// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2021 MediaTek Inc.
* Author: George Sun <[email protected]>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <media/videobuf2-dma-contig.h>
#include <media/v4l2-vp9.h>
#include "../mtk_vcodec_dec.h"
#include "../../common/mtk_vcodec_intr.h"
#include "../vdec_drv_base.h"
#include "../vdec_drv_if.h"
#include "../vdec_vpu_if.h"
/* reset_frame_context defined in VP9 spec */
#define VP9_RESET_FRAME_CONTEXT_NONE0 0
#define VP9_RESET_FRAME_CONTEXT_NONE1 1
#define VP9_RESET_FRAME_CONTEXT_SPEC 2
#define VP9_RESET_FRAME_CONTEXT_ALL 3
#define VP9_TILE_BUF_SIZE 4096
#define VP9_PROB_BUF_SIZE 2560
#define VP9_COUNTS_BUF_SIZE 16384
#define HDR_FLAG(x) (!!((hdr)->flags & V4L2_VP9_FRAME_FLAG_##x))
#define LF_FLAG(x) (!!((lf)->flags & V4L2_VP9_LOOP_FILTER_FLAG_##x))
#define SEG_FLAG(x) (!!((seg)->flags & V4L2_VP9_SEGMENTATION_FLAG_##x))
#define VP9_BAND_6(band) ((band) == 0 ? 3 : 6)
/*
* struct vdec_vp9_slice_frame_ctx - vp9 prob tables footprint
*/
struct vdec_vp9_slice_frame_ctx {
struct {
u8 probs[6][3];
u8 padding[2];
} coef_probs[4][2][2][6];
u8 y_mode_prob[4][16];
u8 switch_interp_prob[4][16];
u8 seg[32]; /* ignore */
u8 comp_inter_prob[16];
u8 comp_ref_prob[16];
u8 single_ref_prob[5][2];
u8 single_ref_prob_padding[6];
u8 joint[3];
u8 joint_padding[13];
struct {
u8 sign;
u8 classes[10];
u8 padding[5];
} sign_classes[2];
struct {
u8 class0[1];
u8 bits[10];
u8 padding[5];
} class0_bits[2];
struct {
u8 class0_fp[2][3];
u8 fp[3];
u8 class0_hp;
u8 hp;
u8 padding[5];
} class0_fp_hp[2];
u8 uv_mode_prob[10][16];
u8 uv_mode_prob_padding[2][16];
u8 partition_prob[16][4];
u8 inter_mode_probs[7][4];
u8 skip_probs[4];
u8 tx_p8x8[2][4];
u8 tx_p16x16[2][4];
u8 tx_p32x32[2][4];
u8 intra_inter_prob[8];
};
/*
* struct vdec_vp9_slice_frame_counts - vp9 counts tables footprint
*/
struct vdec_vp9_slice_frame_counts {
union {
struct {
u32 band_0[3];
u32 padding0[1];
u32 band_1_5[5][6];
u32 padding1[2];
} eob_branch[4][2][2];
u32 eob_branch_space[256 * 4];
};
struct {
u32 band_0[3][4];
u32 band_1_5[5][6][4];
} coef_probs[4][2][2];
u32 intra_inter[4][2];
u32 comp_inter[5][2];
u32 comp_inter_padding[2];
u32 comp_ref[5][2];
u32 comp_ref_padding[2];
u32 single_ref[5][2][2];
u32 inter_mode[7][4];
u32 y_mode[4][12];
u32 uv_mode[10][10];
u32 partition[16][4];
u32 switchable_interp[4][4];
u32 tx_p8x8[2][2];
u32 tx_p16x16[2][4];
u32 tx_p32x32[2][4];
u32 skip[3][4];
u32 joint[4];
struct {
u32 sign[2];
u32 class0[2];
u32 classes[12];
u32 bits[10][2];
u32 padding[4];
u32 class0_fp[2][4];
u32 fp[4];
u32 class0_hp[2];
u32 hp[2];
} mvcomp[2];
u32 reserved[126][4];
};
/**
* struct vdec_vp9_slice_counts_map - vp9 counts tables to map
* v4l2_vp9_frame_symbol_counts
* @skip: skip counts.
* @y_mode: Y prediction mode counts.
* @filter: interpolation filter counts.
* @sign: motion vector sign counts.
* @classes: motion vector class counts.
* @class0: motion vector class0 bit counts.
* @bits: motion vector bits counts.
* @class0_fp: motion vector class0 fractional bit counts.
* @fp: motion vector fractional bit counts.
* @class0_hp: motion vector class0 high precision fractional bit counts.
* @hp: motion vector high precision fractional bit counts.
*/
struct vdec_vp9_slice_counts_map {
u32 skip[3][2];
u32 y_mode[4][10];
u32 filter[4][3];
u32 sign[2][2];
u32 classes[2][11];
u32 class0[2][2];
u32 bits[2][10][2];
u32 class0_fp[2][2][4];
u32 fp[2][4];
u32 class0_hp[2][2];
u32 hp[2][2];
};
/*
* struct vdec_vp9_slice_uncompressed_header - vp9 uncompressed header syntax
* used for decoding
*/
struct vdec_vp9_slice_uncompressed_header {
u8 profile;
u8 last_frame_type;
u8 frame_type;
u8 last_show_frame;
u8 show_frame;
u8 error_resilient_mode;
u8 bit_depth;
u8 padding0[1];
u16 last_frame_width;
u16 last_frame_height;
u16 frame_width;
u16 frame_height;
u8 intra_only;
u8 reset_frame_context;
u8 ref_frame_sign_bias[4];
u8 allow_high_precision_mv;
u8 interpolation_filter;
u8 refresh_frame_context;
u8 frame_parallel_decoding_mode;
u8 frame_context_idx;
/* loop_filter_params */
u8 loop_filter_level;
u8 loop_filter_sharpness;
u8 loop_filter_delta_enabled;
s8 loop_filter_ref_deltas[4];
s8 loop_filter_mode_deltas[2];
/* quantization_params */
u8 base_q_idx;
s8 delta_q_y_dc;
s8 delta_q_uv_dc;
s8 delta_q_uv_ac;
/* segmentation_params */
u8 segmentation_enabled;
u8 segmentation_update_map;
u8 segmentation_tree_probs[7];
u8 padding1[1];
u8 segmentation_temporal_udpate;
u8 segmentation_pred_prob[3];
u8 segmentation_update_data;
u8 segmentation_abs_or_delta_update;
u8 feature_enabled[8];
s16 feature_value[8][4];
/* tile_info */
u8 tile_cols_log2;
u8 tile_rows_log2;
u8 padding2[2];
u16 uncompressed_header_size;
u16 header_size_in_bytes;
/* LAT OUT, CORE IN */
u32 dequant[8][4];
};
/*
* struct vdec_vp9_slice_compressed_header - vp9 compressed header syntax
* used for decoding.
*/
struct vdec_vp9_slice_compressed_header {
u8 tx_mode;
u8 ref_mode;
u8 comp_fixed_ref;
u8 comp_var_ref[2];
u8 padding[3];
};
/*
* struct vdec_vp9_slice_tiles - vp9 tile syntax
*/
struct vdec_vp9_slice_tiles {
u32 size[4][64];
u32 mi_rows[4];
u32 mi_cols[64];
u8 actual_rows;
u8 padding[7];
};
/*
* struct vdec_vp9_slice_reference - vp9 reference frame information
*/
struct vdec_vp9_slice_reference {
u16 frame_width;
u16 frame_height;
u8 bit_depth;
u8 subsampling_x;
u8 subsampling_y;
u8 padding;
};
/*
* struct vdec_vp9_slice_frame - vp9 syntax used for decoding
*/
struct vdec_vp9_slice_frame {
struct vdec_vp9_slice_uncompressed_header uh;
struct vdec_vp9_slice_compressed_header ch;
struct vdec_vp9_slice_tiles tiles;
struct vdec_vp9_slice_reference ref[3];
};
/*
* struct vdec_vp9_slice_init_vsi - VSI used to initialize instance
*/
struct vdec_vp9_slice_init_vsi {
unsigned int architecture;
unsigned int reserved;
u64 core_vsi;
/* default frame context's position in MicroP */
u64 default_frame_ctx;
};
/*
* struct vdec_vp9_slice_mem - memory address and size
*/
struct vdec_vp9_slice_mem {
union {
u64 buf;
dma_addr_t dma_addr;
};
union {
size_t size;
dma_addr_t dma_addr_end;
u64 padding;
};
};
/*
* struct vdec_vp9_slice_bs - input buffer for decoding
*/
struct vdec_vp9_slice_bs {
struct vdec_vp9_slice_mem buf;
struct vdec_vp9_slice_mem frame;
};
/*
* struct vdec_vp9_slice_fb - frame buffer for decoding
*/
struct vdec_vp9_slice_fb {
struct vdec_vp9_slice_mem y;
struct vdec_vp9_slice_mem c;
};
/*
* struct vdec_vp9_slice_state - decoding state
*/
struct vdec_vp9_slice_state {
int err;
unsigned int full;
unsigned int timeout;
unsigned int perf;
unsigned int crc[12];
};
/**
* struct vdec_vp9_slice_vsi - exchange decoding information
* between Main CPU and MicroP
*
* @bs: input buffer
* @fb: output buffer
* @ref: 3 reference buffers
* @mv: mv working buffer
* @seg: segmentation working buffer
* @tile: tile buffer
* @prob: prob table buffer, used to set/update prob table
* @counts: counts table buffer, used to update prob table
* @ube: general buffer
* @trans: trans buffer position in general buffer
* @err_map: error buffer
* @row_info: row info buffer
* @frame: decoding syntax
* @state: decoding state
*/
struct vdec_vp9_slice_vsi {
/* used in LAT stage */
struct vdec_vp9_slice_bs bs;
/* used in Core stage */
struct vdec_vp9_slice_fb fb;
struct vdec_vp9_slice_fb ref[3];
struct vdec_vp9_slice_mem mv[2];
struct vdec_vp9_slice_mem seg[2];
struct vdec_vp9_slice_mem tile;
struct vdec_vp9_slice_mem prob;
struct vdec_vp9_slice_mem counts;
/* LAT stage's output, Core stage's input */
struct vdec_vp9_slice_mem ube;
struct vdec_vp9_slice_mem trans;
struct vdec_vp9_slice_mem err_map;
struct vdec_vp9_slice_mem row_info;
/* decoding parameters */
struct vdec_vp9_slice_frame frame;
struct vdec_vp9_slice_state state;
};
/**
* struct vdec_vp9_slice_pfc - per-frame context that contains a local vsi.
* pass it from lat to core
*
* @vsi: local vsi. copy to/from remote vsi before/after decoding
* @ref_idx: reference buffer index
* @seq: picture sequence
* @state: decoding state
*/
struct vdec_vp9_slice_pfc {
struct vdec_vp9_slice_vsi vsi;
u64 ref_idx[3];
int seq;
/* LAT/Core CRC */
struct vdec_vp9_slice_state state[2];
};
/*
* enum vdec_vp9_slice_resolution_level
*/
enum vdec_vp9_slice_resolution_level {
VP9_RES_NONE,
VP9_RES_FHD,
VP9_RES_4K,
VP9_RES_8K,
};
/*
* struct vdec_vp9_slice_ref - picture's width & height should kept
* for later decoding as reference picture
*/
struct vdec_vp9_slice_ref {
unsigned int width;
unsigned int height;
};
/**
* struct vdec_vp9_slice_instance - represent one vp9 instance
*
* @ctx: pointer to codec's context
* @vpu: VPU instance
* @seq: global picture sequence
* @level: level of current resolution
* @width: width of last picture
* @height: height of last picture
* @frame_type: frame_type of last picture
* @irq: irq to Main CPU or MicroP
* @show_frame: show_frame of last picture
* @dpb: picture information (width/height) for reference
* @mv: mv working buffer
* @seg: segmentation working buffer
* @tile: tile buffer
* @prob: prob table buffer, used to set/update prob table
* @counts: counts table buffer, used to update prob table
* @frame_ctx: 4 frame context according to VP9 Spec
* @frame_ctx_helper: 4 frame context according to newest kernel spec
* @dirty: state of each frame context
* @init_vsi: vsi used for initialized VP9 instance
* @vsi: vsi used for decoding/flush ...
* @core_vsi: vsi used for Core stage
*
* @sc_pfc: per frame context single core
* @counts_map: used map to counts_helper
* @counts_helper: counts table according to newest kernel spec
*/
struct vdec_vp9_slice_instance {
struct mtk_vcodec_dec_ctx *ctx;
struct vdec_vpu_inst vpu;
int seq;
enum vdec_vp9_slice_resolution_level level;
/* for resolution change and get_pic_info */
unsigned int width;
unsigned int height;
/* for last_frame_type */
unsigned int frame_type;
unsigned int irq;
unsigned int show_frame;
/* maintain vp9 reference frame state */
struct vdec_vp9_slice_ref dpb[VB2_MAX_FRAME];
/*
* normal working buffers
* mv[0]/seg[0]/tile/prob/counts is used for LAT
* mv[1]/seg[1] is used for CORE
*/
struct mtk_vcodec_mem mv[2];
struct mtk_vcodec_mem seg[2];
struct mtk_vcodec_mem tile;
struct mtk_vcodec_mem prob;
struct mtk_vcodec_mem counts;
/* 4 prob tables */
struct vdec_vp9_slice_frame_ctx frame_ctx[4];
/*4 helper tables */
struct v4l2_vp9_frame_context frame_ctx_helper;
unsigned char dirty[4];
/* MicroP vsi */
union {
struct vdec_vp9_slice_init_vsi *init_vsi;
struct vdec_vp9_slice_vsi *vsi;
};
struct vdec_vp9_slice_vsi *core_vsi;
struct vdec_vp9_slice_pfc sc_pfc;
struct vdec_vp9_slice_counts_map counts_map;
struct v4l2_vp9_frame_symbol_counts counts_helper;
};
/*
* all VP9 instances could share this default frame context.
*/
static struct vdec_vp9_slice_frame_ctx *vdec_vp9_slice_default_frame_ctx;
static DEFINE_MUTEX(vdec_vp9_slice_frame_ctx_lock);
static int vdec_vp9_slice_core_decode(struct vdec_lat_buf *lat_buf);
static int vdec_vp9_slice_init_default_frame_ctx(struct vdec_vp9_slice_instance *instance)
{
struct vdec_vp9_slice_frame_ctx *remote_frame_ctx;
struct vdec_vp9_slice_frame_ctx *frame_ctx;
struct mtk_vcodec_dec_ctx *ctx;
struct vdec_vp9_slice_init_vsi *vsi;
int ret = 0;
ctx = instance->ctx;
vsi = instance->vpu.vsi;
if (!ctx || !vsi)
return -EINVAL;
remote_frame_ctx = mtk_vcodec_fw_map_dm_addr(ctx->dev->fw_handler,
(u32)vsi->default_frame_ctx);
if (!remote_frame_ctx) {
mtk_vdec_err(ctx, "failed to map default frame ctx\n");
return -EINVAL;
}
mutex_lock(&vdec_vp9_slice_frame_ctx_lock);
if (vdec_vp9_slice_default_frame_ctx)
goto out;
frame_ctx = kmemdup(remote_frame_ctx, sizeof(*frame_ctx), GFP_KERNEL);
if (!frame_ctx) {
ret = -ENOMEM;
goto out;
}
vdec_vp9_slice_default_frame_ctx = frame_ctx;
out:
mutex_unlock(&vdec_vp9_slice_frame_ctx_lock);
return ret;
}
static int vdec_vp9_slice_alloc_working_buffer(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_vsi *vsi)
{
struct mtk_vcodec_dec_ctx *ctx = instance->ctx;
enum vdec_vp9_slice_resolution_level level;
/* super blocks */
unsigned int max_sb_w;
unsigned int max_sb_h;
unsigned int max_w;
unsigned int max_h;
unsigned int w;
unsigned int h;
size_t size;
int ret;
int i;
w = vsi->frame.uh.frame_width;
h = vsi->frame.uh.frame_height;
if (w > VCODEC_DEC_4K_CODED_WIDTH ||
h > VCODEC_DEC_4K_CODED_HEIGHT) {
return -EINVAL;
} else if (w > MTK_VDEC_MAX_W || h > MTK_VDEC_MAX_H) {
/* 4K */
level = VP9_RES_4K;
max_w = VCODEC_DEC_4K_CODED_WIDTH;
max_h = VCODEC_DEC_4K_CODED_HEIGHT;
} else {
/* FHD */
level = VP9_RES_FHD;
max_w = MTK_VDEC_MAX_W;
max_h = MTK_VDEC_MAX_H;
}
if (level == instance->level)
return 0;
mtk_vdec_debug(ctx, "resolution level changed, from %u to %u, %ux%u",
instance->level, level, w, h);
max_sb_w = DIV_ROUND_UP(max_w, 64);
max_sb_h = DIV_ROUND_UP(max_h, 64);
ret = -ENOMEM;
/*
* Lat-flush must wait core idle, otherwise core will
* use released buffers
*/
size = (max_sb_w * max_sb_h + 2) * 576;
for (i = 0; i < 2; i++) {
if (instance->mv[i].va)
mtk_vcodec_mem_free(ctx, &instance->mv[i]);
instance->mv[i].size = size;
if (mtk_vcodec_mem_alloc(ctx, &instance->mv[i]))
goto err;
}
size = (max_sb_w * max_sb_h * 32) + 256;
for (i = 0; i < 2; i++) {
if (instance->seg[i].va)
mtk_vcodec_mem_free(ctx, &instance->seg[i]);
instance->seg[i].size = size;
if (mtk_vcodec_mem_alloc(ctx, &instance->seg[i]))
goto err;
}
if (!instance->tile.va) {
instance->tile.size = VP9_TILE_BUF_SIZE;
if (mtk_vcodec_mem_alloc(ctx, &instance->tile))
goto err;
}
if (!instance->prob.va) {
instance->prob.size = VP9_PROB_BUF_SIZE;
if (mtk_vcodec_mem_alloc(ctx, &instance->prob))
goto err;
}
if (!instance->counts.va) {
instance->counts.size = VP9_COUNTS_BUF_SIZE;
if (mtk_vcodec_mem_alloc(ctx, &instance->counts))
goto err;
}
instance->level = level;
return 0;
err:
instance->level = VP9_RES_NONE;
return ret;
}
static void vdec_vp9_slice_free_working_buffer(struct vdec_vp9_slice_instance *instance)
{
struct mtk_vcodec_dec_ctx *ctx = instance->ctx;
int i;
for (i = 0; i < ARRAY_SIZE(instance->mv); i++) {
if (instance->mv[i].va)
mtk_vcodec_mem_free(ctx, &instance->mv[i]);
}
for (i = 0; i < ARRAY_SIZE(instance->seg); i++) {
if (instance->seg[i].va)
mtk_vcodec_mem_free(ctx, &instance->seg[i]);
}
if (instance->tile.va)
mtk_vcodec_mem_free(ctx, &instance->tile);
if (instance->prob.va)
mtk_vcodec_mem_free(ctx, &instance->prob);
if (instance->counts.va)
mtk_vcodec_mem_free(ctx, &instance->counts);
instance->level = VP9_RES_NONE;
}
static void vdec_vp9_slice_vsi_from_remote(struct vdec_vp9_slice_vsi *vsi,
struct vdec_vp9_slice_vsi *remote_vsi,
int skip)
{
struct vdec_vp9_slice_frame *rf;
struct vdec_vp9_slice_frame *f;
/*
* compressed header
* dequant
* buffer position
* decode state
*/
if (!skip) {
rf = &remote_vsi->frame;
f = &vsi->frame;
memcpy(&f->ch, &rf->ch, sizeof(f->ch));
memcpy(&f->uh.dequant, &rf->uh.dequant, sizeof(f->uh.dequant));
memcpy(&vsi->trans, &remote_vsi->trans, sizeof(vsi->trans));
}
memcpy(&vsi->state, &remote_vsi->state, sizeof(vsi->state));
}
static void vdec_vp9_slice_vsi_to_remote(struct vdec_vp9_slice_vsi *vsi,
struct vdec_vp9_slice_vsi *remote_vsi)
{
memcpy(remote_vsi, vsi, sizeof(*vsi));
}
static int vdec_vp9_slice_tile_offset(int idx, int mi_num, int tile_log2)
{
int sbs = (mi_num + 7) >> 3;
int offset = ((idx * sbs) >> tile_log2) << 3;
return min(offset, mi_num);
}
static
int vdec_vp9_slice_setup_single_from_src_to_dst(struct vdec_vp9_slice_instance *instance)
{
struct vb2_v4l2_buffer *src;
struct vb2_v4l2_buffer *dst;
src = v4l2_m2m_next_src_buf(instance->ctx->m2m_ctx);
if (!src)
return -EINVAL;
dst = v4l2_m2m_next_dst_buf(instance->ctx->m2m_ctx);
if (!dst)
return -EINVAL;
v4l2_m2m_buf_copy_metadata(src, dst, true);
return 0;
}
static int vdec_vp9_slice_setup_lat_from_src_buf(struct vdec_vp9_slice_instance *instance,
struct vdec_lat_buf *lat_buf)
{
struct vb2_v4l2_buffer *src;
struct vb2_v4l2_buffer *dst;
src = v4l2_m2m_next_src_buf(instance->ctx->m2m_ctx);
if (!src)
return -EINVAL;
lat_buf->src_buf_req = src->vb2_buf.req_obj.req;
dst = &lat_buf->ts_info;
v4l2_m2m_buf_copy_metadata(src, dst, true);
return 0;
}
static void vdec_vp9_slice_setup_hdr(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_uncompressed_header *uh,
struct v4l2_ctrl_vp9_frame *hdr)
{
int i;
uh->profile = hdr->profile;
uh->last_frame_type = instance->frame_type;
uh->frame_type = !HDR_FLAG(KEY_FRAME);
uh->last_show_frame = instance->show_frame;
uh->show_frame = HDR_FLAG(SHOW_FRAME);
uh->error_resilient_mode = HDR_FLAG(ERROR_RESILIENT);
uh->bit_depth = hdr->bit_depth;
uh->last_frame_width = instance->width;
uh->last_frame_height = instance->height;
uh->frame_width = hdr->frame_width_minus_1 + 1;
uh->frame_height = hdr->frame_height_minus_1 + 1;
uh->intra_only = HDR_FLAG(INTRA_ONLY);
/* map v4l2 enum to values defined in VP9 spec for firmware */
switch (hdr->reset_frame_context) {
case V4L2_VP9_RESET_FRAME_CTX_NONE:
uh->reset_frame_context = VP9_RESET_FRAME_CONTEXT_NONE0;
break;
case V4L2_VP9_RESET_FRAME_CTX_SPEC:
uh->reset_frame_context = VP9_RESET_FRAME_CONTEXT_SPEC;
break;
case V4L2_VP9_RESET_FRAME_CTX_ALL:
uh->reset_frame_context = VP9_RESET_FRAME_CONTEXT_ALL;
break;
default:
uh->reset_frame_context = VP9_RESET_FRAME_CONTEXT_NONE0;
break;
}
/*
* ref_frame_sign_bias specifies the intended direction
* of the motion vector in time for each reference frame.
* - INTRA_FRAME = 0,
* - LAST_FRAME = 1,
* - GOLDEN_FRAME = 2,
* - ALTREF_FRAME = 3,
* ref_frame_sign_bias[INTRA_FRAME] is always 0
* and VDA only passes another 3 directions
*/
uh->ref_frame_sign_bias[0] = 0;
for (i = 0; i < 3; i++)
uh->ref_frame_sign_bias[i + 1] =
!!(hdr->ref_frame_sign_bias & (1 << i));
uh->allow_high_precision_mv = HDR_FLAG(ALLOW_HIGH_PREC_MV);
uh->interpolation_filter = hdr->interpolation_filter;
uh->refresh_frame_context = HDR_FLAG(REFRESH_FRAME_CTX);
uh->frame_parallel_decoding_mode = HDR_FLAG(PARALLEL_DEC_MODE);
uh->frame_context_idx = hdr->frame_context_idx;
/* tile info */
uh->tile_cols_log2 = hdr->tile_cols_log2;
uh->tile_rows_log2 = hdr->tile_rows_log2;
uh->uncompressed_header_size = hdr->uncompressed_header_size;
uh->header_size_in_bytes = hdr->compressed_header_size;
}
static void vdec_vp9_slice_setup_frame_ctx(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_uncompressed_header *uh,
struct v4l2_ctrl_vp9_frame *hdr)
{
int error_resilient_mode;
int reset_frame_context;
int key_frame;
int intra_only;
int i;
key_frame = HDR_FLAG(KEY_FRAME);
intra_only = HDR_FLAG(INTRA_ONLY);
error_resilient_mode = HDR_FLAG(ERROR_RESILIENT);
reset_frame_context = uh->reset_frame_context;
/*
* according to "6.2 Uncompressed header syntax" in
* "VP9 Bitstream & Decoding Process Specification",
* reset @frame_context_idx when (FrameIsIntra || error_resilient_mode)
*/
if (key_frame || intra_only || error_resilient_mode) {
/*
* @reset_frame_context specifies
* whether the frame context should be
* reset to default values:
* 0 or 1 means do not reset any frame context
* 2 resets just the context specified in the frame header
* 3 resets all contexts
*/
if (key_frame || error_resilient_mode ||
reset_frame_context == 3) {
/* use default table */
for (i = 0; i < 4; i++)
instance->dirty[i] = 0;
} else if (reset_frame_context == 2) {
instance->dirty[uh->frame_context_idx] = 0;
}
uh->frame_context_idx = 0;
}
}
static void vdec_vp9_slice_setup_loop_filter(struct vdec_vp9_slice_uncompressed_header *uh,
struct v4l2_vp9_loop_filter *lf)
{
int i;
uh->loop_filter_level = lf->level;
uh->loop_filter_sharpness = lf->sharpness;
uh->loop_filter_delta_enabled = LF_FLAG(DELTA_ENABLED);
for (i = 0; i < 4; i++)
uh->loop_filter_ref_deltas[i] = lf->ref_deltas[i];
for (i = 0; i < 2; i++)
uh->loop_filter_mode_deltas[i] = lf->mode_deltas[i];
}
static void vdec_vp9_slice_setup_quantization(struct vdec_vp9_slice_uncompressed_header *uh,
struct v4l2_vp9_quantization *quant)
{
uh->base_q_idx = quant->base_q_idx;
uh->delta_q_y_dc = quant->delta_q_y_dc;
uh->delta_q_uv_dc = quant->delta_q_uv_dc;
uh->delta_q_uv_ac = quant->delta_q_uv_ac;
}
static void vdec_vp9_slice_setup_segmentation(struct vdec_vp9_slice_uncompressed_header *uh,
struct v4l2_vp9_segmentation *seg)
{
int i;
int j;
uh->segmentation_enabled = SEG_FLAG(ENABLED);
uh->segmentation_update_map = SEG_FLAG(UPDATE_MAP);
for (i = 0; i < 7; i++)
uh->segmentation_tree_probs[i] = seg->tree_probs[i];
uh->segmentation_temporal_udpate = SEG_FLAG(TEMPORAL_UPDATE);
for (i = 0; i < 3; i++)
uh->segmentation_pred_prob[i] = seg->pred_probs[i];
uh->segmentation_update_data = SEG_FLAG(UPDATE_DATA);
uh->segmentation_abs_or_delta_update = SEG_FLAG(ABS_OR_DELTA_UPDATE);
for (i = 0; i < 8; i++) {
uh->feature_enabled[i] = seg->feature_enabled[i];
for (j = 0; j < 4; j++)
uh->feature_value[i][j] = seg->feature_data[i][j];
}
}
static int vdec_vp9_slice_setup_tile(struct vdec_vp9_slice_vsi *vsi,
struct v4l2_ctrl_vp9_frame *hdr)
{
unsigned int rows_log2;
unsigned int cols_log2;
unsigned int rows;
unsigned int cols;
unsigned int mi_rows;
unsigned int mi_cols;
struct vdec_vp9_slice_tiles *tiles;
int offset;
int start;
int end;
int i;
rows_log2 = hdr->tile_rows_log2;
cols_log2 = hdr->tile_cols_log2;
rows = 1 << rows_log2;
cols = 1 << cols_log2;
tiles = &vsi->frame.tiles;
tiles->actual_rows = 0;
if (rows > 4 || cols > 64)
return -EINVAL;
/* setup mi rows/cols information */
mi_rows = (hdr->frame_height_minus_1 + 1 + 7) >> 3;
mi_cols = (hdr->frame_width_minus_1 + 1 + 7) >> 3;
for (i = 0; i < rows; i++) {
start = vdec_vp9_slice_tile_offset(i, mi_rows, rows_log2);
end = vdec_vp9_slice_tile_offset(i + 1, mi_rows, rows_log2);
offset = end - start;
tiles->mi_rows[i] = (offset + 7) >> 3;
if (tiles->mi_rows[i])
tiles->actual_rows++;
}
for (i = 0; i < cols; i++) {
start = vdec_vp9_slice_tile_offset(i, mi_cols, cols_log2);
end = vdec_vp9_slice_tile_offset(i + 1, mi_cols, cols_log2);
offset = end - start;
tiles->mi_cols[i] = (offset + 7) >> 3;
}
return 0;
}
static void vdec_vp9_slice_setup_state(struct vdec_vp9_slice_vsi *vsi)
{
memset(&vsi->state, 0, sizeof(vsi->state));
}
static void vdec_vp9_slice_setup_ref_idx(struct vdec_vp9_slice_pfc *pfc,
struct v4l2_ctrl_vp9_frame *hdr)
{
pfc->ref_idx[0] = hdr->last_frame_ts;
pfc->ref_idx[1] = hdr->golden_frame_ts;
pfc->ref_idx[2] = hdr->alt_frame_ts;
}
static int vdec_vp9_slice_setup_pfc(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_pfc *pfc)
{
struct v4l2_ctrl_vp9_frame *hdr;
struct vdec_vp9_slice_uncompressed_header *uh;
struct v4l2_ctrl *hdr_ctrl;
struct vdec_vp9_slice_vsi *vsi;
int ret;
/* frame header */
hdr_ctrl = v4l2_ctrl_find(&instance->ctx->ctrl_hdl, V4L2_CID_STATELESS_VP9_FRAME);
if (!hdr_ctrl || !hdr_ctrl->p_cur.p)
return -EINVAL;
hdr = hdr_ctrl->p_cur.p;
vsi = &pfc->vsi;
uh = &vsi->frame.uh;
/* setup vsi information */
vdec_vp9_slice_setup_hdr(instance, uh, hdr);
vdec_vp9_slice_setup_frame_ctx(instance, uh, hdr);
vdec_vp9_slice_setup_loop_filter(uh, &hdr->lf);
vdec_vp9_slice_setup_quantization(uh, &hdr->quant);
vdec_vp9_slice_setup_segmentation(uh, &hdr->seg);
ret = vdec_vp9_slice_setup_tile(vsi, hdr);
if (ret)
return ret;
vdec_vp9_slice_setup_state(vsi);
/* core stage needs buffer index to get ref y/c ... */
vdec_vp9_slice_setup_ref_idx(pfc, hdr);
pfc->seq = instance->seq;
instance->seq++;
return 0;
}
static int vdec_vp9_slice_setup_lat_buffer(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_vsi *vsi,
struct mtk_vcodec_mem *bs,
struct vdec_lat_buf *lat_buf)
{
int i;
vsi->bs.buf.dma_addr = bs->dma_addr;
vsi->bs.buf.size = bs->size;
vsi->bs.frame.dma_addr = bs->dma_addr;
vsi->bs.frame.size = bs->size;
for (i = 0; i < 2; i++) {
vsi->mv[i].dma_addr = instance->mv[i].dma_addr;
vsi->mv[i].size = instance->mv[i].size;
}
for (i = 0; i < 2; i++) {
vsi->seg[i].dma_addr = instance->seg[i].dma_addr;
vsi->seg[i].size = instance->seg[i].size;
}
vsi->tile.dma_addr = instance->tile.dma_addr;
vsi->tile.size = instance->tile.size;
vsi->prob.dma_addr = instance->prob.dma_addr;
vsi->prob.size = instance->prob.size;
vsi->counts.dma_addr = instance->counts.dma_addr;
vsi->counts.size = instance->counts.size;
vsi->ube.dma_addr = lat_buf->ctx->msg_queue.wdma_addr.dma_addr;
vsi->ube.size = lat_buf->ctx->msg_queue.wdma_addr.size;
vsi->trans.dma_addr = lat_buf->ctx->msg_queue.wdma_wptr_addr;
/* used to store trans end */
vsi->trans.dma_addr_end = lat_buf->ctx->msg_queue.wdma_rptr_addr;
vsi->err_map.dma_addr = lat_buf->wdma_err_addr.dma_addr;
vsi->err_map.size = lat_buf->wdma_err_addr.size;
vsi->row_info.buf = 0;
vsi->row_info.size = 0;
return 0;
}
static int vdec_vp9_slice_setup_prob_buffer(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_vsi *vsi)
{
struct vdec_vp9_slice_frame_ctx *frame_ctx;
struct vdec_vp9_slice_uncompressed_header *uh;
uh = &vsi->frame.uh;
mtk_vdec_debug(instance->ctx, "ctx dirty %u idx %d\n",
instance->dirty[uh->frame_context_idx],
uh->frame_context_idx);
if (instance->dirty[uh->frame_context_idx])
frame_ctx = &instance->frame_ctx[uh->frame_context_idx];
else
frame_ctx = vdec_vp9_slice_default_frame_ctx;
memcpy(instance->prob.va, frame_ctx, sizeof(*frame_ctx));
return 0;
}
static void vdec_vp9_slice_setup_seg_buffer(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_vsi *vsi,
struct mtk_vcodec_mem *buf)
{
struct vdec_vp9_slice_uncompressed_header *uh;
/* reset segment buffer */
uh = &vsi->frame.uh;
if (uh->frame_type == 0 ||
uh->intra_only ||
uh->error_resilient_mode ||
uh->frame_width != instance->width ||
uh->frame_height != instance->height) {
mtk_vdec_debug(instance->ctx, "reset seg\n");
memset(buf->va, 0, buf->size);
}
}
/*
* parse tiles according to `6.4 Decode tiles syntax`
* in "vp9-bitstream-specification"
*
* frame contains uncompress header, compressed header and several tiles.
* this function parses tiles' position and size, stores them to tile buffer
* for decoding.
*/
static int vdec_vp9_slice_setup_tile_buffer(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_vsi *vsi,
struct mtk_vcodec_mem *bs)
{
struct vdec_vp9_slice_uncompressed_header *uh;
unsigned int rows_log2;
unsigned int cols_log2;
unsigned int rows;
unsigned int cols;
unsigned int mi_row;
unsigned int mi_col;
unsigned int offset;
dma_addr_t pa;
unsigned int size;
struct vdec_vp9_slice_tiles *tiles;
unsigned char *pos;
unsigned char *end;
unsigned char *va;
unsigned int *tb;
int i;
int j;
uh = &vsi->frame.uh;
rows_log2 = uh->tile_rows_log2;
cols_log2 = uh->tile_cols_log2;
rows = 1 << rows_log2;
cols = 1 << cols_log2;
if (rows > 4 || cols > 64) {
mtk_vdec_err(instance->ctx, "tile_rows %u tile_cols %u\n", rows, cols);
return -EINVAL;
}
offset = uh->uncompressed_header_size +
uh->header_size_in_bytes;
if (bs->size <= offset) {
mtk_vdec_err(instance->ctx, "bs size %zu tile offset %u\n", bs->size, offset);
return -EINVAL;
}
tiles = &vsi->frame.tiles;
/* setup tile buffer */
va = (unsigned char *)bs->va;
pos = va + offset;
end = va + bs->size;
/* truncated */
pa = bs->dma_addr + offset;
tb = instance->tile.va;
for (i = 0; i < rows; i++) {
for (j = 0; j < cols; j++) {
if (i == rows - 1 &&
j == cols - 1) {
size = (unsigned int)(end - pos);
} else {
if (end - pos < 4)
return -EINVAL;
size = (pos[0] << 24) | (pos[1] << 16) |
(pos[2] << 8) | pos[3];
pos += 4;
pa += 4;
offset += 4;
if (end - pos < size)
return -EINVAL;
}
tiles->size[i][j] = size;
if (tiles->mi_rows[i]) {
*tb++ = (size << 3) + ((offset << 3) & 0x7f);
*tb++ = pa & ~0xf;
*tb++ = (pa << 3) & 0x7f;
mi_row = (tiles->mi_rows[i] - 1) & 0x1ff;
mi_col = (tiles->mi_cols[j] - 1) & 0x3f;
*tb++ = (mi_row << 6) + mi_col;
}
pos += size;
pa += size;
offset += size;
}
}
return 0;
}
static int vdec_vp9_slice_setup_lat(struct vdec_vp9_slice_instance *instance,
struct mtk_vcodec_mem *bs,
struct vdec_lat_buf *lat_buf,
struct vdec_vp9_slice_pfc *pfc)
{
struct vdec_vp9_slice_vsi *vsi = &pfc->vsi;
int ret;
ret = vdec_vp9_slice_setup_lat_from_src_buf(instance, lat_buf);
if (ret)
goto err;
ret = vdec_vp9_slice_setup_pfc(instance, pfc);
if (ret)
goto err;
ret = vdec_vp9_slice_alloc_working_buffer(instance, vsi);
if (ret)
goto err;
ret = vdec_vp9_slice_setup_lat_buffer(instance, vsi, bs, lat_buf);
if (ret)
goto err;
vdec_vp9_slice_setup_seg_buffer(instance, vsi, &instance->seg[0]);
/* setup prob/tile buffers for LAT */
ret = vdec_vp9_slice_setup_prob_buffer(instance, vsi);
if (ret)
goto err;
ret = vdec_vp9_slice_setup_tile_buffer(instance, vsi, bs);
if (ret)
goto err;
return 0;
err:
return ret;
}
static
void vdec_vp9_slice_map_counts_eob_coef(unsigned int i, unsigned int j, unsigned int k,
struct vdec_vp9_slice_frame_counts *counts,
struct v4l2_vp9_frame_symbol_counts *counts_helper)
{
u32 l = 0, m;
/*
* helper eo -> mtk eo
* helpre e1 -> mtk c3
* helper c0 -> c0
* helper c1 -> c1
* helper c2 -> c2
*/
for (m = 0; m < 3; m++) {
counts_helper->coeff[i][j][k][l][m] =
(u32 (*)[3]) & counts->coef_probs[i][j][k].band_0[m];
counts_helper->eob[i][j][k][l][m][0] =
&counts->eob_branch[i][j][k].band_0[m];
counts_helper->eob[i][j][k][l][m][1] =
&counts->coef_probs[i][j][k].band_0[m][3];
}
for (l = 1; l < 6; l++) {
for (m = 0; m < 6; m++) {
counts_helper->coeff[i][j][k][l][m] =
(u32 (*)[3]) & counts->coef_probs[i][j][k].band_1_5[l - 1][m];
counts_helper->eob[i][j][k][l][m][0] =
&counts->eob_branch[i][j][k].band_1_5[l - 1][m];
counts_helper->eob[i][j][k][l][m][1] =
&counts->coef_probs[i][j][k].band_1_5[l - 1][m][3];
}
}
}
static void vdec_vp9_slice_counts_map_helper(struct vdec_vp9_slice_counts_map *counts_map,
struct vdec_vp9_slice_frame_counts *counts,
struct v4l2_vp9_frame_symbol_counts *counts_helper)
{
int i, j, k;
counts_helper->partition = &counts->partition;
counts_helper->intra_inter = &counts->intra_inter;
counts_helper->tx32p = &counts->tx_p32x32;
counts_helper->tx16p = &counts->tx_p16x16;
counts_helper->tx8p = &counts->tx_p8x8;
counts_helper->uv_mode = &counts->uv_mode;
counts_helper->comp = &counts->comp_inter;
counts_helper->comp_ref = &counts->comp_ref;
counts_helper->single_ref = &counts->single_ref;
counts_helper->mv_mode = &counts->inter_mode;
counts_helper->mv_joint = &counts->joint;
for (i = 0; i < ARRAY_SIZE(counts_map->skip); i++)
memcpy(counts_map->skip[i], counts->skip[i],
sizeof(counts_map->skip[0]));
counts_helper->skip = &counts_map->skip;
for (i = 0; i < ARRAY_SIZE(counts_map->y_mode); i++)
memcpy(counts_map->y_mode[i], counts->y_mode[i],
sizeof(counts_map->y_mode[0]));
counts_helper->y_mode = &counts_map->y_mode;
for (i = 0; i < ARRAY_SIZE(counts_map->filter); i++)
memcpy(counts_map->filter[i], counts->switchable_interp[i],
sizeof(counts_map->filter[0]));
counts_helper->filter = &counts_map->filter;
for (i = 0; i < ARRAY_SIZE(counts_map->sign); i++)
memcpy(counts_map->sign[i], counts->mvcomp[i].sign,
sizeof(counts_map->sign[0]));
counts_helper->sign = &counts_map->sign;
for (i = 0; i < ARRAY_SIZE(counts_map->classes); i++)
memcpy(counts_map->classes[i], counts->mvcomp[i].classes,
sizeof(counts_map->classes[0]));
counts_helper->classes = &counts_map->classes;
for (i = 0; i < ARRAY_SIZE(counts_map->class0); i++)
memcpy(counts_map->class0[i], counts->mvcomp[i].class0,
sizeof(counts_map->class0[0]));
counts_helper->class0 = &counts_map->class0;
for (i = 0; i < ARRAY_SIZE(counts_map->bits); i++)
for (j = 0; j < ARRAY_SIZE(counts_map->bits[0]); j++)
memcpy(counts_map->bits[i][j], counts->mvcomp[i].bits[j],
sizeof(counts_map->bits[0][0]));
counts_helper->bits = &counts_map->bits;
for (i = 0; i < ARRAY_SIZE(counts_map->class0_fp); i++)
for (j = 0; j < ARRAY_SIZE(counts_map->class0_fp[0]); j++)
memcpy(counts_map->class0_fp[i][j], counts->mvcomp[i].class0_fp[j],
sizeof(counts_map->class0_fp[0][0]));
counts_helper->class0_fp = &counts_map->class0_fp;
for (i = 0; i < ARRAY_SIZE(counts_map->fp); i++)
memcpy(counts_map->fp[i], counts->mvcomp[i].fp,
sizeof(counts_map->fp[0]));
counts_helper->fp = &counts_map->fp;
for (i = 0; i < ARRAY_SIZE(counts_map->class0_hp); i++)
memcpy(counts_map->class0_hp[i], counts->mvcomp[i].class0_hp,
sizeof(counts_map->class0_hp[0]));
counts_helper->class0_hp = &counts_map->class0_hp;
for (i = 0; i < ARRAY_SIZE(counts_map->hp); i++)
memcpy(counts_map->hp[i], counts->mvcomp[i].hp, sizeof(counts_map->hp[0]));
counts_helper->hp = &counts_map->hp;
for (i = 0; i < 4; i++)
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
vdec_vp9_slice_map_counts_eob_coef(i, j, k, counts, counts_helper);
}
static void vdec_vp9_slice_map_to_coef(unsigned int i, unsigned int j, unsigned int k,
struct vdec_vp9_slice_frame_ctx *frame_ctx,
struct v4l2_vp9_frame_context *frame_ctx_helper)
{
u32 l, m;
for (l = 0; l < ARRAY_SIZE(frame_ctx_helper->coef[0][0][0]); l++) {
for (m = 0; m < VP9_BAND_6(l); m++) {
memcpy(frame_ctx_helper->coef[i][j][k][l][m],
frame_ctx->coef_probs[i][j][k][l].probs[m],
sizeof(frame_ctx_helper->coef[i][j][k][l][0]));
}
}
}
static void vdec_vp9_slice_map_from_coef(unsigned int i, unsigned int j, unsigned int k,
struct vdec_vp9_slice_frame_ctx *frame_ctx,
struct v4l2_vp9_frame_context *frame_ctx_helper)
{
u32 l, m;
for (l = 0; l < ARRAY_SIZE(frame_ctx_helper->coef[0][0][0]); l++) {
for (m = 0; m < VP9_BAND_6(l); m++) {
memcpy(frame_ctx->coef_probs[i][j][k][l].probs[m],
frame_ctx_helper->coef[i][j][k][l][m],
sizeof(frame_ctx_helper->coef[i][j][k][l][0]));
}
}
}
static
void vdec_vp9_slice_framectx_map_helper(bool frame_is_intra,
struct vdec_vp9_slice_frame_ctx *pre_frame_ctx,
struct vdec_vp9_slice_frame_ctx *frame_ctx,
struct v4l2_vp9_frame_context *frame_ctx_helper)
{
struct v4l2_vp9_frame_mv_context *mv = &frame_ctx_helper->mv;
u32 i, j, k;
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->coef); i++)
for (j = 0; j < ARRAY_SIZE(frame_ctx_helper->coef[0]); j++)
for (k = 0; k < ARRAY_SIZE(frame_ctx_helper->coef[0][0]); k++)
vdec_vp9_slice_map_to_coef(i, j, k, pre_frame_ctx,
frame_ctx_helper);
/*
* use previous prob when frame is not intra or
* we should use the prob updated by the compressed header parse
*/
if (!frame_is_intra)
frame_ctx = pre_frame_ctx;
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx8); i++)
memcpy(frame_ctx_helper->tx8[i], frame_ctx->tx_p8x8[i],
sizeof(frame_ctx_helper->tx8[0]));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx16); i++)
memcpy(frame_ctx_helper->tx16[i], frame_ctx->tx_p16x16[i],
sizeof(frame_ctx_helper->tx16[0]));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx32); i++)
memcpy(frame_ctx_helper->tx32[i], frame_ctx->tx_p32x32[i],
sizeof(frame_ctx_helper->tx32[0]));
memcpy(frame_ctx_helper->skip, frame_ctx->skip_probs, sizeof(frame_ctx_helper->skip));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->inter_mode); i++)
memcpy(frame_ctx_helper->inter_mode[i], frame_ctx->inter_mode_probs[i],
sizeof(frame_ctx_helper->inter_mode[0]));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->interp_filter); i++)
memcpy(frame_ctx_helper->interp_filter[i], frame_ctx->switch_interp_prob[i],
sizeof(frame_ctx_helper->interp_filter[0]));
memcpy(frame_ctx_helper->is_inter, frame_ctx->intra_inter_prob,
sizeof(frame_ctx_helper->is_inter));
memcpy(frame_ctx_helper->comp_mode, frame_ctx->comp_inter_prob,
sizeof(frame_ctx_helper->comp_mode));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->single_ref); i++)
memcpy(frame_ctx_helper->single_ref[i], frame_ctx->single_ref_prob[i],
sizeof(frame_ctx_helper->single_ref[0]));
memcpy(frame_ctx_helper->comp_ref, frame_ctx->comp_ref_prob,
sizeof(frame_ctx_helper->comp_ref));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->y_mode); i++)
memcpy(frame_ctx_helper->y_mode[i], frame_ctx->y_mode_prob[i],
sizeof(frame_ctx_helper->y_mode[0]));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->uv_mode); i++)
memcpy(frame_ctx_helper->uv_mode[i], frame_ctx->uv_mode_prob[i],
sizeof(frame_ctx_helper->uv_mode[0]));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->partition); i++)
memcpy(frame_ctx_helper->partition[i], frame_ctx->partition_prob[i],
sizeof(frame_ctx_helper->partition[0]));
memcpy(mv->joint, frame_ctx->joint, sizeof(mv->joint));
for (i = 0; i < ARRAY_SIZE(mv->sign); i++)
mv->sign[i] = frame_ctx->sign_classes[i].sign;
for (i = 0; i < ARRAY_SIZE(mv->classes); i++)
memcpy(mv->classes[i], frame_ctx->sign_classes[i].classes,
sizeof(mv->classes[i]));
for (i = 0; i < ARRAY_SIZE(mv->class0_bit); i++)
mv->class0_bit[i] = frame_ctx->class0_bits[i].class0[0];
for (i = 0; i < ARRAY_SIZE(mv->bits); i++)
memcpy(mv->bits[i], frame_ctx->class0_bits[i].bits, sizeof(mv->bits[0]));
for (i = 0; i < ARRAY_SIZE(mv->class0_fr); i++)
for (j = 0; j < ARRAY_SIZE(mv->class0_fr[0]); j++)
memcpy(mv->class0_fr[i][j], frame_ctx->class0_fp_hp[i].class0_fp[j],
sizeof(mv->class0_fr[0][0]));
for (i = 0; i < ARRAY_SIZE(mv->fr); i++)
memcpy(mv->fr[i], frame_ctx->class0_fp_hp[i].fp, sizeof(mv->fr[0]));
for (i = 0; i < ARRAY_SIZE(mv->class0_hp); i++)
mv->class0_hp[i] = frame_ctx->class0_fp_hp[i].class0_hp;
for (i = 0; i < ARRAY_SIZE(mv->hp); i++)
mv->hp[i] = frame_ctx->class0_fp_hp[i].hp;
}
static void vdec_vp9_slice_helper_map_framectx(struct v4l2_vp9_frame_context *frame_ctx_helper,
struct vdec_vp9_slice_frame_ctx *frame_ctx)
{
struct v4l2_vp9_frame_mv_context *mv = &frame_ctx_helper->mv;
u32 i, j, k;
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx8); i++)
memcpy(frame_ctx->tx_p8x8[i], frame_ctx_helper->tx8[i],
sizeof(frame_ctx_helper->tx8[0]));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx16); i++)
memcpy(frame_ctx->tx_p16x16[i], frame_ctx_helper->tx16[i],
sizeof(frame_ctx_helper->tx16[0]));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->tx32); i++)
memcpy(frame_ctx->tx_p32x32[i], frame_ctx_helper->tx32[i],
sizeof(frame_ctx_helper->tx32[0]));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->coef); i++)
for (j = 0; j < ARRAY_SIZE(frame_ctx_helper->coef[0]); j++)
for (k = 0; k < ARRAY_SIZE(frame_ctx_helper->coef[0][0]); k++)
vdec_vp9_slice_map_from_coef(i, j, k, frame_ctx,
frame_ctx_helper);
memcpy(frame_ctx->skip_probs, frame_ctx_helper->skip, sizeof(frame_ctx_helper->skip));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->inter_mode); i++)
memcpy(frame_ctx->inter_mode_probs[i], frame_ctx_helper->inter_mode[i],
sizeof(frame_ctx_helper->inter_mode[0]));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->interp_filter); i++)
memcpy(frame_ctx->switch_interp_prob[i], frame_ctx_helper->interp_filter[i],
sizeof(frame_ctx_helper->interp_filter[0]));
memcpy(frame_ctx->intra_inter_prob, frame_ctx_helper->is_inter,
sizeof(frame_ctx_helper->is_inter));
memcpy(frame_ctx->comp_inter_prob, frame_ctx_helper->comp_mode,
sizeof(frame_ctx_helper->comp_mode));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->single_ref); i++)
memcpy(frame_ctx->single_ref_prob[i], frame_ctx_helper->single_ref[i],
sizeof(frame_ctx_helper->single_ref[0]));
memcpy(frame_ctx->comp_ref_prob, frame_ctx_helper->comp_ref,
sizeof(frame_ctx_helper->comp_ref));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->y_mode); i++)
memcpy(frame_ctx->y_mode_prob[i], frame_ctx_helper->y_mode[i],
sizeof(frame_ctx_helper->y_mode[0]));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->uv_mode); i++)
memcpy(frame_ctx->uv_mode_prob[i], frame_ctx_helper->uv_mode[i],
sizeof(frame_ctx_helper->uv_mode[0]));
for (i = 0; i < ARRAY_SIZE(frame_ctx_helper->partition); i++)
memcpy(frame_ctx->partition_prob[i], frame_ctx_helper->partition[i],
sizeof(frame_ctx_helper->partition[0]));
memcpy(frame_ctx->joint, mv->joint, sizeof(mv->joint));
for (i = 0; i < ARRAY_SIZE(mv->sign); i++)
frame_ctx->sign_classes[i].sign = mv->sign[i];
for (i = 0; i < ARRAY_SIZE(mv->classes); i++)
memcpy(frame_ctx->sign_classes[i].classes, mv->classes[i],
sizeof(mv->classes[i]));
for (i = 0; i < ARRAY_SIZE(mv->class0_bit); i++)
frame_ctx->class0_bits[i].class0[0] = mv->class0_bit[i];
for (i = 0; i < ARRAY_SIZE(mv->bits); i++)
memcpy(frame_ctx->class0_bits[i].bits, mv->bits[i], sizeof(mv->bits[0]));
for (i = 0; i < ARRAY_SIZE(mv->class0_fr); i++)
for (j = 0; j < ARRAY_SIZE(mv->class0_fr[0]); j++)
memcpy(frame_ctx->class0_fp_hp[i].class0_fp[j], mv->class0_fr[i][j],
sizeof(mv->class0_fr[0][0]));
for (i = 0; i < ARRAY_SIZE(mv->fr); i++)
memcpy(frame_ctx->class0_fp_hp[i].fp, mv->fr[i], sizeof(mv->fr[0]));
for (i = 0; i < ARRAY_SIZE(mv->class0_hp); i++)
frame_ctx->class0_fp_hp[i].class0_hp = mv->class0_hp[i];
for (i = 0; i < ARRAY_SIZE(mv->hp); i++)
frame_ctx->class0_fp_hp[i].hp = mv->hp[i];
}
static int vdec_vp9_slice_update_prob(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_vsi *vsi)
{
struct vdec_vp9_slice_frame_ctx *pre_frame_ctx;
struct v4l2_vp9_frame_context *pre_frame_ctx_helper;
struct vdec_vp9_slice_frame_ctx *frame_ctx;
struct vdec_vp9_slice_frame_counts *counts;
struct v4l2_vp9_frame_symbol_counts *counts_helper;
struct vdec_vp9_slice_uncompressed_header *uh;
bool frame_is_intra;
bool use_128;
uh = &vsi->frame.uh;
pre_frame_ctx = &instance->frame_ctx[uh->frame_context_idx];
pre_frame_ctx_helper = &instance->frame_ctx_helper;
frame_ctx = (struct vdec_vp9_slice_frame_ctx *)instance->prob.va;
counts = (struct vdec_vp9_slice_frame_counts *)instance->counts.va;
counts_helper = &instance->counts_helper;
if (!uh->refresh_frame_context)
return 0;
if (!uh->frame_parallel_decoding_mode) {
vdec_vp9_slice_counts_map_helper(&instance->counts_map, counts, counts_helper);
frame_is_intra = !vsi->frame.uh.frame_type || vsi->frame.uh.intra_only;
/* check default prob */
if (!instance->dirty[uh->frame_context_idx])
vdec_vp9_slice_framectx_map_helper(frame_is_intra,
vdec_vp9_slice_default_frame_ctx,
frame_ctx,
pre_frame_ctx_helper);
else
vdec_vp9_slice_framectx_map_helper(frame_is_intra,
pre_frame_ctx,
frame_ctx,
pre_frame_ctx_helper);
use_128 = !frame_is_intra && !vsi->frame.uh.last_frame_type;
v4l2_vp9_adapt_coef_probs(pre_frame_ctx_helper,
counts_helper,
use_128,
frame_is_intra);
if (!frame_is_intra)
v4l2_vp9_adapt_noncoef_probs(pre_frame_ctx_helper,
counts_helper,
V4L2_VP9_REFERENCE_MODE_SINGLE_REFERENCE,
vsi->frame.uh.interpolation_filter,
vsi->frame.ch.tx_mode,
vsi->frame.uh.allow_high_precision_mv ?
V4L2_VP9_FRAME_FLAG_ALLOW_HIGH_PREC_MV : 0);
vdec_vp9_slice_helper_map_framectx(pre_frame_ctx_helper, pre_frame_ctx);
} else {
memcpy(pre_frame_ctx, frame_ctx, sizeof(*frame_ctx));
}
instance->dirty[uh->frame_context_idx] = 1;
return 0;
}
static int vdec_vp9_slice_update_single(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_pfc *pfc)
{
struct vdec_vp9_slice_vsi *vsi;
vsi = &pfc->vsi;
memcpy(&pfc->state[0], &vsi->state, sizeof(vsi->state));
mtk_vdec_debug(instance->ctx, "Frame %u Y_CRC %08x %08x %08x %08x\n",
pfc->seq, vsi->state.crc[0], vsi->state.crc[1],
vsi->state.crc[2], vsi->state.crc[3]);
mtk_vdec_debug(instance->ctx, "Frame %u C_CRC %08x %08x %08x %08x\n",
pfc->seq, vsi->state.crc[4], vsi->state.crc[5],
vsi->state.crc[6], vsi->state.crc[7]);
vdec_vp9_slice_update_prob(instance, vsi);
instance->width = vsi->frame.uh.frame_width;
instance->height = vsi->frame.uh.frame_height;
instance->frame_type = vsi->frame.uh.frame_type;
instance->show_frame = vsi->frame.uh.show_frame;
return 0;
}
static int vdec_vp9_slice_update_lat(struct vdec_vp9_slice_instance *instance,
struct vdec_lat_buf *lat_buf,
struct vdec_vp9_slice_pfc *pfc)
{
struct vdec_vp9_slice_vsi *vsi;
vsi = &pfc->vsi;
memcpy(&pfc->state[0], &vsi->state, sizeof(vsi->state));
mtk_vdec_debug(instance->ctx, "Frame %u LAT CRC 0x%08x %lx %lx\n",
pfc->seq, vsi->state.crc[0],
(unsigned long)vsi->trans.dma_addr,
(unsigned long)vsi->trans.dma_addr_end);
/* buffer full, need to re-decode */
if (vsi->state.full) {
/* buffer not enough */
if (vsi->trans.dma_addr_end - vsi->trans.dma_addr ==
vsi->ube.size)
return -ENOMEM;
return -EAGAIN;
}
vdec_vp9_slice_update_prob(instance, vsi);
instance->width = vsi->frame.uh.frame_width;
instance->height = vsi->frame.uh.frame_height;
instance->frame_type = vsi->frame.uh.frame_type;
instance->show_frame = vsi->frame.uh.show_frame;
return 0;
}
static int vdec_vp9_slice_setup_core_to_dst_buf(struct vdec_vp9_slice_instance *instance,
struct vdec_lat_buf *lat_buf)
{
struct vb2_v4l2_buffer *dst;
dst = v4l2_m2m_next_dst_buf(instance->ctx->m2m_ctx);
if (!dst)
return -EINVAL;
v4l2_m2m_buf_copy_metadata(&lat_buf->ts_info, dst, true);
return 0;
}
static int vdec_vp9_slice_setup_core_buffer(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_pfc *pfc,
struct vdec_vp9_slice_vsi *vsi,
struct vdec_fb *fb,
struct vdec_lat_buf *lat_buf)
{
struct vb2_buffer *vb;
struct vb2_queue *vq;
struct vdec_vp9_slice_reference *ref;
int plane;
int size;
int w;
int h;
int i;
plane = instance->ctx->q_data[MTK_Q_DATA_DST].fmt->num_planes;
w = vsi->frame.uh.frame_width;
h = vsi->frame.uh.frame_height;
size = ALIGN(w, 64) * ALIGN(h, 64);
/* frame buffer */
vsi->fb.y.dma_addr = fb->base_y.dma_addr;
if (plane == 1)
vsi->fb.c.dma_addr = fb->base_y.dma_addr + size;
else
vsi->fb.c.dma_addr = fb->base_c.dma_addr;
/* reference buffers */
vq = v4l2_m2m_get_vq(instance->ctx->m2m_ctx,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
if (!vq)
return -EINVAL;
/* get current output buffer */
vb = &v4l2_m2m_next_dst_buf(instance->ctx->m2m_ctx)->vb2_buf;
if (!vb)
return -EINVAL;
/* update internal buffer's width/height */
instance->dpb[vb->index].width = w;
instance->dpb[vb->index].height = h;
/*
* get buffer's width/height from instance
* get buffer address from vb2buf
*/
for (i = 0; i < 3; i++) {
ref = &vsi->frame.ref[i];
vb = vb2_find_buffer(vq, pfc->ref_idx[i]);
if (!vb) {
ref->frame_width = w;
ref->frame_height = h;
memset(&vsi->ref[i], 0, sizeof(vsi->ref[i]));
} else {
int idx = vb->index;
ref->frame_width = instance->dpb[idx].width;
ref->frame_height = instance->dpb[idx].height;
vsi->ref[i].y.dma_addr =
vb2_dma_contig_plane_dma_addr(vb, 0);
if (plane == 1)
vsi->ref[i].c.dma_addr =
vsi->ref[i].y.dma_addr + size;
else
vsi->ref[i].c.dma_addr =
vb2_dma_contig_plane_dma_addr(vb, 1);
}
}
return 0;
}
static void vdec_vp9_slice_setup_single_buffer(struct vdec_vp9_slice_instance *instance,
struct vdec_vp9_slice_pfc *pfc,
struct vdec_vp9_slice_vsi *vsi,
struct mtk_vcodec_mem *bs,
struct vdec_fb *fb)
{
int i;
vsi->bs.buf.dma_addr = bs->dma_addr;
vsi->bs.buf.size = bs->size;
vsi->bs.frame.dma_addr = bs->dma_addr;
vsi->bs.frame.size = bs->size;
for (i = 0; i < 2; i++) {
vsi->mv[i].dma_addr = instance->mv[i].dma_addr;
vsi->mv[i].size = instance->mv[i].size;
}
for (i = 0; i < 2; i++) {
vsi->seg[i].dma_addr = instance->seg[i].dma_addr;
vsi->seg[i].size = instance->seg[i].size;
}
vsi->tile.dma_addr = instance->tile.dma_addr;
vsi->tile.size = instance->tile.size;
vsi->prob.dma_addr = instance->prob.dma_addr;
vsi->prob.size = instance->prob.size;
vsi->counts.dma_addr = instance->counts.dma_addr;
vsi->counts.size = instance->counts.size;
vsi->row_info.buf = 0;
vsi->row_info.size = 0;
vdec_vp9_slice_setup_core_buffer(instance, pfc, vsi, fb, NULL);
}
static int vdec_vp9_slice_setup_core(struct vdec_vp9_slice_instance *instance,
struct vdec_fb *fb,
struct vdec_lat_buf *lat_buf,
struct vdec_vp9_slice_pfc *pfc)
{
struct vdec_vp9_slice_vsi *vsi = &pfc->vsi;
int ret;
vdec_vp9_slice_setup_state(vsi);
ret = vdec_vp9_slice_setup_core_to_dst_buf(instance, lat_buf);
if (ret)
goto err;
ret = vdec_vp9_slice_setup_core_buffer(instance, pfc, vsi, fb, lat_buf);
if (ret)
goto err;
vdec_vp9_slice_setup_seg_buffer(instance, vsi, &instance->seg[1]);
return 0;
err:
return ret;
}
static int vdec_vp9_slice_setup_single(struct vdec_vp9_slice_instance *instance,
struct mtk_vcodec_mem *bs,
struct vdec_fb *fb,
struct vdec_vp9_slice_pfc *pfc)
{
struct vdec_vp9_slice_vsi *vsi = &pfc->vsi;
int ret;
ret = vdec_vp9_slice_setup_single_from_src_to_dst(instance);
if (ret)
goto err;
ret = vdec_vp9_slice_setup_pfc(instance, pfc);
if (ret)
goto err;
ret = vdec_vp9_slice_alloc_working_buffer(instance, vsi);
if (ret)
goto err;
vdec_vp9_slice_setup_single_buffer(instance, pfc, vsi, bs, fb);
vdec_vp9_slice_setup_seg_buffer(instance, vsi, &instance->seg[0]);
ret = vdec_vp9_slice_setup_prob_buffer(instance, vsi);
if (ret)
goto err;
ret = vdec_vp9_slice_setup_tile_buffer(instance, vsi, bs);
if (ret)
goto err;
return 0;
err:
return ret;
}
static int vdec_vp9_slice_update_core(struct vdec_vp9_slice_instance *instance,
struct vdec_lat_buf *lat_buf,
struct vdec_vp9_slice_pfc *pfc)
{
struct vdec_vp9_slice_vsi *vsi;
vsi = &pfc->vsi;
memcpy(&pfc->state[1], &vsi->state, sizeof(vsi->state));
mtk_vdec_debug(instance->ctx, "Frame %u Y_CRC %08x %08x %08x %08x\n",
pfc->seq, vsi->state.crc[0], vsi->state.crc[1],
vsi->state.crc[2], vsi->state.crc[3]);
mtk_vdec_debug(instance->ctx, "Frame %u C_CRC %08x %08x %08x %08x\n",
pfc->seq, vsi->state.crc[4], vsi->state.crc[5],
vsi->state.crc[6], vsi->state.crc[7]);
return 0;
}
static int vdec_vp9_slice_init(struct mtk_vcodec_dec_ctx *ctx)
{
struct vdec_vp9_slice_instance *instance;
struct vdec_vp9_slice_init_vsi *vsi;
int ret;
instance = kzalloc(sizeof(*instance), GFP_KERNEL);
if (!instance)
return -ENOMEM;
instance->ctx = ctx;
instance->vpu.id = SCP_IPI_VDEC_LAT;
instance->vpu.core_id = SCP_IPI_VDEC_CORE;
instance->vpu.ctx = ctx;
instance->vpu.codec_type = ctx->current_codec;
ret = vpu_dec_init(&instance->vpu);
if (ret) {
mtk_vdec_err(ctx, "failed to init vpu dec, ret %d\n", ret);
goto error_vpu_init;
}
/* init vsi and global flags */
vsi = instance->vpu.vsi;
if (!vsi) {
mtk_vdec_err(ctx, "failed to get VP9 vsi\n");
ret = -EINVAL;
goto error_vsi;
}
instance->init_vsi = vsi;
instance->core_vsi = mtk_vcodec_fw_map_dm_addr(ctx->dev->fw_handler,
(u32)vsi->core_vsi);
if (!instance->core_vsi) {
mtk_vdec_err(ctx, "failed to get VP9 core vsi\n");
ret = -EINVAL;
goto error_vsi;
}
instance->irq = 1;
ret = vdec_vp9_slice_init_default_frame_ctx(instance);
if (ret)
goto error_default_frame_ctx;
ctx->drv_handle = instance;
return 0;
error_default_frame_ctx:
error_vsi:
vpu_dec_deinit(&instance->vpu);
error_vpu_init:
kfree(instance);
return ret;
}
static void vdec_vp9_slice_deinit(void *h_vdec)
{
struct vdec_vp9_slice_instance *instance = h_vdec;
if (!instance)
return;
vpu_dec_deinit(&instance->vpu);
vdec_vp9_slice_free_working_buffer(instance);
vdec_msg_queue_deinit(&instance->ctx->msg_queue, instance->ctx);
kfree(instance);
}
static int vdec_vp9_slice_flush(void *h_vdec, struct mtk_vcodec_mem *bs,
struct vdec_fb *fb, bool *res_chg)
{
struct vdec_vp9_slice_instance *instance = h_vdec;
mtk_vdec_debug(instance->ctx, "flush ...\n");
if (instance->ctx->dev->vdec_pdata->hw_arch != MTK_VDEC_PURE_SINGLE_CORE)
vdec_msg_queue_wait_lat_buf_full(&instance->ctx->msg_queue);
return vpu_dec_reset(&instance->vpu);
}
static void vdec_vp9_slice_get_pic_info(struct vdec_vp9_slice_instance *instance)
{
struct mtk_vcodec_dec_ctx *ctx = instance->ctx;
unsigned int data[3];
mtk_vdec_debug(instance->ctx, "w %u h %u\n", ctx->picinfo.pic_w, ctx->picinfo.pic_h);
data[0] = ctx->picinfo.pic_w;
data[1] = ctx->picinfo.pic_h;
data[2] = ctx->capture_fourcc;
vpu_dec_get_param(&instance->vpu, data, 3, GET_PARAM_PIC_INFO);
ctx->picinfo.buf_w = ALIGN(ctx->picinfo.pic_w, 64);
ctx->picinfo.buf_h = ALIGN(ctx->picinfo.pic_h, 64);
ctx->picinfo.fb_sz[0] = instance->vpu.fb_sz[0];
ctx->picinfo.fb_sz[1] = instance->vpu.fb_sz[1];
}
static void vdec_vp9_slice_get_dpb_size(struct vdec_vp9_slice_instance *instance,
unsigned int *dpb_sz)
{
/* refer VP9 specification */
*dpb_sz = 9;
}
static int vdec_vp9_slice_get_param(void *h_vdec, enum vdec_get_param_type type, void *out)
{
struct vdec_vp9_slice_instance *instance = h_vdec;
switch (type) {
case GET_PARAM_PIC_INFO:
vdec_vp9_slice_get_pic_info(instance);
break;
case GET_PARAM_DPB_SIZE:
vdec_vp9_slice_get_dpb_size(instance, out);
break;
case GET_PARAM_CROP_INFO:
mtk_vdec_debug(instance->ctx, "No need to get vp9 crop information.");
break;
default:
mtk_vdec_err(instance->ctx, "invalid get parameter type=%d\n", type);
return -EINVAL;
}
return 0;
}
static int vdec_vp9_slice_single_decode(void *h_vdec, struct mtk_vcodec_mem *bs,
struct vdec_fb *fb, bool *res_chg)
{
struct vdec_vp9_slice_instance *instance = h_vdec;
struct vdec_vp9_slice_pfc *pfc = &instance->sc_pfc;
struct vdec_vp9_slice_vsi *vsi;
struct mtk_vcodec_dec_ctx *ctx;
int ret;
if (!instance || !instance->ctx)
return -EINVAL;
ctx = instance->ctx;
/* bs NULL means flush decoder */
if (!bs)
return vdec_vp9_slice_flush(h_vdec, bs, fb, res_chg);
fb = ctx->dev->vdec_pdata->get_cap_buffer(ctx);
if (!fb)
return -EBUSY;
vsi = &pfc->vsi;
ret = vdec_vp9_slice_setup_single(instance, bs, fb, pfc);
if (ret) {
mtk_vdec_err(ctx, "Failed to setup VP9 single ret %d\n", ret);
return ret;
}
vdec_vp9_slice_vsi_to_remote(vsi, instance->vsi);
ret = vpu_dec_start(&instance->vpu, NULL, 0);
if (ret) {
mtk_vdec_err(ctx, "Failed to dec VP9 ret %d\n", ret);
return ret;
}
ret = mtk_vcodec_wait_for_done_ctx(ctx, MTK_INST_IRQ_RECEIVED,
WAIT_INTR_TIMEOUT_MS, MTK_VDEC_CORE);
/* update remote vsi if decode timeout */
if (ret) {
mtk_vdec_err(ctx, "VP9 decode timeout %d\n", ret);
WRITE_ONCE(instance->vsi->state.timeout, 1);
}
vpu_dec_end(&instance->vpu);
vdec_vp9_slice_vsi_from_remote(vsi, instance->vsi, 0);
ret = vdec_vp9_slice_update_single(instance, pfc);
if (ret) {
mtk_vdec_err(ctx, "VP9 decode error: %d\n", ret);
return ret;
}
instance->ctx->decoded_frame_cnt++;
return 0;
}
static int vdec_vp9_slice_lat_decode(void *h_vdec, struct mtk_vcodec_mem *bs,
struct vdec_fb *fb, bool *res_chg)
{
struct vdec_vp9_slice_instance *instance = h_vdec;
struct vdec_lat_buf *lat_buf;
struct vdec_vp9_slice_pfc *pfc;
struct vdec_vp9_slice_vsi *vsi;
struct mtk_vcodec_dec_ctx *ctx;
int ret;
if (!instance || !instance->ctx)
return -EINVAL;
ctx = instance->ctx;
/* init msgQ for the first time */
if (vdec_msg_queue_init(&ctx->msg_queue, ctx,
vdec_vp9_slice_core_decode,
sizeof(*pfc)))
return -ENOMEM;
/* bs NULL means flush decoder */
if (!bs)
return vdec_vp9_slice_flush(h_vdec, bs, fb, res_chg);
lat_buf = vdec_msg_queue_dqbuf(&instance->ctx->msg_queue.lat_ctx);
if (!lat_buf) {
mtk_vdec_debug(ctx, "Failed to get VP9 lat buf\n");
return -EAGAIN;
}
pfc = (struct vdec_vp9_slice_pfc *)lat_buf->private_data;
if (!pfc) {
ret = -EINVAL;
goto err_free_fb_out;
}
vsi = &pfc->vsi;
ret = vdec_vp9_slice_setup_lat(instance, bs, lat_buf, pfc);
if (ret) {
mtk_vdec_err(ctx, "Failed to setup VP9 lat ret %d\n", ret);
goto err_free_fb_out;
}
vdec_vp9_slice_vsi_to_remote(vsi, instance->vsi);
ret = vpu_dec_start(&instance->vpu, NULL, 0);
if (ret) {
mtk_vdec_err(ctx, "Failed to dec VP9 ret %d\n", ret);
goto err_free_fb_out;
}
if (instance->irq) {
ret = mtk_vcodec_wait_for_done_ctx(ctx, MTK_INST_IRQ_RECEIVED,
WAIT_INTR_TIMEOUT_MS, MTK_VDEC_LAT0);
/* update remote vsi if decode timeout */
if (ret) {
mtk_vdec_err(ctx, "VP9 decode timeout %d pic %d\n", ret, pfc->seq);
WRITE_ONCE(instance->vsi->state.timeout, 1);
}
vpu_dec_end(&instance->vpu);
}
vdec_vp9_slice_vsi_from_remote(vsi, instance->vsi, 0);
ret = vdec_vp9_slice_update_lat(instance, lat_buf, pfc);
/* LAT trans full, no more UBE or decode timeout */
if (ret) {
mtk_vdec_err(ctx, "VP9 decode error: %d\n", ret);
goto err_free_fb_out;
}
mtk_vdec_debug(ctx, "lat dma addr: 0x%lx 0x%lx\n",
(unsigned long)pfc->vsi.trans.dma_addr,
(unsigned long)pfc->vsi.trans.dma_addr_end);
vdec_msg_queue_update_ube_wptr(&ctx->msg_queue,
vsi->trans.dma_addr_end +
ctx->msg_queue.wdma_addr.dma_addr);
vdec_msg_queue_qbuf(&ctx->msg_queue.core_ctx, lat_buf);
return 0;
err_free_fb_out:
vdec_msg_queue_qbuf(&ctx->msg_queue.lat_ctx, lat_buf);
return ret;
}
static int vdec_vp9_slice_decode(void *h_vdec, struct mtk_vcodec_mem *bs,
struct vdec_fb *fb, bool *res_chg)
{
struct vdec_vp9_slice_instance *instance = h_vdec;
int ret;
if (instance->ctx->dev->vdec_pdata->hw_arch == MTK_VDEC_PURE_SINGLE_CORE)
ret = vdec_vp9_slice_single_decode(h_vdec, bs, fb, res_chg);
else
ret = vdec_vp9_slice_lat_decode(h_vdec, bs, fb, res_chg);
return ret;
}
static int vdec_vp9_slice_core_decode(struct vdec_lat_buf *lat_buf)
{
struct vdec_vp9_slice_instance *instance;
struct vdec_vp9_slice_pfc *pfc;
struct mtk_vcodec_dec_ctx *ctx = NULL;
struct vdec_fb *fb = NULL;
int ret = -EINVAL;
if (!lat_buf)
goto err;
pfc = lat_buf->private_data;
ctx = lat_buf->ctx;
if (!pfc || !ctx)
goto err;
instance = ctx->drv_handle;
if (!instance)
goto err;
fb = ctx->dev->vdec_pdata->get_cap_buffer(ctx);
if (!fb) {
ret = -EBUSY;
goto err;
}
ret = vdec_vp9_slice_setup_core(instance, fb, lat_buf, pfc);
if (ret) {
mtk_vdec_err(ctx, "vdec_vp9_slice_setup_core\n");
goto err;
}
vdec_vp9_slice_vsi_to_remote(&pfc->vsi, instance->core_vsi);
ret = vpu_dec_core(&instance->vpu);
if (ret) {
mtk_vdec_err(ctx, "vpu_dec_core\n");
goto err;
}
if (instance->irq) {
ret = mtk_vcodec_wait_for_done_ctx(ctx, MTK_INST_IRQ_RECEIVED,
WAIT_INTR_TIMEOUT_MS, MTK_VDEC_CORE);
/* update remote vsi if decode timeout */
if (ret) {
mtk_vdec_err(ctx, "VP9 core timeout pic %d\n", pfc->seq);
WRITE_ONCE(instance->core_vsi->state.timeout, 1);
}
vpu_dec_core_end(&instance->vpu);
}
vdec_vp9_slice_vsi_from_remote(&pfc->vsi, instance->core_vsi, 1);
ret = vdec_vp9_slice_update_core(instance, lat_buf, pfc);
if (ret) {
mtk_vdec_err(ctx, "vdec_vp9_slice_update_core\n");
goto err;
}
pfc->vsi.trans.dma_addr_end += ctx->msg_queue.wdma_addr.dma_addr;
mtk_vdec_debug(ctx, "core dma_addr_end 0x%lx\n",
(unsigned long)pfc->vsi.trans.dma_addr_end);
vdec_msg_queue_update_ube_rptr(&ctx->msg_queue, pfc->vsi.trans.dma_addr_end);
ctx->dev->vdec_pdata->cap_to_disp(ctx, 0, lat_buf->src_buf_req);
return 0;
err:
if (ctx && pfc) {
/* always update read pointer */
vdec_msg_queue_update_ube_rptr(&ctx->msg_queue, pfc->vsi.trans.dma_addr_end);
if (fb)
ctx->dev->vdec_pdata->cap_to_disp(ctx, 1, lat_buf->src_buf_req);
}
return ret;
}
const struct vdec_common_if vdec_vp9_slice_lat_if = {
.init = vdec_vp9_slice_init,
.decode = vdec_vp9_slice_decode,
.get_param = vdec_vp9_slice_get_param,
.deinit = vdec_vp9_slice_deinit,
};