRAY_SIZE(frame_ctx_helper->coef[0][0]); k++)
				vdec_vp9_slice_map_to_coef(i, j, k, pre_frame_ctx,
							   frame_ctx_helper);

	/*
	 * use previous prob when frame is not intra or
	 * we should use the prob updated by the compressed header parse
	 */
	if (!frame_is_intra)
		frame_ctx = pre_frame_ctx;

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx8); i++)
		memcpy(frame_ctx_helper->tx8[i], frame_ctx->tx_p8x8[i],
		       sizeof(frame_ctx_helper->tx8[0]));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx16); i++)
		memcpy(frame_ctx_helper->tx16[i], frame_ctx->tx_p16x16[i],
		       sizeof(frame_ctx_helper->tx16[0]));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx32); i++)
		memcpy(frame_ctx_helper->tx32[i], frame_ctx->tx_p32x32[i],
		       sizeof(frame_ctx_helper->tx32[0]));

	memcpy(frame_ctx_helper->skip, frame_ctx->skip_probs, sizeof(frame_ctx_helper->skip));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->inter_mode); i++)
		memcpy(frame_ctx_helper->inter_mode[i], frame_ctx->inter_mode_probs[i],
		       sizeof(frame_ctx_helper->inter_mode[0]));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->interp_filter); i++)
		memcpy(frame_ctx_helper->interp_filter[i], frame_ctx->switch_interp_prob[i],
		       sizeof(frame_ctx_helper->interp_filter[0]));

	memcpy(frame_ctx_helper->is_inter, frame_ctx->intra_inter_prob,
	       sizeof(frame_ctx_helper->is_inter));

	memcpy(frame_ctx_helper->comp_mode, frame_ctx->comp_inter_prob,
	       sizeof(frame_ctx_helper->comp_mode));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->single_ref); i++)
		memcpy(frame_ctx_helper->single_ref[i], frame_ctx->single_ref_prob[i],
		       sizeof(frame_ctx_helper->single_ref[0]));

	memcpy(frame_ctx_helper->comp_ref, frame_ctx->comp_ref_prob,
	       sizeof(frame_ctx_helper->comp_ref));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->y_mode); i++)
		memcpy(frame_ctx_helper->y_mode[i], frame_ctx->y_mode_prob[i],
		       sizeof(frame_ctx_helper->y_mode[0]));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->uv_mode); i++)
		memcpy(frame_ctx_helper->uv_mode[i], frame_ctx->uv_mode_prob[i],
		       sizeof(frame_ctx_helper->uv_mode[0]));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->partition); i++)
		memcpy(frame_ctx_helper->partition[i], frame_ctx->partition_prob[i],
		       sizeof(frame_ctx_helper->partition[0]));

	memcpy(mv->joint, frame_ctx->joint, sizeof(mv->joint));

	for (i = 0; i < ARRAY_SIZE(mv->sign); i++)
		mv->sign[i] = frame_ctx->sign_classes[i].sign;

	for (i = 0; i < ARRAY_SIZE(mv->classes); i++)
		memcpy(mv->classes[i], frame_ctx->sign_classes[i].classes,
		       sizeof(mv->classes[i]));

	for (i = 0; i < ARRAY_SIZE(mv->class0_bit); i++)
		mv->class0_bit[i] = frame_ctx->class0_bits[i].class0[0];

	for (i = 0; i < ARRAY_SIZE(mv->bits); i++)
		memcpy(mv->bits[i], frame_ctx->class0_bits[i].bits, sizeof(mv->bits[0]));

	for (i = 0; i < ARRAY_SIZE(mv->class0_fr); i++)
		for (j = 0; j < ARRAY_SIZE(mv->class0_fr[0]); j++)
			memcpy(mv->class0_fr[i][j], frame_ctx->class0_fp_hp[i].class0_fp[j],
			       sizeof(mv->class0_fr[0][0]));

	for (i = 0; i < ARRAY_SIZE(mv->fr); i++)
		memcpy(mv->fr[i], frame_ctx->class0_fp_hp[i].fp, sizeof(mv->fr[0]));

	for (i = 0; i < ARRAY_SIZE(mv->class0_hp); i++)
		mv->class0_hp[i] = frame_ctx->class0_fp_hp[i].class0_hp;

	for (i = 0; i < ARRAY_SIZE(mv->hp); i++)
		mv->hp[i] = frame_ctx->class0_fp_hp[i].hp;
}

static void vdec_vp9_slice_helper_map_framectx(struct v4l2_vp9_frame_context *frame_ctx_helper,
					       struct vdec_vp9_slice_frame_ctx *frame_ctx)
{
	struct v4l2_vp9_frame_mv_context *mv = &frame_ctx_helper->mv;
	u32 i, j, k;

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx8); i++)
		memcpy(frame_ctx->tx_p8x8[i], frame_ctx_helper->tx8[i],
		       sizeof(frame_ctx_helper->tx8[0]));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx16); i++)
		memcpy(frame_ctx->tx_p16x16[i], frame_ctx_helper->tx16[i],
		       sizeof(frame_ctx_helper->tx16[0]));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx32); i++)
		memcpy(frame_ctx->tx_p32x32[i], frame_ctx_helper->tx32[i],
		       sizeof(frame_ctx_helper->tx32[0]));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->coef); i++)
		for (j = 0; j < ARRAY_SIZE(frame_ctx_helper->coef[0]); j++)
			for (k = 0; k < ARRAY_SIZE(frame_ctx_helper->coef[0][0]); k++)
				vdec_vp9_slice_map_from_coef(i, j, k, frame_ctx,
							     frame_ctx_helper);

	memcpy(frame_ctx->skip_probs, frame_ctx_helper->skip, sizeof(frame_ctx_helper->skip));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->inter_mode); i++)
		memcpy(frame_ctx->inter_mode_probs[i], frame_ctx_helper->inter_mode[i],
		       sizeof(frame_ctx_helper->inter_mode[0]));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->interp_filter); i++)
		memcpy(frame_ctx->switch_interp_prob[i], frame_ctx_helper->interp_filter[i],
		       sizeof(frame_ctx_helper->interp_filter[0]));

	memcpy(frame_ctx->intra_inter_prob, frame_ctx_helper->is_inter,
	       sizeof(frame_ctx_helper->is_inter));

	memcpy(frame_ctx->comp_inter_prob, frame_ctx_helper->comp_mode,
	       sizeof(frame_ctx_helper->comp_mode));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->single_ref); i++)
		memcpy(frame_ctx->single_ref_prob[i], frame_ctx_helper->single_ref[i],
		       sizeof(frame_ctx_helper->single_ref[0]));

	memcpy(frame_ctx->comp_ref_prob, frame_ctx_helper->comp_ref,
	       sizeof(frame_ctx_helper->comp_ref));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->y_mode); i++)
		memcpy(frame_ctx->y_mode_prob[i], frame_ctx_helper->y_mode[i],
		       sizeof(frame_ctx_helper->y_mode[0]));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->uv_mode); i++)
		memcpy(frame_ctx->uv_mode_prob[i], frame_ctx_helper->uv_mode[i],
		       sizeof(frame_ctx_helper->uv_mode[0]));

	for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->partition); i++)
		memcpy(frame_ctx->partition_prob[i], frame_ctx_helper->partition[i],
		       sizeof(frame_ctx_helper->partition[0]));

	memcpy(frame_ctx->joint, mv->joint, sizeof(mv->joint));

	for (i = 0; i < ARRAY_SIZE(mv->sign); i++)
		frame_ctx->sign_classes[i].sign = mv->sign[i];

	for (i = 0; i < ARRAY_SIZE(mv->classes); i++)
		memcpy(frame_ctx->sign_classes[i].classes, mv->classes[i],
		       sizeof(mv->classes[i]));

	for (i = 0; i < ARRAY_SIZE(mv->class0_bit); i++)
		frame_ctx->class0_bits[i].class0[0] = mv->class0_bit[i];

	for (i = 0; i < ARRAY_SIZE(mv->bits); i++)
		memcpy(frame_ctx->class0_bits[i].bits, mv->bits[i], sizeof(mv->bits[0]));

	for (i = 0; i < ARRAY_SIZE(mv->class0_fr); i++)
		for (j = 0; j < ARRAY_SIZE(mv->class0_fr[0]); j++)
			memcpy(frame_ctx->class0_fp_hp[i].class0_fp[j], mv->class0_fr[i][j],
			       sizeof(mv->class0_fr[0][0]));

	for (i = 0; i < ARRAY_SIZE(mv->fr); i++)
		memcpy(frame_ctx->class0_fp_hp[i].fp, mv->fr[i], sizeof(mv->fr[0]));

	for (i = 0; i < ARRAY_SIZE(mv->class0_hp); i++)
		frame_ctx->class0_fp_hp[i].class0_hp = mv->class0_hp[i];

	for (i = 0; i < ARRAY_SIZE(mv->hp); i++)
		frame_ctx->class0_fp_hp[i].hp = mv->hp[i];
}

static int vdec_vp9_slice_update_prob(struct vdec_vp9_slice_instance *instance,
				      struct vdec_vp9_slice_vsi *vsi)
{
	struct vdec_vp9_slice_frame_ctx *pre_frame_ctx;
	struct v4l2_vp9_frame_context *pre_frame_ctx_helper;
	struct vdec_vp9_slice_frame_ctx *frame_ctx;
	struct vdec_vp9_slice_frame_counts *counts;
	struct v4l2_vp9_frame_symbol_counts *counts_helper;
	struct vdec_vp9_slice_uncompressed_header *uh;
	bool frame_is_intra;
	bool use_128;

	uh = &vsi->frame.uh;
	pre_frame_ctx = &instance->frame_ctx[uh->frame_context_idx];
	pre_frame_ctx_helper = &instance->frame_ctx_helper;
	frame_ctx = (struct vdec_vp9_slice_frame_ctx *)instance->prob.va;
	counts = (struct vdec_vp9_slice_frame_counts *)instance->counts.va;
	counts_helper = &instance->counts_helper;

	if (!uh->refresh_frame_context)
		return 0;

	if (!uh->frame_parallel_decoding_mode) {
		vdec_vp9_slice_counts_map_helper(&instance->counts_map, counts, counts_helper);

		frame_is_intra = !vsi->frame.uh.frame_type || vsi->frame.uh.intra_only;
		/* check default prob */
		if (!instance->dirty[uh->frame_context_idx])
			vdec_vp9_slice_framectx_map_helper(frame_is_intra,
							   vdec_vp9_slice_default_frame_ctx,
							   frame_ctx,
							   pre_frame_ctx_helper);
		else
			vdec_vp9_slice_framectx_map_helper(frame_is_intra,
							   pre_frame_ctx,
							   frame_ctx,
							   pre_frame_ctx_helper);

		use_128 = !frame_is_intra && !vsi->frame.uh.last_frame_type;
		v4l2_vp9_adapt_coef_probs(pre_frame_ctx_helper,
					  counts_helper,
					  use_128,
					  frame_is_intra);
		if (!frame_is_intra)
			v4l2_vp9_adapt_noncoef_probs(pre_frame_ctx_helper,
						     counts_helper,
						     V4L2_VP9_REFERENCE_MODE_SINGLE_REFERENCE,
						     vsi->frame.uh.interpolation_filter,
						     vsi->frame.ch.tx_mode,
						     vsi->frame.uh.allow_high_precision_mv ?
						     V4L2_VP9_FRAME_FLAG_ALLOW_HIGH_PREC_MV : 0);
		vdec_vp9_slice_helper_map_framectx(pre_frame_ctx_helper, pre_frame_ctx);
	} else {
		memcpy(pre_frame_ctx, frame_ctx, sizeof(*frame_ctx));
	}

	instance->dirty[uh->frame_context_idx] = 1;

	return 0;
}

static int vdec_vp9_slice_update_single(struct vdec_vp9_slice_instance *instance,
					struct vdec_vp9_slice_pfc *pfc)
{
	struct vdec_vp9_slice_vsi *vsi;

	vsi = &pfc->vsi;
	memcpy(&pfc->state[0], &vsi->state, sizeof(vsi->state));

	mtk_vdec_debug(instance->ctx, "Frame %u Y_CRC %08x %08x %08x %08x\n",
		       pfc->seq, vsi->state.crc[0], vsi->state.crc[1],
		       vsi->state.crc[2], vsi->state.crc[3]);
	mtk_vdec_debug(instance->ctx, "Frame %u C_CRC %08x %08x %08x %08x\n",
		       pfc->seq, vsi->state.crc[4], vsi->state.crc[5],
		       vsi->state.crc[6], vsi->state.crc[7]);

	vdec_vp9_slice_update_prob(instance, vsi);

	instance->width = vsi->frame.uh.frame_width;
	instance->height = vsi->frame.uh.frame_height;
	instance->frame_type = vsi->frame.uh.frame_type;
	instance->show_frame = vsi->frame.uh.show_frame;

	return 0;
}

static int vdec_vp9_slice_update_lat(struct vdec_vp9_slice_instance *instance,
				     struct vdec_lat_buf *lat_buf,
				     struct vdec_vp9_slice_pfc *pfc)
{
	struct vdec_vp9_slice_vsi *vsi;

	vsi = &pfc->vsi;
	memcpy(&pfc->state[0], &vsi->state, sizeof(vsi->state));

	mtk_vdec_debug(instance->ctx, "Frame %u LAT CRC 0x%08x %lx %lx\n",
		       pfc->seq, vsi->state.crc[0],
		       (unsigned long)vsi->trans.dma_addr,
		       (unsigned long)vsi->trans.dma_addr_end);

	/* buffer full, need to re-decode */
	if (vsi->state.full) {
		/* buffer not enough */
		if (vsi->trans.dma_addr_end - vsi->trans.dma_addr ==
			vsi->ube.size)
			return -ENOMEM;
		return -EAGAIN;
	}

	vdec_vp9_slice_update_prob(instance, vsi);

	instance->width = vsi->frame.uh.frame_width;
	instance->height = vsi->frame.uh.frame_height;
	instance->frame_type = vsi->frame.uh.frame_type;
	instance->show_frame = vsi->frame.uh.show_frame;

	return 0;
}

static int vdec_vp9_slice_setup_core_to_dst_buf(struct vdec_vp9_slice_instance *instance,
						struct vdec_lat_buf *lat_buf)
{
	struct vb2_v4l2_buffer *dst;

	dst = v4l2_m2m_next_dst_buf(instance->ctx->m2m_ctx);
	if (!dst)
		return -EINVAL;

	v4l2_m2m_buf_copy_metadata(&lat_buf->ts_info, dst, true);
	return 0;
}

static int vdec_vp9_slice_setup_core_buffer(struct vdec_vp9_slice_instance *instance,
					    struct vdec_vp9_slice_pfc *pfc,
					    struct vdec_vp9_slice_vsi *vsi,
					    struct vdec_fb *fb,
					    struct vdec_lat_buf *lat_buf)
{
	struct vb2_buffer *vb;
	struct vb2_queue *vq;
	struct vdec_vp9_slice_reference *ref;
	int plane;
	int size;
	int w;
	int h;
	int i;

	plane = instance->ctx->q_data[MTK_Q_DATA_DST].fmt->num_planes;
	w = vsi->frame.uh.frame_width;
	h = vsi->frame.uh.frame_height;
	size = ALIGN(w, 64) * ALIGN(h, 64);

	/* frame buffer */
	vsi->fb.y.dma_addr = fb->base_y.dma_addr;
	if (plane == 1)
		vsi->fb.c.dma_addr = fb->base_y.dma_addr + size;
	else
		vsi->fb.c.dma_addr = fb->base_c.dma_addr;

	/* reference buffers */
	vq = v4l2_m2m_get_vq(instance->ctx->m2m_ctx,
			     V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
	if (!vq)
		return -EINVAL;

	/* get current output buffer */
	vb = &v4l2_m2m_next_dst_buf(instance->ctx->m2m_ctx)->vb2_buf;
	if (!vb)
		return -EINVAL;

	/* update internal buffer's width/height */
	instance->dpb[vb->index].width = w;
	instance->dpb[vb->index].height = h;

	/*
	 * get buffer's width/height from instance
	 * get buffer address from vb2buf
	 */
	for (i = 0; i < 3; i++) {
		ref = &vsi->frame.ref[i];
		vb = vb2_find_buffer(vq, pfc->ref_idx[i]);
		if (!vb) {
			ref->frame_width = w;
			ref->frame_height = h;
			memset(&vsi->ref[i], 0, sizeof(vsi->ref[i]));
		} else {
			int idx = vb->index;

			ref->frame_width = instance->dpb[idx].width;
			ref->frame_height = instance->dpb[idx].height;
			vsi->ref[i].y.dma_addr =
				vb2_dma_contig_plane_dma_addr(vb, 0);
			if (plane == 1)
				vsi->ref[i].c.dma_addr =
					vsi->ref[i].y.dma_addr + size;
			else
				vsi->ref[i].c.dma_addr =
					vb2_dma_contig_plane_dma_addr(vb, 1);
		}
	}

	return 0;
}

static void vdec_vp9_slice_setup_single_buffer(struct vdec_vp9_slice_instance *instance,
					       struct vdec_vp9_slice_pfc *pfc,
					       struct vdec_vp9_slice_vsi *vsi,
					       struct mtk_vcodec_mem *bs,
					       struct vdec_fb *fb)
{
	int i;

	vsi->bs.buf.dma_addr = bs->dma_addr;
	vsi->bs.buf.size = bs->size;
	vsi->bs.frame.dma_addr = bs->dma_addr;
	vsi->bs.frame.size = bs->size;

	for (i = 0; i < 2; i++) {
		vsi->mv[i].dma_addr = instance->mv[i].dma_addr;
		vsi->mv[i].size = instance->mv[i].size;
	}
	for (i = 0; i < 2; i++) {
		vsi->seg[i].dma_addr = instance->seg[i].dma_addr;
		vsi->seg[i].size = instance->seg[i].size;
	}
	vsi->tile.dma_addr = instance->tile.dma_addr;
	vsi->tile.size = instance->tile.size;
	vsi->prob.dma_addr = instance->prob.dma_addr;
	vsi->prob.size = instance->prob.size;
	vsi->counts.dma_addr = instance->counts.dma_addr;
	vsi->counts.size = instance->counts.size;

	vsi->row_info.buf = 0;
	vsi->row_info.size = 0;

	vdec_vp9_slice_setup_core_buffer(instance, pfc, vsi, fb, NULL);
}

static int vdec_vp9_slice_setup_core(struct vdec_vp9_slice_instance *instance,
				     struct vdec_fb *fb,
				     struct vdec_lat_buf *lat_buf,
				     struct vdec_vp9_slice_pfc *pfc)
{
	struct vdec_vp9_slice_vsi *vsi = &pfc->vsi;
	int ret;

	vdec_vp9_slice_setup_state(vsi);

	ret = vdec_vp9_slice_setup_core_to_dst_buf(instance, lat_buf);
	if (ret)
		goto err;

	ret = vdec_vp9_slice_setup_core_buffer(instance, pfc, vsi, fb, lat_buf);
	if (ret)
		goto err;

	vdec_vp9_slice_setup_seg_buffer(instance, vsi, &instance->seg[1]);

	return 0;

err:
	return ret;
}

static int vdec_vp9_slice_setup_single(struct vdec_vp9_slice_instance *instance,
				       struct mtk_vcodec_mem *bs,
				       struct vdec_fb *fb,
				       struct vdec_vp9_slice_pfc *pfc)
{
	struct vdec_vp9_slice_vsi *vsi = &pfc->vsi;
	int ret;

	ret = vdec_vp9_slice_setup_single_from_src_to_dst(instance);
	if (ret)
		goto err;

	ret = vdec_vp9_slice_setup_pfc(instance, pfc);
	if (ret)
		goto err;

	ret = vdec_vp9_slice_alloc_working_buffer(instance, vsi);
	if (ret)
		goto err;

	vdec_vp9_slice_setup_single_buffer(instance, pfc, vsi, bs, fb);
	vdec_vp9_slice_setup_seg_buffer(instance, vsi, &instance->seg[0]);

	ret = vdec_vp9_slice_setup_prob_buffer(instance, vsi);
	if (ret)
		goto err;

	ret = vdec_vp9_slice_setup_tile_buffer(instance, vsi, bs);
	if (ret)
		goto err;

	return 0;

err:
	return ret;
}

static int vdec_vp9_slice_update_core(struct vdec_vp9_slice_instance *instance,
				      struct vdec_lat_buf *lat_buf,
				      struct vdec_vp9_slice_pfc *pfc)
{
	struct vdec_vp9_slice_vsi *vsi;

	vsi = &pfc->vsi;
	memcpy(&pfc->state[1], &vsi->state, sizeof(vsi->state));

	mtk_vdec_debug(instance->ctx, "Frame %u Y_CRC %08x %08x %08x %08x\n",
		       pfc->seq, vsi->state.crc[0], vsi->state.crc[1],
		       vsi->state.crc[2], vsi->state.crc[3]);
	mtk_vdec_debug(instance->ctx, "Frame %u C_CRC %08x %08x %08x %08x\n",
		       pfc->seq, vsi->state.crc[4], vsi->state.crc[5],
		       vsi->state.crc[6], vsi->state.crc[7]);

	return 0;
}

static int vdec_vp9_slice_init(struct mtk_vcodec_dec_ctx *ctx)
{
	struct vdec_vp9_slice_instance *instance;
	struct vdec_vp9_slice_init_vsi *vsi;
	int ret;

	instance = kzalloc(sizeof(*instance), GFP_KERNEL);
	if (!instance)
		return -ENOMEM;

	instance->ctx = ctx;
	instance->vpu.id = SCP_IPI_VDEC_LAT;
	instance->vpu.core_id = SCP_IPI_VDEC_CORE;
	instance->vpu.ctx = ctx;
	instance->vpu.codec_type = ctx->current_codec;

	ret = vpu_dec_init(&instance->vpu);
	if (ret) {
		mtk_vdec_err(ctx, "failed to init vpu dec, ret %d\n", ret);
		goto error_vpu_init;
	}

	/* init vsi and global flags */

	vsi = instance->vpu.vsi;
	if (!vsi) {
		mtk_vdec_err(ctx, "failed to get VP9 vsi\n");
		ret = -EINVAL;
		goto error_vsi;
	}
	instance->init_vsi = vsi;
	instance->core_vsi = mtk_vcodec_fw_map_dm_addr(ctx->dev->fw_handler,
						       (u32)vsi->core_vsi);
	if (!instance->core_vsi) {
		mtk_vdec_err(ctx, "failed to get VP9 core vsi\n");
		ret = -EINVAL;
		goto error_vsi;
	}

	instance->irq = 1;

	ret = vdec_vp9_slice_init_default_frame_ctx(instance);
	if (ret)
		goto error_default_frame_ctx;

	ctx->drv_handle = instance;

	return 0;

error_default_frame_ctx:
error_vsi:
	vpu_dec_deinit(&instance->vpu);
error_vpu_init:
	kfree(instance);
	return ret;
}

static void vdec_vp9_slice_deinit(void *h_vdec)
{
	struct vdec_vp9_slice_instance *instance = h_vdec;

	if (!instance)
		return;

	vpu_dec_deinit(&instance->vpu);
	vdec_vp9_slice_free_working_buffer(instance);
	vdec_msg_queue_deinit(&instance->ctx->msg_queue, instance->ctx);
	kfree(instance);
}

static int vdec_vp9_slice_flush(void *h_vdec, struct mtk_vcodec_mem *bs,
				struct vdec_fb *fb, bool *res_chg)
{
	struct vdec_vp9_slice_instance *instance = h_vdec;

	mtk_vdec_debug(instance->ctx, "flush ...\n");
	if (instance->ctx->dev->vdec_pdata->hw_arch != MTK_VDEC_PURE_SINGLE_CORE)
		vdec_msg_queue_wait_lat_buf_full(&instance->ctx->msg_queue);
	return vpu_dec_reset(&instance->vpu);
}

static void vdec_vp9_slice_get_pic_info(struct vdec_vp9_slice_instance *instance)
{
	struct mtk_vcodec_dec_ctx *ctx = instance->ctx;
	unsigned int data[3];

	mtk_vdec_debug(instance->ctx, "w %u h %u\n", ctx->picinfo.pic_w, ctx->picinfo.pic_h);

	data[0] = ctx->picinfo.pic_w;
	data[1] = ctx->picinfo.pic_h;
	data[2] = ctx->capture_fourcc;
	vpu_dec_get_param(&instance->vpu, data, 3, GET_PARAM_PIC_INFO);

	ctx->picinfo.buf_w = ALIGN(ctx->picinfo.pic_w, 64);
	ctx->picinfo.buf_h = ALIGN(ctx->picinfo.pic_h, 64);
	ctx->picinfo.fb_sz[0] = instance->vpu.fb_sz[0];
	ctx->picinfo.fb_sz[1] = instance->vpu.fb_sz[1];
}

static void vdec_vp9_slice_get_dpb_size(struct vdec_vp9_slice_instance *instance,
					unsigned int *dpb_sz)
{
	/* refer VP9 specification */
	*dpb_sz = 9;
}

static int vdec_vp9_slice_get_param(void *h_vdec, enum vdec_get_param_type type, void *out)
{
	struct vdec_vp9_slice_instance *instance = h_vdec;

	switch (type) {
	case GET_PARAM_PIC_INFO:
		vdec_vp9_slice_get_pic_info(instance);
		break;
	case GET_PARAM_DPB_SIZE:
		vdec_vp9_slice_get_dpb_size(instance, out);
		break;
	case GET_PARAM_CROP_INFO:
		mtk_vdec_debug(instance->ctx, "No need to get vp9 crop information.");
		break;
	default:
		mtk_vdec_err(instance->ctx, "invalid get parameter type=%d\n", type);
		return -EINVAL;
	}

	return 0;
}

static int vdec_vp9_slice_single_decode(void *h_vdec, struct mtk_vcodec_mem *bs,
					struct vdec_fb *fb, bool *res_chg)
{
	struct vdec_vp9_slice_instance *instance = h_vdec;
	struct vdec_vp9_slice_pfc *pfc = &instance->sc_pfc;
	struct vdec_vp9_slice_vsi *vsi;
	struct mtk_vcodec_dec_ctx *ctx;
	int ret;

	if (!instance || !instance->ctx)
		return -EINVAL;
	ctx = instance->ctx;

	/* bs NULL means flush decoder */
	if (!bs)
		return vdec_vp9_slice_flush(h_vdec, bs, fb, res_chg);

	fb = ctx->dev->vdec_pdata->get_cap_buffer(ctx);
	if (!fb)
		return -EBUSY;

	vsi = &pfc->vsi;

	ret = vdec_vp9_slice_setup_single(instance, bs, fb, pfc);
	if (ret) {
		mtk_vdec_err(ctx, "Failed to setup VP9 single ret %d\n", ret);
		return ret;
	}
	vdec_vp9_slice_vsi_to_remote(vsi, instance->vsi);

	ret = vpu_dec_start(&instance->vpu, NULL, 0);
	if (ret) {
		mtk_vdec_err(ctx, "Failed to dec VP9 ret %d\n", ret);
		return ret;
	}

	ret = mtk_vcodec_wait_for_done_ctx(ctx,	MTK_INST_IRQ_RECEIVED,
					   WAIT_INTR_TIMEOUT_MS, MTK_VDEC_CORE);
	/* update remote vsi if decode timeout */
	if (ret) {
		mtk_vdec_err(ctx, "VP9 decode timeout %d\n", ret);
		WRITE_ONCE(instance->vsi->state.timeout, 1);
	}

	vpu_dec_end(&instance->vpu);

	vdec_vp9_slice_vsi_from_remote(vsi, instance->vsi, 0);
	ret = vdec_vp9_slice_update_single(instance, pfc);
	if (ret) {
		mtk_vdec_err(ctx, "VP9 decode error: %d\n", ret);
		return ret;
	}

	instance->ctx->decoded_frame_cnt++;
	return 0;
}

static int vdec_vp9_slice_lat_decode(void *h_vdec, struct mtk_vcodec_mem *bs,
				     struct vdec_fb *fb, bool *res_chg)
{
	struct vdec_vp9_slice_instance *instance = h_vdec;
	struct vdec_lat_buf *lat_buf;
	struct vdec_vp9_slice_pfc *pfc;
	struct vdec_vp9_slice_vsi *vsi;
	struct mtk_vcodec_dec_ctx *ctx;
	int ret;

	if (!instance || !instance->ctx)
		return -EINVAL;
	ctx = instance->ctx;

	/* init msgQ for the first time */
	if (vdec_msg_queue_init(&ctx->msg_queue, ctx,
				vdec_vp9_slice_core_decode,
				sizeof(*pfc)))
		return -ENOMEM;

	/* bs NULL means flush decoder */
	if (!bs)
		return vdec_vp9_slice_flush(h_vdec, bs, fb, res_chg);

	lat_buf = vdec_msg_queue_dqbuf(&instance->ctx->msg_queue.lat_ctx);
	if (!lat_buf) {
		mtk_vdec_debug(ctx, "Failed to get VP9 lat buf\n");
		return -EAGAIN;
	}
	pfc = (struct vdec_vp9_slice_pfc *)lat_buf->private_data;
	if (!pfc) {
		ret = -EINVAL;
		goto err_free_fb_out;
	}
	vsi = &pfc->vsi;

	ret = vdec_vp9_slice_setup_lat(instance, bs, lat_buf, pfc);
	if (ret) {
		mtk_vdec_err(ctx, "Failed to setup VP9 lat ret %d\n", ret);
		goto err_free_fb_out;
	}
	vdec_vp9_slice_vsi_to_remote(vsi, instance->vsi);

	ret = vpu_dec_start(&instance->vpu, NULL, 0);
	if (ret) {
		mtk_vdec_err(ctx, "Failed to dec VP9 ret %d\n", ret);
		goto err_free_fb_out;
	}

	if (instance->irq) {
		ret = mtk_vcodec_wait_for_done_ctx(ctx,	MTK_INST_IRQ_RECEIVED,
						   WAIT_INTR_TIMEOUT_MS, MTK_VDEC_LAT0);
		/* update remote vsi if decode timeout */
		if (ret) {
			mtk_vdec_err(ctx, "VP9 decode timeout %d pic %d\n", ret, pfc->seq);
			WRITE_ONCE(instance->vsi->state.timeout, 1);
		}
		vpu_dec_end(&instance->vpu);
	}

	vdec_vp9_slice_vsi_from_remote(vsi, instance->vsi, 0);
	ret = vdec_vp9_slice_update_lat(instance, lat_buf, pfc);

	/* LAT trans full, no more UBE or decode timeout */
	if (ret) {
		mtk_vdec_err(ctx, "VP9 decode error: %d\n", ret);
		goto err_free_fb_out;
	}

	mtk_vdec_debug(ctx, "lat dma addr: 0x%lx 0x%lx\n",
		       (unsigned long)pfc->vsi.trans.dma_addr,
		       (unsigned long)pfc->vsi.trans.dma_addr_end);

	vdec_msg_queue_update_ube_wptr(&ctx->msg_queue,
				       vsi->trans.dma_addr_end +
				       ctx->msg_queue.wdma_addr.dma_addr);
	vdec_msg_queue_qbuf(&ctx->msg_queue.core_ctx, lat_buf);

	return 0;
err_free_fb_out:
	vdec_msg_queue_qbuf(&ctx->msg_queue.lat_ctx, lat_buf);
	return ret;
}

static int vdec_vp9_slice_decode(void *h_vdec, struct mtk_vcodec_mem *bs,
				 struct vdec_fb *fb, bool *res_chg)
{
	struct vdec_vp9_slice_instance *instance = h_vdec;
	int ret;

	if (instance->ctx->dev->vdec_pdata->hw_arch == MTK_VDEC_PURE_SINGLE_CORE)
		ret = vdec_vp9_slice_single_decode(h_vdec, bs, fb, res_chg);
	else
		ret = vdec_vp9_slice_lat_decode(h_vdec, bs, fb, res_chg);

	return ret;
}

static int vdec_vp9_slice_core_decode(struct vdec_lat_buf *lat_buf)
{
	struct vdec_vp9_slice_instance *instance;
	struct vdec_vp9_slice_pfc *pfc;
	struct mtk_vcodec_dec_ctx *ctx = NULL;
	struct vdec_fb *fb = NULL;
	int ret = -EINVAL;

	if (!lat_buf)
		goto err;

	pfc = lat_buf->private_data;
	ctx = lat_buf->ctx;
	if (!pfc || !ctx)
		goto err;

	instance = ctx->drv_handle;
	if (!instance)
		goto err;

	fb = ctx->dev->vdec_pdata->get_cap_buffer(ctx);
	if (!fb) {
		ret = -EBUSY;
		goto err;
	}

	ret = vdec_vp9_slice_setup_core(instance, fb, lat_buf, pfc);
	if (ret) {
		mtk_vdec_err(ctx, "vdec_vp9_slice_setup_core\n");
		goto err;
	}
	vdec_vp9_slice_vsi_to_remote(&pfc->vsi, instance->core_vsi);

	ret = vpu_dec_core(&instance->vpu);
	if (ret) {
		mtk_vdec_err(ctx, "vpu_dec_core\n");
		goto err;
	}

	if (instance->irq) {
		ret = mtk_vcodec_wait_for_done_ctx(ctx, MTK_INST_IRQ_RECEIVED,
						   WAIT_INTR_TIMEOUT_MS, MTK_VDEC_CORE);
		/* update remote vsi if decode timeout */
		if (ret) {
			mtk_vdec_err(ctx, "VP9 core timeout pic %d\n", pfc->seq);
			WRITE_ONCE(instance->core_vsi->state.timeout, 1);
		}
		vpu_dec_core_end(&instance->vpu);
	}

	vdec_vp9_slice_vsi_from_remote(&pfc->vsi, instance->core_vsi, 1);
	ret = vdec_vp9_slice_update_core(instance, lat_buf, pfc);
	if (ret) {
		mtk_vdec_err(ctx, "vdec_vp9_slice_update_core\n");
		goto err;
	}

	pfc->vsi.trans.dma_addr_end += ctx->msg_queue.wdma_addr.dma_addr;
	mtk_vdec_debug(ctx, "core dma_addr_end 0x%lx\n",
		       (unsigned long)pfc->vsi.trans.dma_addr_end);
	vdec_msg_queue_update_ube_rptr(&ctx->msg_queue, pfc->vsi.trans.dma_addr_end);
	ctx->dev->vdec_pdata->cap_to_disp(ctx, 0, lat_buf->src_buf_req);

	return 0;

err:
	if (ctx && pfc) {
		/* always update read pointer */
		vdec_msg_queue_update_ube_rptr(&ctx->msg_queue, pfc->vsi.trans.dma_addr_end);

		if (fb)
			ctx->dev->vdec_pdata->cap_to_disp(ctx, 1, lat_buf->src_buf_req);
	}
	return ret;
}

const struct vdec_common_if vdec_vp9_slice_lat_if = {
	.init		= vdec_vp9_slice_init,
	.decode		= vdec_vp9_slice_decode,
	.get_param	= vdec_vp9_slice_get_param,
	.deinit		= vdec_vp9_slice_deinit,
};